
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021 7365

Toward Robotic Weed Control: Detection of
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Abstract—To enable robotic weed control, we develop algorithms
to detect nutsedge weed from bermudagrass turf. Due to the sim-
ilarity between the weed and the background turf, manual data
labeling is expensive and error-prone. Consequently, directly ap-
plying deep learning methods for object detection cannot generate
satisfactory results. Building on an instance detection approach (i.e.
Mask R-CNN), we combine synthetic data with raw data to train
the network. We propose an algorithm to generate high fidelity
synthetic data, adopting different levels of annotations to reduce
labeling cost. Moreover, we construct a nutsedge skeleton-based
probabilistic map (NSPM) as the neural network input to reduce
the reliance on pixel-wise precise labeling. We also modify loss
function from cross entropy to Kullback-Leibler divergence which
accommodates uncertainty in the labeling process. We implement
the proposed algorithm and compare it with both Faster R-CNN
and Mask R-CNN. The results show that our design can effec-
tively overcome the impact of imprecise and insufficient train-
ing sample issues and significantly outperform the Faster R-CNN
counterpart with a false negative rate of only 0.4%. In particular,
our approach also reduces labeling time by 95% while achieving
better performance if comparing with the original Mask R-CNN
approach.

Index Terms—Weed detection, deep Learning, robotic weed
control, precision agriculture.

I. INTRODUCTION

W E are interested in developing robotic weed removal
solutions for environmentally-friendly lawn care. One

key issue is to be able to recognize weeds from background
turfgrass using a low-cost camera on-board a robot. In this
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paper, we start with a particular instance: detection of nutsedge
weed (Cyperus spp.; mix of yellow and purple nutsedges) in
bermudagrass (Cynodon dactylon) turf.

However, weed detection is nontrivial. To an untrained eye,
distinguishing a nutsedge plant from a turfgrass background is
difficult especially in a recently mown lawn. Hence the manual
data labeling process is expensive and error-prone. The resulting
imprecise and insufficient training data is expected to signif-
icantly reduce the performance of common data-driven deep
learning approaches.

Fig. 1 illustrates how we handle the challenge. First, we
propose a data augmentation approach to allow us to combine
synthetic data with raw data for neural network training. This
significantly reduces the labeling requirement. We propose a
data synthesis algorithm to generate high fidelity synthetic data,
which also provides accurate labeling. Second, instead of re-
lying on precise pixel-wise labeling, we employ annotations at
different levels including bounding box and skeleton model to
reduce labeling rigor requirement. Additionally, we propose a
nutsedge skeleton-based probabilistic map (NSPM) representa-
tion. NSPM (e.g.PS in Fig. 1) gives more weightage to the struc-
ture of nutsedge instead of equal treatment of individual pixels.
Third, we modify our neural network loss function from cross
entropy, which assumes accurate training samples, to Kullback-
Leibler (KL) divergence, which measures the similarity between
two probability functions that can take uncertainty in labeling
into consideration. At last, we also propose new evaluation met-
rics to handle imprecise human labeling by extending existing in-
tersection over union (IoU) metric and proposing a new skeleton
similarity metrics using NSPM. We incorporate these new de-
signs in a Mask R-CNN framework [1] to complete our detection
algorithm.

We have implemented the proposed algorithm and compared
it with state-of-the-art methods such as Faster R-CNN [2] and
Mask R-CNN. The experimental results have shown that our al-
gorithm significantly outperforms the counterparts. More specif-
ically, the combination of using synthetic data with fine grain
labels and raw image data with noisy bounding box labels under
KL-divergence loss function leads to the lowest false negative
rate of 0.4%. In particular, our approach also reduces labeling
time by 95% while achieving better performance if comparing
with the original Mask R-CNN approach.
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Fig. 1. An overview of nutsedge detection algorithms.

II. RELATED WORK

Our work relates to robotic weed control, weed detection,
image-based detection and segmentation, and data synthesis.

Robotic weed control: Recently, autonomous robots have seen
many applications in precision agriculture because they have
enormous potential to reduce operating costs and dependency
on labor [3], [4]. A robotic weed control system often includes
three components: a sensing system to detect weeds, a decision-
making unit to process the information from the sensing system
and make manipulation decisions, and actuators to act accord-
ingly [5]. Our work belongs to the first component [6]. For
robot decision making, it is important to localize individual
plants, target the weeds and avoid crop plants [7]. For actuation,
selection of the actuation (weed-killing) mechanism is under fast
development. Common actuation methods include cultivation
tools [8], stamping [9], mowing [10], precise herbicide applica-
tion [11], etc. In addition to the actuator development, modular
robotic platforms that are able to carry various weeding actuators
are also under active development [12].

Image-based weed detection and segmentation: In this area,
methods can be categorized into two types: traditional com-
puter vision methods and learning-based methods. Our weed
detection algorithm developed here belongs to the latter. Before
learning-based methods are widely adopted in solving weed
detection problems, traditional computer vision methods that
extract hand-craft plant visual characteristics have been com-
monly used. These characteristics can be classified into two
major groups: visual texture and biological morphology [5].
For example, Burks et al. [13] utilize the color co-occurrence
method to discriminate textures between five common weed
species. Herrera et al. [14] propose a strategy utilizing a set of
shape descriptors to discriminate grasses from broad-leaf weeds,
which works when weeds are at an early stage of growth.

Convolution neural network (CNN)-based methods outcom-
pete traditional computer vision-based methods in feature ex-
traction and have become more popular for weed detection
nowadays. Many previous works employ CNNs to detect weeds
in various crops, including soybean [15], cereal crops [16],
ryegrass [17], canola [18] and rice [19]. These methods produced
satisfactory results in distinguishing the weed from highly color
contrasted soil background. However, with the turfgrass back-
ground, the weed detection problem becomes more challenging,
and we are developing new methods here to improve detection
performance.

Fig. 2. Dimension of annotation difficulty and localization level for different
methods.

With the increasing capability of detection networks such as
Faster R-CNN [2], YOLO (You Only Look Once) [20], and
SSD (Single Shot Detector) [21], object detection against a
highly-similar background can be achieved effectively. How-
ever, these object detection networks only provide bounding
box output, which is not adequate for further field operation,
especially localization. The localization problem can be partially
addressed by segmentation networks such as Mask R-CNN [1]
and Deeplab [22], because these networks achieve finer image
segmentation results for objects of interest. The problem with
such methods is the tremendously high annotation cost, i.e.
these networks often require pixel-wise precise ground truth for
training, which is difficult and expensive for weed detection
problems.

Considering the unique shape of nutsedge leaves and plant
architecture, extracting plant skeleton of nutsedge is a good ap-
proximation of semantic structure. In fact, the skeleton detection
is also widely explored with end-to-end deep learning methods
such as DeepFlux [23] and Hi-Fi [24]. Although these methods
only target single object detection, which are not directly appli-
cable in our scenarios, this inspires our development of nutsedge
skeleton probability map to balance between the robustness of
localization and annotation cost (Fig. 2).

Using synthetic data: Researchers have explored different
methods for data augmentation to enhance neural network
training results, especially in domains where annotated data is
difficult to obtain or expensive. Generative adversarial networks
(GAN) is one of the methods that has gained popularity [25].
However, training a GAN model to converge in specific tasks
is often complicated and time consuming due to its adversarial
nature. Thus, an easily accessible method for data augmenta-
tion is needed for nutsedge detection. Therefore, we synthesize
images using real object segments. This approach involves a
segmentation stage where nutsedge templates are extracted from
real images either manually or automatically, and a synthesis
stage where the extracted foreground nutsedge templates are
pasted to the background of interest (i.e. turfgrass). Using a
similar approach, Gao et al. [26] train a YOLOv3 model for
weed and crop detection, and achieve a mean average precision
of 0.829. Toda et al. [27] show that a Mask R-CNN model for
barley seed morphology phenotyping can be trained purely by
a synthetically generated dataset where 96% recall and 95%
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average precision against real test dataset were achieved. In-
spired by these results, we are developing a data-synthesis-based
approach for weed detection problems.

III. PROBLEM DEFINITION

Our robot observes field through a downward facing cam-
era to collect images (see video attachment for more details).
Therefore, all images are collected from a perspective that is
perpendicularly facing the ground from the same distance (0.5 m
in our set-up).

Common notations are defined as follows:
� binary random variable xuv = 1 indicates event that pixel
(u, v) is a nutsedge pixel on the image where u and v
are pixel indexes in horizontal and vertical directions,
respectively.

� p(xuv), probability of pixel at (u, v) is a nutsedge pixel.
� Ir := {(u, v) : ∀(u, v)}, pixel set of a raw image collected

from the field.
� Po := {p(xuv) : ∀(u, v) ∈ Ir)}, a probability map set de-

scribing spatial probability distribution of xuv . It is the
part of the output of the neural networks characterizing the
confidence of the prediction.

� B = {B} is a set of bounding boxes with each B =
{(u, v)|u ∈ [uleft, uright], v ∈ [vbottom, vtop], (u, v) ∈ Ir}
where (uleft, vbottom) ∈ Ir and (uright, vtop) ∈ Ir is the
bottom-left and top-right corners of the output bounding
box, respectively. We use Bh representing human labeled
bounding box set and Bo as algorithm output bounding
box set.

� S = {S} is a set of plant skeleton S which will be defined
later. We use Sh representing human labeled skeleton set
and So as the algorithm output skeleton set.

The weed detection problem can be defined as follows,
Definition 1: Given the image collected by robot Ir, compute

Bo, So and Po.

IV. ALGORITHMS

Our algorithm development consists of three major com-
ponents: data augmentation, network design & training, and
evaluation (Fig. 1). Our data augmentation algorithm addresses
the issue of insufficient training data by combining synthesised
data with manually-labeled data. Due to the non-negligible level
of errors existing in manually annotated labeling, we revised the
network design & training to handle the inaccurately labeled
training data. For the same reason, we cannot entirely trust the
manually-labeled data as the ground truth and have to design
a new evaluation pipeline considering the labeling noise to
validate our model. We begin with the data augmentation.

A. High Fidelity Data Augmentation

As detailed later, we employ deep neural networks for weed
recognition which often require massive manually labeled data
as the ground truth for training. We develop an image synthesis
algorithm to efficiently generate high-fidelity artificial dataset
from images collected from the field with different granularity

Fig. 3. An overview of the image synthesis pipeline. 1,2,3 and 4 represents
template selection, annotation, background synthesis and recombination. Step
4 is the combined stage of image synthesis algorithm whose pseudocode is
attached in the attached video file.

Fig. 4. An example of NSPM: (a) skeleton from the data synthesis, (b) pixels
masked as nutsedge in the synthesized image, and (c) the resulting nutsedge
skeleton probability model.

labels. Using data augmentation with image synthesis algorithm
instead of directly labeling the raw images has three specific
advantages: 1) it requires a minimal human labeling effort, 2) it
expands the size of training dataset, and 3) it provides precise
pixel-level labels.

In the synthetic dataset, each image is composed by nutsedge
foreground and bermudagrass background. To generate realistic
synthetic images with label, we ask human experts hand-select
a small number of nutsedge templates and background patches
from a raw image set as a material library (red and yellow dash
shapes in the leftmost image in Fig. 3). Then, image synthesis
algorithm creates complete label sets for nutsedge template
based on human expert’s partial label for training purpose. The
complete image synthesis algorithm consists of the following
four steps corresponding to steps 1-4 in Fig. 3.

1) Template Selection: There are two libraries needed: a
nutsedge template library (with skeleton and masking label) and
a turf background library. To reduce the work load of human
experts, we first employ the stratified random sampling [28]
based on the lighting condition to build an image subset (5%
of the training set) with images under different lighting con-
ditions proportional to raw image set. Human experts segment
out nutsedge template T ⊂ Ir where T is a polygon covering
nutsedge pixels, and nutsedge-free turf background pixel patches
from the sampled image set.

2) Nutsedge Annotation: For each nutsedge template T ,
there are 3 different types of annotation: plant skeletonS, binary
mask Ms, and bounding box BT .

To simplify the labeling process and better describe the struc-
ture attribute of nutsedges, we use plant skeleton labeling S in
our network design. As illustrated in Fig. 4(a), S models each
nutsedge plants as a cluster of line segments where each line
segment depicts the center of a leaf,

S := {lk : k = 1, . . ., kmax}, (1)
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where kmax is the total number of the line segments, and line
segment lk = {(u, v), (p, q)}, (u, v) ∈ Ir and (p, q) ∈ Ir are
endpoints of the line segment. In the annotation process, one
skeleton corresponds to one bounding box. The line segments
forming skeleton are annotated by human expert.

The mask labels and bounding boxes are generated auto-
matically from nutsedge templates T . Following the manner
of instance segmentation dataset creation [29], Ms labels are
created by setting all template pixel as 1 for foreground nutsedge
pixels and 0 otherwise. The bounding box computed from T is
defined as

BT := {(u, v)|u ∈ [uleft, uright], v ∈ [vbottom, vtop], (u, v) ∈ Ir},
(2)

where uleft = min{u}, vbottom = min{v}, uright = max{u},
vtop = max{v}, and (u, v) ∈ T .

3) Background Synthesis: To generate realistic background
images with appropriate size and scale, a natural texture syn-
thesis algorithm [30] is employed. The advantage of using this
algorithm over directly tiling with background templates is that it
adds randomness to the synthesized background so as to prevent
the neural network from picking up the unique patterns of each
background template.

4) Recombination of Nutsedge and Background: After back-
ground synthesis, the foreground of randomly selected subsets
of the nutsedge template library are pasted onto the synthesized
background images. The size of the subsets follows a uniform
distribution within a desired range (this range is determined by
experiment settings). While pasting each nutsedge template, the
pixel locations in homogeneous coordinate are transformed by

2D coordinate transformation matrix

⎡
⎢⎣

cos(θ) sin(θ) tx

− sin(θ) cos(θ) ty

0 0 1

⎤
⎥⎦

where θ is a random rotation angle within [0, 2π), and tx & ty are
horizontal and vertical random translations, respectively. They
have uniformly distributed value within the image boundary. The
resulting images are then augmented in hue, saturation, value
(HSV) color space by randomly varying brightness value from
80% to 120% so that the trained models are more robust to the
color variation in the testing dataset as a result of inconsistency
for light conditions. The skeleton annotations of each nutsedge
template are also inserted during the image synthesis process.

The overall time complexity of the proposed image synthesis
algorithm is O(umaxvmaxs

2) where (umaxvmax) is the maximum
image size in pixel count, and s is the neighbourhood size for
pixel candidate searching. In our implementation, the neighbour-
hood size s is 24 pixels. The detailed pseudocode and anlysis is
in the attached video file.

B. Network Design and Training

With both synthesized data and human-annotated training
data (i.e. all raw image training set comes with human-labeled
bounding boxes), we employ Mask R-CNN [1] to develop our
detector. In the original Mask R-CNN structure, the binary mask
branch segments the image by assigning each pixel to a class.
To better capture the feature of nutsedge while considering the

imprecision in training dataset, we design a skeleton probability
map representation of mask and modify the loss function of
Mask R-CNN’s mask branch correspondingly.

1) Nutsedge Skeleton-Based Probabilistic Map Generation:
For nutsedge segmentation problem, the difficulty of distin-
guishing the boundary of nutsedge’s class increases as the dis-
tance from the center of nutsedge grows. Meanwhile, detecting
the center and leaf midrib of the nutsedge is more important
than detecting its edges for plant recognition. This motivates us
to propose the use of NSPM input. The purpose is to instruct
the network to differentiate the central leaf midrib part of the
nutsedge, while reducing the impact of imprecision in nutsedge
boundary segmentation.

Fig. 4 illustrates NSPM computation. The bounding box for
a skeleton S is defined as Bh := {(u, v)|u ∈ [uleft, uright], v ∈
[vbottom, vtop], (u, v) ∈ I} in similar format of BT in (2) with
uleft, vbottom, uright, vtop determined by human labeling instead of
T . For image I , we define the bounding box set as Bh = {Bh}.
For pixel (u, v) ∈ Bh which contains the plant skeleton S, the
probability of (u, v)’s class is nutsedge

pS(xuv) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑kmax
k=1

1
σ
√
2π

exp

{
− 1

2

[
d((u,v),lk)

σ

]2}

if ((u, v) ∈ Bh) ∧ (Bh ∈ Bh)

0, otherwise.

where d((u, v), lk) is the point (u, v) to line segment lk’s nearest
point’s distance, and we use the nutsedge template and the
skeleton labeled by human expert to estimate the proper value
of σ. By drawing the histogram for each nutsedge template in
the template library with d((u, v), lk) as x-axis and count of
pixel number as y-axis, we can use half-normal distribution to
approximate the histogram and estimate σ.

The NSPM PS of the image is defined as

PS(u, v) = {pS(xuv), ∀(u, v) ∈ I} (3)

PS is used as the annotation input for the training image I .
2) Modifying Loss Function: At the same time, we need to

modify the original loss function (cross entropy) in mask branch
to accommodate labeling imprecision. In original loss function,
it maps origin binary annotation (ground-truth) value to dis-
crete distribution for binary mask Ms as p1(xuv) ∈ {0, 1} and
represents mask branch output as probability density function
p2(xuv) ∈ [0, 1]

LH(p1, p2) = −
∑

(u,v)∈Bo

p1(xuv) log(p2(xuv)). (4)

The problem of cross entropy loss function is that it is designed
for deterministic annotation without considering the uncertainty
introduced by the imprecision in labeling. To address this prob-
lem, we introduce KL-Divergence as the loss function for mask
branch that perceives the uncertainty in human annotation and
model it as a probability distribution using NSPM, where the
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annotation’s probability distribution is p1(xuv) = PS(u, v).

LKL(p1, p2) = −
∑

(u,v)∈Bo

p1(xuv) log

(
p1(xuv)

p2(xuv)

)
. (5)

It is worth noting that (4) and (5) share the same time complex-
ity in computation. When we replace the cost function (4) with
(5), our revised Mask R-CNN share the same time complexity
with the original version.

3) Transfer Learning Using Data With Different Levels of
Annotation: A worth-mentioning design of our training dataset
is that images have labels at different levels of granularity.
Human labeled raw image set only contains the bounding box
annotation, while the synthesized data generated by nutsedge
template have higher precision level labels: binary mask and
plant skeleton label.

To efficiently train our model with different annotation lev-
els, we develop a new training strategy for Mask R-CNN. As
an instance segmentation network, Mask R-CNN outputs the
bounding box, the class of bounding box, and the binary mask
of nutsedge. All the three branches share the same backbone
feature extraction and Region Proposed Network (RPN) [2].
Our training strategy fully exploits the structure’s potential.
First, we employ raw image Ir with human labeled bounding
box Bh to train the model’s classification and bounding box
detection branch to ensure that the feature extraction network
has been mostly trained from real data’s distribution and hu-
man observation (Fig. 1, dash line’s flow). Second, we fine-
tune the feature extractor and train the original mask branch
using synthesized data Is with its label Ms (Fig. 1, solid
line’s flow).

4) Skeleton Decoder: When we train the Mask R-CNN, we
adopt ResNet-FPN [31] backbone to obtain feature fusing map
in the feature extraction stage. With the high-resolution and
high-level semantic map embedded in the same feature map, the
model learns complex semantic information through training.
The inference output probability mapPo has a higher probability
in the midrib of leaves. This attribute of the probability map
enables us to extract nutsedge skeleton from it. After receiv-
ing the probability map Po, we adopt pre-processing morphol-
ogy dilation and erosion with the Gaussian blur to make the
probability map distribution more smooth. Then, we apply a
non-maximum suppression skeleton selection [24] algorithm
to the pre-processed probability map to decode its skeleton
structure.

C. Semi-Supervised Evaluation

Standard evaluation methods for detection and segmentation
problem often compare the region similarity using intersection
over union (IoU) metric between the model output and label of
the bounding box (ground-truth). As we described early, due to
the labeling imprecision, human annotation cannot be treated
as ground truth. Thus, a new evaluation method is needed.
Here we design evaluation methods targeting situations when
human annotations and model are consistent or inconsistent,
respectively.

1) Consistent Metrics: In this step, we evaluate how model
outputs compare to bounding box set labeled by human (Bh)
when they are consistent. For this purpose, we compare both
pixel-wise region overlap and skeleton similarity.
� Region overlap: With human labeled bound box Bh set

and skeleton Sh set, we can obtain probability map PS

using (3). We can threshold PS to obtain region set IS
according to human labels,

IS := {(u, v)|pS(xuv) > t} ⊆ Ir, (6)

where t is probability threshold. Similarly, we can obtain
region set Io according to the model output probability map
Po using the same threshold. The region overlap between
IS and Io can be measured by IoU metric,

rIoU =
|IS ∩ Io|
|IS ∪ Io| , (7)

where | · | is set cardinality.
� Skeleton similarity: We use the skeleton similarity be-

tween So and Sh to evaluate how well the model capture
main structure of the nutsedge. First, for each pixel (u, v)
in So, if we can find the distance dSh

(u, v) to its closest
point in Sh,

dSh
(u, v) = min

(ua,ub)∈Sh

√
(ua − u)2 + (ub − v)2). (8)

If dSh
(u, v) is less than a given threshold d, we believe that

the pixel (u, v) has a corresponding point in Sh. We obtain
the ratio between the corresponding pixel counts in Sh

and the total pixel number in Sh,

Cs =
|{(u, v)|(u, v) ∈ So, dSh

(u, v) ≤ d}|
|Sh| (9)

as the skeleton similarity metric.
2) Inconsistent Metrics: For our problem, it is possible that

the model fails to recognize a nutsedge and it is also possible
that human may make mistakes in annotation. We want to catch
these inconsistent cases and further analyze them.

First, we identify the consistent bounding box set Ra,

Ra = {B | B ∈ Bh ∩Bo, (rIoU ≥ 0.5) ∨ (Cs ≥ 0.7)},
where rIoU and Cs are computed using (7) and (9) respectively.
Then we obtain the inconsistent bounding box setRc = {(Bh ∪
Bo) \Ra}. When inconsistent cases are detected, we manually
reexamine the labels of those bounding boxes and classify Rc

into three groups: 1) false positive case set of algorithm output
Bo

FP, 2) false negative case set of algorithm output Bo
FN, and

false negative set of human annotation Bh
FN.

V. EXPERIMENT

We have implemented our weed detection algorithm based on
Detectron2 [32] system on Pytorch platform. We choose ResNet-
50 with Feature Pyramid Networks (FPN) and ResNet-101 with
FPN as our backbone network. The initial network parameters
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of Faster R-CNN and Mask R-CNN are both from a pre-trained
model on MSCOCO dataset [29].

A. Nutsedge Dataset

We have built the a shared TAMU nutsedge dataset [33] which
contains two types of data: the raw image set collected from
the field with manual annotations and synthetic image set with
ground truth synthetic label.

1) Raw Image Set: The raw images were collected at the
Scotts Miracle-Gro Facility for Lawn and Garden Research,
Texas A&M University using NikonTM D3300 or Canon EOS
Rebel T7TM mounted at a height of 0.5 m on a data collection
cart. See attached video file for more details. The original image
resolution is 6000× 4000 but downsized to 1200× 800 to adapt
the model and reduce training costs. To cover the appearance
variation of nutsedge, data are collected at different lighting
conditions, temperature, weather, and moisture levels. To cover
the majority of nutsedge growth season, data were collected
from June to August at different times of day. The raw dataset
contains 6000 images which is split into a training set Dr (90%)
and a testing set Dt (10%). All data are labeled with bounding
boxes for both training and testing purposes. In addition, 25%
of the testing images contain skeleton label. We denote the
testing set with skeleton label as DtS ⊆ Dt. The size of DtS

is ntS = |DtS |. All the labels are created by human annotation
using “labelme”[34] tool.

2) Synthetic Dataset: Generated using the method in
Section IV-A, our synthetic dataset contains 4750 images with
bounding box labels, which are used as the training set. The
density of nutsedges is set at 5 to 10 plants per one million
pixels. When we generated the NSPM, we set σ = 12 pixel
based on statistical analysis of existing data. Moreover, the
dataset contains both binary mask label and skeleton label. When
only the binary pixel-level mask label is used with the synthetic
dataset, we name it asDsb . When only skeleton label is used with
the synthetic dataset, we name it asDsp . |Dsb | = |Dsp | = 4750.
The sample images of synthesized dataset is shown in attached
multimedia file.

3) Reduction of Labeling Time: The data synthesis algorithm
significantly reduces manual labeling effort. The average density
of nutsedge in raw dataset is 10 plants per image. It takes about
30 seconds to label for each plant. To label all 800 raw images
with mask label, it would cost 66 hours. With the help of image
synthesis algorithm, we only need to select and create mask label
for 129 nutsedge template. The labeling time is reduced to less
than 3 hours which is a 95% reduction in labeling time. Also,
the synthetic data contains ground truth that is not attainable in
noisy manually labeled data.

B. Component Tests

1) Loss Function Comparison: We train a Mask R-CNN
model using cross entropy loss function with dataset Dsb and
using KL-divergence with dataset Dsp . The rS-IoU is an average
Bh’s rIoU in an image weighted by skeleton size. We calcu-
late the rIoU by averaging all image’s rS-IoU. Let nb = |Bh| in
one image and the total pixel count of skeleton in the image be

TABLE I
DETECTION COMPARISON

Fig. 5. A comparison of the detection results with cross entropy (in green)
and KL-divergence (in red) models. The grey boxes are bounding boxes from
manual labeling. It is clear that there are a lot more red pixels than green pixels,
which means that the KL-divergence loss function misses fewer than the cross
entropy loss function. Both models use R101 as the backbone.

cIS =
∑

nb
|Sh|. We have

rS-IoU =
1

nb

∑
nb

|Sh|
cIS

rIoU and rIoU =
1

ntS

∑
ntS

rS-IoU. (10)

Similarly, we extend the skeleton similarity metric,

CSs =
1

nb

∑
nb

|Sh|
cIS

Cs and Cs =
1

ntS

∑
ntS

CSs. (11)

The overall result is shown in Table. I. We use R50, R101,
CE and KL representing the ResNet-50-FPN, ResNet-101-FPN,
cross entropy and KL divergence, respectively. It is clear that
changing the loss function from CE to KL achieves higher rIoU

andCs. Even with a smaller backbone network (R50), the model
trained by KL loss function performs better than that by R101
using CE loss function by 3% in rIoU and 4% in Cs. When the
backbone is identical, the model with KL loss improves over the
CE by more than 10% in both rIoU and Cs. Sample results are
shown in Fig. 5.

2) Improvement With Transfer Learning: We follow the ba-
sic rules of transfer learning by using the pre-trained model
to improve the performance. In general case, without the task-
specialized pre-trained model, the common models such as the
one trained by MSCOCO is used as the pre-trained model. The
first four lines in Table I use MSCOCO pre-trained model as
initial parameters. To get further improvement, we use Dr to
pre-train the backbone and bounding box branch. The perfor-
mance of model with Dr pre-trained and R101 as backbone
lists in the line 5 of Table I which is highlighted in bold font as
the best performer.

3) Synthetic Data Generation Configuration: Synthetic data
provides accurate ground truth with pixel-level mask, which is
expected to substantially improve the model. We study how the
number of foreground nutsedge and background bermudagrass
templates (Section IV-A1) in generating synthetic data affects
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Fig. 6. Affect of different number of nutsedge and background templates in
generating synthetic training data.

the overall detection performance. First, we vary nutsedge fore-
ground template sizes while keeping the background template
number at 96. We increase the number of nutsedge templates
from 8 to 129. Again, rIoU and Cs are used to evaluate the
detection result (Fig. 6). With mere 8 nutsedge templates, the
trained model achieves rIoU of 52.9% and Cs of 77.7%. As
the nutsedge templates increase, the rIoU gradually grows to
56.8% andCs reaches 88.1%. Similarly, we test our algorithm by
changing the background template number from 12 to 96 while
fixing the number of nutsedge templates at 129. rIoU and Cs are
54.7% and 81.3%. The curve in Fig. 6 also illustrates the positive
correlation between the number of background templates and the
model performance, but the trend is relatively less significant
compared to that of the nutsedge template number. Considering
the fact that selecting templates is expensive, we choose 129
nutsedge templates with 96 background templates as our setup
in generating synthetic data.

C. Overall Performance Comparison

1) Algorithms and Training Setup: The overall evaluation
compares the four algorithms indicated below (Algs. a-d) under
their required training setup. In fact, Algs. c-d are our algorithms
with different configuration.

a) Faster R-CNN based model with R101 backbone: this
setup only uses bounding boxes as training set input and
algorithm output, and it does not require pixel-level label-
ing A sample input is shown in the top left image in Fig. 2.
This algorithm serves as a baseline for Faster R-CNN.

b) Mask R-CNN based model with R101 as the backbone and
trained by CE loss function: Here we use synthetic data
with binary pixel-level mask label Dsb . This algorithm
tests the power of synthetic data and can also be viewed
as an approximate baseline for Mask R-CNN with precise
labeling. A sample input is shown in bottom right image
in Fig. 2. The typical application of the original Mask
R-CNN would require fully manually labeled pixel-wise
training data. In fact, the synthetic data remove labeling
noise which may make the algorithm performs better
than the actual case. Also, the synthetic data may not be
as representative as the precise real data which are not
available. That is reason for us to call it an approximate
baseline for Mask R-CNN. The comparison is not exact
but still meaningful.

c) We change Alg. b settings by swapping the loss func-
tion from CE to KL divergence in (5). The swapping

TABLE II
OVERALL PERFORMANCE COMPARISON

also allows us to use skeleton-labeled synthetic set Dsp .
This algorithm examines if the change of loss function
improves the performance.

d) We further extend the model c with a pre-trained model
described in Sec. V-B2. Also, real training set Dr is used
in combination with Dsp . This algorithm is presumed to
be the best overall according to the component test.

All models are tested on the raw image set DtS .
2) Metrics and Results: To compare the detection ability of

algorithm with only bounding box output (a) and Algs. with
precise pixel-level output (b-d), we define the density ratio rd
as the ratio between nutsedge density of detection region and
density of the entire image:

rd =
ca/co
cs/cI

,

where cs is the total number of nutsedge pixels, cI is the total
pixel count of the testing image, ca is the total number of
nutsedge pixels covered by output bounding boxes, and co is
the pixel count for the union area of the output bounding boxes.
cs and ca are based on human labeling results since Alg. a’s input
and output are just bounding boxes. High values of rd indicate
better detection because the algorithm is able to identify focused
regions with more nutsedges. Table II shows the result. It is clear
that Algs. b-c perform much better than Alg. a. This is expected
because raw image with human label contains high error in
training samples, which negatively affect detection results. For
Algs. b-c, the use of synthetic data greatly improves network
training.

For Algs. b-c, rd does not tell the complete story. We need
to take a closer look because not all nutsedge pixels are equal
or error-free. Further, we are also interested if disagreements
between algorithm and human labeling can reveal more insights.
To focus on this, we need new metrics that do not simply
treat human label as ground truth. Let Nd be the total detected
nutsedge bounding box set based on both algorithm output and
human labeling. It is a union of consistent caseRa, cases missed
by model output Bo

FN, and cases missed by human label Bh
FN:

Nd = {Ra ∪Bo
FN ∪Bh

FN}. It is worth noting that these metrics
build on segmented nutsedge pixels (i.e. region overlap in (7)
and skeleton similarity (9)). Cases outside Ra are subjected
to a manual re-examination step to determine which ones are
correct. These metrics do not apply to Alg. a due to its lack of
segmentation capability. For the rest, these sets allow us to define
the agreement rate ra, false positive rate of model rFP and false
negative rate of model rFN as model comparison metrics.

ra =
|Ra|
|Nd| , rFP =

|Bo
FP|

|Nd ∪Bo
FP|

, and rFN =
|Bo

FN|
|Nd| .
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Table II shows that Alg. d achieves the best overall results. This
is due to high overall agreement between human and algorithm
output and the lowest false negative ratio. Algorithms with low
false negative detection help remove weeds more thoroughly.
However, in situations where herbicide use reduction is much
more important than thorough weed control, we may want to
choose Alg. b due to its lowest false positive rate.

VI. CONCLUSION AND FUTURE WORK

We reported our weed detection algorithm development for
robotic weed control. We focused on detecting nutsedge weed
in bermudagrass turf. Building on the Mask R-CNN, an instance
segmentation framework, our new algorithm incorporated four
new designs to handle the imprecision and insufficiency of
training datasets. First, we proposed a data synthesis method to
generate high fidelity synthetic data. We combined the precise
labeling from the synthetic data and noisy labeling from the
raw data to train our network. We also proposed new data
representation to allow the network to focus on the skeleton
of the nutsedge instead of individual pixels. We modified the
loss function to enable Mask R-CNN to handle training data
with high uncertainty. We also proposed new evaluation metrics
to facilitate comparison under imprecise ground truth. The ex-
perimental results showed that our design was successful and
significantly better than the Faster R-CNN approach.

In the future, we will extend our approach to more types of
weeds and turf species. Building on these results, we will also
develop robotic weed removal algorithms and systems, and test
them under field conditions.
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