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Graph-Based Proprioceptive Localization
Using a Discrete Heading-Length Feature

Sequence Matching Approach
Hsin-Min Cheng and Dezhen Song , Senior Member, IEEE

Abstract—Proprioceptive localization refers to a new class of
robot egocentric localization methods that do not rely on the per-
ception and recognition of external landmarks. These methods are
naturally immune to bad weather, poor lighting conditions, or other
extreme environmental conditions that may hinder exteroceptive
sensors such as a camera or a laser ranger finder. These methods
depend on proprioceptive sensors such as inertial measurement
units and/or wheel encoders. Assisted by magnetoreception, the
sensors can provide a rudimentary estimation of vehicle trajectory
which is used to query a prior known map to obtain location. Named
as graph-based proprioceptive localization, we provide a low cost
fallback solution for localization under challenging environmental
conditions. As a robot/vehicle travels, we extract a sequence of
heading-length values for straight segments from the trajectory
and match the sequence with a preprocessed heading-length graph
(HLG) abstracted from the prior known map to localize the robot
under a graph-matching approach. Using the information from
HLG, our location alignment and verification module compensates
for trajectory drift, wheel slip, or tire inflation level. We have
implemented our algorithm and tested it in both simulated and
physical experiments. The algorithm runs successfully in finding
robot location continuously and achieves localization accurate at
the level that the prior map allows (less than 10 m).

Index Terms—Autonomous vehicle navigation, localization,
sensor fusion.

I. INTRODUCTION

LOCALIZATION is a critical navigation function for vehi-
cles or robots in urban area. Common localization methods

employ global position system (GPS), a laser ranger finder,
and a camera which are exteroceptive sensors relying on the
perception and recognition of landmarks in the environment.
However, high-rise buildings may block GPS signals. Poor
weather and lighting conditions may challenge all exteroceptive
sensors. What is needed is a fallback solution that enables vehi-
cles to localize themselves under challenging conditions. This
complements existing exteroceptive sensor-based localization
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Fig. 1. Illustration of GBPL method. Left: Our inputs include a prior known
map and the trajectory estimated from an IMU, a compass, and a wheel encoder.
Middle: We process the prior map in to a straight segment connectivity graph
and also the trajecory into a query sequence of headings and lengths of straight
segments. Right: Aligned trajectory to the map after graph matching.

methods. Inspired by biological systems, we combine proprio-
ceptive sensors, such as inertial measurement units (IMUs) and
wheel encoders, with magnetoreception, to develop a map-based
localization method to address the problem, which is named as
graph-based proprioceptive localization (GBPL).

In a nutshell, our new GBPL method employs the proprio-
ceptive sensors to estimate vehicle trajectory and match it with
a prior known map. However, this is nontrivial because: 1) there
is a significant drift issue in the dead reckoning process; and
2) the true vehicle trajectory does not necessarily match the
street GPS waypoints on the map due to the fact that a street
may contain multiple lanes and street GPS waypoints may be
inaccurate. This determines that a simple trajectory matching
would not work. Instead, we focus on matching features which
are straight segments of the trajectory (see Fig. 1). We keep
track of connectivity, heading, and length of each segment
which converts the trajectory to a discrete and connected query
sequence. This allows us to formulate the GBPL problem as a
probabilistic graph matching problem. To facilitate the Bayesian
graph matching, we preprocess the prior known map consisting
of GPS waypoints into a heading-length graph (HLG) to capture
the connectivity of straight segments and their corresponding
heading and length information. As the robot travels, we perform
sequential Bayesian probability estimation until it converges
to a unique solution. With global location obtained, we track
robot locations continuously and align the trajectory with HLG
to bound error drift.
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We have implemented our algorithm and tested it in physical
experiments using our own collected data and an open dataset.
The algorithm successfully and continuously localizes the robot.
The experimental results show that our method outperforms
in localization speed and robustness when compared with the
counterpart in [1]. The algorithm achieves localization accurate
at the level that the prior map allows (less than 10 m).

The rest of the article is organized as follows. After a review of
related work in Section II, we define the problem in Section III.
We introduce overall system design and detail GBPL in Sec-
tion IV. We validate our system and algorithm with simulation
and physical experiments in Section V. Section VI concludes
this article.

II. RELATED WORK

Our GBPL is related to localization using different sensor
modalities, dead-reckoning, and map-based localization.

We can classify the localization methods into two categories
based on sensor modalities: exteroceptive sensors and pro-
prioceptive sensors. Exteroceptive sensors mainly rely on the
perception and recognition of landmarks in the environment
to estimate location. Mainstream exteroceptive sensors include
cameras [2]–[4] and laser range finders [5]–[7]. These methods
are often challenged by poor lighting conditions or weather con-
ditions. GPS receiver [8], [9] is another commonly used sensor
but it malfunctions when the vehicle travels close to high-rise
buildings or inside tunnels. On the other hand, proprioceptive
sensors, such as IMUs [10] and wheel encoders [11], are inher-
ently immune to external conditions. However, they are more
susceptible to error drift and suffer from limited accuracy. Recent
sensor fusion approaches that combine an exteroceptive sensor,
such as a camera or a laser ranger finder, with a proprioceptive
sensor such as an IMU, greatly improve system robustness and
become popular in applications [12]. However, the sensor fusion
approaches still strongly depend on exteroceptive sensor and
cannot handle the aforementioned challenging conditions.

To utilize proprioceptive sensors for navigation, dead reck-
oning integrates sensor measurements to compute robot/vehicle
trajectory. The sensor measurements often include readings from
accelerometers, gyroscopes, and/or wheel encoders [13]. There
are many applications using the dead reckoning approach such
as autonomous underwater vehicles (AUVs) [14] and pedes-
trian step measurement [15], [16]. To estimate the state of
the robot/vehicle, filtering-based schemes such as unscented
Kalman filter (UKF) [17] and particle filter (PF) [18], [19] are
frequently employed. However, the nature of dead reckoning
causes it to inevitably accumulate errors over time and lead to
significant drift. To reduce the error drift, different methods have
been proposed such as applying velocity constraint on wheeled
robots [20] and modeling the wheel slip for skid-steered mobile
robots [13]. These approaches have reduced error drift but
cannot remove it completely. Error still accumulates over time
and causes localization failure. To fix the issue, we will show
that drift can be bounded to map accuracy level by using map
matching if the filtering-based approach with graph matching
are combined.

Our method is a map-based localization [2], [21]–[24]. Ac-
cording to [25], map representation can be classified into two cat-
egories: the location-based and the feature-based. The location-
based maps are represented with specific locations of objects.
For example, those existing geographic maps consisted of coor-
dinate of locations such as OpenStreetMapsTM (OSM) [26] and
Google Maps [27]. Geographic maps have been widely used to
improve upon GPS measurements and there are common mea-
sures being used such as point-to-point, point-to-curve, curve-to-
curve matching, or advanced techniques [28]. The feature-based
map is consisted with features of interest with its location. An ex-
ample is ORB features [29] for visual simultaneous localization
and mapping. In this work, we extract HLG from geographic
maps which converts a location-based map to a feature-based
map to facilitate robust localization which also reduces graph
size to speed up computation in the process.

Closely related works include [21], [30], [31], which focus on
map-aided localization using proprioceptive sensors for mobile
robots. In [30], only vehicle speed and speed limit information
from map are used as a minimal sensor setup. However, known
initial position is required and the method achieves an accuracy
of around 100 m. In [21], the velocity from wheel encoder
and steering angles are used for odometry and a PF-based map
matching scheme helps estimate vehicle positions. It does not
consider velocity errors from the wheel encoder such as slippery
or inflation levels. In [31], odometer and gyroscope readings are
used for extended Kalman filter (EKF)-based dead reckoning
and a map is used to correct errors when driving a long distance
or turning at road intersections. The average positional error is
5.2 m, but it again requires an initial position from GPS. It is
worth noting that our localization solution does not require a
known initial position.

This article is a significant improvement over our early
work [1] where only heading sequence is used and localization
is only intermittent for turns. The new method enables contin-
uous localization by considering wheel encoder inputs and is
less limited by map degeneracy (e.g., rectilinear environments).
Also, we bound error drift in location alignment and verification
(LAV) after graph matching.

III. PROBLEM FORMULATION

A. Scenarios and Assumptions

In our setup, a robot or a vehicle (we interchangeably use
“robot” and “vehicle”) is navigating in a poor weather conditions
such as a severe thunderstorm or a whiteout snowstorm. No
other exteroceptive sensors work properly. However, it is still
necessary for the vehicle to find its location.

The vehicle/robot is equipped with an IMU, a digital compass
or a magnetometer, and an onboard diagnostics (OBD) scanner
which provides velocity feedback while navigating in an area
with a given prior road map, e.g., OpenStreetMaps (OSM) [26].
We have the following assumptions.

a.0 The vehicle is able to navigate in the environment and
make turns at appropriate locations. If needed, the vehicle
is willing to change its course by making additional turns
to assist our algorithm to find its location.
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Fig. 2. System diagram.

a.1 The prior road map contains straight segments in most
part of its streets and streets are not strict grids with equal
side lengths.

a.2 The robot is a nonholonomic system, i.e., it only per-
forms longitudinal motion without lateral or vertical
motions.

a.3 The IMU and the compass are colocated, precalibrated,
and fixed at the vehicle geometric center.

a.4 The IMU, compass, and velocity readings are synchro-
nized and time-stamped.

As part of the input of the problem, a prior road map consisting
of a set of roads with GPS waypoints is required. The typical
distance between adjacent waypoints is around 20 m.

B. Nomenclature

Common notations are defined as follows.
1) Mp := {xm = [xm, ym]T ∈ R2|m ∈ M } represents the

prior road map which is a set of GPS positions where M
is the position index set. Note that these GPS positions are
map points instead of live GPS inputs. We do not use GPS
receiver in our algorithm design.

2) a = {aj ∈ R3|j = 0, 1, . . . , Nj} and ω = {ωj ∈
R3|j = 0, 1, . . . , Nj} denote accelerometer readings and
gyroscope angular velocities from the IMU, respectively.

3) φ = {φjφ ∈ R|jφ = 0, . . . , �Nj

cφ
�} denotes compass

readings where cφ≥1 since a compass often has lower
sampling frequency than that of the IMU.

4) v = {vjv ∈ R|jv = 0, . . . , �Nj

cv
�} denotes wheel speed

readings from OBD where cv≥1 because it has a lower
sampling frequency than that of IMU. And vjv is the speed
at midpoint of car rear wheels.

5) Mh = {Vh, Eh} denotes the HLG where Vh is the vertex
set and Eh and is the edge set.

6) Q = {Θq, Dq} denotes the query heading-length se-
quence which consists of the segmented heading-length
sequence. Θq is the set of heading sequence and Dq is the
set of travel length sequence.

7) Ck represents the candidate vertex set where k = 1, . . . , n
is the length of the query sequence.

The GBPL problem is defined as follows.

Problem 1: Given Mp, a, ω, φ, and v, localize the robot
after its heading changes. As its localized, report robot location
continuously.

IV. GBPL MODELING AND DESIGN

Our system diagram is illustrated in Fig. 2 which consists of
four main building blocks: HLG construction, query sequence
generation (QSG) thread, global localization (GL) thread, and
location alignment and verification (LAV) thread. HLG con-
struction is shaded in light gray which converts the prior ge-
ographic map into an HLG which runs only once in advance.
For the rest shaded in dark gray, we refer to them as threads
because they can be implemented as a parallel multithreaded
application. The QSG thread runs EKF constantly at the back
end as the system receives sensory readings a, ω, φ and v
and outputs the estimated trajectory. GL thread searches for
the global location on a turn-by-turn basis. GL thread performs
Bayesian graph matching between the query sequence extracted
from the trajectory and the HLG. After the global location is
obtained, GL terminates and LAV aligns the latest segment with
the map and uses the result to rectify error drifting in the EKF in
QSG. If no satisfying alignment is found, LAV terminates and
the system restarts GL. In fact, GL thread and LAV thread work
alternatively depending on whether the robot is localized or not.
We begin with HLG construction.

A. HLG Construction

We preprocess map Mp to construct an HLG to facilitate
heading-length matching. There are three reasons for using HLG
instead of matching on Mp directly.

1) First, the vehicle trajectory may not exactly match with
Mp. Since Mp and most maps do not have lane-level
information, the discrepancy between the estimated tra-
jectory and Mp is non-negligible which makes the direct
trajectory-to-map matching unreliable. Fig. 3 shows an
example. For the same route, the trajectories may be
different due to driving on different lanes, driver habit,
traffic, etc.
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Fig. 3. Map and trajectory discrepancy illustration. Given the trajectory gen-
erated by proprioceptive sensors, directly matching trajectory with the map may
not be desirable. For the same route, trajectories 1 and 2 appear quite differently.
Neither of them matches blue waypoints in the map.

Fig. 4. HLG illustration in color. The left figure shows a satellite image with
road map consisted of GPS waypoints (blue dots) overlaying on top of the image
and intersections represented in small black circles. We estimate road curvature
changes to capture heading change and construct HLG. As an example, we color
a long and straight segment with light blue and a curve segment with light orange.
The right figure shows the corresponding HLG, and we only employ long road
segment vertices for localization.

2) Second, matching trajectory with Mp directly is compu-
tationally expensive because the searching space grows
with the total number of GPS waypoint positions in Mp.

3) Third, the inevitably accumulated trajectory drift dete-
riorates the matching quality and makes the matching
unreliable.

Therefore, we extract features from the map which are the long
straight segments and represent them as the HLG. This leads to
a graph matching approach that can mitigate the influence of the
aforementioned three issues. We start with HLG construction
based on our prior work [1] where we have estimated road
curvature changes to capture orientation change and construct
a heading graph (HG). Build on [1], we augment length infor-
mation in HG to construct HLG for heading-length matching.
Fig. 4 illustrates an example. For completeness, we provide
an overview here and more detail description of constructing
the graph can be found in [1]. The HLG Mh = {Vh, Eh} is
a directed graph. A vertex vi ∈ Vh represents a straight and
continuous road segment with neither orientation changes nor
intersections. An edge ei,i′ ∈ Eh captures the connectivity be-
tween nodes and characterizes the orientation change between
the two connected vertices vi and vi′ . Mh has two types of
edges: road intersections and curve segments; and two types of
vertices: long straight segment vertices and short transitional
segment vertices. The short transitional segment vertices are
often formed between curve segments or curved roads entering
intersections.

To build Mh, we split each road at road intersections and
further segment them into two types of segments to capture
orientation changes: straight segments and curved segments [1].
With all roads segmented, we compute orientation and length
for vertices corresponding to those long straight road segments.
Each vertex contains the following information:

vi = {Xi, θi, di, bi} (1)

where Xi = [xT
i,s, . . . ,x

T
i,e]

T contained all 2-D waypoint po-
sitions in GPS coordinates of the road segment with starting
position xi,s and ending position xi,e, orientation θi ∈ (−π, π]
is the angle between the geographic north and the orientation
of the road segment computed using Xi with a least squares
estimation method adopted from [1], di is road segment length
which is computed by

di = ||xi,s − xi,e|| (2)

and bi is the binary variable indicate if the vertex is a long
road segment. We only perform orientation estimation if di > tl
where tl is the threshold for road segment length. That is

bi =

{
1, di > tl

0, otherwise.
(3)

Only long road segments (bi = 1) will be used in localization
which defines vertex subset Vh,l ⊆ Vh corresponding to long
straight segments. Note that θi depends on the robot traveling
direction and hence Mh is a directed graph.

The errors of GPS waypoints in each entry of Xi affect the
accuracy of θi and di. To track map uncertainties caused by
GPS errors, we derive the distribution of θi and di using error
variance propagation analysis [32]. We model GPS errors by
using Gaussian distribution and assuming GPS measurement
noises to be independent and identically distributed. We denote
the GPS measurement variance by σ2

g . According to [2], typical
consumer grade navigation systems offer positional accuracy
around σg = 10 m. The distribution of θi that characterizes its
uncertainty is

θi ∼ N (μθi , σ
2
θi
) (4)

where σ2
θi

is derived in [1]. And the distribution of di is

di ∼ N (μdi
, σ2

di
) = N (μdi

, 2σ2
g). (5)

B. QSG Thread

To localize the vehicle on Mh, we estimate the trajectory
from sensory readings with an EKF-based approach. We then
generate a discrete query consisting of a heading-length se-
quence extracted from the EKF trajectory results. It is worth
noting that our method is not sensitive to the global drift of the
EKF estimated trajectory because we only use short segmented
trajectory to extract heading and length of its straight segments.

1) EKF-Based Trajectory Estimation: Note that readings
from the IMU, the digital compass, and the vehicle velocity:
a, ω, φ, and v, are the inputs to the EKF-based approach to
estimate vehicle trajectory [33]–[35]. To start the EKF, we need
a stabilized initial compass reading φ0 to determine the initial
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vehicle orientation which can be obtained by driving on a long
and straight segment of road (Assumption a.2). We define two
right-handed coordinate systems: IMU/compass device body
frame {B} (also overlapping with vehicle geometric center),
the fixed inertial frame {I} which shares its origin with {B} at
the initial pose. Frame {I}’s X-−Y plane is a horizontal plane
parallel to the ground plane with Y -axis pointing to magnetic
north direction and Z-axis is vertical and points upward. In the
state representation, let state vector Xs,j at time j be

Xs,j := [pI
j ,v

I
j ,Θ

I
j , sj ]

T (6)

which includes position pI = [x, y, z]T ∈ R3, velocity vI =
[ẋ, ẏ, ż]T ∈ R3, and the Euler angles ΘI := [α, β, γ]T in {I}
in X–Y –Z order, and scale/slip factor (SSF) s. We define s
here to address vehicle velocity error which can be caused by
tire radius error such as inflation level, road slippery, etc. The
superscripts indicate in which frame the vector is defined. The
transformation from {I} to {B} is the Z–Y –X ordered Euler
angle rotation. The state transition equations are described as
follows:

pI
j = pI

j−1 + τωv
I

vI
j = vI

j−1 + τω(
I
BR(a)−G)

Θj = Θj−1 + τω
I
BE(ω) + cγ

sj = sj−1

(7)

where τω is the IMU sampling interval, G = [0 0 − 9.8]T is
the gravitational vector, cγ = [0 0 φ0]

T is the initial orientation
determined by φ0, I

BR is the rotation matrix from {B} to {I},
and I

BE is the rotation rate matrix from {B} to {I}.
For EKF observation models, we use velocity constraint from

vehicle movement, sensory readings φ and v, and estimated
scale by matching trajectory with map which will be discussed
in Section IV-D3. First, according to Assumptions a.2 there is no
lateral or vertical movements in {B}, the velocities along Y axis
and Z axis in {B} are set to be zeros. The velocity constraint is
written as

(BI R)2:3v
I
j =

[
0 0

]T
(8)

where B
I R2:3 is the second and third rows of B

I R.
From the coordinate definition, the heading direction is γ

defined in {I} (last component ofΘI ), we take compass reading
φ as its observation. In our physical system, compass readings
have a lower sampling frequency than that of the IMU readings,
we use the latest available reading. Also, compass readings may
be polluted by other magnetic fields, we can recognize faulty
readings by cross-validating compass readings with IMU read-
ings. We discard the faulty compass readings if the difference
between the estimated heading state and the compass reading
exceeds an threshold. With the cross-validated compass reading,
we update heading direction γ by

γj =

{
φjφ , if j = cφjφ

φjφ−1, otherwise.
(9)

Fig. 5. (a) Trajectory estimation result: the red line is the GPS ground truth,
and black line illustrates the EKF estimated trajectory. (b) Query heading
representations. Blue line is estimated heading, black vertical lines are indices
where data segmented, red lines mark out stable heading segments and unmarked
segments are detected turns. (c) Corresponding travel heading and length seg-
ment representations. Different segments are marked in different colors.

We compensate SSF sj by estimating its value from aligned
map data after taking a turn. We will detail how to compute sssf
and its variance in Section IV-D3. For s, we have

sj = sssf (10)

where sssf is the ratio of the trajectory length from the map
versus that from the query. Lastly, we take wheel velocity v as
observations. Similar to φ that the sampling frequency is lower
than IMU readings, we have

||vI
j || =

{
sjvjv , if j = cvjv

sjvjv−1, otherwise.
(11)

Combining (9)–(10), we complete the observation model func-
tions. The rest is to follow the standard EKF setup. Fig. 5(a)
shows the estimated EKF trajectory compared with the corre-
sponding GPS ground truth trajectory. Note that the vehicle takes
some additional turns to assist localization (Assumption a.0) and
the trajectory is not the shortest.

2) Heading-Length Sequence Generation: With the esti-
mated trajectory, we generate query heading-length sequence
by capturing vehicle heading changes. We adopt the method for
heading sequence generation from [1] and augment correspond-
ing length sequence in this work. To improve the robustness,
we only keep headings when the vehicle is traveling on long and
straight road segments. This means the headings should be stable
and constant in a long stretch of travel time and corresponding
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travel distance is long. From the coordinate definition, the head-
ings is γ in {I} and is denoted by γ0:j . To obtain the query
sequence, we segment γ0:j to get stable headings and remove
false positive headings that do not correspond to long and straight
road segments. In Fig. 5(b), red horizontal segments are detected
stable headings. Hence we obtain the set of query heading
sequence which is denoted byΘq = {Θq,k|k = 1, . . . , n}where
k is query data index, n is the number of straight segments. Each
subsetΘq,k corresponding to continuous observations from EKF
represents a straight segment. At the same time, we generate
the corresponding travel length sequence which is denoted by
Dq = {dq,k|k = 1, . . . , n} where dq,k is the travel length of the
segmented route [e.g., colored segments in Fig. 5(c)].

The query heading-length sequence Q = {Θq, Dq} is con-
sists of the segmented heading-length sequence. The uncertainty
of query sequence Q is obtained from EKF variance estimation.
ForΘq , we define θq,k as the sample mean orientation of segment
Θq,k which contains nθq,k observations of random variable θq,k.
θq,k has its covariance matrix obtained from EKF. For Dq , the
variance of dq,k can also be derived from EKF and we denote it
by σ2

dq,k
. Those variables will be used later in the analysis part.

It is worth noting that each entry of the sequence is not
sensitive to the overall trajectory drift due to local trajectory
segment computation. When segmenting into short segments,
the drift in each segment is smaller if compare it to the overall
trajectory drift. The resulting sequence also can be understood
as local features for the trajectory. Also, reducing the query
to the discrete feature sequence helps in reducing computation
complexity.

C. GL Thread

1) GL Overview: With the query sequence obtained from on-
board sensors, we are ready to match it with sequences on the
HLG to search for the actual location. This is a graph matching
problem. In the GL thread, we localize the robot when the robot
changes its heading which is the moment the query sequence
grows its length. It is worth noting that GL is an intermittent
localization. The continuous localization will be address later in
the article.

Given the query heading-length sequence, we search for the
best match of heading-length sequence in the HLG Mh. For
any long straight candidate vertex in Vh,l, we match the query
heading-length sequence with sequences of the vertices starting
at the candidate vertex. We discard candidate vertices with poor
matching. In each candidate sequence to query sequence match-
ing, We model sensory and map uncertainties and formulate the
matching process as a sequential hypothesis test problem. The
result of GL depends on if a satisfying matching sequence can
be found.

2) Graph Matching: The center part of GL is the matching
of query sequence and candidate sequence on the graph. To
achieve this, we expand the heading sequence matching in [1]
to find the best heading-length matching in Mh. Given query
sequence Q = {Θq, Dq} = {(θq,k, dq,k)|k = 1, . . . , n}, let us
denote a candidate heading-length vertex sequence in Mh by
M := {Θ, D} = {(θk, dk)|k = 1, . . . , n} correspondingly. As

a convention in this article, for random vector �, μ� represents
its mean vector. Following the convention, mean matrix of Q is
defined as μQ = [μT

Θq
, μT

Dq
]T where μΘq

= [μθq,1 , . . . , μθq,n ]
T

and μDq
= [μdq,1

, . . . , μdq,n
]T. The mean matrix of M is de-

noted by μM = [μT
Θ, μ

T
D]T where μΘ = [μθ1 , . . . , μθn ]

T and
μD = [μd1

, . . . , μdn
]T.

Due to independent measurement noises, the conditional
matching probability between query sequence Q := {Θq, Dq}
and a candidate sequence M := {Θ, D} on HLG Mh is

P (μQ = μM |Q,M)

= P (μΘq
= μΘ|Θq,Θ)P (μDq

= μD|Dq, D). (12)

From [1], the conditional heading matching probability between
Θq and Θh is

P (μΘq
= μΘ|Θq,Θ) ∝

n∏
k=1

fT (t(θq,k, θk)) (13)

due to independent sensor noises and fT (t(θq,k, θk)) is the prob-
ability density function (PDF) of Student’s t-distribution. For
length matching, the conditional matching probability between
Dq and D is

P (μDq
= μD|Dq, D) ∝

n∏
k=1

f(z(dq,k, dk)) (14)

where f(·) is the PDF of standard normal distribution, and
z(dq,k, dk) =

dq,k−dk√
σ2
dk

+σ2
dq,k

. Combining (13) and (14) and re-

calling that n is the number of straight segments in the query
sequence, we rewrite (12) as follows:

P (μQ = μM |Q,M) ∝
n∏

k=1

fT (t(θq,k, θk))f(z(dq,k − dk)).

(15)

3) Candidate Vertex Selection: To select on candidate ver-
tices during matching, we perform statistical hypothesis testing
to remove unlikely matchings. According to (12), sequence
matching is considered as multiple pair matching. For each pair
({θk, dk}, {θq,k, dq,k}), it is a hypothesis testing

H0 : [μθq,k , μdq,k
]T = [μθk , μdk

]T

H1 : otherwise. (16)

Hypothesis H0 can be seen as two null hypotheses: H0,θ :
μθq,k = μθk andH0,d : μdq,k

= μdk
. We perform two individual

tests separately with significance level 1− α where α is a small
probability. Both H0,θ and H0,d are two-tailed distributions. We
choose tα/2,ν as the t-statistic with a cumulative probability of
(1− α

2 )where ν is the degrees of freedom (DoF) and zα/2 as the
z-statistic with a cumulative probability of (1− α

2 ). We reject
H0 if

(|t(θk, θq,k)| > tα/2,ν) ∨ (|z(dk, dq,k)| > zα/2). (17)

By sequentially applying the hypothesis testing on each corre-
sponding pair ({θk, dk}, {θq,k, dq,k}) from query sequence Q
and candidate sequence M on HLG Mh, we determine whether
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Fig. 6. Example of GL. (a) Candidate locations using heading matching (green
dots), length matching (black circle). We show that performing heading-length
matching (locations with green dot and black circle) helps reducing candidates.
(b) Candidate localization is reduced to the single solution if the joint distribution
between heading and length is used.

M represents the actual trajectory. Fig. 6 has shown that using
the joint distribution of heading and length significantly reduce
the number of solutions in the matching process.

In the matching process, we might get many candidate so-
lutions because the hypothesis test is conservative in rejection.
To address the problem and check if we converge to a unique
solution, we classify the computed probabilities of (12) into two
groups using the Ostu method [36]. The number of solutions is
the group size. If the group with higher probability has only one
candidate then the vehicle is localized. Otherwise, it means that
the group with higher probability contains several trajectories
with higher probabilities. It indicates that more observations are
needed to localize the vehicle.

4) GL Algorithm: We summarize the heading-length match-
ing method in Algorithm 1. In a nutshell, as we sequentially
match the vertex down the query sequence, we compare it
with the out-neighbor of remaining vertices on the graph using
breadth-first search.

Note that vertex vi may have adjacent vertices with same
orientation. For example, consider the vehicle reaches a long
straight road (with road intersections). This long straight road
corresponds a set of vertices with same orientation. We denote
the set of straight path start from vi by Vs.

To reuse the computed information as the query sequence
grows, we define the candidate vertex information set Ck where
k = 1, · · · , n is the length of the query sequence. The candidate
vertex set is denoted by Ck = {{vi,VM,i, pi}|i = 1, . . . , nCk},
where each element in Ck record the candidate vertex vi (the
starting vertex of the trajectory/path), VM,i is the set of vertex
path, and the matching probability pi in (12) and nCk is the
cardinality of Ck. To initialize, we set C0 := {{vi, ∅, 1

|Vh,l| }|i =
1, . . . , |Vh,l|} because each vertex in Vh,l is equally likely to
be the path starting vertex. The computational complexity of
calculating each term in (12) is O(1) using the alias sampling
method [37]. The upper bound of candidate vertex cardinality
is |Vh,l| and thus, it takes O(|Vh,l|) to compute probability
of all candidate vertices. The size of straight path set takes
O(|Vs|) which is related to variation of map road headings in
Section IV-C6. With little variation in headings (e.g., Manhattan
streets), |Vs| is larger. On the contrary, |Vs| is small compared
to |Vh,l| with large variation in road headings. In this case,
O(|Vs|) = O(1). The classification of probabilities into two
groups is O(|Vh,l|) using Hoare’s selection algorithm.

We summarize the computational complexity of Algorithm 1
in Lemma 1.

Lemma 1: The computation complexity of the heading-length
matching is O(n|Vs||Vh,l|).

5) Localization Analysis: The remaining problem is whether
this sequence of hypothesis testing would converge to the true
trajectory as the length of the sequence grows. To analyze this, let
us define three binary events: Ak = 1 if μdq,k

= μdk
, Bk = 1 if

μθq,k = μθk , andCk = 1 if vertex k inMh is the actual location.
The joint event C1 · · ·Cn = 1 is to say M := {Θ, D} represent
the true trajectory, whereas we know A1 · · ·AnB1 · · ·Bn from
sequence matching. In the analysis, we denotenv = |Vh,l| as the
cardinality of Vh,l and nb as the expected number of neighbors
for each vertex. We describe map/trajectory property in a rudi-
mentary way by assuming kd levels of distinguishable discrete
headings in [0, 2π) and kl levels of distinguishable discrete road
lengths. Each vertex takes a heading value and length value with
equal probabilities of 1/kd and 1/kl correspondingly. Generally
speaking, we know nv � kd ≥ nb and nv � kl ≥ nb for most
maps. We have the following lemma.

Lemma 2: The conditional probability that M = {Θ, D} is
the true matching sequence given that Q = {Θq, Dq} matches
M is

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn)

=
(1− α)2kdkl

nv

[
(1− α)2

kdkl
nb

]n−1

. (18)

Proof: Applying the Bayesian equation, we have

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn)

=
P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn)P (C1 · · ·Cn)

P (A1 · · ·AnB1 · · ·Bn)
.

(19)
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Indeed P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn) is the conditional
probability that a correct matched sequence survives n hypoth-
esis tests in (16). Due to independent measurement noises, we
have P (A1B1|C1) = (1− α)2. Besides, these tests are inde-
pendent due to independent sensor noises, we have

P (A1 · · ·AnB1 · · ·Bn|C1 · · ·Cn) = (1− α)2n. (20)

Joint probability P (C1 · · ·Cn) is actually the unconditional
probability of being correct locations. We know P (C1) = 1/nv

given there are nv possible solutions, and P (C2|C1) = 1/nb

because there are nb neighbors of C1. By induction

P (C1 · · ·Cn) =
1

nn−1
b

1

nv
. (21)

Lastly, each vertex takes a heading value and length value with
equal and independent probabilities of 1/kd and 1/kl. We have
P (AkBk) =

1
kdkl

and

P (A1 · · ·AnB1 · · ·Bn) =
1

(kdkl)n
. (22)

Plugging (20)–(22) into (19), we obtain the lemma. �
Corollary 1: We have shown in [1] that the conditional prob-

ability that Θ is the true matching given Θq is

P (C1 · · ·Cn|B1 · · ·Bn) =
(1− α)kd

nv

[
(1− α)

kd
nb

]n−1

.

(23)
Compare (18) with (23), we have

P (C1 · · ·Cn|A1 · · ·AnB1 · · ·Bn)

P (C1 · · ·Cn|B1 · · ·Bn)
= [(1− α)kl]

n. (24)

Since kl >
1

1−α is generally true, localization using both head-
ing and length information Q = {Θq, Dq} is faster than using
heading Θq only.

Under Assumption a.1, Lemma 2 shows the probabilis-
tic convergence of right matching. Also, it reveals when
the localization scheme works and localization efficiency. If
P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn) increases as n in-
creases, the proposed method would find the correct lo-
cation eventually. The localization speed is determined by
(1− α)2 kdkl

nb
which is determined by sensor accuracy, the

map property, and the trajectory [1]. Since nb (the expected
number of neighbors) remains constant as most intersections
are 4-way intersections, kd and kl (spreading in heading
and length) are the main factors determining the increas-
ing rate of P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn). If a
map contains many different road headings and lengths, then
P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn) increases swiftly
as n increases. On the contrary, if the map only con-
tains purely rectilinear grids then kd = nb and kl = 1. This
is the worst case scenario which leads to a decreasing
P (C1C2 · · ·Cn|A1A2 · · ·AnB1B2 · · ·Bn) and the algorithm
fails. Fortunately, most maps do not have the issue [38]. If a
rectilinear map has different side lengths in each distribute, the
algorithm still works (Assumption a.1). To better understand
how it stands in real world, we analyze map proprieties in the
following section.

6) Map Entropy Analysis: To provide a measure of variation
and spreading in heading and road length, we introduce the
Shannon information entropy to measure road heading and
length distributions [39]. To minimize the effect of bin size on
calculated entropy, we set orientation bin widths to be 5°, and 20
m for road length. Let us denote orientation range set by{Oj|j =
1, 2, . . . , nj} and length range set by {Li|i = 1, 2, . . . , ni}. We
define nji = njni and ρji be the relative frequency that θi ∈ Oj

and di ∈ Li. The joint Shannon entropy in heading and road
length is

Hθ,d(Vh,l) = −
∑
j

∑
i

ρji lognji
ρji. (25)

By analyzing the entropy of different maps, we predict local-
ization efficiency of our algorithm, which will be shown in
Section V.

D. LAV Thread

If the GL thread finds a unique position, we can start LAV
thread to continuously report vehicle location. The key is to fix
the EKF drift issue using the prior map information. This is
achieved by monitoring if the vehicle makes a turn. Once a turn
is identified, the straight segment prior to the turn (SSPT) can be
extracted. Comparing the SSPT from EKF estimation (SSPTE)
to the corresponding SSPT on the map Mp (SSPTM), we can
reset EKF parameters which rectifies the drifting issue.

Let us define the set of points in SSPTE by

Xq = {pι ∈ R2|ι = 1, . . . , nq} (26)

with each element obtained from EKFpI
1:2 = [x, y]T wherepI

1:2

is the first and second element of pI . The distribution of pι is
pι ∼ N (μpι

,Σpι
), where μpι

is the mean vector and Σpι
is the

covariance matrix obtained from the EKF. The corresponding
GPS SSPTM points are defined by

Xh = {xl|l = 1, . . . , nh} (27)

and the covariance of GPS points is denoted by Σg =
diag(σ2

g , σ
2
g) as mentioned in Section IV-A. We obtain Xh by

using the localized position from GL thread and performing
graph matching with the out-neighbor of vertices. Thus we have
xl ∼ N (μxl

,Σg).
1) Virtual Starting-Point and End-Point Estimation: How-

ever, SSPTE points do not necessary follow SSPTM as shown
in Fig. 7(a). This is because we do not know which lane the
vehicle is driving in and the map may not provide lane-level
waypoint accuracy. Fig. 7(a) also shows the effect of vehicle
turn radius which makes the length of SSPTE shorter than that of
the corresponding SSPTM. To address the problem, we estimate
virtual starting and end points for an SSPTE.

We find the virtual starting and end points by computing
line intersection of two consecutive SSPTE segments. With
the current segment positions Xq , we denote the set of points
from previous and next SSPTE segments by Xq− and Xq+ ,
respectively. Applying line fitting to Xq , Xq− , and Xq+ , we
obtain three 2D lines Lq, Lq− , and Lq+ , respectively. We pa-
rameterize each line by two reference points. Thus we denote
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Fig. 7. Illustration of LAV. The solid small dots represent vehicle trajectory
where red points are turn points and black points belong to SSPTE. The roads
are shaded gray regions characterizing their width, and GPS waypoints in Mp

are represented in larger blue dots. (a) Virtual starting and end points (i.e., red
circles) of an SSPTE. (b) Left: Misalignment betweenXq andXh. It is clear that
SSPTM only has three points. Exact point-to-point matching is not appropriate.
We fit a line Lh using SSPTM which is used as reference line for finding the
best transformation between SSPTE and SSPTM points.

Lq = [aTq ,b
T
q ]

T, Lq− = [aTq− ,b
T
q− ]

T, and Lq+ = [aTq+ ,b
T
q+]

T.
Also, the line direction vectors arevq = bq − aq,vq+ = bq+ −
aq+ , andvq− = bq− − aq− . Finding the intersection betweenLq

and Lq− allows us to obtain the virtual starting point. We denote
the virtual starting point of Xq by ps

ps = aq −
v⊥
q− .(aq − a−q )

v⊥
q− .vq

vq (28)

where · is dot product and v⊥
q− is the perp operator of vq− .

Similarly, the intersection between Lq and Lq+ gives us the
virtual end point pe. We have

pe = aq −
v⊥
q+ .(aq − a+q )

v⊥
q+

.vq
vq (29)

where v⊥
q+ is the perp operator of vq+ . When SSPTE is con-

nected with an curve segment (e.g., caused by vehicle turn),
we add ps and pe to Xq to help alignment process. ps and pe

become the first and the last points in Xq , respectively.
2) Location Alignment and Verification: With augmented

Xq , we can match Xq to Xh to rectify drifting issue by finding
the transformationT between them (see Fig. 8). HereT is 3-DoF
rigid body transformation represented by a 2x2 rotation matrix
R, and a 2x1 translation vector t

T(x) := Rx+ t (30)

where x is a 2-D point. Xq usually contains significantly more
entries than that of Xh due to its higher sampling frequency
(nq � nh). Directly matching two point sets is not the best so-
lution. Instead, we fit a line through points inXh and minimizing
the distance of all points in Xq to this line [see Fig. 7(b)].

Let us denote Lh = [aTh,b
T
h]

T where ah and bh are two
reference points on the line. For every point pj in Xq , the
point after transformation is denoted byT(pι). The point-to-line
distance between T(pι) and Lh is defined as

d⊥(T(pι),Lh) =
||(ah −T(pι)× (ah − bh)||

||ah − bh|| (31)

Fig. 8. Example of LAV that keeps drifting under control where n is the
number of long straight segments for the vehicle. The unaligned trajectory is
shown in black, the aligned trajectory is shown in red, and GPS waypoints are
shown in dark blue square. (a) n = 4. (b) n = 5. (c) n = 6.

where ‘×’ is the cross product and || · || is the L2 norm. We
define the cost function CT by

CT =

⎡
⎢⎢⎢⎢⎢⎢⎣

d⊥(T(ps),Lh)

d⊥(T(p1),Lh)
...

d⊥(T(pnq
),Lh)

d⊥(T(pe),Lh)

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)

and formulate the following optimization problem:

arg min
T

CT
TΣ

−1
C CT + λ||T(ps)− x1||+ λ||T(pe)− xnh

||
(33)

where ΣC = diag(σ2
d⊥,ps

, . . . , σ2
d⊥,pe

), β is a nonnegative
weight, and x1 and xnh

are the first and the last entries in (27),
respectively.σ2

d⊥,pι
is obtained using error propagation. In detail,

let d⊥(T(pι),Lh) = fd(pι,Lh) and ξ = [pT
s ,L

T
h]

T, we have
σ2
d⊥,pι

= JdΣdJ
T
d , where Jd = ∂fd

∂ξ and Σd = diag(Σpι
,ΣLh

)
because pι is independent of Lh which comes from Xh. Define
Lh = fL(Xh), we have ΣLh

= JLΣXh
JT
L where JL = ∂fL

∂Xh

and ΣXh
= diag(Σg, · · · ,Σg). The second and third terms are

soft constraints due to potential alignment errors. To solve (33),
we start with a small positive weight for λ and apply a nonlin-
ear optimization solver, e.g., Levenberg–Marquardt algorithm.
Initially, we set R = I2×2, and t from the result of the global
location obtained from Section IV-C. For each turn, we use
previous solution as the initial solution and increase λ gradually
until the change in solution is negligible.

Now we have optimized T and we denote the aligned lo-
cations by X̂q = T(Xq). We need to verify if the matching
result is reliable by performing hypothesis testing. We have two
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hypotheses

H0 : Xh and X̂q are from the same distribution

H1 : otherwise. (34)

We set the significance level by α and reject H0 if the statistic is
less than α. Note H0 is examined by the Mahalanobis distance
CT

TΣ
−1
C CT which follows a χ2 distribution with 2(nq + 2)

DoFs. Thus, we reject H0 if CT
TΣ

−1
C CT > χ2

2(nq+2)(α). Cor-
respondingly, we set localization status indicator variable IG

values by IG =

{
0, H0 is rejected,

1, otherwise.
If IG = 1, we accept T

and use the aligned trajectory X̂q := T(Xq) which is used to
reset the EKF states (see Fig. 2). After LAV execution, we keep
acquiring the vehicle locations EKF pI

1:2 until next turn. When
turn is detected and IG = 1, we execute LAV thread repeatedly.
If IG = 0, it means that we cannot find the position and we
lose the global position. Thus we terminate the LAV thread and
start the GL thread again. The possible reasons for losing global
location could be the vehicle drives off the prior map or keep
straight without turns which cause drifting too much.

3) SSF Estimation: To further reduce drift in the dead-
reckoning process, we consider SSF in the EKF-based trajectory
estimation. There are two sources of biases: systematic and
nonsystematic biases from wheel encoder inputs [40]. The sys-
tematic error can be caused by tire radius error such as inflation
level, tire wear, gear ratio, etc. Nonsystematic error comes from
wheel slippage on road. To compensate for those errors, we
introduce scale and slip factor sssf in (10).

To compute sssf , we need the travel length for each vertex
on HLG for both query data and map data. We obtain the travel
length dq on the query data using the virtual starting/end points
pe and ps in (28) and (29). That is dq = ||pe − ps||. According
to (27), the corresponding travel length on the map is denoted
by d := ||xnh

− x1||. Assuming GL thread ends at the n th turn,
for k = (n+ 1), . . . , n′ we estimate sssf by computing the ratio
of accumulated length dq,k and dk

sssf =
n′∑

k=n+1

dk

/ n′∑
k=n+1

dq,k. (35)

We then model the variance of sssf to be used in the EKF
measurement variance in Section IV-B1. It is not accurate to
set a constant variance value for sssf , since at the beginning
traveling length is short and thus se has larger variance. As the
traveling length increases, the variance of sssf ought to decrease.
Denote the variance of sssf by σ2

sssf
, we derive the following

Lemma.
Lemma 3: The variance of scale and slip factor sssf is

σ2
sssf

=
1

L2
q

(2nsσ
2
g +

L2
g

L2
q

n′∑
k=n+1

σ2
dq,k

). (36)

Proof: First, we write sssf as function of measurements
from dk and dq,k according to (35). That is, sssf =
fs(dn+1, . . . , dn′ , dq,n+1, . . . , dq,n′). We know the variance of
dk is σ2

dk
= 2σ2

g from (5) and the variance of dq,k is σ2
dq,k

which

is defined in Section IV-B2. Let us define Lq =
∑n′

k=n+1 dq,k,

Lg =
∑n′

k=n+1 dk, and ns = n′ − n. Through forward error
propagation

σ2
sssf

= JsΣsJ
T
s (37)

where Σs = diag(2σ2
g , . . . , 2σ

2
g , σ

2
dq,n+1

· · ·σ2
dq,n′ ) and Js is

Js =

[
∂fs

∂dn+1
, . . . ,

∂fs
∂dn′

,
∂fs

∂dq,n+1
, . . . ,

∂fs
∂dq,n′

]

=

[
1

Lq
· · · , 1

Lq
,
−Lg

L2
q

, . . . ,
−Lg

L2
q

]
. (38)

Plug (38) into (37), we have

σ2
sssf

= JsΣsJ
T
s = 2ns

σ2
g

L2
q

+

n′∑
k=n+1

σ2
dq,k

L2
g

L4
q

=
1

L2
q

(
2nsσ

2
g +

L2
g

L2
q

n′∑
k=n+1

σ2
dq,k

)
. (39)

�
Remark 1: Let us take a close look at (39). We have Lq ≈

Lg because the estimated travel length should be similar to the
corresponding path in map. Therefore, we can approximateσ2

sssf
as

σ2
sssf

= JsΣsJ
T
s =

1

L2
q

(2nsσ
2
g +

n′∑
k=n+1

σ2
dq,k

).

Thus we show that σ2
sssf

decrease as Lq =
∑n′

k=n+1 dq,k in-
creases. As time goes, we have longer travel length and the esti-
mation of sssf becomes more accurate. Using the accumulated
travel length to adjust SSF is suitable to compensate systematic
biases. If the traveling length is long and systematic biases are
compensated, setting a sliding window for accumulated distance
can be used to detect nonsystematic biases that varies through
traveling.

The resulting sssf and σ2
sssf

are fed into the EKF in Sec-
tion IV-B1. This completes our overall method.

V. EXPERIMENTS

We have implemented the proposed GBPL method using
MATLAB and validated the algorithm in both simulation and
physical experiments. We first validate the proposed GL ap-
proach. Second, we test the LAV performance.

For physical experiments, we evaluate our approach on three
maps with seven outdoor datasets, as described below. We obtain
the following corresponding three maps from OSM:

1) CSMap: College Station, Texas, U.S.;
2) KITTI00Map: Karlsruhe, Germany;
3) KITTI05Map: Karlsruhe, Germany.
Map information including map size, total length of drivable

roads, HLG entropy, and #nodes in HLG is shown in the first
four columns of Table I .

The seven query sequences are three self-collected CSData
sequences and four KITTI sequences.
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TABLE I
MAP INFO. AND #STRAIGHT SEGMENTS n FOR LOCALIZATION

Bold entities to emphasize the superiority in performance of the proposed method com-
paring with the state-of-the-art.

1) CSData: We record IMU readings at 400 Hz and compass
readings at 50 Hz using a Google Pixel phone mounted on
a passenger car. Also, we read the vehicle speed at 46.6 Hz
sampling frequency in average using a Panda OBD-II
Dongle which provides the velocity feedback from vehicle
wheel encoder. We have collected three sequences: CS-1,
CS-2, and CS-3.

2) KITTI: We use the KITTI GPS/IMU dataset [41] which
contains synchronized IMU readings from its inertial nav-
igation system (INS) as inputs. We only use the GPS read-
ings to synthesize compass readings to test our algorithm
since the datasets do not provide compass readings. We
have four sequences: KITTI00-1, KITTI00-2, KITTI05-1,
and KITTI05-2.

A. GL Test

1) Evaluation Metrics and Methods Tested: It is worth noting
that the speed of methods are characterized by n, number of
straight segments in the query. Since computation speed is not a
concern, we are more interested in how many inputs it takes to
localize the vehicle. Therefore, n is a good metric for this. For a
given n, the algorithms may provide multiple solutions if there
is many similar routes in the map. If the number of solutions
is one, then the vehicle is uniquely localized. The number of
solutions is also an important measure for algorithm efficiency.
The following two algorithms are compared in our experiments.

1) GBPL: Current method that uses both heading and length
information of straight segments.

2) PLAM: The counterpart method using heading only [1].
2) Map Entropy Evaluation: Map entropy describes how

much the heading and distance distribution spread out in a given
map. Higher entropy means distributions are more spread out
and hence it is easier for the vehicle to localize itself, as proved
in Lemma 2. Therefore, we want to find out what are map entropy
range of real cities and use the range to test our GBPL. As shown
in Fig. 9(a), we calculate map entropy distributions of 100 cites
based on the data from [38]. For comparison, the normalized
sum of heading entropy and length entropy are in orange bars,
and the heading entropy are in blue bars. For each city, the
sum of heading entropy and length entropy is the upper bound
of the joint entropy. We generate histogram plots for entropy
distribution in Fig. 9(b) and (c). As shown in Fig. 9(c), 95 cities
have entropy values higher than 0.70 and the lowest entropy is
around 0.6. This determines that entropy range of maps that we
will use to test our algorithm is from 0.60 to 0.99.

To better understand the relationship among HLG entropy,
n, and the number of solutions, we simulate 40 maps with
joint entropy of heading and length ranging from 0.60 to 0.99.

Fig. 9. (a) Entropy of 100 cities. (b) Heading entropy distribution of 100
cities. (c) Heading and length entropy distribution of 100 cites. (d) #solutions
with respect to map entropy values (heading only) and n. (e) #solutions with
respect to map entropy values (heading+length) and n. (f) n versus #solutions
with fixed map entropy = 0.86. (g) Map entropy values versus #solutions with
n = 3.

Building on the simulation in [1], we expand it from HG to
HLG in this work. For completeness, we repeat information
about experimental settings here. The simulated maps are with
a fixed graph structure, and we increase the entropy level in
both heading and length by perturbing selected road intersection
positions. For each map, we generate 20 query sequence samples
with n = 1, . . . , 20 and the uncertainties of orientation and
length are considered by setting σθq,k = 5◦, σdq,k

=
√
2σg , and

σg = 5 m. We compute the number of solutions by averaging
the results of 20 sequences for each map. The simulation result
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is shown in Fig. 9(e) and we adapt Fig. 9(d) from [1] for
comparison.

For PLAM which uses heading only [see Fig. 9(d)], the
vehicle can be localized withn ≤ 10 if the entropy in orientation
is above 0.9 [1]. Under GBPL, the vehicle can be localized with
n ≤ 7 even if the heading/length entropy is 0.6. It is worth noting
that lower entropy means less spreading of heading and segment
length and road network is closer to be a rectilinear grid and
hence it is more challenging to localize a vehicle in such settings.
GBPL appears to be more robust to low map entropy than PLAM.

Fig. 9(d) and (e) shows the number of solutions with regard to
n values and different HLG entropy values. We fix the entropy
as 0.87 and n = 3 in Fig. 9(f) and (g), respectively, to observe
how quickly the number of solutions decreases in each setting.
It shows the #solutions decreases more rapidly in GBPL than
that of PLAM using heading only. This result is consistent with
Corollary 1.

3) Physical Experiments: We also compare the two afore-
mentioned methods in physical experiments. Again, the speed
is described in n needed to reach a unique solution. Smaller
n is more desirable. We test three sequences from CSData on
CSMap, two sequences on KITTI00Map and two sequences on
KITTI05Map. The comparison results are shown in the last two
columns of Table I. In all tests, GBPL takes n = 3.1 in average
with a standard deviation of 0.69 to localize the vehicle while
PLAM takes n = 6.3 on average with a standard deviation of
2.29 in comparison. As expected, GBPL has a faster localization
speed than that of PLAM. As shown in Table I, the entropy values
(heading+length) of CSMap, KITTI00Map and KITTI05Map
are 0.724, 0.877, and 0.797, respectively. By checking the results
in Fig. 9(e), n required for reaching a unique solution in the real
map agrees with simulation results.

B. Localization Alignment and Verification Test

GL only provides an initial position and the accuracy of
continuous localization is determined by the LAV thread. We
show localization accuracy result for all seven test sequences.
PLAM does not have the capability of continuous localization
and hence is not tested here. We only compare GBPL result with
the ground truth.

1) Ground Truth and Evaluation Metric: The ground truth
in our experiments is the actual GPS trajectory. The localization
error is defined as the Euclidean distance between the estimated
aligned trajectory and the ground truth. The localization errors
are measured in meters.

2) Accuracy Results: Figs. 10 and 11 show the accuracy
results by plotting the localization errors of each sequence. Red
vertical lines are where LAV is excuted, i.e., when turns are
detected. The first red vertical line corresponds to where we
obtain global location. In all test sequences, the error in vehicle
position is reduced to less than 5˜m when LAV runs at the
moments indicated by the red lines. After that error slowly grows
until reaching the next LAV moment. This matches the expected
map uncertainty (around 10˜m). The localization accuracy of
CSData on CSMap appears to be less than that of KITTI data.
This is mostly due to the fact that the ground truth of CSData

Fig. 10. LAV accuracy results using KITTI sequences on KITTI00Map
and KITTI05Map. (a) KITTI00-1, (b) KITTI00-2, (c) KITTI05-1, and
(d) KITTI05-2.

Fig. 11. LAV accuracy results using CSData on CSMap. (a) CS-1, (b) CS-2,
and (c) CS-3.

is not as accurate as that of the KITTI dataset. CSData uses the
GPS receiver on the cell phone with an accuracy of about 10
m or worse while the GPS receiver for KITTI data set is high
quality GPS (model RT3000v3) with an accuracy of 1 cm.

3) Scale and Slip Factor: Fig. 12 shows the estimated SSF
in EKF [i.e., sj in (10)]. These results show the effectiveness
of LAV in detecting systematic bias in wheel odometry. For
CSData, SSF values are between 1.09 to 1.15 while the SSF
values from KITTI data are close to 1.00. It is clear that the
vehicle velocity from the Panda OBD II dongle contains bias.
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Fig. 12. Scale and slip factor value over time in EKF (10). (a) KITTI data and
(b) CSData. Note the sequences are color coded and are not of the same length
in time.

Fig. 13. Scale and slip factor variance over time in EKF. (a) KITTI data and
(b) CSData. Note the sequences are color coded and are not of the same length
in time.

It tends to underestimated vehicle velocity by about 10%. This
may be due to incorrect parameters in gear ratio or wheel/tire
size. Also, the fluctuation in SSF in CSData is also large. This
may also be a result of less accurate GPS values or variable
tire inflation status since data are collected at different times
over several months. Nonrigid mounting of the cellphone also
contributes to the issue. Nevertheless, our GBPL algorithm is
robust to these factors and still provides a good localization
result. We also showed the variance of sj in Fig. 13. These
results show σ2

sssf
decreasing as travel length increases as in

Lemma (3).

VI. CONCLUSION

In this article, we reported our GBPL method that did not rely
on the perception and recognition of external landmarks to local-
ize robots/vehicles in urban environments. The proposed method
was designed to be a fallback solution when everything else
failed due to poor lighting conditions or bad weather conditions.
The method estimated a rudimentry vehicle trajectory computed
from an IMU, a compass, and a wheel encoder and matched
it with a prior road map. To address the drifting issue in the
dead-reckoning process and the fact that the vehicle trajectory
may not overlap with road waypoints on the map, we developed a
feature-based Bayesian graph matching where features are long
and straight road segments. GBPL preprocessed maps into an
HLG which stored all long and straight segments of road as
nodes to facilitate GL process. Once the map matching was
successful, our algorithm tracked vehicle movement and used the

map information to regulate EKF’s drifting issue. The algorithm
was tested in both simulation and physical experiments and
results are satisfying.

In the future, we will actively guide the vehicle to make
turns to speed up the localization process. More experiments are
planed which we will work on situations of losing location and
relocalization. We are interested in extending the work to design
a multiple vehicle/robot collaborative localization scheme under
ad hoc vehicle-to-vehicle communication framework. We will
report new results in the future publications.
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