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Encoder-Camera-Ground Penetrating Radar Sensor
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Chieh Chou , Haifeng Li , Member, IEEE, and Dezhen Song , Senior Member, IEEE

Abstract—In this article, we report system and algorithmic de-
velopments for a sensing suite comprising a camera and a ground
penetrating radar (GPR) with a wheel encoder designed for both
surface and subsurface infrastructure inspection, which is a mul-
timodal mapping task. To fuse different sensor modalities prop-
erly, we solve a novel GPR-camera calibration problem and a
synchronization-challenged sensor fusion problem. First, we design
a calibration rig, model the GPR imaging process, introduce a mir-
ror to obtain the joint coverage between the camera and the GPR,
and employ the maximum-likelihood estimator to estimate the
relative pose between the camera and the GPR with error analysis.
Second, we propose a data collection scheme using the customized
artificial landmarks to synchronize camera images (temporally
evenly spaced) and GPR/encoder data (spatially evenly spaced). We
also employ pose graph optimization with location discrepancy as
penalty functions to perform data fusion for 3-D reconstruction. We
have tested our system in physical experiments. The results show
that our system successfully fuses encoder–camera–GPR sensory
data and accomplishes a metric 3-D reconstruction. Moreover, our
sensor fusion approach reduces the end-to-end distance error from
6.4 to 0.7 cm in a real bridge inspection experiment if comparing
to the counterpart that only uses encoder measurements.

Index Terms—Calibration, ground penetrating radar (GPR),
mapping, sensor fusion, vision.

I. INTRODUCTION

INFRASTRUCTURES such as bridge decks, freeways, and
airport runways require periodic inspections for maintenance

purposes due to deterioration over time. Manual inspections
would be labor intensive and costly. A more viable approach is to
mount sensors onto a robot to perform the inspection tasks. The
inspection tasks require both surface and subsurface mapping
to assist searching for cracks, voids, or other damages, and thus
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Fig. 1. Inputs: top left: camera image sequences; and top right: a set of GPR
scans. Outputs are shown at the bottom: the bridge deck 3-D reconstruction
result (including camera/ground penetrating radar (GPR) poses, 3-D landmark
positions, artificial landmarks (ALs), and GPR readings) after performing sensor
fusion (best viewed in color). Subsurface GPR readings are displayed in the 3-D
Euclidean system reconstructed from the camera and the encoder. Detailed 3-D
reconstruction results with zoom-in views and explanations are included in the
attached video file.

the ability to combine surface images with subsurface scans is
important for further inspections or future repairs (e.g., Fig. 1).
Therefore, we combine multiple inspection sensors, such as a
regular camera, a light detection and ranging (LIDAR) device,
and a ground penetrating radar (GPR), together along with
navigational sensors, such as a wheel encoder and/or a global
position system (GPS) receiver, into a multimodal sensing suite.

To perform sensor fusion using our sensing suite, we em-
ploy the camera not only for surface inspection but also for
visual simultaneous localization and mapping (vSLAM), which
provides more accurate pose estimation than that from a GPS
receiver in a local region. By combining GPR scannings with
vSLAM results, GPR applications are no longer restricted to a
flat surface due to its inability to obtain pose information from
its wheel encoder alone. However, combining data from the
heterogeneous sensors is challenging. First, unlike the camera,
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the intrinsic 3-D coordinate system of the GPR is not necessarily
Euclidean due to its terrain following nature. When the road
surface is nonplanar, its output cannot be directly aligned with
Euclidean 3-D structure constructed from the camera. This poses
a difficult calibration problem. Second, since camera images
are taken according to a fixed time interval and GPR scans are
triggered by its wheel encoder based on a preset fixed distance
traveled, it is nontrivial to synchronize the two sensors.

To enable the heterogeneous sensor suite, we need to solve
both the calibration and the synchronization issues. First, we
develop a calibration rig and introduce a mirror to allow the
joint coverage between the camera and the GPR. We employ
a maximum-likelihood estimator (MLE) to obtain the relative
pose between the GPR and the camera. Second, we design a data
collection scheme using patterned metal plates as ALs to syn-
chronize two types of data streams: the temporally evenly spaced
camera images and the spatially evenly spaced GPR/encoder
readings. Our algorithm uses ALs to align data streams through
pose graph optimization. We have tested our system in physical
experiments. The results show that both the calibration and
the synchronization designs are successful, which results in
the improved mapping accuracy. Comparing to the counterpart
that uses encoder measurements only, our algorithm reduces the
end-to-end distance error from 6.4 to 0.7 cm in a real bridge
inspection experiment.

The remainder of this article is organized as follows. We
begin with a review of related work in Section II. The system
design is presented in Section III. We introduce the GPR sensing
models in Section IV. The camera-GPR calibration is introduced
in Section V, followed by bimodal mapping in Section VI.
Experiments are in Section VII. Section VIII concludes this
article.

II. RELATED WORK

Our proposed system relates to the areas of calibration, GPR
applications, vSLAM, and sensor fusion.

Calibration is an important technique to improve the accuracy
of a mechanism or a sensor. It usually contains three main
components: a model, measurements, and a parameter estima-
tion process [1]. It begins with a closed-form geometry and/or
physical model that characterizes the mechanism or the sensing
phenomenon. A calibration process is to collect measurements
to estimate the model parameters. The measurements are always
noisy, which is often described by statistical error models. The
noise distribution models can be obtained either analytically or
statistically. A Gaussian distribution is a common error model
due to its robust asymptotic probability attributes in large pop-
ulations [2]. The parameter estimation process finds the model
parameters by minimizing an aggregated error metric function.
Mechanism calibration often solves the kinematic parameters
and the inertial parameters for mechanisms with prismatic or
revolute joints including robot manipulator calibration [3], pan-
tilt robotic cameras calibration [4], and hand–eye calibration [5].
Sensor calibration differs from mechanism calibration due to
the unique combination of intrinsic calibration and extrinsic
calibration. While the extrinsic model is the similar six degrees

of freedom (DoFs) rigid body transformation, the intrinsic model
describes the underlying physical principles for the sensing [6]
process. Depending on different sensors, the corresponding cali-
bration model varies and leads to different calibration problems,
such as camera calibration [7], subsurface pipeline mapping [8],
[9], and LIDAR calibration [10].

A GPR is able to measure the time between echoes of
electromagnetic signals to perform subsurface survey [11]–[13]
with many important applications, such as archeology [14],
mine detection and removal [15], [16], bridge deck inspection
and evaluation [17]–[20], and planetary exploration [21], [22].
To address the limitation that GPR scanning has to be on a
flat surface, we combine the GPR with vSLAM to extend its
application range. The vSLAM problem is to simultaneously
estimate robot pose and landmark positions using one or more
cameras [23], [24]. Without loss of generality, we employ the
popular ORB-SLAM2 [25] as a preprocessing step to estimate
landmark positions and camera poses

Taking advantage of the complementary nature of different
sensory modalities, sensor fusion can improve sensing accuracy,
increase robustness, and reduce noises. Related sensor fusion
works are camera-LIDAR fusion [26], [27]. Since it is a well-
studied area, we skip it in this article. As our focus, camera-GPR
sensor fusion has not been well studied yet.

Our group focuses on robotic infrastructure inspection al-
gorithm and system development. This article improves our
previous conference papers [28]–[30] by adding pulse response
extraction, extending new GPR imaging process regarding pat-
terned metal plates (i.e., ALs), improving accuracy, and con-
ducting more field experiments.

III. SYSTEM DESIGN

Let us begin with our system design by introducing our
sensing suite and the calibration rig.

A. Sensing Suite Design

To enable both surface and subsurface inspection of the in-
frastructure, we design a sensing suite comprising a camera, a
GPR, and a laptop computer as shown in Fig. 2(a). The GPR
includes a control unit, a wheel encoder, and an antenna.

1) Configuration: Due to the coverage requirement, the cam-
era needs to be mounted at least 1.0 m above the ground to
inspect surface cracks. To scan the subsurface cracks, the GPR
antenna needs to be installed close to the ground surface to ensure
good radar signal penetration of the concrete structure below.
The penetration depth of GPR is inversely proportional to the
radio signal frequency, whereas the resolution of GPR scans is
proportional to the frequency. Therefore, we choose a 1.6-GHz
GPR transceiver antenna because it ensures a 2-m penetration
depth for concrete decks with a resolution of less than 4.7 cm.
All sensors are mounted on a standard survey cart (Model 623)
from Geophysical Survey Systems, Inc.

2) Sensor Choices: The camera is an industry grade
10 mega-pixel CMOS camera (DS-CFMT1000-H); it is applied
not only to surface inspection but also to vSLAM because it
can provide more accurate trajectory estimation than that from
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Fig. 2. (a) Camera-GPR sensing suite and calibration schematics. (b) Photo of our sensing suite and calibration rig design. (c) GPR working principles of typical
ground and object responses and its A-scan. (d) GPR working principles of metal plate responses and its A-scan.

a GPS receiver in local region. In addition, GPS may not always
be available due to terrain or high-rise buildings.

The GPR is used for substructure inspection, and is obtained
from GSSI with a control unit SIR-3000. It is worth noting that
the wheel encoder from the GPR is also an important sensor
for fusing the data. According to [31], the survey wheel has an
encoder that sends a fixed number of pulses per revolution to
the control unit, and then the control unit uses these pulses to
trigger the antenna at equal distance intervals. Therefore, since
the GPR readings are triggered by the wheel encoder based on
a preset fixed distance traveled, all GPR scans are indexed by
wheel encoder pluses. Hence, the GPR data are presynchronized
with the wheel encoder data.

B. Calibration Rig Design

We design a calibration rig to cope with challenges brought
by the two different modalities and their disjoint coverage [see
Fig. 2(b)].

1) Calibration Object Design, Joint Coverage, and Dual
Modality Signal Registration: We choose metal balls as the
calibration object for the GPR because they are insensitive to
orientations and have good reflections to radar signals. The
planar black and white wooden checkerboard pattern is chosen
to calibrate the camera since it can be easily perceived by the
camera but does not interfere with radar signals.

To ensure joint coverage of the two sensors, we install a
planar mirror in front of our artificial bridge to create the joint
coverage. Also, we attach another checkerboard on the mirror to
estimate the mirror pose. As shown in Fig. 2(a) and (b), we name
the checkerboard on the mirror as mirror checkerboard and the
checkerboard under the artificial bridge as ball checkerboard.

To obtain the relative pose, it is necessary for the two sensors
to detect the collocated calibration objects in the joint coverage
space. For the collocated calibration objects, we place the metal
ball on top of the ball checkerboard pattern because the camera
and the GPR can detect them respectively. The metal ball center
is always directly above the a checkerboard vertex with its
radius as the distance between the metal ball center and the
ball checkerboard.

2) Ensure Euclidean Property for the GPR: The challenge
arises from the fact that a GPR is a terrain following sensor, and
the geometric relationship in the Euclidean space can only be
easily interpreted from a GPR image if the GPR travels along a
straight line on a plane. If we calibrate the GPR traveling on an
arbitrary surface, we cannot obtain proper coordinate system
transformation from a non-Euclidean system to the camera
coordinate system. To ensure Euclidean sensory data, a GPR
must move on a planar surface along a straight linear trajectory
during calibration. Also, our calibration rig is designed to be
a planar artificial bridge with two straight guard rails (one for
each rear wheel) to ensure that the GPR cart follows straight line
motion during the scanning process. Furthermore, our guard rails
are equipped with mechanical stops to ensure the repeatability
for both sensors to collect data at each stop.

IV. GPR SENSING MODELS

Now, let us explain the working principles of a GPR with
response extraction, and then model the GPR imaging process
for a metal ball (i.e., calibration object) and a metal plate (i.e.,
AL).

A. Principle of Operations

Our GPR has a bistatic antenna that contains a transmitter
(TX) and a receiver (RX) for radar signals [31], [32]. Due to the
antenna’s close proximity to ground, our GPR can be described
by using a ground-coupled model [33], [34] [see Fig. 2(c)].
During the GPR operation, TX emits pulses to the subsurface and
RX detects the reflected pulses if the emitted pulses encounter
objects or layers with different dielectric permittivity. Then, the
GPR estimates the traveling time between the emitted pulses and
the echoed pulses, and generate an A-scan that records the signal
amplitude versus traveling time at this GPR position. Fig. 2(c)
bottom coordinates illustrate an example of A-scan. The A-scan
usually has two main types of responses: the ground response
and the object response. The ground response denotes a direct
transmission from TX to RX [see the thick red arrow in Fig. 2(c)].
The object response indicates that the signal transmits from TX
to the object and then bounces back to RX [see the thin red arrow
in Fig. 2(c)]. By extracting the ground and the object responses
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Fig. 3. (a) Illustration of the hyperbola response regarding a metal ball (calibration object). (b) Real GPR image of (a). (c) Illustration of the rectangle response
regarding a metal plate. (d) Real GPR image of (c).

in the A-scan, we can estimate the distance from the GPR to the
object.

B. Assumptions and Notations

To model the GPR sensing modality and the GPR imaging
process, we assume that the following statements hold.

1) The dielectric material is uniformly dielectric and the radio
wave propagation velocity is a known constant vc in the
homogeneous medium.

2) The TX-RX offset is a known intrinsic parameter and pre-
compensated in GPR scans. When estimated the distance
from the GPR to the object, the TX–RX offset is negligible
if comparing to the GPR–object distance.

The GPR scans while moving, and it collects the A-scans
at each point defined by preset wheel encoder intervals on the
trajectory to assemble a B-scan as shown in Fig. 3(a). Let us
define common notations as follows.

1) Aj = {at,j |t = 1, 2, . . . , nr} denotes the jth A-scan,
where t is the traveling time, at,j is the signal amplitude,
and nr is the number of readings.

2) lj denotes the GPR’s traveled distance measured by the
wheel encoder from the first A-scan to the jth A-scan.

3) B = {{Aj , lj}|j = 1, . . . ,m} denotes a B-scan wherem
is the total number of A-scans. Since this definition is very
similar to an image coordinate system, we also call B as
GPR image in this article.

C. Pulse Response Extraction

Based on the assumptions in Section IV-B, the traveling times
between the first peaks of ground response and object response
[see the blue points in Fig. 2(c)] can be approximately estimated
as the two times distance between the GPR and the object accord-
ing to [11], [31]. To obtain peaks of the two types of response,
we need to extract the pulse responses in each Aj ∈ B. To
properly extract the peak positions, we apply damped sinusoidal
model [14], [35] given by

at,j = m(αj , βj , γj , ωj , φj) = βje
−αjt cos(ωjt+ φj) + γj

(1)

whereat,j is the signal amplitude andm is the damped sinusoidal
model with parameters defined as follows: βj is the amplitude,
ωj is the angular frequency, φj is the phase, γj is the offset for
the model, and αj is the attenuation constant [36] defined by

αj = ωj

√
μjεj
2

[(
1 + (

σj
ωjεj

)2
)1/2

− 1

]1/2
≈ σj

2

√
μj
εj

(2)
whereμj is the magnetic permeability, εj is the dielectric permit-
tivity, and σj is the electrical conductivity. The approximation
is true due to σj � ωjεj in our applications, and {μj , εj , σj}
are the parameters defined by material properties. Of course, we
might not know the exact value ofαj due to mixture of materials
but it is a constant and can also be estimated in the following.

To estimate the pulses for ground and object in Aj , we use
{(t, at,j)|t ∈ P} as the measurements, where P is the index
set containing all measurements in the pulse, to formulate an
optimization problem

min
α̂j ,β̂j ,γ̂j ,ω̂j ,φ̂j

∑
t∈P

||m(α̂j , β̂j , γ̂j , ω̂j , φ̂j)− at,j ||2Σ (3)

where the hat ˆ indicates the estimators and ‖ · ‖Σ denotes
Mahalanobis distance.

After obtaining the parameters, we are able to estimate the
peak positions of each pulse and obtain the corresponding trav-
eling times. Let tg,j and to,j be the traveling time corresponding
to the peak positions for the ground response and the object
response, respectively. GPR data processing converts tg,j and
to,j into the traveling distance dg,j and do,j by applying intrinsic
model using the dielectric permittivity.

D. Hyperbola Response Regarding a Metal Ball

When the GPR senses a metal ball with radius r as shown in
Fig. 3(a), the GPR image shows a line (i.e., ground responses)
and a hyperbola (e.g. ball responses) as shown in Fig. 3(a) (see
the dotted blue curves) and Fig. 3(b). We define xj = [lj , dj ]

T ∈
Aj as a point in the hyperbola, where dj = |do,j − dg,j | is the
distance between the ground response and the object response in
Aj as shown in Fig. 3(a) bottom. LetH = {xj |j = 1, 2, . . . ,m}
denotes all the points on the hyperbola corresponding to the
metal ball. Let xj∗ = [lj∗ , dj∗ ]

T be the hyperbola vertex, where
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j∗ indicates the A-scan index corresponding to the hyperbola
vertex. When the GPR has moved lj∗ and is generating Aj∗ , dj∗
is the shortest distance from the GPR to the metal ball.

When the GPR moves from Aj to Aj∗ , we are based on the
red right triangle shown in Fig. 3(a) top and obtain

(dj + r)2 = (dj∗ + r)2 + (lj − lj∗)
2. (4)

Let d̃j∗ = dj∗ + r and d̃j = dj + r, and then we sort out (4)
in a hyperbola form as

x̃T
jQx̃j = 0 ∀xj ∈ H (5)

where x̃j = [lj , d̃j , 1]
T and Q =

⎡
⎢⎣

1 0 −lj∗
0 −1 0

−lj∗ 0 l2j∗ + d̃j∗
2

⎤
⎥⎦.

For a general conic equation ax2 + bxy + cy2 + dx+ ey +
f = 0 with five DoFs, the DoFs of (5) in our case decreases
to two because b = e = 0 and a = −c = 1. Therefore, given
r, two parameters {lj∗ , dj∗} in (5) are sufficient to define the
corresponding hyperbola. We will detail it in Section V-B.

E. Rectangle Response Generated by a Metal Plate

When the GPR is traveling over a metal plate (a perfect
electric conductor with very good reflection for radar signals) on
the ground, the ground-coupled model is no longer applicable
because the metal plate blocks the coupling and reflects all the
transmitting energy without any signal penetration as shown in
Fig. 2(d). The reflected signal energy not only generates a lot
of signal paths [see the thin red arrows in Fig. 2(d)] because of
reflected signals bouncing between the antenna and the plate,
but also dominates and shields the direct signal from TX to
RX [see the dotted red arrow in Fig. 2(d)] due to its higher
signal strength. This leads to the repeated pattern in A-scans as
shown in Fig. 2(d) bottom and Fig. 3(d). We identify the shortest
traveling time from TX plate to RX as the air response, and others
as bouncing air responses. Since all traveling times are longer
than that of the direct coupling, this explains why AL responses
are slightly slower in the A-scans.

To properly model the GPR signal response when traveling
over a metal plate, we have to consider the shielding effect.
The shielding effect generates an offset when measuring the
width of the metal plate in the GPR image because the shielding
does not exactly occur on the margin of the plate as shown in
Fig. 3(c). Therefore, we have to compensate the offset when
traversing the metal plates. Let δtran be the offset for both front
and rear directions. Let wg = |lj,r − lj,f | be the width of the
metal plate measured by the wheel encoder in GPR, where lj,f
and lj,r are the accumulated distances in the first and the last
detected A-scans during the shielding. Letw be the width of the
metal plate measured by a ruler. Here, we treat w as a constant
because its measurement error is negligible comparing to other
variables. Assuming the ground surface, the metal plate, and the
GPR trajectory are parallel during the shielding, we model the
offsets by wg = w + 2δtran. To estimate the optimal solution for

δtran, we formulate an optimization problem

min
δ̂tran

nAL∑
||w + 2δ̂tran − wg||2Σ (6)

where ‖ · ‖Σ denotes Mahalanobis distance and nAL denotes the
number of ALs. Once we know δ̂tran, we can obtain the corrected
lj+,f and lj−,r by

lj+,f = lj,f + δ̂tran, lj−,r = lj,r − δtran (7)

which will be used in Section VI-B.

V. CAMERA-GPR CALIBRATION

With the understanding of GPR sensing models, we design
camera-GPR calibration with checkerboards and a metal ball.
We begin with data collection description for n trials. Each
trial contains N camera images and one GPR B-scan. In each
trial, we first place the metal ball on a vertex corner of the
ball checkerboard, and then push the sensing suite to scan the
calibration object combo. A complete trial allows the GPR to
generate a hyperbola response in a GPR image [see Fig. 3(b)],
and the camera takes an image at each mechanical stop, which
yields N images. Hence, we adjust the metal ball on n different
positions on the ball checkerboard and repeat the trial for each
metal ball position. We assume that the following statements
hold.

1) Camera and GPR intrinsic parameters are precalibrated.
2) The measurement noises follow Gaussian distribution

with zero means.
Some common notations are defined as follows.
1) i denotes the trial index which is also the metal position

index.
2) {W} and {M} denote the 3-D world and the mirror

coordinate system, respectively. We interchangeably use
“frame” and “coordinate system” throughout this article
and let default 3-D frames be right-handed coordinates.

3) WBi ∈ R3 denotes the coordinates of the ith metal ball
center position w.r.t. {W}, and WXi ∈ R3 denotes its
corresponding point in the checkerboard. Without loss of
generality, let the checkerboard plane be Z = 0 in the
world frame, thus we derive WBi =

WXi + [0, 0, r]T,
where r is the metal ball radius. MXp ∈ R3 denotes the
coordinates of the pth point on mirror checkerboard w.r.t.
{M}. As a convention, we will use the left superscript to
indicate the reference frame in this article.

4) {Gk} denotes the GPR frame at stop k, where its origin
is at the GPR antenna center, its Y-axis is parallel to the
GPR moving direction, its Z-axis is perpendicular to the
surface plane pointing up, and its X-axis is perpendicular
to the GPR moving direction.

5) {Ck} denotes the camera frame at stop k, where its origin
is at the camera optical center, its Z-axis is coinciding with
the optical axis and pointing to the forward direction of
the camera, and its X-axis and Y-axis are parallel to the
horizontal and vertical directions of the charge-coupled
device (CCD) sensor plane, respectively.
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Fig. 4. Calibration computation flow diagram.

6) Bi denotes the GPR image, which is generated by GPR
scanning the ith metal ball. In each Bi, we collect N
camera images at N stops, and denote Ik,i as the kth
camera image in the trial.

7) Gk

Ck
T denotes the rigid body transformation from {Ck}

to {Gk}. Since both sensors are fixed firmly on the
sensing suite, G1

C1
T, ..,Gk

Ck
T, ...,GN

CN
T are identical. Thus,

we denote G
CT = Gk

Ck
T, ∀k. As a convention, we use left

subscript and superscript to indicate frames in the transfor-
mation mapping, and left superscript is the final reference
frame.

Now, we define our calibration problem as follows.
Definition 1: GivenWBi with the correspondingBi and Ik,i,

and given MXp with their corresponding feature points in Ik,i,
where i = 1, 2, . . . , n and k = 1, 2, . . . , N , determine GCT.

Fig. 4 summarizes our calibration computation flow diagram
in three steps. We first compute the initial solution for cam-
era/mirror pose estimation and GPR extrinsic calibration in
Sections V-A and V-B, respectively. Finally, we determine the
optimal solution by using an optimization approach in Section V-
C. We will detail them in the following sections.

A. Camera and Mirror Pose Estimation

First, we want to find the closed-form solution for the frame
mapping from world frame to each camera frameCk

W T and mirror
plane Wπ.

1) Camera Pose Estimation from 2-D/3-D Points: Before
estimating camera pose, we introduce the camera model. For
the ball checkerboard point WXi, the corresponding 2-D image
point Ik,ixi in Ik,i through the planar mirror can be described
by the camera projection model as[

Ik,ixi

1

]
= λK

[
I3 03×1

]
C ′

k

W T

[
WXi

1

]
(8)

where λ is a scalar, K is the intrinsic camera matrix, and
C ′

k

W T
represents the mapping from {W} to virtual camera frame {C ′

k}
where the apostrophe ′ indicates the virtual frame in the mirror. It
is worth mentioning that the frames are right-handed coordinates
in the real world, but are left handed in the mirrored space. Simi-
larly, for the mirror checkerboard pointMXp, the corresponding

2-D image point Ik,ixp in Ik,i can be also described by (8) with
index i→ p, {W} → {M}, and {C ′

k} → {Ck}.
Based on the camera model and the 2-D/3-D correspond-

ing points, we estimate the rigid body transformation between
the reference frame and the camera frame by solving the
perspective-n-point (PnP) problem [37], [38]. Therefore, given
MXp and Ik,ixp, we estimate Ck

M T; given WXi and Ik,ixi, we

estimate
C ′

k

W T.
2) Mirror Pose and Reflection Transformation Estimation

W.R.T. {Ck}: Let Ckπ = [CknT,Ckc]T be the parameters for the
planar mirror in {Ck}, where Ckn is the normal vector of the
mirror surface and Ckc is the orthogonal distance from the cam-
era origin to the mirror surface. Similarly, Wπ = [WnT,W c]T

represents the planar mirror in {W}.
After receiving Ck

M T from Section V-A1, the mirror param-
eters Ckπ can be obtained by the plane equation CknTCkX =
Ckc, where CkX denotes any point on the mirror plane. Let

Ck

M T =

[
CkMR Ck

M t

01×3 1

]
and MXp be on the plane Z = 0 in

mirror frame {M}, then Ckn equals to the third column of
the rotation matrix Ck

M R and Ckc = −CknT(Ck

M RTCk

M t). Finally,
according to the planar mirror model [39]–[43], the mirror
reflection transformation in {Ck} is obtained by

CkS =

[
I3 − 2CknCknT 2CkcCkn

01×3 1

]
. (9)

3) Camera and Mirror Pose Estimation W.R.T. {W}: In this
section, we want to solve Ck

W T and Wπ. First, we compute Ck

W T
by using the camera projection model with mirror reflection

transformation. Based on
C ′

k

W T in (8) and CkS in (9), we are able
to obtain Ck

W T by

Ck

W T = CkS
C ′

k

W T. (10)

To increase the accuracy, we average Ck

W T over all metal ball
center positions i, where i = 1, 2, . . . , n, as follows.

Let Ck

W T =

[
Ck

W R Ck

W t

01×3 1

]
be the final transformation, we

want to estimate and let Ck

W Ti =

[
Ck

W Ri
Ck

W ti

01×3 1

]
be the mea-

surements w.r.t. the ith metal ball. We use rotation averaging
[44] to find the optimal rotation matrix Ck

W R by minimizing the
following cost function:

C(Ck

W R) =

n∑
i=1

‖Ck

W Ri − Ck

W R‖2F

= C1 − 2

〈
;

n∑
i=1

Ck

W Ri,
Ck

W R

〉
(11)

where ‖ · ‖F is the Frobenius matrix norm,
〈·, ·〉 is the Frobenius

inner product, and C1 is a constant. Thus, to minimize (11)
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becomes

max
Ck
W R∈SO(3)

〈
n∑
i=1

Ck

W Ri,
Ck

W R

〉

= min
Ck
W R∈SO(3)

∥∥∥∥∥
n∑
i=1

Ck

W Ri − Ck

W R

∥∥∥∥∥
2

F

. (12)

As a result, the closed-form solution for Ck

W R is given by
Ck

W R = USVT, where U and V are obtained from singu-
lar value decomposition of

∑n
i=1

Ck

W Ri = UΣVT, and S =
diag(1, 1,−1) if det(UVT) ≥ 0, otherwise S = I3×3 because
Ck

W R is an improper rotation (det(Ck

W R) = −1). Also, we esti-
mate the average translation vector by Ck

W t =
∑n
i=1

Ck

W ti/n.
Next, we show how to derive Wπ. Similarly to (9), the mirror

reflection transformation in {W} is given by

WS = Ck

W T−1CkSCk

W T =

[
I3 − 2WnWnT 2W cWn

01×3 1

]
.

(13)
Once WS is known, Wπ can be obtained by decomposing WS.
Also, to improve the accuracy, we average WS over all metal
ball center positions i and all stops k, where i = 1, 2, . . . , n and
k = 1, 2, . . . , N , as follows.

Let WS =

[
WR W t

01×3 1

]
be the mirror reflection transforma-

tion we want to estimate and let WSk,i =
Ck

W Ti
−1CkSi

Ck

W Ti =[
WRk,i

W tk,i

01×3 1

]
be the mirror reflection transformation w.r.t.

the ith metal ball at stop k. We decompose W tk,i into W ck,i and
Wnk,i by Wnk,i =

W tk,i/‖W tk,i‖ and W ck,i = ‖W tk,i‖/2.
Finally, we obtain Wπ = [WnT,W c]T by

Wn =

n∑
i=1

N∑
k=1

Wnk,i

‖∑n
i=1

∑N
k=1

Wnk,i‖
, W c =

n∑
i=1

N∑
k=1

W ck,i
nN

.

(14)

B. Extrinsic Calibration of a GPR

Now, let us explain the GPR calibration in Fig. 4 bottom left.
We want to find metal ball center positions GkBi w.r.t. {Gk}
and the frame mapping from {W} to each GPR frame Gk

W T.
1) Hyperbola Vertex Estimation: Recall that we defined

{xj ,H,xj∗} in Section IV-D. We now use subindex i to indicate
measurements in Bi, and thus we redefine xj,i = [lj,i, dj,i]

T

as one point in the hyperbola in Bi, Hi as all the points on
the hyperbola in Bi, and xj∗,i = [lj∗,i, dj∗,i]

T as the hyperbola
vertex.

To apply MLE to solve xj∗,i, we first model xj,i’s measure-
ment error as a zero mean Gaussian with covariance matrix
σ2
j,iI. Because r is a constant, the noise distribution of d̃j,i is the

same as that of dj,i. By stacking all measurements xj,i together,
we estimate the hyperbola vertex xj∗,i using the overall error

Fig. 5. Illustration of the GPR frames on the surface sensing the ith metal ball.
The index j∗ indicates the scan when GPR is closest to the object, which also
means the hyperbola vertex.

function

φ(xj∗,i) =

⎡
⎢⎢⎣
x̃T
1,iQix̃1,i

...

x̃T
m,iQix̃m,i

⎤
⎥⎥⎦ . (15)

Then, the MLE of xj∗,i is obtained by minimizing

min
xj∗,i

φ(xj∗,i)
TΣ−1

i φ(xj∗,i) (16)

whereΣi = diag(σ2
1,i, σ

2
2,i, . . . , σ

2
m,i). This nonlinear optimiza-

tion problem can be solved by the Levenberg–Marquardt (LM)
algorithm [45].

2) Metal Ball Center Position Estimation: Let hi be the ver-
tical distance from the bridge surface to the ith metal ball surface
position, and its noise distribution be a zero mean Gaussian
with variance σ2

hi
. Considering the metal ball radius r, we use

h̃i = hi + r as the distance from the bridge surface to the ith
metal ball center position. The noise distribution of h̃i is the
same as that of hi because r is a constant. Let lk be the GPR
traveled distance from the first scan to {Gk} where index k
indicates the scan when GPR pauses at mechanical stop k. Given
{xj∗,i, lk, h̃i}, we compute the metal ball coordinates GkBi as
shown in Fig. 5 with its covariance matrix GkΣi by

GkBi =

⎡
⎢⎢⎣
√
d̃2j∗,i − h̃2i

lj∗ − lk

−h̃i

⎤
⎥⎥⎦ ,GkΣi = JG

[
Dk,iΣ 03×1

01×3 σ2
hi

]
JT
G

(17)
where JG = ∂GkBi

∂(xj∗,i,lk,h̃i)
is a Jacobian matrix, Dk,iΣ =

(JTφ Σ
−1
i Jφ)

−1 is the covariance matrix of {xj∗,i, lk}, and Jφ =
∂φ

∂(xj∗,i,lk)
is also a Jacobian matrix.

3) Rotation and Translation Estimation: After obtaining the
metal ball coordinates of {Gk} and {W}, we compute the
closed-form solution of Gk

W T by Horn’s method [46] and then
refine the solution by MLE. For the error analysis and more
details, please refer to [28].
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C. Bimodal Calibration Optimization

To achieve the optimal solution by the initial calibration
results from Sections V-A and V-B, we formulate an overall op-
timization problem to estimate GCT, Wπ, {Ck

W T|k = 1, . . . , N},
{WXi|i = 1, . . . , n}, and {WBi|i = 1, . . . , n} based on all the
measurements. The relationship of the coordinate systems is
given by[

GkXi

1

]
= Gk

W T

[
WXi

1

]
= G
CT

Ck

W T

[
WXi

1

]
. (18)

Let Ck

W T =

[
Ck

W R Ck

W t

01×3 1

]
and let the six-vector representa-

tion of Ck

W R and Ck

W t be ξk = [θx,k, θy,k, θz,k, tx,k, ty,k, tz,k]
T,

where (θx,k, θy,k, θz,k) is the Euler angle representation of Ck

W R

in the order of Z–Y–X, and Ck

W t = [tx,k, ty,k, tz,k]
T. The initial

value of GCT can be obtained by GCT = Gk

W TCk

W T−1. Let η be the
six-vector representation of GCT, where the notation definitions
are similar to ξk. Let W X̂i and W B̂i be the estimators of WXi

andWBi, respectively. We define the parameterized function for
camera as Ik,ixi = f(Wπ, ξk,

WXi) according to (8) and (13),
and for GPR as GkBi = g(η, ξk,

WBi) according to (18).
Finally, letp = [ηT, ξT,WπT,XT

c ,X
T
g ]

T be the estimated vec-

tor, where ξ = [ξT
1 , . . . , ξ

T
N ]T, Xc = [W X̂T

1, . . . ,
W X̂T

n]
T, and

Xg = [W B̂T
1, . . . ,

W B̂T
n]

T. We can solve the MLE of p by
minimizing

min
p

ω(p)TΣ−1
ω ω(p) (19)

where ω(p) = [ωT
1 , ω

T
2 , ω

T
3 , ω

T
4 ]

T, Σω = diag(Σω1
,Σω2

),

ω1 =

⎡
⎢⎢⎣
W X̂1 −WX1

...
W X̂n −WXn

⎤
⎥⎥⎦,ψk =

⎡
⎢⎢⎣
f(Wπ, ξk,

W X̂1)− Ik x̄1

...

f(Wπ, ξk,
W X̂n)− Ik x̄n

⎤
⎥⎥⎦,

ω2 = [· · ·ψT
k · · · ]T, ψk is the reprojection error at stop k,

ω3 =

⎡
⎢⎢⎣
W B̂1 −WB1

...
W B̂n −WBn

⎤
⎥⎥⎦, ρk =

⎡
⎢⎢⎣
g(η, ξk,

W B̂1)− GkB1

...

g(η, ξk,
W B̂n)− GkBn

⎤
⎥⎥⎦,

ω4 = [· · · ρT
k · · · ]T, ρk is the metal ball cen-

ter position estimation error at stop k, Ik x̄j =
∑n

i=1
Ik,ixj

n , Σω1
= diag(WΣ1 . . .

WΣn,Σψ1
. . .ΣψN

),
Σψk

= diag(IkΣ1 . . .
IkΣn), Σω2

=
diag(WΣ1 . . .

WΣn,Σρ1 . . .ΣρN ), and Σρk =
diag(GkΣ1 . . .

GkΣn). WΣi and IkΣi are obtained by direct
measurement; GkΣi is obtained from (17).

The problem can be solved by employing the LM algorithm.
To show the covariance of η and ξ, we have Lemma 1 as follows
and its proof in Appendix.

Lemma 1: Under the Gaussian noise assumption, the covari-
ance matrix of η and ξ is given by

Ση,ξ = (A−BD−1C)−1 (20)

where A, B, C, and D are defined in (40).

D. Rigid Body Transformation Model Prediction Error

To verify the calibration results and the error propagation in
Section V-C, we use the Euclidean distance between GkB̂i and
GkBi as the metric function to measure the model prediction
error, whereGkBi is the measurement andGkB̂i is the estimator
of GkBi. The metric function is defined by

δk,i = h(GkB̂i,
GkBi) = ‖GkB̂i − GkBi‖. (21)

To compute (21), we estimate GkB̂i by calibrated parame-
ters qT

k = {ηT, ξT
k} and measurements WBi according to (18).

Lemma 2 shows the variance of δk,i.
Lemma 2: Under the Gaussian noise assumption, the variance

of δk,i is denoted by

σ2
δk,i

= Jh1
Gk Σ̂iJ

T
h1 + Jh2

GkΣiJ
T
h2 (22)

where Jacobian matrices Jh1 = ∂h
∂Gk B̂i

and Jh2 = ∂h
∂GkBi

.

Proof: Since δk,i is a function of GkB̂i and GkBi, the un-
certainty of δk,i comes from their corresponding covariance
matricesGkΣi andGk Σ̂i.GkΣi is given by (17);Gk Σ̂i is obtained
by the forward propagation of error [45] under the first-order
approximation

Gk Σ̂i = Jg1Σqk
JT
g1 + Jg2

WΣiJ
T
g2 (23)

where Jacobian matrices Jg1 = ∂g
∂qk

, Jg2 = ∂g
∂WBi

, and g is

the GPR parameterized function. WΣi is obtained from mea-
surement and Σqk

is the covariance matrix of qk, which can
be extracted by Lemma 1. Since GkB̂i and GkBi have no
correlation, the overall variance of δk,i in (22) can be obtained
by addition of their uncertainties. �

To compute the average error for each metal ball center
position, we first estimate{(δk,i, σ2

δk,i
)|k = 1, . . . , N}, and then

take the average of them by δi =
∑N
k=1 δk,i/N . Finally, the

expected value δi and its variance σ2
δi

can be estimated by using
sample mean and sample variance.

VI. BIOMODAL SURFACE AND SUBSURFACE MAPPING

After the calibration, we obtain the frame mapping relation-
ship between the camera and the GPR. This spatial relationship
alone cannot help us to fuse data from both modalities because
we need to address the issue of synchronization.

Recall that camera images are triggered by time and GPR
scans are indexed by the wheel encoder pluses based on a preset
fixed distance traveled. To facilitate the synchronization of the
two data streams, we design ALs [see Fig. 6(b)] that are made of
colored patterned metal plates and clearly visible to both sensors,
which enable us to align surface and subsurface structure from
two different sensor modalities.

We also design a data collection procedure [see Fig. 6(a)].
We first place ALs on the survey area and make sure that those
ALs are evenly spaced out and remain fixed on the ground.
The number of ALs is adjustable in our setting, but we suggest
to use at least two: one at the starting point and the other at
the ending point. Next, we push the sensing suite to traverse
ALs by following the preplanned survey trajectory. During the
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Fig. 6. (a) Illustration of the data collection procedure. (b) Artificial land-
marks. Black and red colored side is the upper side, whereas the metal side is
the downside (best viewed in color).

procedure, we ensure that the sensing suite traverses the edges
of ALs on both sides along the trajectory. Fig. 6(a) shows an
example of the setup: four lines {L1,L2,L3,L4} indicating the
four edges generated by both sides of the two ALs.

Employing ALs makes data collection procedure more ef-
ficient and flexible if comparing to a conventional approach,
which relies on manually painted lines or grids on the sur-
vey area. The conventional approach also requires the GPR to
painstakingly move along a preset linear trajectory, which is time
consuming and labor intensive. In our design, we only need to
place ALs on the ground without requiring precise positioning
or strict linear scan motion of the sensing suite.

To formulate the synchronization-challenged sensor fusion
problem, we follow the assumptions and notations defined in
Section V, except for the modifications listed in the following.

1) {Ck} denotes the camera coordinate system at time k,
and Ik denotes the camera image at time k, where k =
1, 2, . . . , Nk. Here, we change index variable k from the
previous mechanic stop index to time index.

2) {W} is coinciding with {C1}. To simplify the notations,
we will ignore the reference frame (left superscript) if
describing a point w.r.t. {W}. For example, X ∈ R3

represents a certain point w.r.t. {W}.
3) Graw denotes all the GPR raw data.
Now, we define the synchronization problem as follows.
Definition 2: Given camera image sequences Ik and GPR raw

data Graw with wheel encoder data lj , where k = 1, 2, . . . , Nk
and j = 1, 2, . . . ,m, determine the 3-D metric reconstruction
map including camera and GPR poses, 3-D landmarks, and GPR
data.

Fig. 7 summarizes our software diagram in four steps. We will
detail them in the following sections.

A. Preprocessing

Camera images and GPR scans are preprocessed to obtain
initial reconstruction information in its individual modality. For
camera images, we apply the popular ORB-SLAM2 [25] to
estimate camera poses and 3-D landmarks at each frame. Given
sequential camera images Ik, we obtain camera poses {Rk, t̃k}
w.r.t. {W} at time k, where Rk is the camera rotation matrix,
t̃k ∈ R3 is the translation vector, and k = 1, 2, . . . , Nk. The
ORB-SLAM2 algorithm also provides 3-D landmark positions

Fig. 7. Software diagram.

X̃i ∈ R3, where index i denotes the ith 3-D landmark, and
i = 1, 2, . . . , Ni. Note that this is the outcome of the monocular
vSLAM; all 3-D information is up to scale. As a convention
in this section, we use the tilde ˜ to indicate variables in 3-D
space that are up-to-scale. Therefore, t̃k and X̃i are up to scale,
whereas tk and Xi are defined in the metric scale. For GPR raw
data Graw and wheel encoder reading lj , we use GSSI software
RADAN 7 to export the GPR A-scans with accumulated travel
length {Aj , lj}, where j = 1, 2, . . . ,m.

As a result, we obtain camera readings {Rk, t̃k, X̃i} and
GPR/encoder readings {Aj , lj} after the preprocessing step. For
now, we do not know wheel encoder readings corresponding to
each camera frame yet, which is the focus of the next step.

B. Signal Correspondence Using ALs

From Section V, we know the relative pose between the
camera and the GPR. Let us define AL anchor points to be
the points on the AL edges created by the intersection between
the projected camera/GPR ground trajectory and AL edges. The
three sensor synchronization moment (TSSM) is the moment
that the camera center, GPR coordinate system origin, and AL
anchor point are collinear as a line perpendicular to the ground
(see Fig. 8). If we recognize this moment across all sensor
modalities, the synchronization problem can be solved.

1) Identify TSSM From the GPR and Wheel Encoder Read-
ings: When the GPR origin is traversing an AL, the metal plate
generates a strong response as described in Section IV-E as
shown in Fig. 8. The TSSMs occur on the AL edges. Therefore,
we utilizes the GPR response to the ALs’ edges at TSSMs to
determine the correct scan indexes in order to perform sensor
fusion. Let the number of detected edges be M for all ALs
in the setting. After searching the edge scan indexes from the
GPR image, we apply (7) to obtain corrected wheel encoder
reading ljp and the corrected GPR scan indexes jp, where
p = 1, 2, . . . ,M .

2) Recognize Camera Center Positions at TSSM: For now,
we only have an up-to-scale 3-D reconstruction from the ORB-
SLAM2 results. We need to obtain TSSM camera center posi-
tions in this coordinate system. Note this camera pose is a virtual
pose, which means it does not correspond to an actual image due
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Fig. 8. ALs help us synchronize camera image stream and GPR/encoder data
streams. Four TSSMs are shown here. Camera poses represented by small
triangles and GPR poses represented by small rectangles are displayed on
the top of the radargram. The poses drawn in dashed lines are virtual poses
corresponding to TSSMs (best viewed in color).

Fig. 9. Left: AL edge points in a 2-D camera image. Right: two skew lines
L̃1 and L̃t are used to compute camera center position t̃k+,p (best viewed in
color).

to the discretized time across frames. However, this pose can
help us synchronize all sensors later. The visual poses drawn
in dashed line in Fig. 8 give an example about the geometry
relationship between sensors at TSSM.

Fig. 9 illustrates the process of identifying the camera center
position for the virtual pose. The high contrast pattern in AL
allows us to recognize points on the edge (green points in the
figure) across multiple frames. Based on the known camera
poses, we obtain their 3-D points. Let {xf ↔ X̃f |f ∈ L1} be
the corresponding 2-D and 3-D points where L1 is the index
set containing all edge points. These 3-D points X̃f allows
us to establish AL edge line L̃1 : X̃ = p1 + t1d1, where t1
is a parameter, p1 = mean(X̃f ), and d1 is the singular vec-
tor corresponding to the largest singular value after perform-
ing singular value decomposition (SVD) on normalized points
[X̃1 − p1, . . . , X̃f − p1, . . . ]

T.
From images taken, we identify two image indexes k and

k + 1 representing two immediate camera poses before and after
the crossing between projection of L̃t on the ground and L̃1.
The camera center positions at k and k + 1 are t̃k and t̃k+1,

respectively. The camera trajectory between k and k + 1 can
be approximated by a line L̃t : X̃ = p2 + t2d2, where t2 is a
parameter, p2 = t̃k, and d2 = t̃k − t̃k+1.

Finding the skew line between L̃1 and L̃t allows us to obtain
the camera center positions t̃k+,p at TSSM, where the combo
subscripts k+, p indicate this is slightly after time k and it is
corresponding to the pth AL edge. We have

t̃k+,p = p2 +
(p1 − p2) · n1

d2 · n1
· d2 (24)

where n1 = d1 × (d2 × d1).

C. Initial Scale Rectification and Synchronization

Now, we can recover the true scale by using TSSM correspon-
dence.

1) Local Scale Rectification: When the sensing suite tra-
verses two adjacent ALs, we identify two virtual camera poses
corresponding to the leading edge of each AL. If the first edge
index is p1, then the second edge index is p1 + 2 due to the
adjacency (see Fig. 8). Say that the corresponding camera frame
indexes are k1 and k2. Then, the camera center positions of the
two virtual poses are t̃k+1 ,p1

and t̃k+2 ,p1+2. The corresponding
distances extracted from encoder readings are ljp1 and ljp1+2

,
respectively. Then, a local scale ratio can be obtained as the
ratio between the distance from the encoder and the distance
from camera poses as (25), shown at the bottom of this page,
where || · || is l2 norm. Then, the scale of all t̃k and X̃i at frames
k between k1 + 1 and k2 can be recovered by

tk = st̃k, Xi = sX̃i. (26)

For t̃k and X̃i before the first virtual camera pose or after the
last virtual pose, we can also use the closest local scale ratio
to rectify them. Note that we use a local scale ratio instead of a
global scale ratio established by the first and the last ALs because
monocular vSLAM may not have a constant scale due to scale
drift. Using a local scale to correct the affected poses and 3-D
landmarks can alleviate the issue. Also, this is not a precise scale
recovery because the encoder readings may be inaccurate due
to skids and the scale drift variation may be big. We will handle
it in Section VI-D.

2) Synchronizing Camera Poses to GPR/Encoder Data:
With the scale rectified, we align camera poses with the
GPR/encoder data streams through distance matching. Let t′k be
GPR frame origin for the corresponding camera center position
tk. The fixed frame mapping relationship is

t′k = Rextk + tex (27)

where extrinsic parameters {Rex, tex} are obtained in Section V.
Define the distance traveled from the first edge of the first AL to
the current pose kc to be d0(kc). Say that k0 is the index of the
camera/GPR frame right before the first edge, and tk+0 ,1

is the

s =
ljp1+2

− ljp1
||t̃k1+1 − t̃k+1 ,p1

||+∑k2−1
k=k1+1 ||t̃k+1 − t̃k||+ ||t̃k+2 ,p1+2 − t̃k2 ||

(25)
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camera center of the first virtual pose right above the first edge
and used as the starting point of the inspection. Then, we have

d0(kc) = ||t′k0+1 − t′
k+0 ,1

||+
kc−1∑

k=k0+1

||t′k+1 − t′k||. (28)

Note that we do not have ˜ over variables because they are in
metric space.

Define dl(kc) as the corresponding cumulative distance trav-
eled from the first edge of the first AL to the current GPR scan
index jkc , and we have

dl(kc) = ljkc
− l0 (29)

where ljkc
is the encoder reading at the current GPR scan index,

and l0 is the encoder reading corresponding to the first virtual
pose t′

k+0 ,1
.

Based on (28) and (29), we are able to compute d0(k) for each
camera/GPR pose k, and its corresponding dl(k) from wheel
encoder reading.

D. Optimal Scale Correction and Data Alignment

Now, we further synchronize sensor readings and perform
metric reconstruction using an optimization framework. We
formulate a constrained optimization problem as follows. Let
the estimated parameters be 3-D landmarks X = {Xi|i =
1, . . . , Ni}, camera orientations R = {Rk|k = 1, . . . , Nk},
and camera center positions T = {tk|k = 1, . . . , Nk}. The cost
function for camera reprojection errors is given by

C(X ,R,T ) =

Nk∑
k=1

∑
i∈Sk

‖xi,k − x̂i,k‖2Σi,k
(30)

where Sk denotes the set containing all indexes of points visible
by camera at timek,xi,k is the image observation ofXi at timek,
x̂i,k = f(Rk, tk,Xi) is the camera projection function, Σi,k is
the covariance ofxi,k, and ‖ · ‖Σ denotes Mahalanobis distance.
It is worth noting that pointsxi,k are the surviving inline set from
ORB-SLAM2 pose graph.

At each camera/GPR frame, we incorporate encoder read-
ings to capture the traveled distance. Note that encoder error
accumulates linear to the distance traveled. We verify distances
traveled between adjacent camera/GPR poses and formulate the
following objective function by considering relative error:

F (X ,T )=

Nk∑
k=2

∥∥∥∥ [d0(k)− d0(k − 1)]− [dl(k)− dl(k − 1)]

dl(k)− dl(k − 1)

∥∥∥∥.
(31)

In addition, virtual poses at AL edges provide more con-
straints to this problem that can be used as penalty functions
in the objective function. For each rectified camera center tk+,p
for the virtual pose, we find its corresponding virtual GPR pose
at t′k+,p using (27). Similar to (28) and (29), we define travel
distance function dv(p) as

dv(p) = ||t′k0+1 − t′
k+0 ,1

||+
kp−1∑

k=k0+1

||t′k+1 − t′k||

+ ||t′
k+p ,p

− t′kp || (32)

where kp is the index of the camera/GPR frame right before the
pth AL and dv(1) = 0. Then, we have

G(X ,T ) =

M/2∑
p=1

∥∥∥∥ [dv(2p)− dv(2p− 1)]− [lj2p − lj2p−1
]

lj2p − lj2p−1

∥∥∥∥
(33)

where lj2p and lj2p−1
are the corrected encoder readings for each

sequential virtual poses at the beginning edge and the ending
edge of the AL. Finally we formulate the optimization problem
as

min
X ,R,T

C(X ,R,T ) + α · F (X ,T ) + β ·G(X ,T ) (34)

where α and β are nonnegative weighting scalars. In (34),
F (X ,T ) is a soft constraint due to potential synchronization
errors, andG(X ,T ) is a hard constraint because the AL corre-
spondence at TSSM must be strictly preserved. Therefore, β has
a higher value than α. We have to adjust α and β to solve (34).
The optimization problem can be solved by first using a small
positive weight for α and β, and then applying any nonlinear
optimization solver, e.g., LM. Then, we gradually increase α
and β and use the previous solution as the initial solution to
solve (34) iteratively. Finally, we obtain the solution as β is
sufficiently large and the residual is converged. After estimating
X ,R, and T , we repeat the synchronization procedure in
Section VI-C2 to further remove errors caused by scale drift,
and reoptimize to improve accuracy.

VII. EXPERIMENTS

The proposed system has been validated in physical experi-
ments. We first show the results of calibration and then verify
our sensor fusion algorithm.

For our GPR, the horizontal sample rate for the wheel encoder
is 390 pulses per meter, the two-way travel time of the radar
signal is 8 ns, the sample rate for the GPR control unit is
1024 samples/scan, and the dielectric constant in air is 1. The
width of each AL is w = 0.152 m as measured by a ruler.
The offset for each AL is δtran = 0.031 m using the method in
Section IV-E.

A. Calibration Experiment

1) Calibration Experiment Setup and Results: Fig. 2(b)
shows the sensing suite and the calibration rig design. The
intrinsic camera parameters are calibrated using camera cali-
bration toolbox for MATLAB [47]. The radius of the metal ball
is 19.0 mm and vertical height hi is 419.0 mm. The side length
of each square in the mirror checkerboard is 128.0 mm, and the
side length of each square in ball checkerboard is 56.0 mm.

The calibration data collection follows the procedure men-
tioned at the beginning of Section V with n = 80 and N = 20
in settings. We collect a calibration set and a test set for cross
validation. The resulting relative pose between the camera and
the GPR from the calibration set is G

Ct = [0,−60, 1180]Tmm
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Fig. 10. (a) Physical experiment in the artificial platform. (b) Field experiment
in the corridor. (c) Field experiment in the bridge.

and [θx, θy, θz]
T = [−1.9909, 0.0270, 0.0180]T rad, where

(θx, θy, θz) is the Euler angle representation of GCR.
To validate our calibration results, we utilize the Euclidean

distance between the estimated metal ball center positions and
the measured metal ball center positionsWBi as the error metric

ei = ‖WCk
TCk

Gk
TGkBi −WBi‖ (35)

where ground truth WBi is from the test set and directly mea-
sured using the ruler, WCk

T and Ck

Gk
T are estimated from the

calibration set, and GkBi is computed fromBi and hi in the test
set. The results show that the mean error and standard deviation
(SD) are 8.0 mm and 5.0 mm, respectively. Considering the fact
that the GPR signal wave length is 18.75 cm, the results are
satisfying.

2) Model Prediction Error and Uncertainty Analysis: Now,
we evaluate if our uncertainty analysis in Section V-D can
capture the prediction error of the calibrated model. We illustrate
the model prediction error δi and the predicted SD σδi for the
80 testing samples. More specifically, the measurement errors
for metal ball center position measurements have a variance of
8.0 mm2 in each dimension. This is usually caused by radar
accuracy and structural deformation underweight. Besides, the
variance for points on GPR and camera images are 1 pixel2. The
results agree with our analysis as 68.75% errors fall in the 1−σ
range of the calibrated model prediction.

B. Bimodal Surface and Subsurface Mapping

1) Experiment Setup and Results: To validate our result, we
conduct two kinds of physical experiments: 1) controlled indoor
experiments in an artificial platform to verify the accuracy; and
2) field experiments to test the performance.

For 1), we build the artificial platform by using wooden piles
and boards as shown in Fig. 10(a). The platform is a 5.5× 5.5 m2

planar surface with a height of 0.9 m above the ground. This
artificial platform enables us to collect accurate ground truth for
further validation (see Sections VII-B2 and VII-B3).

During data collection, we push the sensing suite to traverse
ALs by following the preplanned survey trajectory and obtain
both camera and GPR data. This setup provides highly accurate
ground truth by directly measuring the distance between the
ALs. We have ten preplanned 2.830-m trajectories. We repeat
10 independent trials on each trajectory with a total of 100 trials.

For 2), we perform both indoor and outdoor environments
at Texas A&M University [see Fig. 10(b) and (c)]. The indoor
experiment covers a corridor on the third floor of the HRBB
building and the outdoor experiment covers a bridge deck at
the Ernest Langford architecture center. The indoor tests are

repeated for 4 independent trials and each trial trajectory length
is 3.048 m; the outdoor tests are repeated for 14 independent
trials and each trial trajectory length is 4.084 m.

Fig. 1 illustrates the 3-D reconstruction result for the exper-
iments in the bridge (other results can be found in the attached
video file). The green points indicate visual 3-D landmarks, and
magenta lines indicate ALs. The camera poses are shown at the
top of the 3-D map, whereas the synchronized GPR poses are
aligned at the bottom. Besides, GPR scans are attached to GPR
positions following the GPR trajectory. In all experiments, our
algorithms are able to synchronize these data streams to create
successful 3-D metric reconstruction.

2) Accuracy Test for the Travel Distance Error: To validate if
our algorithm can improve the accuracy for 3-D reconstruction,
we adopt the end-to-end GPR travel distance error between the
first and the last ALs as the metric since it is a good approach
to evaluate the accuracy of the overall geometry of the mapped
environment by using an accurate external measurement for a
known relative displacements of faraway poses [48], [49]. For
the field experiment, we manually measure the distance dGT that
GPR traveled from the first AL’s edge (p = 1) to the last AL’s
edge (p =M ) when collecting data, and treat it as the ground
truth. For the artificial platform, we obtain the ground truth (dGT)
with high accuracy in advance as mentioned in the setup.

We compare the following three approaches:
1) encoder-camera-GPR sensor fusion;
2) encoder measurement only;
3) nonsynchronized encoder-camera sensor fusion.
First, we define the error metric for our sensor fusion algo-

rithm as

eECG =
∣∣∣‖t′k+,M − t′k+,1‖ − dGT

∣∣∣ (36)

where t′k+,1 denotes the first GPR virtual pose and t′k+,M
denotes the last GPR virtual pose on the trajectory. Second, we
define the corresponding error metric for the encoder measure-
ment only as

eE =
∣∣∣[ljM − lj1 ]− dGT

∣∣∣ (37)

where lj1 denotes the first AL’s edge and ljM denotes the last
AL’s edge. Third, we define the corresponding error metric for
the nonsynchronized encoder-camera sensor fusion as

eEC =
∣∣∣‖t∗k+,M − t∗k+,1‖ − dGT

∣∣∣ (38)

where t∗k+,1 denotes the first GPR virtual pose, and t∗k+,M
denotes the last GPR virtual pose. Here, we use the nonsyn-
chronized encoder-camera fusion as the comparison to show
the case without the help from the GPR for synchronization.
The nonsynchronized encoder-camera fusion is conducted by
using overall distance from encoder readings to rectify scale for
camera trajectory as a whole.

Table I shows the error metrics for three approaches in all
experiments. The No. indicates the number index of each trial,
so the corridor and bridge results are single trials; the platform
results are average of ten trials. Detailed surface feature and
subsurface maps are included in the attached video file.The
results show that our algorithm improves the accuracy for 3-D
reconstruction because its error is consistently less than that of
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TABLE I
ERROR METRICS FOR END-TO-END TRAVEL DISTANCES IN THREE SCENARIOS:

THE PLATFORM, THE CORRIDOR, AND THE BRIDGE

Bold entities represent the best results in comparison.

the counterparts in the experiments. It is worth mentioning that
the results of nonsynchronized encoder-camera sensor fusion is
even worse than that of the encoder measurement because the
encoder and the camera are not synchronized (without the help
from the GPR).

3) Accuracy Test for the Underground Pipe Mapping Error:
Besides validating the end-to-end GPR travel distance error
in Section VII-B2, we further verify our bimodal surface and
subsurface mapping results by mapping subsurface cylindrical
pipes.

In the experiment setup, the checkerboard attached to the
surface [see Fig. 10(a)] is used to build the world coordinate
for us to validate our experimental results. We drill holes on
the corners on the checkerboard so that we are able to align the
3-D space under surface to the world coordinate; hence, we can
further utilize that checkerboard to build the ground truth of all
the pipelines under the surface.

To build ground truth, we first place pipes under the artificial
platform surface and manually measure the center positions
of as the ground truth using a tape measure with 1.59-mm
accuracy. Then, we estimate the center positions of each cylinder
landmark by using our 3-D reconstruction results and compare
with the ground truth to validate our system. Since the detailed
pipe recognition and reconstruction is presented in our previous
papers [8], [9] and is not the focus of this article, we omit the
detail here.

Let ex denote the Euclidean distance of the center position
between the estimation and the ground truth. We directly apply
ex for each pipe as the mapping accuracy metric. Fig. 11 shows
the result. We totally test 58 pipes in our 30 experimental trials.

Fig. 11. Center position error ex for each pipe [9]. Each red marker position
is the mean, and each blue vertical segment is its corresponding 1−σ range. The
overall average center position error is 4.47 cm.

As shown in Fig. 11, we number each pipe by its index in the
X-axis, and illustrate the statistical results of ex for each pipe in
the Y-axis. Each red marker position is the mean, and each blue
vertical segment is its corresponding 1−σ range. The overall
average center position error is 4.47 cm. This is sufficiently
accurate considering the wavelength of the GPR, and hence the
overall design is successful.

VIII. CONCLUSION

In this article, we proposed a system for both surface and
subsurface infrastructure inspection using a multimodal sensing
suite. First, we developed a calibration rig to estimate the relative
pose of a GPR and a camera. We modeled the camera projection
with mirror reflection transformation and the GPR imaging pro-
cess. We estimated camera and mirror poses from camera images
and extracted hyperbolas in the GPR image to recover metal
ball coordinates. The MLE was employed to estimate the rigid
body transformation between the two sensors. We provided the
closed-form error analysis for our calibration models. Second,
we designed a data collection scheme by using ALs to assist
the synchronization between camera images (temporally evenly
spaced) and GPR/encoder data (spatially evenly spaced). We
identified synchronization events created by ALs and use them
as inputs to synchronize sensory inputs. We used the GPR/wheel
encoder readings to rectify the scale for monocular vSLAM
and then employed pose graph optimization by considering
synchronization constraints. We implemented our algorithm and
tested it in physical experiments. Our system and algorithm have
successfully achieved sensor calibration, data synchronizations,
and 3-D metric reconstruction.

In the future, we will develop cross-modality scene recon-
struction and recognition algorithms for surface and subsurface
inspection tasks. We will also consider incorporating other
sensors, such as LIDARs and inertial sensors. We will allow
GPR to move long arbitrary trajectory when developing new
reconstruction algorithms. More field tests and experiments will
be reported as they emerge.
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]
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JT
η
ρΣJη JT

η
ρΣJξ2 0 0 JT

η
ρΣJx2

JT
ξ2
ρΣJη J

T
ξ1
ψΣJξ1 + JT

ξ2
ρΣJξ2 J

T
ξ1
ψΣJπ JT

ξ1
ψΣJx1 JT

ξ2
ρΣJx2

0 JT
π
ψΣJξ1 JT

π
ψΣJπ JT

π
ψΣJx1 0

0 JT
x1
ψΣJξ1 JT

x1
ψΣJπ

CΣ+ JT
x1
ψΣJx1 0

JT
x2
ρΣJη JT

x2
ρΣJξ2 0 0 GΣ+ JT

x2
ρΣJx2

⎤
⎥⎥⎥⎥⎦ (40)

APPENDIX

PROOF OF LEMMA 1

Proof: From the first-order approximation of error backward
propagation [45], we obtain the covariance matrix of p by

Σp =
(
JT
ωΣ

−1
ω Jω

)−1
(39)

where Σ−1
ω = [

Σ−1
ω1

0
0 Σ−1

ω2

] and Jacobian matrices

Jω =
∂ω(p)

∂p
=

⎡
⎢⎢⎣

0 0 0 I 0
0 Jξ1 Jπ Jx1 0
0 0 0 0 I
Jη Jξ2 0 0 Jx2

⎤
⎥⎥⎦

Jη =
[
∂ρT

1

∂η , . . . ,
∂ρT

N

∂η

]T
, Jπ =

[
∂ψT

1

∂Wπ
, . . . ,

∂ψT
N

∂Wπ

]T

Jξ1 = diag

(
∂ψ1

∂ξ1
, . . . ,

∂ψN
∂ξN

)
, Jξ2 = diag

(
∂ρ1
∂ξ1

, . . . ,
∂ρN
∂ξN

)

Jx1 =
[
∂ψT

1

∂Xc
, . . . ,

∂ψT
N

∂Xc

]T
, Jx2 =

[
∂ρT

1

∂Xg
, . . . ,

∂ρT
N

∂Xg

]T
.

To simplify the notations, we denote Σ−1
ω1

= [
CΣ 0
0 ψΣ

], and

Σ−1
ω2

= [
GΣ 0
0 ρΣ

], and derive (40) at the top of next page. Finally,

we solve Ση,ξ through Σp by applying the blockwise matrix
inversion to (40), shown at the top of this page. �
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