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Vehicle-to-Vehicle Collaborative Graph-Based
Proprioceptive Localization
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Abstract—Proprioceptive localization (PL) refers to robot or
vehicle egocentric localization methods that do not rely on the
perception and recognition of external landmarks. These methods
depend on a prior map and proprioceptive sensors such as inertial
measurement units and/or wheel encoders. PL is intended to be
a low-cost and fallback solution when everything else fails due
to bad weather or poor environmental conditions. With the de-
velopment of communication technology, vehicle-to-vehicle (V2V)
communication enables information exchange between vehicles.
It becomes possible to leverage V2V communication to develop a
multiple vehicle/robot collaborative localization scheme. Named as
collaborative graph-based proprioceptive localization (C-GBPL),
we extract heading-length sequence from the trajectory as features.
When rendezvousing with other vehicles, the ego vehicle aggregates
the features from others and forms a merged query graph. We
match the query graph with a pre-processed heading-length graph
(HLG) abstracted from a prior map to localize the vehicle under
a graph-to-graph matching approach. We have implemented our
algorithm and tested it in both simulated and physical experiments.
The C-GBPL algorithm significantly outperforms its single-vehicle
counterpart in localization speed and robustness to trajectory and
map degeneracy.

Index Terms—Localization, autonomous vehicle navigation,
multi-robot systems.

I. INTRODUCTION

LOCALIZATION is important for a vehicle or a robot
navigating in an urban area. Common localization methods

employ exteroceptive sensors, such as a camera, a laser range
finder, or a global position system (GPS), which may be hindered
under extreme weather or poor lighting conditions. In [1], [2],
we propose proprioceptive localization (PL) as a fallback so-
lution that is naturally immune to these extreme environmental
conditions because the PL method only depends on a prior map
and proprioceptive sensors such as inertial measurement units
(IMUs) and/or wheel encoders. PL methods localize vehicles by
extracting features from the estimated vehicle trajectories using
the proprioceptive sensors and matching the features with a prior
map.

However, the existing approaches suffer from strong depen-
dence on trajectory types and slow convergence. Combining the
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Fig. 1. An illustration of C-GBPL method using a two-vehicle rendezvous
case. The ego vehicle is colored in red and the other vehicle is in black. At
rendezvous, we aggregate vehicle trajectories to form a merged feature graph to
facilitate localization.

PL method with modern vehicle-to-vehicle (V2V) communica-
tion which allows real time information exchange between vehi-
cles, we design a new collaborative graph-based proprioceptive
localization (C-GBPL) method (see Fig. 1). We extract trajectory
features which are straight segments of trajectories and generate
a merged query graph by combining inputs from neighboring
vehicles. The localization problem becomes a graph-to-graph
matching problem. Our algorithm outputs potential vehicle lo-
cations based on the the maximization of belief functions which
often quickly converges to actual location over time.

Building our existing work on the single vehicle PL [2],
our new collaborative framework alleviates the trajectory-
dependence issue by exploiting the shared information. To facil-
itate the matching, we also pre-process the prior map which ex-
tends our heading-length graph (HLG) by adding super-vertices
based on three different vehicle rendezvous types. The new algo-
rithm that builds on new graph structure speeds up the matching
computation. Furthermore we explicitly prove that it can accel-
erate the convergence of belief functions for vehicle location. We
have implemented the C-GBPL algorithm and tested it against
the existing approach [2]. The C-GBPL algorithm significantly
outperforms its single-vehicle counterpart in localization speed
and is less sensitive to trajectory and map limitations.

II. RELATED WORK

Our C-GBPL method is related to localization using sensor
fusion, map-based localization, and multi-robot localization.

Localization methods can be grouped into two categories: ex-
teroceptive sensors and proprioceptive sensors according to sen-
sor modalities. Exteroceptive sensors perceive external signals
and recognize landmarks in the environment to estimate loca-
tion. Mainstream exteroceptive sensors include cameras [3]–[5],
laser range finders [6], and GPS receivers [7], [8]. These methods
are considerably susceptible to adversary environmental con-
ditions such as low visibility, extreme weather conditions, or
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electromagnetic inference. On the contrary, proprioceptive sen-
sors, such as IMUs [9] and wheel encoders [10] do not rely on
external signals and are inherently immune to external condi-
tions. However, they are more susceptible to error drift. Recent
approaches combining a camera or a laser range finder with
an IMU [11] which design is an exteroceptive-proprioceptive
sensor fusion approach, greatly improves system robustness and
has become popular in applications. However, these approaches
still heavily rely on their exteroceptive sensors and cannot func-
tion properly under the aforementioned adversary environmental
conditions.

Our PL method is a map-based localization [3], [12]–[15].
Thrun et al. [16] classify map representation into two cate-
gories: the location-based and the feature-based. The location-
based maps are represented with specific locations of objects.
For example, those existing geographic maps consisted of co-
ordinate of locations such as Google Maps [17] and Open-
StreetMaps (OSM) [18]. Geographic maps often based on GPS
measurements. Researchers develop map matching techniques
such as point-to-point, point-to-curve, curve-to-curve matching,
or advanced extensions [19]. The feature-based map consists
of features of interest at its location. An example is ORB fea-
tures [20] for visual simultaneous localization and mapping. Our
PL methods extract heading-length features from proprioceptive
sensors and prior maps to convert a location-based map matching
to a feature-based map matching which improves localization
robustness to sensor drift and also speeds up computation in the
process.

In the area of multi-robot research, decentralized estimation
of robot poses has gained considerable attention [21]–[24]. The
multi-robot systems outperform single-robot systems in many
aspects, such as improving localization efficiently, reducing
computational cost, increasing accuracy and fault tolerance,
and accelerating map exploration and coverage. Our work is
related to multi-robot localization in particular [21], [25]–[28].
The loosely coupled cooperative localization methods [27], [28]
require relative measurement between robots which need exte-
roceptive perceptions between robots. In contrary, our method
utilizes proprioceptive sensors only. To tackle the decentral-
ized multi-robot localization problem, researchers propose [25]
and use [24] the concept of checkpoints representing delayed
synchronization of observation after exchanges of information
between robots. Also, the concept is extended to the decentral-
ized information transfer scheme [29] based on communication
constraints. Our problem is similar in the way that we can benefit
from exchanged motion information from other robots, but it is
different because we do not rely on landmarks or exteroceptive
sensing to acquire relative positions with other robots.

PL methods are gaining attention in vehicle localization [1],
[2], [12], [30], [31], all of which are map-aided localization using
proprioceptive sensors. Wahlstrom et al. [30] employ a minimal
setup using vehicle speed and speed limit information map. Yu
et al. [31] develop an extended Kalman filter (EKF)-based dead
reckoning approach based on odometer and gyroscope readings
and a map is used to correct errors. However, an initial position
from GPS is required for both methods. Our localization solution
does not require a known initial position. In [12], the velocity
from the wheel encoder and steering angle are used for odometry
and a particle filter based map matching scheme helps estimating
vehicle positions.

Our group studies localization using proprioceptive sensors
under different setups [1], [2]. This letter extends our prior
work [2] for a single vehicle to a multiple-vehicle PL method.

III. PROBLEM FORMULATION AND SYSTEM DESIGN

All vehicles have a prior map of the city. Each vehicle is
equipped with proprioceptive sensors including an IMU and an
on-board diagnostics (OBD) scanner which provides velocity
feedback (similar to a wheel encoder). To compensate for di-
rection drift, each vehicle has a digital compass. To formulate
our collaborative localization problem, we have the following
assumptions:

a.0 The ego vehicle is able to navigate in the environment
and make turns at appropriate locations. All vehicles are
nonholonomic.

a.1 The prior road map contains straight segments in most
part of its streets and streets are not strict grids with equal
side lengths.

a.2 IMU and compass are co-located, pre-calibrated, and
fixed inside the vehicle. Their readings are synchronized
and time-stamped.

a.3 Vehicles communicate with each other in close range and
we can assume that they are on the same street or same
intersection.

As part of the input of the problem, a prior road map consisting
of a set of roads with GPS waypoints is required. Common
notations are defined as follows,
� Mp represents the prior road map which is a set of GPS

positions.
� z = {a, ω, φ,v} denote in situ sensory readings of vehi-

cle, where a denotes accelerometer readings of the IMU, ω
denotes gyroscope readings of the IMU,φ denotes compass
readings, and v denotes velocity readings.

The C-GBPL problem is defined as follows.
Problem 1: When ego vehicle l rendezvous with vehicle l′,

localize vehicles collaboratively given sensory reading z, z′, and
Mp.

It is worth mentioning that this problem formulation only
concerns a two-vehicle rendezvous case. However, it is the
atomic case of multiple vehicles rendezvous case because an
n-vehicle rendezvous case can be easily decomposed into a
sequence of n− 1 two-vehicle rendezvous cases.

IV. ALGORITHM

Since our algorithm builds on GBPL algorithm, we begin with
a brief review of GBPL algorithm [2] in Section IV-A. Then we
will extended it into C-GBPL in Section IV-B.

A. GBPL Review

As a single vehicle localization method, GBPL employs the
proprioceptive sensors to estimate vehicle trajectory and match
it with a prior map. GBPL is a feature-based map matching
method instead of raw trajectory matching because 1) there is
a significant drift issue in the dead reckoning process and 2)
the vehicle trajectory may not match the GPS waypoints on the
map where a street may contain multiple lanes and trajectories
may differ due to lane selection or different traffic patterns.
GBPL has three main building blocks: heading length graph
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(HLG) construction, query generation from sensory data, and
vehicle localization. GBPL can be viewed as a feature-based
map matching with each feature to be a straight segment of a
road with heading and length as its feature descriptors. HLG
construction reduces the prior map Mp, which is a set of GPS
waypoints, to a discrete feature structure HLG Mh to facilitate
the feature matching. Query generation extracts features from
dead reckoning trajectory based on the proprioceptive sensors.
The vehicle localization performs the feature-based Bayesian
map matching and vehicle tracking afterwards.

1) HLG Construction: HLG is a feature representation of
the prior map. In HLG, a vertex vi ∈ Vh represents a straight
and continuous road segment with no intersections. An edge
ei,i′ ∈ Eh characterizes the orientation change between the con-
nected two vertices vi and vi′ .Mh have two types of edges: road
intersections and curve segments; and two types of vertices: long
straight segment vertices and short transitional segment vertices.
The long straight segment vertices are used for heading-length
matching later. The short transitional segment vertices are of-
ten formed between curve segments or curved roads entering
intersections. Each vertex contains the following information

vi = {Xi, θi, di, bi}, (1)

where Xi = [xT
i,s, . . . ,x

T
i,e]

T contain all 2D positions of way-
points on the road segment, orientation θi ∈ (−π, π] is the
angle between the geographic north, di := ||xi,s − xi,e|| is road
segment length, and bi is the binary variable indicate if the
vertex is a long road segment. Only long road segments (bi = 1)
are used in localization which defines vertex subset Vh,l ⊂ Vh

corresponding to long straight segments.
2) Query Generation: When the vehicle is driving down the

road, we can estimate the trajectory from sensory readings with
an EKF-based approach and generate a query heading-length
sequence. In the state representation, the state vector Xs,j at
time j of the EKF is: Xs,j := [pI

j ,v
I
j ,Θ

I
j ]

T, where pI ∈ R3,
velocity vI ∈ R3, and the X-Y -Z Euler angles ΘI in fixed
inertial frame {I}. The EKF-based dead reckoning provides a
vehicle trajectory but is inevitably drift-prone. Instead of using
it for directly matching to the prior map, we extract heading and
length of the straight segments for our feature-based matching.
The resulting query heading-length sequence is denoted by

Q := {Θq, Dq},
where Θq = {Θq,k|k = 1, . . . , n}, Dq = {dq,k|k = 1, . . . , n},
and Θq,k and dq,k are the observations of heading and length
from EKF for a straight segment k.

3) Vehicle Localization: This is two-step process: i) perform
global graph match that finds the query-HLG match and ii) track
the vehicle location to provide continuous localization result af-
ter a global match is identified. Since the second step is the trivial,
we focus on global graph match only. Given Q = {Θq, Dq}, let
us denote a candidate heading-length vertex sequence in Mh by
M := {Θ, D} = {{θk, dk}|k = 1, . . . , n} correspondingly. As
a convention in this letter, for random vector �, μ� represents its
mean vector. The belief that Q and M match is the following
conditional probability

P (μQ = μM |Q,M) ∝
n∏

k=1

fT (t(θq,k, θk))f(z(dq,k, dk)) (2)

Fig. 2. C-GBPL system diagram.

due to independent sensor noises where fT (t(θq,k, θk)) is the
probability density function (PDF) of Student’s t-distribution
and f(·) is the PDF of standard normal distribution. As the length
of the matching sequence grows, the belief function converges
for the correct matching and a global location is identified
when thresholding condition is satisfied and only one solution
remains. We search for the best matching by generating different
candidate sequences on the map using breadth-first search on the
HLG.

B. C-GBPL

In a single vehicle case, we simply match query sequence
with a candidate sequence constructed from the HLG. This
changes when vehicles can talk to each other. The rendezvous
events describe moments when a vehicle moves into another
vehicle’s communication range (assumption a.3). At the moment
of rendezvous, one vehicle can pass its query sequence to the
other. The two query sequences combine into a query graph
which will be matched against HLG. The matching problem
evolves into a graph-to-graph matching problem.

Fig. 2 show the system diagram of C-GBPL. Before ren-
dezvous, each vehicle runs GBPL algorithm in [2]. In C-GPBL,
we propose the following building blocks to compose and
solve the graph-to-graph matching problem to simultaneously
improve localization efficiency and reduce computational cost.
The first block is HLG modification where we modify HLG
with super vertex groups to capture potential rendezvous loca-
tions to facilitate the graph-to-graph matching process. With the
modified HLG, the remaining three blocks are rendezvous event
identification, merged query graph, and multi-vehicle belief
aggregation. We will detail each block in separate subsections.

1) HLG Modification: At rendezvous, the vehicle pair must
be within communication range of each other to exchange in-
formation (Assumption a.3). This only occurs with a limited set
of possibilities and can be utilized to facilitate graph-matching
because we can trim the searching space on subset of vertices
in Mh by focusing on the possible rendezvous locations. We
capture all possible rendezvous locations by augmenting the
pre-processed HLG with an additional layer which are candidate
rendezvous super vertex (CRSV) groups (see Fig. 3) which only
have three types.
� Type 0: same vertex. This type is embedded in the origi-

nal HLG and does not require additional processing. The
number of Type 0 CRSV is O(Vh,l).

� Type 1: coupled vertices. We define coupled vertices by
pair of vertices with opposite directions on same road seg-
ment. In Fig. 3(b), we show examples of coupled vertices in
green color. The number of Type 1 CRSV is also O(Vh,l).

� Type 2: intersection sharing vertices. We define intersec-
tion sharing vertices as a group of vertices sharing the same
road intersection. For vertices in a group, the corresponding
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Fig. 3. HLG modification. (a) A prior road map overlay with edges (in light
yellow color) and vertices (in gray color). (b) An illustration of two CRSV types:
Type 1 coupled vertices (in green color) and Type 2 intersection sharing vertices
(in orange color).

Fig. 4. Rendezvous events with same/different heading (bθ) which we use to
identify vehicle relative locations. The yellow rectangular boxes mark out the
latest vehicle stable headings used to determine bθ .

road segments share the same intersection. In some cases
that the road intersections are connected with a curved road
segment (e.g. an edge in Mh), the nearest vertices are
included instead. We show an example in Fig. 3(b) where
v7 and v8 are considered as intersection sharing vertices.
The number of Type 2 CRSV is O(Vh,l) which happens
when a map consists with square grids and bi-directional
roads.

2) Rendezvous Event Identification: On the vehicle side, we
also need to identify corresponding rendezvous types using on-
board sensors.

Recall that the ego-vehicle index is denoted by l and the other
vehicle index by l′, where l, l′ ∈ L. We develop algorithm from
ego-vehicle l view and as it is established vice versa for the other
vehicle l′ where prime symbol ′ indicates the other vehicle. We
label the vehicle status by ‘V ’ or ‘E’ based on whether it is
on a vertex or an edge. For vehicles (l, l′), this results in four
kinds of rendezvous events denoted by EE,E , EE,V , EV,E , and
EV,V . To further reduce the four kinds into the three types in
the CRSV groups, we check whether vehicles (l, l′) have the
same headings at rendezvous. Note whenever vehicle changes
heading, it does not have stable heading. Thus we specify vehicle
rendezvous heading by its latest stable heading. We set binary
variable to bθ = 1 if vehicle (l, l′) have same headings and
bθ = 0 otherwise. See Fig. 4 for examples. The three types are
identified as follows,
� Type 0: When bθ = 1, vehicles travel through same vertex

in all four rendezvous events as shown in top four figures
in Fig. 4. Vehicle trajectories are linked by hidden super
vertices (Type 0) of HLG.

� Type 1: When bθ = 0, EV,V and vehicles have opposite
orientations, vehicles travel through vertices correspond-
ing to same road segment with opposite directions. Their
trajectories are linked by coupled vertices (Type 1) of HLG.
This case is shown in the right bottom of Fig. 4.

� Type 2: When bθ = 0 and {EE,E , EE,V , EV,E} or EV,V and
vehicles have different orientations other than opposite, ve-
hicles rendezvous at intersection from different directions
which are connected by intersection sharing vertices (Type
2) of HLG.

3) Merged Query Graph: With different rendezvous event
types identified, we can combine individual query sequences
and form a merged query graph. We denote the merged query
graph by QG which consists of nodes and edges in query
sequences/graph Q and Q′ for vehicles l and l′, respectively.
They are connected together using the type info.

4) Multi-Vehicle Belief Aggregation: The main part of global
localization is the matching of the merged query graph QG to
the corresponding part on the modified HLG. This requires us
to establish a belief function to evaluate QG and a candidate
matching graph MG on the map.

The type associated withQG helps us identify the correspond-
ing MG which consist of nodes in M and M ′, where M and M ′
are candidate sequences for vehicles l and l′, respectively.

At rendezvous, the matching belief from vehicle l′ is aggre-
gated with matching belief from ego-vehicle l. We extend the
single vehicle belief function in (2) to a multi-vehicle belief.

Lemma 1: The multi-vehicle belief function is the conditional
probability for the joint belief function which is obtained by
multiplying individual components below.

P (μQ = μM , μQ′ = μM ′ |Q,M,Q,′ M ′)

= P (μQ = μM |Q,M)P (μQ′ = μM ′ |Q,′ M ′)

∝
n∏

k=1

fT (t(θq,k, θk))f(z(dq,k, dk))

×
n′∏

k′=1

fT (t(θq,k′ , θk′))f(z(dq,k′ , dk′)), (3)

where n and n′ are number of observations in Q and Q′,
respectively, and k and k′ are index variables.

Proof: Note that μQ = μM and μQ′ = μM ′ are independent
given Q,M,Q′ and M ′. We decompose (3) into two terms

P (μQ = μM , μQ′ = μM ′ |Q,M,Q,′ M ′)

= P (μQ = μM |Q,M,Q,′ M ′)P (μQ′ = μM ′ |Q,M,Q,′ M ′)
(4)

Since μQ = μM is independent of Q,′ M ′ given Q,M ,

P (μQ = μM |Q,M,Q,′ M ′) = P (μQ = μM |Q,M), (5)

which is the belief that Q and M match in (2). Similarly,

P (μQ′ = μM ′ |Q,M,Q,′ M ′) = P (μQ′ = μM ′ |Q,′ M ′). (6)

Plugging (5), (6) using the form derived in (2) into (4), we obtain
the lemma. �

Fig. 5 illustrates the ego vehicle belief and aggregated multi-
vehicle belief after rendezvous with the other vehicle.
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Fig. 5. An example of multi-vehicle belief aggregation (best viewed in color).
The probability value of each location is colored according to color bar. (a) The
candidate locations with corresponding probabilities of ego vehicle. (b) After
rendezvous with the other vehicle, the candidate locations and probabilities
are updated. There is a significant drop in number of candidate locations after
rendezvous.

Fig. 6. An example of graph-based candidate trimming. Left figure: we show
trajectories of two vehicles and their rendezvous. Right figure: HLG Mh and
candidate heading-length vertex sequenceM andM ′. We show three candidates
(M ′

1, M ′
2, M ′

3) for ego vehicle and trim candidates are not correct CRSV type,
both M ′

2 and M ′
3 are trimmed.

5) Algorithm Framework: Lemma 1 provides us with a
method to localize the vehicle by thresholding the belief func-
tion over candidate solution MG. It can be done by applying
a breadth-first search strategy starting with matching CRSV
types. We summarize the C-GBPL framework in Algorithm 1.
We denote the set of Type 1 CRSV by VT1 where VT1 =
{VT1,m1

|m1 = 1, . . . , nT1} and each VT1,m1
contain vertices in

the same group.nT1 is the cardinality ofVT1 . Similarly, We define
VT2 = {VT2,m2

|m2 = 1, . . . , nT2}. Recall that Vh,l is vertex set
of HLG. For vi ∈ Vh,l, we augment information of CRSV type
and element index for searching purpose. Note that vi may
belong to more than one CRSV types.

Not all pairs of candidate sequences M and M ′ satisfy the
CRSV type constraint. Let us use Fig. 6 as an example. In the left
figure, we show trajectories of two vehicles and their rendezvous.
The right figure shows the graph matching between M and M ′
in HLG Mh. In this example, the QG is classified as Type 2
and thus MG belongs to Type 2 CRSV group. We show three
candidates (M ′

1, M ′
2, M ′

3) for ego vehicle. Only M ′
1 satisfies the

CRSV and feature sequence matching constraints and both M ′
2

and M ′
3 are trimmed.

To reduce possible prior correlations, we use the following
two rules. First, when the ego vehicle rendezvouses the other
vehicle, we do not update its belief if they have same candidate
vertices. Second, we only update the ego vehicle belief once
for the same rendezvous with the other vehicle. According to
assumption a.3, this implies the next rendezvous happens when
either vehicles has new observations.

In Lemma 1, the product format of belief function in (2) still
holds for multi-vehicle case as described in (5) and (6). The
only difference is the number of nodes involved in the product.

Computing the multi-vehicle beliefs in (3) can be computation
intensive if we do not effectively reuse the prior computation.
We store the prior computation from each individual vehicle
and exchange the information between vehicles. For each ve-
hicle, we define the candidate vertex information set Ck where
k = 1, · · · , n is the length of the query sequence. The candidate
vertex set is denoted by Ck = {{vi,VM,i, pi}|i = 1, . . . , nCk},
where each element in Ck record the candidate vertex vi (the
starting vertex of the trajectory/path), VM,i is the set of ver-
tex path, and the matching probability pi in (2) and nCk is
the cardinality of Ck. By thresholding the belief function over
candidate solutions, we might still get many candidate solu-
tions because the hypothesis is conservative in rejection as in
GBPL [2]. The Otsu method [32] can be applied to further trim
candidate trajectories with lower probabilities. If more than one
solution survives, it indicates that more observations are needed
to localize the vehicle.

We now analyze the complexity of C-GBPL algorithm. The
upper bound of candidate vertex cardinality is Vh,l and thus it
takes O(|Vh,l|) to traverse Cn and C′

n. For Type 0 cases, we
can find set intersection of Vi and V′

i in O(|Vh,l| log(|Vh,l|))
by sorting and binary search. Similarly, for Type 1 or Type 2
cases, we can find (vi, v

′
i) pairs with the same group index in

O(nT1 log(nT1)) orO(nT2 log(nT2)). In the worst case scenario,
both nT1 and nT2 are O(|Vh,l|). Then line 7, 10, 13 are the
same in complexity of O(|Vh,l| log(|Vh,l|)). The classification
of probabilities into two groups is O(|Vh,l|) using Hoare’s se-
lection algorithm. We summarize the computational complexity
of Algorithm 1 in Lemma 2.

Lemma 2: The computation complexity of the C-GBPL is
O(|Vh,l| log(|Vh,l|)).

C. Localization Analysis

Intuitively, combining inputs from the other vehicle helps the
ego-vehicle to reduce ambiguity in map matching and hence
leads to faster convergence in the localization process. Let us
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show this by analyzing the conditional probability of localization
given the matching sequence changes.

Let us define three binary events: Ak = 1 if μdq,k
= μdk

,
Bk = 1 if μθq,k = μθk , and Ck = 1 if vertex k in Mh is the
actual location. Same as [2], we employ hypothesis testing to
reject unlikely matching by setting the significance level α,
where α is a small probability. According to the definition,
P (Ak|Ck) = (1− α) and and P (Bk|Ck) = (1− α) are the
conditional probabilities that a correct matched sequence sur-
vive the test for pair μdq,k

= μdk
and μθq,k = μθk correspond-

ingly. For convenience, for vehicle l we define joint events:
A = A1 · · ·An, B = B1 · · ·Bn, and C = C1 · · ·Cn. The joint
event C is equivalent to say that M := {Θ, D} represents the
true trajectory, whereas we know joint event AB from sequence
matching. Similarly, for vehicle l′ we define joint events: A′, B′,
and C′. We define a binary eventE if vehicle l rendezvous with l′.
Also, there are n observations for vehicle l and n′ observations
for vehicle l′ at the rendezvous.

In the analysis, we denotenv = |Vh,l| as the cardinality ofVh,l

and nb as the expected number of neighbors for each vertex. nb

depends on how many streets an intersection has. We describe
map/trajectory property in a rudimentary way by assuming kd
levels of distinguishable discrete headings in [0, 2π) and kl
levels of distinguishable discrete road lengths. Each vertex takes
a heading value and length value with equal probabilities of
1/kd and 1/kl correspondingly. Generally speaking, we know
nv � kd ≥ nb and nv � kl ≥ nb for most maps. We denote
nc the total observations of vehicle l combining of vehicle l′
trajectory given event E. We have the following lemma.

Lemma 3: The joint conditional probability that M is the true
matching sequence givenQmatchesM ,M ′ is the true matching
sequence given Q′ matches M ′ with rendezvous is,

P (C, C′|A,B,A,′ B,′ E) =
[
(1− α)2kdkl

]n+n′ 1

nnc−1
b

1

nv
.

(7)
Proof: Applying the Bayesian equation, we have

P (C, C′|A,B,A,′ B,′ E) =
P (A,B,A,′ B,′ E|C, C′)P (C, C′)

P (A,B,A,′ B,′ E)
(8)

Since A, B, A′, B′ are conditional independent to
E given C and C′, we have P (A,B,A,′ B,′ E|C, C′) =
P (A,B,A,′ B′|C, C′)P (E|C, C′). Also, A and B are conditional
independent to A′ and B′ given C and C′ since each vehicle
perform GBPL independently. Thus P (A,B,A,′ B′|C, C′) =
P (A,B|C)P (A,′ B′|C′). We rewrite (8) by

P (C, C′|A,B,A,′ B,′ E)

=
P (A,B|C)P (A,′ B′|C′)P (E|C, C′)P (C, C′)

P (A)P (B)P (A′)P (B′)P (E)

=
P (A,B|C)
P (A)P (B)

P (A,′ B′|C′)
P (A′)P (B′)

P (C, C′|E) (9)

It is shown in [2] that the first two terms are

P (A,B|C)
P (A)P (B) = (1− α)2n

1

(kdkl)n
, (10)

P (A,′ B′|C′)
P (A′)P (B′)

= (1− α)2n
′ 1

(kdkl)n
′ . (11)

Joint conditional probability P (C, C′|E) can be seen as two
vehicle trajectories stitch at rendezvous and form a combined
trajectory. We know P (C1) = 1/nv given there are nv possible
solutions, andP (C2|C1) = 1/nb because there arenb neighbors
of C1. And the combined trajectory has nc unique observations
where

max(n, n′) ≤ nc ≤ (n+ n′). (12)

By induction,

P (C, C′|E) =
1

nnc−1
b

1

nv
. (13)

Plugging (10)-(13) into (9), we obtain the lemma. �
P (C, C′|A,B,A,′ B,′ E) reflects how fast the conditional

probability increase as query graph grows when combining
inputs from two vehicles. Its counterpart in single vehicle lo-
calization is P (C|A,B) from [2]. Comparing the two, we have
the following theorem.

Theorem 1: The C-GBPL algorithm converges to actual lo-
calization is at least as fast as GBPL, because

P (C, C′|A,B,A,′ B,′ E) ≥ P (C|A,B) (14)

Proof: For single vehicle, it is shown in [2] that the condi-
tional probability that M = {Θ, D} is the true matching se-
quence given Q = {Θq, Dq} matches M is,

P (C|A,B) = [(1− α)2kdkl]
n 1

nn−1
b

1

nv
. (15)

Comparing (7) with (15), we have

P (C, C′|A,B,A,′ B,′ E)

P (C|A,B) =
[
(1− α)2(kdkl)

]n′
nnc−n
b ≥ 1,

(16)
Because kl > 1

1−α and kd > 1
1−α are generally true,nb > 1, and

nc − n ≥ 0 according to (12). �
The minimum value of nc happens when vehicle trajecto-

ries are the same. The maximum value of nc happens when
vehicles have non-overlapping trajectories. When n′ = 0, we
have nc = n and thus (16) has a ratio of 1. In such case, there
is no gain on localization efficiency. However, for most cases,
P (C, C′|A,B,A,′ B,′ E) is much bigger than P (C|A,B) which
results in significant increase in localization speed.

V. EXPERIMENTS

We have implemented the proposed C-GBPL method using
MATLAB and validated the algorithm in both simulation and
physical experiments. The experiments are based on a map of
College Station, Texas, U.S. which is 3.24 km2 in area with
52.7 km roads. The map is from OSM and termed as CSMap. We
pre-process it to the modified HLG with 1102 nodes. For com-
parison purpose, we evaluate its performance against GBPL [2],
which is the single vehicle localization counterpart.

A. Simulation

1) Data Generation: We track the localization performance
of the 25 seed vehicles as vehicles of interests and gradually
increase other vehicles on the street from a total of 25 to 1000
vehicles on the map. It simulates sparse to moderately dense
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Fig. 7. Pie chart of rendezvous events. (a) Trajectory type: random walk.
(b) Trajectory type: same-street.

Fig. 8. Failure rate percentage of trajectory type: same-street.

traffic. At 1000 vehicles in CSMap, it means that the mean car-
space is around 53 meters. All simulation results are the statistics
of the 25 seed vehicles.

To generate vehicles trajectories, each vehicle starts at random
vertices at the same time. Vehicles take two different driving
strategies: random-walk and same-street. In the random-walk
strategy, the vehicle takes random turns at intersections. For the
same-street strategy, the vehicle keeps driving on the same street.
In reality, a vehicle’s driving behavior is somewhere between
the two extreme types. Fig. 7(a) and Fig. 7(b) show rendezvous
event distribution for random walk and same-street for 1000
simulated vehicles, respectively. It is interesting that random
walk generate more type 1 events (i.e. vehicles meet at the same
street with different direction) while same street generates more
type 2 events (vehicles meet at intersections).

2) Localization Comparison: To compare the two algo-
rithms, we first compute the failure rate. A localization failure
occurs when the algorithm fails to converge to a unique location.
It may happen due vehicle trajectory or map itself. For example,
if a city map consists of perfect square grid everywhere, our
algorithm will fail. Fig. 8 shows the failure percentage for
same-street strategy. We omit the failure percentage of random
walk strategy because in this setting all vehicles can be localized.
It is expected because random walk generates more unique
query graphs. From Fig. 8, it is clear that C-GBPL utilizes the
information from other vehicles and hence reduces failure rate
to zero as traffic increases.

When GBPL and C-GBPL algorithms successfully localize
the vehicle, it is also important to compare how fast the local-
ization process takes. we use n which is the number of straight
segments in the query to measure localization speed, because
it tells how many inputs it takes to localize the vehicle. For a
given n, the algorithm may provide multiple solutions if there
are many similar routes in the map. If the number of solutions is
one, then the vehicle is uniquely localized. Fig. 9 illustrate n’s

Fig. 9. Localization speed comparison. Each marker position is the mean,
and each vertical segment is its corresponding 1± σ range. (a) Trajectory type:
random walk. (b) Trajectory type: same-street.

Fig. 10. Rendezvous of three vehicles under different scenarios. We show the
ego vehicle trajectory in red and mark straight segments in translucent yellow.
The other vehicle trajectory is shown in gray and straight segments in translucent
green.

mean and ±σ range for both algorithms under the two driving
strategies whereσ is the standard deviation ofn. Again, C-GBPL
outperforms GBPL with a smaller n. The mean value n for
C-GBPL decreases as traffic increases while the mean value
for n for GBPL remains unchanged.

B. Physical Experiments

We compare GBPL and C-GBPL in physical experiment
and test on different rendezvous scenarios. We collect three
sequences which correspond to the trajectories of three vehicles.
We record IMU readings at 400 Hz and compass readings at
50 Hz using a Google Pixel phone. Also, we access vehicle speed
readings at 46.6 Hz in average use an panda OBD-II Interface
which provide velocity feedback from wheel encoder. To test
C-GBPL, we vary rendezvous time of these three vehicles and
test on six rendezvous scenarios as shown in Fig. 10. We use
#sols (number of solutions) for a given n to measure algorithm
efficiency. For a given n, if the algorithm has fewer #sols than
the other algorithm, the better in efficiency.

Table. I shows the comparison between GBPL and C-GBPL
in both localization efficiency and speed in terms of #sols
and n accordingly. In summary, in all tests C-GBPL has better
efficiency and with a speedup factor of 1.6x on average.
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TABLE I
LOCALIZATION SPEED AND EFFICIENCY

VI. CONCLUSION AND FUTURE WORK

To assist vehicles in extreme weather conditions, we devel-
oped the C-GBPL method that did not rely on the perception and
recognition of external landmarks to localize robots/vehicles in
urban environments. The method was a multiple robot/vehicle
collaborative localization scheme using V2V communication
which combines features from rendezvous vehicles to accelerate
the mapping process. We identified different rendezvous events
to form the merged query graph. We performed graph-to-graph
matching by aggregating vehicle prior beliefs and trim candidate
vertex. We proved that the collaborative localization strategy is
faster than its single vehicle counterpart in general cases. The
algorithm was tested in both simulation and physical experi-
ments and showed superior performance over the single vehicle
counterpart.

In the future, we will work on alternative vehicle trajectory
strategies to analyze collaborative localization success rate. We
will also consider using maps with altitude information and
develop new algorithms. We will apply the algorithm online
with multiple vehicles. We will consider extracting relative
constellation information and sharing it among the vehicles. We
will report new results as they emerge.
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