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Graph-Based Proprioceptive Localization
Using a Discrete Heading-Length Feature
Sequence Matching Approach

Hsin-Min Cheng

Abstract—Proprioceptive localization refers to a new class of
robot egocentric localization methods that do not rely on the per-
ception and recognition of external landmarks. These methods are
naturally immune to bad weather, poor lighting conditions, or other
extreme environmental conditions that may hinder exteroceptive
sensors such as a camera or a laser ranger finder. These methods
depend on proprioceptive sensors such as inertial measurement
units and/or wheel encoders. Assisted by magnetoreception, the
sensors can provide a rudimentary estimation of vehicle trajectory
which is used to query a prior known map to obtain location. Named
as graph-based proprioceptive localization, we provide a low cost
fallback solution for localization under challenging environmental
conditions. As a robot/vehicle travels, we extract a sequence of
heading-length values for straight segments from the trajectory
and match the sequence with a preprocessed heading-length graph
(HLG) abstracted from the prior known map to localize the robot
under a graph-matching approach. Using the information from
HLG, our location alignment and verification module compensates
for trajectory drift, wheel slip, or tire inflation level. We have
implemented our algorithm and tested it in both simulated and
physical experiments. The algorithm runs successfully in finding
robot location continuously and achieves localization accurate at
the level that the prior map allows (less than 10 m).

Index Terms—Autonomous vehicle navigation, localization,
sensor fusion.

I. INTRODUCTION

OCALIZATION is a critical navigation function for vehi-
L cles or robots in urban area. Common localization methods
employ global position system (GPS), a laser ranger finder,
and a camera which are exteroceptive sensors relying on the
perception and recognition of landmarks in the environment.
However, high-rise buildings may block GPS signals. Poor
weather and lighting conditions may challenge all exteroceptive
sensors. What is needed is a fallback solution that enables vehi-
cles to localize themselves under challenging conditions. This
complements existing exteroceptive sensor-based localization
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Fig. 1. Illustration of GBPL method. Left: Our inputs include a prior known
map and the trajectory estimated from an IMU, a compass, and a wheel encoder.
Middle: We process the prior map in to a straight segment connectivity graph
and also the trajecory into a query sequence of headings and lengths of straight
segments. Right: Aligned trajectory to the map after graph matching.

methods. Inspired by biological systems, we combine proprio-
ceptive sensors, such as inertial measurement units (IMUs) and
wheel encoders, with magnetoreception, to develop a map-based
localization method to address the problem, which is named as
graph-based proprioceptive localization (GBPL).

In a nutshell, our new GBPL method employs the proprio-
ceptive sensors to estimate vehicle trajectory and match it with
a prior known map. However, this is nontrivial because: 1) there
is a significant drift issue in the dead reckoning process; and
2) the true vehicle trajectory does not necessarily match the
street GPS waypoints on the map due to the fact that a street
may contain multiple lanes and street GPS waypoints may be
inaccurate. This determines that a simple trajectory matching
would not work. Instead, we focus on matching features which
are straight segments of the trajectory (see Fig. 1). We keep
track of connectivity, heading, and length of each segment
which converts the trajectory to a discrete and connected query
sequence. This allows us to formulate the GBPL problem as a
probabilistic graph matching problem. To facilitate the Bayesian
graph matching, we preprocess the prior known map consisting
of GPS waypoints into a heading-length graph (HLG) to capture
the connectivity of straight segments and their corresponding
heading and length information. As the robot travels, we perform
sequential Bayesian probability estimation until it converges
to a unique solution. With global location obtained, we track
robot locations continuously and align the trajectory with HLG
to bound error drift.
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We have implemented our algorithm and tested it in physical
experiments using our own collected data and an open dataset.
The algorithm successfully and continuously localizes the robot.
The experimental results show that our method outperforms
in localization speed and robustness when compared with the
counterpart in [1]. The algorithm achieves localization accurate
at the level that the prior map allows (less than 10 m).

The rest of the article is organized as follows. After areview of
related work in Section II, we define the problem in Section III.
We introduce overall system design and detail GBPL in Sec-
tion IV. We validate our system and algorithm with simulation
and physical experiments in Section V. Section VI concludes
this article.

II. RELATED WORK

Our GBPL is related to localization using different sensor
modalities, dead-reckoning, and map-based localization.

We can classify the localization methods into two categories
based on sensor modalities: exteroceptive sensors and pro-
prioceptive sensors. Exteroceptive sensors mainly rely on the
perception and recognition of landmarks in the environment
to estimate location. Mainstream exteroceptive sensors include
cameras [2]-[4] and laser range finders [5]-[7]. These methods
are often challenged by poor lighting conditions or weather con-
ditions. GPS receiver [8], [9] is another commonly used sensor
but it malfunctions when the vehicle travels close to high-rise
buildings or inside tunnels. On the other hand, proprioceptive
sensors, such as IMUs [10] and wheel encoders [11], are inher-
ently immune to external conditions. However, they are more
susceptible to error drift and suffer from limited accuracy. Recent
sensor fusion approaches that combine an exteroceptive sensor,
such as a camera or a laser ranger finder, with a proprioceptive
sensor such as an IMU, greatly improve system robustness and
become popular in applications [12]. However, the sensor fusion
approaches still strongly depend on exteroceptive sensor and
cannot handle the aforementioned challenging conditions.

To utilize proprioceptive sensors for navigation, dead reck-
oning integrates sensor measurements to compute robot/vehicle
trajectory. The sensor measurements often include readings from
accelerometers, gyroscopes, and/or wheel encoders [13]. There
are many applications using the dead reckoning approach such
as autonomous underwater vehicles (AUVs) [14] and pedes-
trian step measurement [15], [16]. To estimate the state of
the robot/vehicle, filtering-based schemes such as unscented
Kalman filter (UKF) [17] and particle filter (PF) [18], [19] are
frequently employed. However, the nature of dead reckoning
causes it to inevitably accumulate errors over time and lead to
significant drift. To reduce the error drift, different methods have
been proposed such as applying velocity constraint on wheeled
robots [20] and modeling the wheel slip for skid-steered mobile
robots [13]. These approaches have reduced error drift but
cannot remove it completely. Error still accumulates over time
and causes localization failure. To fix the issue, we will show
that drift can be bounded to map accuracy level by using map
matching if the filtering-based approach with graph matching
are combined.
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Our method is a map-based localization [2], [21]-[24]. Ac-
cording to [25], map representation can be classified into two cat-
egories: the location-based and the feature-based. The location-
based maps are represented with specific locations of objects.
For example, those existing geographic maps consisted of coor-
dinate of locations such as OpenStreetMaps ™™ (OSM) [26] and
Google Maps [27]. Geographic maps have been widely used to
improve upon GPS measurements and there are common mea-
sures being used such as point-to-point, point-to-curve, curve-to-
curve matching, or advanced techniques [28]. The feature-based
map is consisted with features of interest with its location. An ex-
ample is ORB features [29] for visual simultaneous localization
and mapping. In this work, we extract HLG from geographic
maps which converts a location-based map to a feature-based
map to facilitate robust localization which also reduces graph
size to speed up computation in the process.

Closely related works include [21], [30], [31], which focus on
map-aided localization using proprioceptive sensors for mobile
robots. In [30], only vehicle speed and speed limit information
from map are used as a minimal sensor setup. However, known
initial position is required and the method achieves an accuracy
of around 100 m. In [21], the velocity from wheel encoder
and steering angles are used for odometry and a PF-based map
matching scheme helps estimate vehicle positions. It does not
consider velocity errors from the wheel encoder such as slippery
or inflation levels. In [31], odometer and gyroscope readings are
used for extended Kalman filter (EKF)-based dead reckoning
and a map is used to correct errors when driving a long distance
or turning at road intersections. The average positional error is
5.2 m, but it again requires an initial position from GPS. It is
worth noting that our localization solution does not require a
known initial position.

This article is a significant improvement over our early
work [1] where only heading sequence is used and localization
is only intermittent for turns. The new method enables contin-
uous localization by considering wheel encoder inputs and is
less limited by map degeneracy (e.g., rectilinear environments).
Also, we bound error drift in location alignment and verification
(LAV) after graph matching.

III. PROBLEM FORMULATION
A. Scenarios and Assumptions

In our setup, a robot or a vehicle (we interchangeably use
“robot” and “vehicle”) is navigating in a poor weather conditions
such as a severe thunderstorm or a whiteout snowstorm. No
other exteroceptive sensors work properly. However, it is still
necessary for the vehicle to find its location.

The vehicle/robot is equipped with an IMU, a digital compass
or a magnetometer, and an onboard diagnostics (OBD) scanner
which provides velocity feedback while navigating in an area
with a given prior road map, e.g., OpenStreetMaps (OSM) [26].
We have the following assumptions.

a.0 The vehicle is able to navigate in the environment and
make turns at appropriate locations. If needed, the vehicle
is willing to change its course by making additional turns
to assist our algorithm to find its location.
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Fig.2. System diagram.

a.l The prior road map contains straight segments in most
part of its streets and streets are not strict grids with equal
side lengths.
The robot is a nonholonomic system, i.e., it only per-
forms longitudinal motion without lateral or vertical
motions.
The IMU and the compass are colocated, precalibrated,
and fixed at the vehicle geometric center.
The IMU, compass, and velocity readings are synchro-
nized and time-stamped.

As part of the input of the problem, a prior road map consisting
of a set of roads with GPS waypoints is required. The typical
distance between adjacent waypoints is around 20 m.

a2

a3

a4

B. Nomenclature

Common notations are defined as follows.

1) M, = {Xm = [Tm,Ym]" € R}|m € .4} represents the
prior road map which is a set of GPS positions where .#
is the position index set. Note that these GPS positions are
map points instead of live GPS inputs. We do not use GPS
receiver in our algorithm design.

a={a; eR3j=0,1,....,N;} and w={w;e€
R3|j =0,1,...,N;} denote accelerometer readings and
gyroscope angular velocities from the IMU, respectively.
¢ =1{9j, € Rljy=0,..., L%j} denotes  compass
readings where c4;>1 since a compass often has lower
sampling frequency than that of the IMU.

v={v;, e Rlj» =0,..., L%J} denotes wheel speed
readings from OBD where cvvzl because it has a lower
sampling frequency than that of IMU. And v;, is the speed
at midpoint of car rear wheels.

M, = {Vp, &L} denotes the HLG where V), is the vertex
set and &, and is the edge set.

Q ={Oy,D,} denotes the query heading-length se-
quence which consists of the segmented heading-length
sequence. O, is the set of heading sequence and D, is the
set of travel length sequence.

Cj, represents the candidate vertex set where k = 1,...,n
is the length of the query sequence.

The GBPL problem is defined as follows.

2)

3)

4)

5)

6)

7
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Problem 1: Given M, a, w, ¢, and v, localize the robot
after its heading changes. As its localized, report robot location
continuously.

IV. GBPL MODELING AND DESIGN

Our system diagram is illustrated in Fig. 2 which consists of
four main building blocks: HLG construction, query sequence
generation (QSG) thread, global localization (GL) thread, and
location alignment and verification (LAV) thread. HLG con-
struction is shaded in light gray which converts the prior ge-
ographic map into an HLG which runs only once in advance.
For the rest shaded in dark gray, we refer to them as threads
because they can be implemented as a parallel multithreaded
application. The QSG thread runs EKF constantly at the back
end as the system receives sensory readings a, w, ¢ and v
and outputs the estimated trajectory. GL thread searches for
the global location on a turn-by-turn basis. GL thread performs
Bayesian graph matching between the query sequence extracted
from the trajectory and the HLG. After the global location is
obtained, GL terminates and LAV aligns the latest segment with
the map and uses the result to rectify error drifting in the EKF in
QSG. If no satisfying alignment is found, LAV terminates and
the system restarts GL. In fact, GL thread and LAV thread work
alternatively depending on whether the robot is localized or not.
We begin with HLG construction.

A. HLG Construction

We preprocess map M, to construct an HLG to facilitate
heading-length matching. There are three reasons for using HLG
instead of matching on M,, directly.

1) First, the vehicle trajectory may not exactly match with
M,,. Since M,, and most maps do not have lane-level
information, the discrepancy between the estimated tra-
jectory and M,, is non-negligible which makes the direct
trajectory-to-map matching unreliable. Fig. 3 shows an
example. For the same route, the trajectories may be
different due to driving on different lanes, driver habit,
traffic, etc.
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Fig. 3. Map and trajectory discrepancy illustration. Given the trajectory gen-
erated by proprioceptive sensors, directly matching trajectory with the map may
not be desirable. For the same route, trajectories 1 and 2 appear quite differently.
Neither of them matches blue waypoints in the map.

Fig. 4. HLAG illustration in color. The left figure shows a satellite image with
road map consisted of GPS waypoints (blue dots) overlaying on top of the image
and intersections represented in small black circles. We estimate road curvature
changes to capture heading change and construct HLG. As an example, we color
along and straight segment with light blue and a curve segment with light orange.
The right figure shows the corresponding HLG, and we only employ long road
segment vertices for localization.

2) Second, matching trajectory with M, directly is compu-
tationally expensive because the searching space grows
with the total number of GPS waypoint positions in M,,.

3) Third, the inevitably accumulated trajectory drift dete-
riorates the matching quality and makes the matching
unreliable.

Therefore, we extract features from the map which are the long
straight segments and represent them as the HLG. This leads to
a graph matching approach that can mitigate the influence of the
aforementioned three issues. We start with HLG construction
based on our prior work [1] where we have estimated road
curvature changes to capture orientation change and construct
a heading graph (HG). Build on [1], we augment length infor-
mation in HG to construct HLG for heading-length matching.
Fig. 4 illustrates an example. For completeness, we provide
an overview here and more detail description of constructing
the graph can be found in [1]. The HLG M}, = {V),, &} is
a directed graph. A vertex v; € V), represents a straight and
continuous road segment with neither orientation changes nor
intersections. An edge e; i € &, captures the connectivity be-
tween nodes and characterizes the orientation change between
the two connected vertices v; and v;. M, has two types of
edges: road intersections and curve segments; and two types of
vertices: long straight segment vertices and short transitional
segment vertices. The short transitional segment vertices are
often formed between curve segments or curved roads entering
intersections.
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To build M,,, we split each road at road intersections and
further segment them into two types of segments to capture
orientation changes: straight segments and curved segments [1].
With all roads segmented, we compute orientation and length
for vertices corresponding to those long straight road segments.
Each vertex contains the following information:

v; = {X;,0;,d;,b; }
T T

ey
X

where X; = [x; ,,...,X; ]  contained all 2-D waypoint po-
sitions in GPS coordinates of the road segment with starting
position x; s and ending position x; ., orientation 0; € (—m, 7]
is the angle between the geographic north and the orientation
of the road segment computed using X; with a least squares
estimation method adopted from [1], d; is road segment length
which is computed by

@)

and b; is the binary variable indicate if the vertex is a long
road segment. We only perform orientation estimation if d; > ¢;
where ¢; is the threshold for road segment length. That is

d; = HXi,s - Xi,eH

bi: 3 l

0, otherwise.

3)

Only long road segments (b; = 1) will be used in localization
which defines vertex subset V), ; C V), corresponding to long
straight segments. Note that 6; depends on the robot traveling
direction and hence M}, is a directed graph.

The errors of GPS waypoints in each entry of X; affect the
accuracy of 0; and d;. To track map uncertainties caused by
GPS errors, we derive the distribution of #; and d; using error
variance propagation analysis [32]. We model GPS errors by
using Gaussian distribution and assuming GPS measurement
noises to be independent and identically distributed. We denote
the GPS measurement variance by Ug. According to [2], typical
consumer grade navigation systems offer positional accuracy
around o, = 10 m. The distribution of ; that characterizes its
uncertainty is

where agi is derived in [1]. And the distribution of d; is
di ~ N (pa,,05,) = N(uq,,207,). (5)

B. OSG Thread

To localize the vehicle on M}, we estimate the trajectory
from sensory readings with an EKF-based approach. We then
generate a discrete query consisting of a heading-length se-
quence extracted from the EKF trajectory results. It is worth
noting that our method is not sensitive to the global drift of the
EKF estimated trajectory because we only use short segmented
trajectory to extract heading and length of its straight segments.

1) EKF-Based Trajectory Estimation: Note that readings
from the IMU, the digital compass, and the vehicle velocity:
a, w, ¢, and v, are the inputs to the EKF-based approach to
estimate vehicle trajectory [33]—[35]. To start the EKF, we need
a stabilized initial compass reading ¢ to determine the initial
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vehicle orientation which can be obtained by driving on a long
and straight segment of road (Assumption a.2). We define two
right-handed coordinate systems: IMU/compass device body
frame {B} (also overlapping with vehicle geometric center),
the fixed inertial frame {7} which shares its origin with { B} at
the initial pose. Frame {I}’s X-—Y plane is a horizontal plane
parallel to the ground plane with Y -axis pointing to magnetic
north direction and Z-axis is vertical and points upward. In the
state representation, let state vector X ; at time j be

Xs,j = [pJI'aV]I'aQJI'aSj]T (6)

which includes position p’ = [z,y, 2]T € R?, velocity v/ =
[&,9,2]" € R3, and the Euler angles ©®' := [a, 3,7]" in {I}
in X-Y-Z order, and scale/slip factor (SSF) s. We define s
here to address vehicle velocity error which can be caused by
tire radius error such as inflation level, road slippery, etc. The
superscripts indicate in which frame the vector is defined. The
transformation from {7} to {B} is the Z-Y-X ordered Euler
angle rotation. The state transition equations are described as
follows:

pl=pl +7v’

vi=vl_ +7,(3R(@)-G) o
©; =01+ TwpE(w) + ¢,

Sj = Sj,1

where 7,, is the IMU sampling interval, G = [0 0 — 9.8]T is
the gravitational vector, ¢, = [0 0 ¢]" is the initial orientation
determined by ¢, LR is the rotation matrix from {B} to {I},
and LE is the rotation rate matrix from {B} to {I}.

For EKF observation models, we use velocity constraint from
vehicle movement, sensory readings ¢ and v, and estimated
scale by matching trajectory with map which will be discussed
in Section IV-D3. First, according to Assumptions a.2 there is no
lateral or vertical movements in { B}, the velocities along Y~ axis
and Z axis in { B} are set to be zeros. The velocity constraint is
written as

(PR)psv! = [0 O}T ®)

where PR3 is the second and third rows of PR.

From the coordinate definition, the heading direction is
defined in {7} (last component of ©7), we take compass reading
¢ as its observation. In our physical system, compass readings
have a lower sampling frequency than that of the IMU readings,
we use the latest available reading. Also, compass readings may
be polluted by other magnetic fields, we can recognize faulty
readings by cross-validating compass readings with IMU read-
ings. We discard the faulty compass readings if the difference
between the estimated heading state and the compass reading
exceeds an threshold. With the cross-validated compass reading,
we update heading direction ~ by

Gy i =cole
¢js—1, otherwise.

= ©)
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Fig. 5. (a) Trajectory estimation result: the red line is the GPS ground truth,

and black line illustrates the EKF estimated trajectory. (b) Query heading
representations. Blue line is estimated heading, black vertical lines are indices
where data segmented, red lines mark out stable heading segments and unmarked
segments are detected turns. (c¢) Corresponding travel heading and length seg-
ment representations. Different segments are marked in different colors.

We compensate SSF s; by estimating its value from aligned
map data after taking a turn. We will detail how to compute s, s
and its variance in Section IV-D3. For s, we have
(10)

S5 = Sssf

where s, is the ratio of the trajectory length from the map
versus that from the query. Lastly, we take wheel velocity v as
observations. Similar to ¢ that the sampling frequency is lower
than IMU readings, we have

Vil = {

’ SjUj5, -1,
Combining (9)—(10), we complete the observation model func-
tions. The rest is to follow the standard EKF setup. Fig. 5(a)
shows the estimated EKF trajectory compared with the corre-
sponding GPS ground truth trajectory. Note that the vehicle takes
some additional turns to assist localization (Assumption a.0) and
the trajectory is not the shortest.

2) Heading-Length Sequence Generation: With the esti-
mated trajectory, we generate query heading-length sequence
by capturing vehicle heading changes. We adopt the method for
heading sequence generation from [1] and augment correspond-
ing length sequence in this work. To improve the robustness,
we only keep headings when the vehicle is traveling on long and
straight road segments. This means the headings should be stable
and constant in a long stretch of travel time and corresponding

lf] - Cujv
otherwise.

(11)
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travel distance is long. From the coordinate definition, the head-
ings is v in {/} and is denoted by ~.;. To obtain the query
sequence, we segment 7yo.; to get stable headings and remove
false positive headings that do not correspond to long and straight
road segments. In Fig. 5(b), red horizontal segments are detected
stable headings. Hence we obtain the set of query heading
sequence whichisdenotedby ©, = {Oy x|k = 1,...,n} where
k is query data index, n is the number of straight segments. Each
subset O ;, corresponding to continuous observations from EKF
represents a straight segment. At the same time, we generate
the corresponding travel length sequence which is denoted by
D, ={dgr|k =1,...,n} where dg 1, is the travel length of the
segmented route [e.g., colored segments in Fig. 5(c)].

The query heading-length sequence @ = {©,, D,} is con-
sists of the segmented heading-length sequence. The uncertainty
of query sequence () is obtained from EKF variance estimation.
For ©,, we define 0, 1, as the sample mean orientation of segment
O, which contains ng, , observations of random variable 0 .
0.1 has its covariance matrix obtained from EKF. For D,, the
variance of d, . can also be derived from EKF and we denote it
by Uﬁqvk. Those variables will be used later in the analysis part.

It is worth noting that each entry of the sequence is not
sensitive to the overall trajectory drift due to local trajectory
segment computation. When segmenting into short segments,
the drift in each segment is smaller if compare it to the overall
trajectory drift. The resulting sequence also can be understood
as local features for the trajectory. Also, reducing the query
to the discrete feature sequence helps in reducing computation
complexity.

C. GL Thread

1) GL Overview: With the query sequence obtained from on-
board sensors, we are ready to match it with sequences on the
HLG to search for the actual location. This is a graph matching
problem. In the GL thread, we localize the robot when the robot
changes its heading which is the moment the query sequence
grows its length. It is worth noting that GL is an intermittent
localization. The continuous localization will be address later in
the article.

Given the query heading-length sequence, we search for the
best match of heading-length sequence in the HLG M,. For
any long straight candidate vertex in V}, ;, we match the query
heading-length sequence with sequences of the vertices starting
at the candidate vertex. We discard candidate vertices with poor
matching. In each candidate sequence to query sequence match-
ing, We model sensory and map uncertainties and formulate the
matching process as a sequential hypothesis test problem. The
result of GL depends on if a satisfying matching sequence can
be found.

2) Graph Matching: The center part of GL is the matching
of query sequence and candidate sequence on the graph. To
achieve this, we expand the heading sequence matching in [1]
to find the best heading-length matching in M},. Given query
sequence Q = {Oy, Dy} = {(0g.1.dgx)|k=1,...,n}, let us
denote a candidate heading-length vertex sequence in M, by
M :={0,D} = {(bk,dr)|k =1,...,n} correspondingly. As
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a convention in this article, for random vector *, (1, represents
its mean vector. Following the convention, mean matrix of @ is
defined as g = [, up, " where po, = (16, s+ o, ]
and pp, = [ftd, .- .-+ Hd,,) - The mean matrix of M is de-
noted by par = [uZ),TuI)]T where g = [1g,, .-, g, and
KD = [/’Ld17' o >Md71] .

Due to independent measurement noises, the conditional
matching probability between query sequence @ := {©,, D,}
and a candidate sequence M := {©, D} on HLG My, is

P(ug = pm|Q, M)
= P(ue, = 1el©q,0)P(up, = up|Dy, D).

From [1], the conditional heading matching probability between
O, and Oy, is

12)

P(po, = pel©q,0) o [ [ fr(t(0q.x:0k))
k=1

13)

due to independent sensor noises and fr(t(64,x, 0x)) is the prob-
ability density function (PDF) of Student’s t-distribution. For
length matching, the conditional matching probability between
D, and D is

P(up, = pp| Dy, D) o< [ f(2(dgk, dr))
k=1

(14)

where f(-) is the PDF of standard normal distribution, and
2dg g, dy) = —22% _  Combining (13) and (14) and re-

2 2 N
Udk +adq$k
calling that n is the number of straight segments in the query
sequence, we rewrite (12) as follows:

P(ug = par|Q, M) o [[ £r(#(0g.k,00)) £ (2(dgx — di)).
k=1
(15)

3) Candidate Vertex Selection: To select on candidate ver-
tices during matching, we perform statistical hypothesis testing
to remove unlikely matchings. According to (12), sequence
matching is considered as multiple pair matching. For each pair
({Ok, di}, {04k, dg i }), it is a hypothesis testing

H()I
H1:

[,u'(?q‘k ) qu,k]-r = [/~L6k ) /Ldk]T

otherwise. (16)

Hypothesis H, can be seen as two null hypotheses: Hpg:
Mo, . = Mo, and Ho g : pla, , = pa, - We perform two individual
tests separately with significance level 1 — a where «v is a small
probability. Both Hy g and Hy 4 are two-tailed distributions. We
choose ¢, /2, as the t-statistic with a cumulative probability of
(1 — §) where v is the degrees of freedom (DoF) and z,, /» as the
z-statistic with a cumulative probability of (1 — 5 ). We reject
Hy if

(1t(Ok, 0g.k)| > tay2,) V (12(dk;s dg k)| > 2as2)-

By sequentially applying the hypothesis testing on each corre-
sponding pair ({0, dr}, {04k, dq,rx}) from query sequence @
and candidate sequence M on HLG M,,, we determine whether

a7
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Fig.6. Example of GL. (a) Candidate locations using heading matching (green

dots), length matching (black circle). We show that performing heading-length
matching (locations with green dot and black circle) helps reducing candidates.
(b) Candidate localization is reduced to the single solution if the joint distribution
between heading and length is used.

M represents the actual trajectory. Fig. 6 has shown that using
the joint distribution of heading and length significantly reduce
the number of solutions in the matching process.

In the matching process, we might get many candidate so-
lutions because the hypothesis test is conservative in rejection.
To address the problem and check if we converge to a unique
solution, we classify the computed probabilities of (12) into two
groups using the Ostu method [36]. The number of solutions is
the group size. If the group with higher probability has only one
candidate then the vehicle is localized. Otherwise, it means that
the group with higher probability contains several trajectories
with higher probabilities. It indicates that more observations are
needed to localize the vehicle.

4) GL Algorithm: We summarize the heading-length match-
ing method in Algorithm 1. In a nutshell, as we sequentially
match the vertex down the query sequence, we compare it
with the out-neighbor of remaining vertices on the graph using
breadth-first search.

Note that vertex v; may have adjacent vertices with same
orientation. For example, consider the vehicle reaches a long
straight road (with road intersections). This long straight road
corresponds a set of vertices with same orientation. We denote
the set of straight path start from v; by Vs.

To reuse the computed information as the query sequence
grows, we define the candidate vertex information set C, where
k =1,---  nisthe length of the query sequence. The candidate
vertex set is denoted by Cy, = {{vi, Vi, pitli = 1,...,n¢, },
where each element in Cj record the candidate vertex v; (the
starting vertex of the trajectory/path), V), ; is the set of vertex
path, and the matching probability p; in (12) and n¢, is the
cardinality of Cy. To initialize, we set Cy := {{v;, 0, ﬁ}h =
1,...,|Vhi|} because each vertex in Vj,; is equally lfkely to
be the path starting vertex. The computational complexity of
calculating each term in (12) is O(1) using the alias sampling
method [37]. The upper bound of candidate vertex cardinality
is |Vh,| and thus, it takes O(|V},|) to compute probability
of all candidate vertices. The size of straight path set takes
O(|V|) which is related to variation of map road headings in
Section I'V-C6. With little variation in headings (e.g., Manhattan
streets), |Vs| is larger. On the contrary, |Vg| is small compared
to |Vp,;| with large variation in road headings. In this case,
O(|Vs|) = O(1). The classification of probabilities into two
groups is O(|V},1|) using Hoare’s selection algorithm.
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Algorithm 1: Heading-Length Graph Matching.
Input: Mh = {Vh,gh} and Q = {®q,Dq}
Output: C; or vehicle location, I

1 Coi:{{"n@ﬁw:1~,'"A,\Vh.l\} o(1)
2 Initialize I =0 o(1)
3 fork=1,---,ndo O(n)
4 Ci « 0; o(1)
5 fori=1,---,nc, , do O(|Viil)
6 if k ==1 then

7 | Access straight path set V; start from v;; o(1)
s else

9 vy < last vertex in path Vy; o(1)
10 Vi < adjacent verteices of vy ( with different angles);  O(1)
11 Access straight path set V; start from each vertex in Vy; O(1)
12 for V; €V do o(|vs))
13 Access 0, and dy of V; o(1)
14 compute p < fr(t(6s,0q)) f(z(ds,dgx)) o(1)
15 if Pass hypothesis testing in (16) then

16 Update matching probability p; < p;-p o(1)
17 Vi < Append Vs to Vi o(1)
18 Cr — CU{vi, Vy o, } o(1)
19 Classify probabilies in (12) of C; using Otsu’s method; O(|Vs||Viil)
20 Remove group in Cy with lower probabilities; o(1)
21 if |C¢| > 1 then

2 | Return Cy: o(1)
23 else

24 Set I = 1; o(1)
25 L Return vehicle location; o(1)

We summarize the computational complexity of Algorithm 1
in Lemma 1.

Lemma 1: The computation complexity of the heading-length
matching is O(n|Vs||Vh.i).

5) Localization Analysis: The remaining problem is whether
this sequence of hypothesis testing would converge to the true
trajectory as the length of the sequence grows. To analyze this, let
us define three binary events: Ay = 1if puq, , = pa,, Br = 1if
Mo, = Moy, and C}. = lifvertex k in Mj, is the actual location.
The jointevent Cy - - - C,, = listosay M := {O, D} represent
the true trajectory, whereas we know A, --- A, By - - - B, from
sequence matching. In the analysis, we denote n,, = |V}, ;| as the
cardinality of V), ; and n, as the expected number of neighbors
for each vertex. We describe map/trajectory property in a rudi-
mentary way by assuming ky levels of distinguishable discrete
headings in [0, 27) and k; levels of distinguishable discrete road
lengths. Each vertex takes a heading value and length value with
equal probabilities of 1/k4 and 1/k; correspondingly. Generally
speaking, we know n,, > kg > ny and n,, > k; > n; for most
maps. We have the following lemma.

Lemma 2: The conditional probability that M = {©, D} is
the true matching sequence given that @ = {©,, D, } matches
M is

P(C1~'~C'n|A1"'AnBr-'Bn)

1 — a)?kqk o
_ U=k {(1—04)2”1 l] )
m ny
Proof: Applying the Bayesian equation, we have
P(Cy---Ch|Ay---AyBy -~ By,)
_ P(Ay--AyBy -+ B,|Cy - Cy)P(Cy -+ C)
P(A,---A,B;,---B,) )
(19)
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Indeed P(Ay---A,By---B,|Cy---Cy,) is the conditional
probability that a correct matched sequence survives n hypoth-
esis tests in (16). Due to independent measurement noises, we
have P(A;B1|C1) = (1 — a)?. Besides, these tests are inde-
pendent due to independent sensor noises, we have

P(Ay - ApBy - Bp|Cr---Cp) = (1—a)®.  (20)

Joint probability P(Cy ---C,,) is actually the unconditional
probability of being correct locations. We know P(C4) = 1/n,,
given there are n, possible solutions, and P(C5|Cy) = 1/ny
because there are n; neighbors of C. By induction

1 1
— 2D

ng_l Ty

P(C1Cn) =

Lastly, each vertex takes a heading value and length value with
equal and independent probabilities of 1/k, and 1/k;. We have
P(AkBk) = ﬁ and

1
P(A,---A,By---B,) = . 22
(41 v Ba) = G 22)
Plugging (20)-(22) into (19), we obtain the lemma. |

Corollary 1: We have shown in [1] that the conditional prob-
ability that © is the true matching given ©, is

1 n—1
P(Cl---CnBl-an):(a)kd[(1—04)]%} '
v Ny
(23)
Compare (18) with (23), we have
P(Cy---CylAy---A,By - B, .
(G A : ) _ [(1— k)™ (24)

Since k; > ﬁ is generally true, localization using both head-
ing and length information @ = {©,, D, } is faster than using
heading O only.

Under Assumption a.l, Lemma 2 shows the probabilis-
tic convergence of right matching. Also, it reveals when
the localization scheme works and localization efficiency. If
P(C1Cy---CplAjAy--- A, BBy - - By,) increases as n in-
creases, the proposed method would find the correct lo-
cation eventually. The localization speed is determined by
(1- a)gkg—f’ which is determined by sensor accuracy, the
map property, and the trajectory [1]. Since n; (the expected
number of neighbors) remains constant as most intersections
are 4-way intersections, kg and k; (spreading in heading
and length) are the main factors determining the increas-
ing rate of P(C1Cy---CplA1As---AyB1By---By). If a
map contains many different road headings and lengths, then
P(C1Cy---Cpy|A1Ay--- A, B1By -+ - By,) increases swiftly
as n increases. On the contrary, if the map only con-
tains purely rectilinear grids then k; = n, and k; = 1. This
is the worst case scenario which leads to a decreasing
P(C1Cy---Cy|A1As -+ AyB1By - -+ By,) and the algorithm
fails. Fortunately, most maps do not have the issue [38]. If a
rectilinear map has different side lengths in each distribute, the
algorithm still works (Assumption a.l). To better understand
how it stands in real world, we analyze map proprieties in the
following section.
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6) Map Entropy Analysis: To provide a measure of variation
and spreading in heading and road length, we introduce the
Shannon information entropy to measure road heading and
length distributions [39]. To minimize the effect of bin size on
calculated entropy, we set orientation bin widths to be 5°, and 20
m for road length. Let us denote orientation range setby {O;|j =
1,2,...,n;}andlengthrange setby {L;|i = 1,2,...,n;}. We
define nj; = n;jn; and p;; be the relative frequency that 0; € O;
and d; € L;. The joint Shannon entropy in heading and road
length is

Hoa(Vni) = =D D pslog,, pss. (25)

] 1

By analyzing the entropy of different maps, we predict local-
ization efficiency of our algorithm, which will be shown in
Section V.

D. LAV Thread

If the GL thread finds a unique position, we can start LAV
thread to continuously report vehicle location. The key is to fix
the EKF drift issue using the prior map information. This is
achieved by monitoring if the vehicle makes a turn. Once a turn
is identified, the straight segment prior to the turn (SSPT) can be
extracted. Comparing the SSPT from EKF estimation (SSPTE)
to the corresponding SSPT on the map M,, (SSPTM), we can
reset EKF parameters which rectifies the drifting issue.

Let us define the set of points in SSPTE by

X,={p. eR¥}t=1,...,n,} (26)

with each element obtained from EKF p! , = [z,y]T where p{ ,
is the first and second element of p’. The distribution of p, is
p. ~ N (p,, Xp, ), where i, is the mean vector and X, is the
covariance matrix obtained from the EKF. The corresponding
GPS SSPTM points are defined by

Xh:{xl|l:17...,nh} (27)

and the covariance of GPS points is denoted by X, =
diag(oz,07) as mentioned in Section IV-A. We obtain X, by
using the localized position from GL thread and performing
graph matching with the out-neighbor of vertices. Thus we have
Xy~ N(uxwzg)-

1) Virtual Starting-Point and End-Point Estimation: How-
ever, SSPTE points do not necessary follow SSPTM as shown
in Fig. 7(a). This is because we do not know which lane the
vehicle is driving in and the map may not provide lane-level
waypoint accuracy. Fig. 7(a) also shows the effect of vehicle
turn radius which makes the length of SSPTE shorter than that of
the corresponding SSPTM. To address the problem, we estimate
virtual starting and end points for an SSPTE.

We find the virtual starting and end points by computing
line intersection of two consecutive SSPTE segments. With
the current segment positions X, we denote the set of points
from previous and next SSPTE segments by X, and X+,
respectively. Applying line fitting to X, X -, and X+, we
obtain three 2D lines Ly, Lg-, and L+, respectively. We pa-
rameterize each line by two reference points. Thus we denote
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Fig. 7. Tllustration of LAV. The solid small dots represent vehicle trajectory

where red points are turn points and black points belong to SSPTE. The roads
are shaded gray regions characterizing their width, and GPS waypoints in M,,
are represented in larger blue dots. (a) Virtual starting and end points (i.e., red
circles) of an SSPTE. (b) Left: Misalignment between X4 and X, . Itis clear that
SSPTM only has three points. Exact point-to-point matching is not appropriate.
We fit a line Ly, using SSPTM which is used as reference line for finding the
best transformation between SSPTE and SSPTM points.

L, = [a],bj]", Ly =[a] ,b]]7, and L+ = [a], ,b],]".
Also, the line direction vectors are v, = b, — ag, v+ = b+ —
a,+,and v, = b, — a, . Finding the intersection between L,
and L, allows us to obtain the virtual starting point. We denote
the virtual starting point of X, by ps

1 _ —
o v, -(ag aq)v
Ps = q 1 q
Vi Vg

(28)

where - is dot product and vé, is the perp operator of vg-.
Similarly, the intersection between L, and L.+ gives us the
virtual end point p.. We have

1 _at
B vi(ag —ay)
Pe = aq - 1
ViV

Vg 29)
where V;Jr is the perp operator of v,+. When SSPTE is con-
nected with an curve segment (e.g., caused by vehicle turn),
we add p, and p. to X, to help alignment process. ps and p.
become the first and the last points in X, respectively.

2) Location Alignment and Verification: With augmented
X, we can match X, to X, to rectify drifting issue by finding
the transformation T between them (see Fig. 8). Here T is 3-DoF
rigid body transformation represented by a 2x2 rotation matrix
R, and a 2x1 translation vector t

T(x):=Rx+t (30)
where x is a 2-D point. X, usually contains significantly more
entries than that of X} due to its higher sampling frequency
(ng > ny,). Directly matching two point sets is not the best so-
Iution. Instead, we fit a line through points in X}, and minimizing
the distance of all points in X, to this line [see Fig. 7(b)].

Let us denote L, = [a},b]]T where a; and by, are two
reference points on the line. For every point p; in X, the
point after transformation is denoted by T'(p, ). The point-to-line
distance between T(p,) and Ly, is defined as

l|(an, — T(p.) x (an — by)||
|lan — bn|

d. (T(p.),Ly) = 31
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Fig. 8. Example of LAV that keeps drifting under control where n is the
number of long straight segments for the vehicle. The unaligned trajectory is
shown in black, the aligned trajectory is shown in red, and GPS waypoints are
shown in dark blue square. (a) n = 4. (b) n = 5. (c) n = 6.

where ‘x’ is the cross product and || - || is the L? norm. We
define the cost function Ct by

Cr= (32)

. (T(pn,), Ln)
dy (T(pe), Ln)

and formulate the following optimization problem:

arg min CLYG Cr + AT (py) — xa| + AT (pe) — X,
T

(33)
where Yo = diag(a?ibps,...,oghpe), B is a nonnegative
weight, and x; and x,,, are the first and the last entries in (27),
respectively. Ui p, isobtained using error propagation. In detail,
let d\ (T(p.),Lpn) = fa(p.,Ls) and ¢ = [p],L]]", we have
03, p, = JaZaJy, where Jy = S and £y = diag(Sp,, v, )
because p, is independent of L, which comes from Xj,. Define
Ly, = f(X5), we have Sy, = J x, J] where .J, = &
and Xx, = diag(X,,--- ,3,). The second and third terms are
soft constraints due to potential alignment errors. To solve (33),
we start with a small positive weight for A and apply a nonlin-
ear optimization solver, e.g., Levenberg—Marquardt algorithm.
Initially, we set R = I3y, and t from the result of the global
location obtained from Section IV-C. For each turn, we use
previous solution as the initial solution and increase A gradually
until the change in solution is negligible.

Now we have optimized T and we denote the aligned lo-
cations by Xq = T(X,). We need to verify if the matching
result is reliable by performing hypothesis testing. We have two
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hypotheses

Hy : X}, and Xq are from the same distribution

H; : otherwise. (34)

We set the significance level by o and reject Hy if the statistic is
less than «.. Note H is examined by the Mahalanobis distance
CLE'Cr which follows a x? distribution with 2(ng + 2)
DoFs. Thus, we reject Hy if CTX;'Cr > X%(nq+2)(a)' Cor-
respondingly, we set localization status indicator variable /4

0, Hy is rejected,

values by I = If I =1, we accept T

1, otherwise.

and use the aligned trajectory Xq := T(X,) which is used to
reset the EKF states (see Fig. 2). After LAV execution, we keep
acquiring the vehicle locations EKF p!_, until next turn. When
turn is detected and I = 1, we execute LAV thread repeatedly.
If I = 0, it means that we cannot find the position and we
lose the global position. Thus we terminate the LAV thread and
start the GL thread again. The possible reasons for losing global
location could be the vehicle drives off the prior map or keep
straight without turns which cause drifting too much.

3) SSF Estimation: To further reduce drift in the dead-
reckoning process, we consider SSF in the EKF-based trajectory
estimation. There are two sources of biases: systematic and
nonsystematic biases from wheel encoder inputs [40]. The sys-
tematic error can be caused by tire radius error such as inflation
level, tire wear, gear ratio, etc. Nonsystematic error comes from
wheel slippage on road. To compensate for those errors, we
introduce scale and slip factor s, in (10).

To compute s,,r, we need the travel length for each vertex
on HLG for both query data and map data. We obtain the travel
length d, on the query data using the virtual starting/end points
pe and p; in (28) and (29). That is d, = ||pe — Ps||- According
to (27), the corresponding travel length on the map is denoted
by d := ||x,,, — x1||- Assuming GL thread ends at the n th turn,
fork = (n+1),...,n weestimate s, ; by computing the ratio
of accumulated length d, ;. and dy,

Sssf = Z dk/

k=n-+1

(35)

> dg-

k=n-+1

We then model the variance of s, to be used in the EKF
measurement variance in Section IV-B1. It is not accurate to
set a constant variance value for s, since at the beginning
traveling length is short and thus s, has larger variance. As the
traveling length increases, the Variance of s55 5 ought to decrease.
Denote the variance of sss5 by o2 we derive the following
Lemma.

Lemma 3: The variance of scale and slip factor sy is

Sssf?

n'

Z qu,k)'

k=n-+1

2
O—Sssf

1 2

= L2 (Qns o, + —g (36)
q

Proof: First, we write ss.r as function of measurements

from dj and dg; according to (35). That is, ss5f =

fs(dns1, .- sdw,dgnt1,s- -, dgn). We know the variance of

diis 03, = 207 from (5) and the variance of d y is Ui,k which
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is defined in Section IV-B2. Let us define L, = ZZ/:H 11 dg 1

L, = Z/:n 41k, and ng = n' —n. Through forward error
propagation
By = JsZs s (37)
where ¥, = diag(207,...,207, agq T -o2 Yand Jy is
J _ afs afs afs 8f5
" | 0dng T Ody Ody i’ Ody
1 1 —L —L
[ k] -
L, L, L L3
Plug (38) into (37), we have
ol =S ] —2ng— Z (“,§L4
k=n-+1
1 L2 &
=5 <2nsa + ﬁ Z 03q7k> . (39)
q 9 k=n+1
|

Remark 1: Let us take a close look at (39). We have L, ~
L, because the estimated travel length should be similar to the
corresponding path in map. Therefore, we can approximate o
as

ssf

o, = J5J] =

Sss

2n0+Zadk

k=n+1

2 o .
Thus we show that o7 = decrease as Lg =) ), dg in-

creases. As time goes, we have longer travel length and the esti-
mation of s4s ¢ becomes more accurate. Using the accumulated
travel length to adjust SSF is suitable to compensate systematic
biases. If the traveling length is long and systematic biases are
compensated, setting a sliding window for accumulated distance
can be used to detect nonsystematic biases that varies through
traveling.

The resulting s,s¢ and 0 . are fed into the EKF in Sec-
tion IV-B1. This completes our overall method.

V. EXPERIMENTS

We have implemented the proposed GBPL method using
MATLAB and validated the algorithm in both simulation and
physical experiments. We first validate the proposed GL ap-
proach. Second, we test the LAV performance.

For physical experiments, we evaluate our approach on three
maps with seven outdoor datasets, as described below. We obtain
the following corresponding three maps from OSM:

1) CSMap: College Station, Texas, U.S.;

2) KITTIOOMap: Karlsruhe, Germany;

3) KITTIOSMap: Karlsruhe, Germany.

Map information including map size, total length of drivable
roads, HLG entropy, and #nodes in HLG is shown in the first
four columns of Table I .

The seven query sequences are three self-collected CSData
sequences and four KITTI sequences.
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TABLE I
MAP INFO. AND #STRAIGHT SEGMENTS 72 FOR LOCALIZATION

Maps Size (km?) Drivable road (km) Entropy  #nodes n(PLAM) n (GBPL)

CSMap 3.24 52.7 0.724 483 9.5.6 332
KITTIOOMap 4.75 44.2 0.877 583 10,5 43
KITTIOSMap 3.24 43.7 0.797 548 45 34

Bold entities to emphasize the superiority in performance of the proposed method com-
paring with the state-of-the-art.

1) CSData: We record IMU readings at 400 Hz and compass
readings at 50 Hz using a Google Pixel phone mounted on
apassenger car. Also, we read the vehicle speed at 46.6 Hz
sampling frequency in average using a Panda OBD-II
Dongle which provides the velocity feedback from vehicle
wheel encoder. We have collected three sequences: CS-1,
CS-2, and CS-3.

2) KITTI: We use the KITTI GPS/IMU dataset [41] which
contains synchronized IMU readings from its inertial nav-
igation system (INS) as inputs. We only use the GPS read-
ings to synthesize compass readings to test our algorithm
since the datasets do not provide compass readings. We
have four sequences: KITTIO0-1, KITTIO0-2, KITTIOS-1,
and KITTIOS-2.

A. GL Test

1) Evaluation Metrics and Methods Tested: Itis worthnoting
that the speed of methods are characterized by n, number of
straight segments in the query. Since computation speed is not a
concern, we are more interested in how many inputs it takes to
localize the vehicle. Therefore, n is a good metric for this. For a
given n, the algorithms may provide multiple solutions if there
is many similar routes in the map. If the number of solutions
is one, then the vehicle is uniquely localized. The number of
solutions is also an important measure for algorithm efficiency.
The following two algorithms are compared in our experiments.

1) GBPL: Current method that uses both heading and length

information of straight segments.

2) PLAM: The counterpart method using heading only [1].

2) Map Entropy Evaluation: Map entropy describes how
much the heading and distance distribution spread out in a given
map. Higher entropy means distributions are more spread out
and hence it is easier for the vehicle to localize itself, as proved
in Lemma 2. Therefore, we want to find out what are map entropy
range of real cities and use the range to test our GBPL. As shown
in Fig. 9(a), we calculate map entropy distributions of 100 cites
based on the data from [38]. For comparison, the normalized
sum of heading entropy and length entropy are in orange bars,
and the heading entropy are in blue bars. For each city, the
sum of heading entropy and length entropy is the upper bound
of the joint entropy. We generate histogram plots for entropy
distribution in Fig. 9(b) and (c). As shown in Fig. 9(c), 95 cities
have entropy values higher than 0.70 and the lowest entropy is
around 0.6. This determines that entropy range of maps that we
will use to test our algorithm is from 0.60 to 0.99.

To better understand the relationship among HLG entropy,
n, and the number of solutions, we simulate 40 maps with
joint entropy of heading and length ranging from 0.60 to 0.99.
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Fig. 9. (a) Entropy of 100 cities. (b) Heading entropy distribution of 100

cities. (c) Heading and length entropy distribution of 100 cites. (d) #solutions
with respect to map entropy values (heading only) and n. (e) #solutions with
respect to map entropy values (heading+length) and n. (f) n versus #solutions
with fixed map entropy = 0.86. (g) Map entropy values versus #solutions with
n=3.

Building on the simulation in [1], we expand it from HG to
HLG in this work. For completeness, we repeat information
about experimental settings here. The simulated maps are with
a fixed graph structure, and we increase the entropy level in
both heading and length by perturbing selected road intersection
positions. For each map, we generate 20 query sequence samples
with n =1,...,20 and the uncertainties of orientation and
length are considered by setting 00,, =5, 04,, = \/509, and
04 = 5 m. We compute the number of solutions by averaging
the results of 20 sequences for each map. The simulation result
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is shown in Fig. 9(e) and we adapt Fig. 9(d) from [1] for
comparison.

For PLAM which uses heading only [see Fig. 9(d)], the
vehicle can be localized with n < 10 if the entropy in orientation
is above 0.9 [1]. Under GBPL, the vehicle can be localized with
n < 7evenif the heading/length entropy is 0.6. It is worth noting
that lower entropy means less spreading of heading and segment
length and road network is closer to be a rectilinear grid and
hence it is more challenging to localize a vehicle in such settings.
GBPL appears to be more robust to low map entropy than PLAM.

Fig. 9(d) and (e) shows the number of solutions with regard to
n values and different HLG entropy values. We fix the entropy
as 0.87 and n = 3 in Fig. 9(f) and (g), respectively, to observe
how quickly the number of solutions decreases in each setting.
It shows the #solutions decreases more rapidly in GBPL than
that of PLAM using heading only. This result is consistent with
Corollary 1.

3) Physical Experiments: We also compare the two afore-
mentioned methods in physical experiments. Again, the speed
is described in n needed to reach a unique solution. Smaller
n is more desirable. We test three sequences from CSData on
CSMap, two sequences on KITTIOOMap and two sequences on
KITTIOSMap. The comparison results are shown in the last two
columns of Table I. In all tests, GBPL takes n = 3.1 in average
with a standard deviation of 0.69 to localize the vehicle while
PLAM takes n = 6.3 on average with a standard deviation of
2.29 in comparison. As expected, GBPL has a faster localization
speed than that of PLAM. As shown in Table I, the entropy values
(heading+length) of CSMap, KITTIOOMap and KITTIOSMap
are 0.724,0.877,and 0.797, respectively. By checking the results
in Fig. 9(e), n required for reaching a unique solution in the real
map agrees with simulation results.

B. Localization Alignment and Verification Test

GL only provides an initial position and the accuracy of
continuous localization is determined by the LAV thread. We
show localization accuracy result for all seven test sequences.
PLAM does not have the capability of continuous localization
and hence is not tested here. We only compare GBPL result with
the ground truth.

1) Ground Truth and Evaluation Metric: The ground truth
in our experiments is the actual GPS trajectory. The localization
error is defined as the Euclidean distance between the estimated
aligned trajectory and the ground truth. The localization errors
are measured in meters.

2) Accuracy Results: Figs. 10 and 11 show the accuracy
results by plotting the localization errors of each sequence. Red
vertical lines are where LAV is excuted, i.e., when turns are
detected. The first red vertical line corresponds to where we
obtain global location. In all test sequences, the error in vehicle
position is reduced to less than 5™m when LAV runs at the
moments indicated by the red lines. After that error slowly grows
until reaching the next LAV moment. This matches the expected
map uncertainty (around 10”m). The localization accuracy of
CSData on CSMap appears to be less than that of KITTI data.
This is mostly due to the fact that the ground truth of CSData
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Fig. 11. LAV accuracy results using CSData on CSMap. (a) CS-1, (b) CS-2,
and (c) CS-3.

is not as accurate as that of the KITTI dataset. CSData uses the
GPS receiver on the cell phone with an accuracy of about 10
m or worse while the GPS receiver for KITTI data set is high
quality GPS (model RT3000v3) with an accuracy of 1 cm.

3) Scale and Slip Factor: Fig. 12 shows the estimated SSF
in EKF [i.e., s; in (10)]. These results show the effectiveness
of LAV in detecting systematic bias in wheel odometry. For
CSData, SSF values are between 1.09 to 1.15 while the SSF
values from KITTI data are close to 1.00. It is clear that the
vehicle velocity from the Panda OBD II dongle contains bias.
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It tends to underestimated vehicle velocity by about 10%. This
may be due to incorrect parameters in gear ratio or wheel/tire
size. Also, the fluctuation in SSF in CSData is also large. This
may also be a result of less accurate GPS values or variable
tire inflation status since data are collected at different times
over several months. Nonrigid mounting of the cellphone also
contributes to the issue. Nevertheless, our GBPL algorithm is
robust to these factors and still provides a good localization
result. We also showed the variance of s; in Fig. 13. These
results show UESS ; decreasing as travel length increases as in
Lemma (3).

VI. CONCLUSION

In this article, we reported our GBPL method that did not rely
on the perception and recognition of external landmarks to local-
ize robots/vehicles in urban environments. The proposed method
was designed to be a fallback solution when everything else
failed due to poor lighting conditions or bad weather conditions.
The method estimated a rudimentry vehicle trajectory computed
from an IMU, a compass, and a wheel encoder and matched
it with a prior road map. To address the drifting issue in the
dead-reckoning process and the fact that the vehicle trajectory
may not overlap with road waypoints on the map, we developed a
feature-based Bayesian graph matching where features are long
and straight road segments. GBPL preprocessed maps into an
HLG which stored all long and straight segments of road as
nodes to facilitate GL process. Once the map matching was
successful, our algorithm tracked vehicle movement and used the
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map information to regulate EKF’s drifting issue. The algorithm
was tested in both simulation and physical experiments and
results are satisfying.

In the future, we will actively guide the vehicle to make
turns to speed up the localization process. More experiments are
planed which we will work on situations of losing location and
relocalization. We are interested in extending the work to design
amultiple vehicle/robot collaborative localization scheme under
ad hoc vehicle-to-vehicle communication framework. We will
report new results in the future publications.
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