Ultrafine Particles Emitted Through Routine Operation of a Hairdry	1	Ultrafine P	'articles Emitted'	Through Routine O	peration of a	Hairdrye
--	---	-------------	--------------------	-------------------	---------------	----------

2	Joseph Nelson Dawson, Kristin E. DiMonte, Matthew J. Griffin, and Miriam Arak
3	Freedman*
4	Department of Chemistry, The Pennsylvania State University, University, PA 16802,
5	United States
6	
7	Revised Submission to Environmental Science and Technology
8	May 27, 2021
9	

10 Abstract

Particulate matter is a large concern for human health. Fine and ultrafine
particulate matter has been shown to negatively impact human health; such as, causing
cardiopulmonary diseases. Current regulation targets the size of the particles, but
composition also impacts toxicity. Indoor sources of air pollution pose unique challenges
for human health due to the potential for human exposure to high concentrations in
confined spaces. In this work, six hairdryers were each operated within a plexiglass
chamber, and their emissions were analyzed with transmission electron microscopy and
energy dispersive spectroscopy (EDS). All hairdryers were found to emit ultrafine iron,
carbon, and copper. In addition, emissions from two hairdryers primarily contained
silver nanoparticles in the ultrafine range (<100 nm). The ultrafine particle emission rates
for the hairdryers that did not contain silver were measured and found to be on the same
order of magnitude as ultrafine particle emissions by gas stoves and electric burners.
Based on their size, these particles can either remain in the lung or enter into the
bloodstream after inhalation and potentially cause long term health effects.

Keywords: Air pollution · Particulate matter · Human health · Nanoparticles · Silver

Synopsis

Hairdryers emit ultrafine particles which can be harmful to human health. This paper characterizes the emissions of several hairdryers.

Introduction

In 19// the U. S. Clean Air Act was amended to reflect the growing concern of
the influence of inhalable particulate matter on human health. Since then, particulate air
pollution has been classified into three main categories: coarse particles ($< 10 \mu m$, PM_{10}),
fine particles (< 2.5 μ m, PM _{2.5}), and ultrafine particles (< 100 nm, PM _{0.1}). These
divisions are made to reflect the potential health impact of each size regime. Historically,
the impact of outdoor air pollution on human health was the emphasis of research studies.
For example, the Harvard Six Cities study outlined a direct correlation between fine
particulate matter and mortality. Those results have been confirmed and expounded upon
revealing that $PM_{2.5}$ is capable of entering deep into the lungs and becomes embedded in
the alveolar sacs, increasing the burden of cardiopulmonary disease, diabetes, and
preterm birth. ²⁻⁵ The mechanisms of toxicity include oxidative stress, mutagenicity and
genotoxicity, and inflammatory response. ⁵ In addition to the negative health effects
caused by particulate matter, it is currently estimated that the aggregate social cost, the
cost associated with treating diseases, of particulate matter in the United States is \$330
billion per year. ⁶ In more recent years, ultrafine particulate matter has been identified as a
cause for concern. Studies in rats revealed that when inhaled, these particles can enter
into the bloodstream in as little as fifteen minutes. ⁷ Upon entering the bloodstream,
particles can interact with the body on a cellular level. This cellular interaction is
dependent on the composition, size, and surface properties of the nanoparticle, and the
dependence of toxicity on composition is complex. Ultrafine particles have been
associated with respiratory diseases, cardiovascular diseases, diabetes, cancer, and

negative effects on the brain and central nervous system.^{8,9} While the field of nanotoxicology is fairly new, the effect of metal nanoparticles, such as, gold, silver, titanium dioxide, and iron oxide have been investigated.¹⁰ Once absorbed into the bloodstream, metal nanoparticles have been shown to cause oxidative stress and mitochondrial damage.¹¹ Even if these particles do not enter the bloodstream, they can cause irritation of the lung by depleting antioxidants in the lung lining fluid and initiating oxidative stress.¹² As concern over the impact of particulate matter continues to rise, compositional information will be key to understanding the full health effects of ultrafine particles.

While much focus has been placed on outdoor air pollution, Americans spend approximately 87% of their time indoors, and daily activities like cooking and cleaning release particulate matter into the air. Additionally, particulate matter from outside can transfer indoors where it can dwell for long periods of time. High particle number concentrations and large particle surface areas result in an increased number of particles being absorbed into the bloodstream, or otherwise deposited onto tissues. Amany household items and activities, such as cigarette smoking, candle burning gas stove operation and heated surfaces, serve as sources of ultrafine particles. Indoor sources of particulate matter generally generate much less particulate matter than outdoor/industrial sources, but because these particles are confined in small room volumes they can quickly exceed the EPA's National Ambient Air Quality Standards (NAAQS). Exposure to indoor pollutants such as open burning fires can be greater and cause more cognitive impairment that outdoor exposure to pollutants such as commuting on heavily-trafficked roads (Maher et al. 2021). Ultrafine particles have high

mobility and quickly coagulate to form larger particles. The risk associated with these particles is therefore dependent on the rates of emission, aggregation, and deposition.^{15, 20, 22} These rates determine the number and size of the particles as a function of distance from the source. A recent campaign (HOMEChem) has used a test home to investigate the gas, particle and surface chemistry in the indoor environment.²³⁻²⁷ These studies focused on the impacts of ventilation and addressed influence of organic aerosol particles and gas phase pollutants.

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

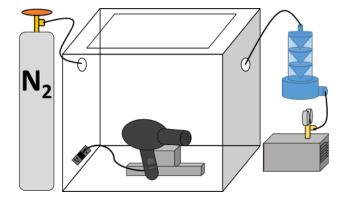
Due to the ability of nanoparticles to enter into the bloodstream, size distribution information alone is not enough to fully understand their impact on human health. The emerging field of nanotoxicology attempts to elucidate the health impacts of nanoparticles based on their composition and size. 10, 28, 29 Understanding the full effects of indoor air pollution lies in the composition of the ultrafine particulate matter. Recent literature has focused on household sources of silver nanoparticles. Silver nanoparticles are well known antimicrobial agents and many products seek to benefit from those properties. ^{30, 31} Quadros and Marr identified various household antimicrobial sprays as containing silver nanoparticles.³² Further work has been done by Taylor et al. on types of hairdryers that are marketed for containing antimicrobial silver nanoparticles, as potential sources of silver nanoparticles.³³ The close proximity of hairdryers to human airways during operation could allow an increase in the localized concentration of silver nanoparticles. As an antimicrobial agent, silver nanoparticles induce oxidative stress within the body. There are no guidelines established by the EPA to regulate the inhalation of silver nanoparticles, however OSHA has a set exposure limit of 0.01 mg m⁻³ for

metallic silver and recent literature has highlighted the cytotoxic effects of silver nanoparticles. 15, 29, 34

In this paper, the ultrafine particles emitted from hairdryers are characterized, with a focus on silver nanoparticles due to their specific health effects. Hairdryers were selected based on user-specified popularity, and operated under controlled conditions so that the particles generated could be studied. The emission rate of ultrafine particles were determined and an elemental characterization of these particles was performed using TEM and EDS.

Materials and Methods

Hairdryers


Six hairdryers were selected for investigation based on the "most popular" listing of hairdryers on Amazon.com at the time of purchase. These included five new and unused hairdryers, and one heavily used hairdryer. The following unused hairdryers were tested: Revlon 1875-watt ceramic, ion hairdryer (Model RV484), Remington Pro (Model D3190), Ovonni (Model BST-808I), Ionic Turbo (Model HTDR5577SN2), and ConAir 1875 Watt (Model 247). The heavily used, approximately five-year-old hairdryer, was a Revlon 1875-watt hairdryer (Model RVDR5034). The older hairdryer was used to see if a different distribution of particles was observed after long term use.

Particle Generation and Collection

A 127.5 L Plexiglass chamber was built to house the hairdryers during operation to eliminate the influence of ambient aerosol particles (Figure 1).³⁵ In contrast, a previous study with hairdryers was performed in open air without a chamber, where the background levels of aerosol particles are high.³³ Our chamber was purged with prepurified nitrogen gas at a flow rate of 1.5 L min⁻¹ for approximately 30 min.

Afterward, a condensation particle counter (TSI 3775, Shoreview, MN) was used to verify that the concentration of particles within the chamber had reached a minimum.

Each hairdryer was then operated on the lowest setting for 1 min while maintaining a constant 1.5 L min⁻¹ flow of prepurified nitrogen. Using a cascade impactor (PIXE International Corp., Tallahassee, FL, USA) particles were collected onto 200 mesh copper TEM grids coated with a continuous carbon coating (Electron Microscopy Science, Hatfield, PA). The cutoff diameter of the impactor stage used is 250 nm. It was assumed that the fan within the hairdryer was sufficient to maintain a well-mixed chamber and thus a mixing fan was not used.

Figure 1: Schematic figure of hairdryer experimental set-up showing nitrogen input, impactor, and pump.

Characterization of Chamber and Emission Calculations

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

To determine the emission rates of the hairdryers, the 127.5 L Plexiglass chamber was characterized. First, the air exchange rate (AER) was determined by first filling the chamber with 2500 ppmv CO₂ and then flowing clean air into the chamber at a rate of 1.5 L min⁻¹. A vacuum pump was used to match the flowrate entering the chamber by pulling on the chamber at a rate of 1.5 L min⁻¹. The concentration of CO₂ was monitored with a HOBOware Onset data logger (U12-013 logger, Telaire 7001 CO₂ sensor). The rate of decay for the CO₂ was determined and is the AER. Next the particle deposition rate within the chamber was determined. This was done by filling with chamber with aerosolized 200 nm polystyrene spheres latex beads (PSLs) using an atomizer (TSI 3075) and an air flow rate of 1.5 L min⁻¹. The chamber was continually filled with these aerosolized PSLs until the concentration of particles was stable. The particle concentration was monitored and recorded using a condensation particle counter (CPC, TSI 3775). Once the concentration stabilized, the generation of aerosol was halted but a clean purge flow at a rate of 1.5 L min⁻¹ was maintained. The rate of decay of the particles while a purge flow was maintained was then determined. Representative time traces from the air exchange and deposition rate measurements are shown in Fig. S1. To determine the particle deposition rate, the air exchange rate was subtracted from the particle decay rate with a purge flow. Each hairdryer was operated at its lowest setting in the chamber while maintaining a purge flow of 1.5 L min⁻¹ for 30 min, which exceeded the time required for the particle concentration to reach a maximum and steady value. Note that the hairdryers do warm up the chamber during operation, which could result in

some particles reemitting from the walls of the chamber. After 30 min the hairdryer was turned off while the purge flow continued for another 30 min. Particle emission rates (S)

were calculated by

158
$$S = \frac{V(a+k)C_{peak}}{1 - e^{(a+k)t}}$$
 (1)

where V is the volume of the chamber, C_{peak} is maximum concentration of the particles before they began to decay, a is the air exchange rate, k is the particle deposition rate, and t is the time at C_{peak} . These emission rates were determined for the particles in the ultrafine range, therefore particles greater than 100 nm in diameter were not included in the particle counts. This was done by acquiring a SMPS profile and adding together the particle counts for particles less than 100 nm. Representative emission rate time traces and SMPS size distributions are shown in Figs. S2 and S3. Note that the SMPS characterizes particles by their electrostatic mobility diameter rather than their geometric size. The theory for which particles are transmitted by the SMPS in a certain size bin assumes that the particles are spherical. The transmission of particles is independent of their composition.

Particle Characterization

A Tecnai G20 20 XTWIN transmission electron microscope (FEI, Hillsboro, OR) with an accelerating voltage of 200 keV was used to acquire images of particles generated by the hairdryer. This electron microscope is equipped with an EDAX Apollo XLT 30mm² silicon drift detector energy dispersive spectrometer (EDS) with a super ultra-thin window. This EDS detector was used to obtain point EDS spectra to quickly

characterize particle composition. EDS maps were obtained with a FEI Talos F200X scanning/transmission electron microscope (FEI, Hillsboro, OR) with an accelerating voltage of 200 keV using the Super-X EDS windowless, quad silicone drift detector system at a current of -0.15 nA and a solid angle of 0.9 srad. ImageJ software (NIH) was used to determine the area equivalent diameters of each particle analyzed from the digital micrographs.

Characterization of Composition of Hairdryer Components

To determine the source of the silver nanoparticles coming from the hairdryers, their components were studied. The Revlon 1875-watt hairdryer (Model RVDR5034) was disassembled and its components isolated for analysis with inductively coupled plasma emission spectrometry (ICP-AES). Small samples were obtained from each unique component. Each sample was digested in acid and analyzed via a Perkin-Elmer Optica 5300 UV ICP-AES for silver concentration. Additionally, a duplicate hairdryer of the same model that had never been operated was analyzed in the same manner.

Results and Discussion

The air exchange rate for the 127.5 L Plexiglass chamber was found to be $0.754 \pm 0.060 \, h^{-1}$ and the particle deposition rate was found to be $0.234 \pm 0.190 \, h^{-1}$. High standard deviations in particle deposition rates are common and not unexpected in this case, in part due to the fact that particle deposition rates depend on particle size. $^{36-40}$ The emission rate

of ultrafine particles was determined for four of the hairdryers. The emission rate for the Remington Pro (Model D3190) was found to be $2.60 \times 10^{12} \pm 1.47 \times 10^{12} \, h^{-1}$, for the Ovonni (Model BST-808I) it was $1.64 \times 10^{12} \pm 0.07 \times 10^{12} \,h^{-1}$, for the ConAir 1875 Watt (Model 247) it was $4.25 \times 10^{12} \pm 0.36 \times 10^{12} \, h^{-1}$, and for the Ionic Turbo (Model HTDR5577SN2) it was 1.27 x 10^{12} h⁻¹ \pm 0.42 x 10^{12} h⁻¹. Note that the uncertainty shown represents the variation over the measurement period. Due to the destructive nature of the ICP-AES experiments conducted, the emission rates for the Revlon hairdryers were not determined, however since the other four hairdryers produced ultrafine particles on the same order of magnitude, we expect these hairdryers to be in the same range. The concentration of ultrafine particles generated by the hairdryers were on the same order of magnitude as ultrafine particle emissions by gas stoves and electric burners, and an order of magnitude higher than ultrafine particle emissions by candles.⁴¹ Note that the cited measurements were taken in a full scale, single-story test house with a floor area of 140 m². Measurement of the particles generated by the gas and electric stoves were taken in the master bedroom, giving an indication of the quantity of particles that travel throughout the house. The measurement of candle emissions was taken in the same room as the source.⁴¹ These measurement conditions and results suggest that hairdryers produce a lower concentration of particles than gas and electric stoves and a higher concentration than candles.

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

Table 1: Hairdryer emissions rates determined by the chamber studies and compositions of particles determined by EDS for the six hairdryers in this study.

Hairdryer	Emission Rate (x10 ¹² h ⁻¹)	Size Distribution Comments	Composition
Remington Pro (Model D3190)	2.60 ± 1.47	N/A	Iron, Carbon, Copper
Ovonni	1.64 ± 0.07	N/A	Iron, Carbon, Copper

(Model BST-808I)			
ConAir 1875 Watt (Model 247)	4.25 ± 0.36	N/A	Iron, Carbon, Copper
Ionic Turbo (Model HTDR5577SN2)	$\textbf{1.27} \pm \textbf{0.42}$	N/A	Iron, Carbon, Copper
Revion 1875 Watt (Model RVDR5034)	N/A	Bimodal	Silver, Nickel, Iron, Carbon, Copper
Revion 1875 Watt ceramic, ion hairdryer (Model RV 484)	N/A	Bimodal	Silver, Nickel, Iron, Carbon, Copper

Of the six hairdryers investigated all emitted particles in the ultrafine range.

216

217

218

219

220

221

222

223

224

225

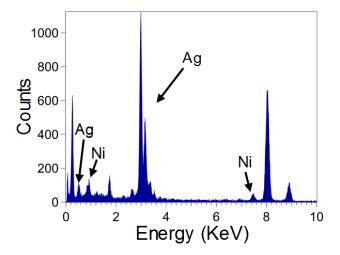
226

227

228

229

230


231

232

233

Emission rates, particle compositions, and distribution types for these hairdryers are tabulated in Table 1. EDS spectra were acquired with the EDAX Apollo XLT system and the spectra were used to characterize the composition of particles from each hairdryer. Each of the hairdryers emitted particles composed of iron and likely particles composed of copper and carbon. Due to the presence of copper and carbon in the grid however, the determination of these elements in the sample may be unreliable. It should be noted that the relative intensity of the EDS signals does strongly suggest that some particles were composed of carbon and/or copper because they are higher than the background level. Copper and iron are redox active and are known to cause oxidative stress in models for lung epithelial tissue. 42-44 We have focused below on the silver nanoparticles found in two hairdryers due to current interest in their fate in the environment as a result of their growing use in consumer products as antimicrobial agents. Most notably, two of the hairdryers, the Revlon 1875-watt ceramic, ion hairdryer (Model RV484) and the Revlon 1875-watt hairdryer (Model RVDR5034) primarily emitted silver nanoparticles (Figure 2). As a result, these hairdryers were analyzed in more detail. Of the 283 particles analyzed, 81% of particles contained silver. This result is in contrast to the work of

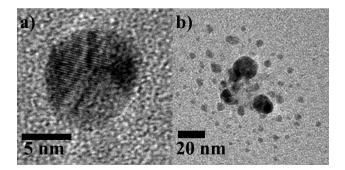

Taylor et al. who used scanning electron microscopy paired with EDS. This technique was limited to particles greater than 56 nm and as a result, no silver was detected during their study.³³ It should be noted that the hairdryers used in this study were not marketed as containing silver nanoparticles, while the study performed by Taylor et al. included hairdryers marketed in this manner³³. Note also that because our experiments were performed under N₂ gas rather than air, the particles may not be as highly oxidized as they would be in an environmental sample.

Figure 2: A representative point EDS spectrum of a particle emitted by the Revlon 1875-watt ceramic, ion hairdryer (Model RV484).

The other four hairdryers had a primary emission of carbon containing nanoparticles, which were likely organic compounds reemitted from the heating elements within the hairdryers or otherwise combustion products from the material burning on the high temperature heating elements. We note that a representative TEM image of the hairdryer emissions of the Revlon Model RV484 is shown in Figure 3a. 92.3 % of

imaged particles from this hairdryer were nanoparticles in the ultrafine range. The particles are highly crystalline, exhibiting lattice fringes. The high contrast in the images indicates that they are composed of atoms with high Z-numbers. The smallest particles that were observed in this analysis were approximately 1.5 nm in area equivalent diameter, and the largest particles were about 250 nm. Figure 3b shows one such large aggregate surrounded by many much smaller particles that are believed to have separated from the aggregate. 45 These large particles that are outside the ultrafine range were observed to be large aggregates. We focused on the particles in the ultrafine range due to their ability to potentially cross from the lungs to the bloodstream. Larger particles and very small particles (< 10 nm) are more easily filtered and deposit in the upper airway and thus pose less of a health risk. The aggregates seen in Fig. 3b are interesting in part because these larger particles may travel deeper into the respiratory system and could subsequently break apart and cross into the bloodstream. Of the total population of observed particles, sizes were as small as 4 nm. Unlike with the previously unused Revlon Model RV484, silver nanoparticles greater than 60 nm were observed in the emissions from the used Revlon Model RVDR5034. This result is likely due to aggregates of particles.

251

252

253

254

255

256

257

258

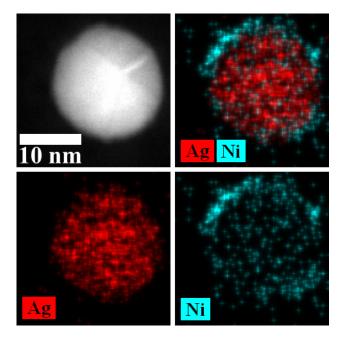
259

260

261

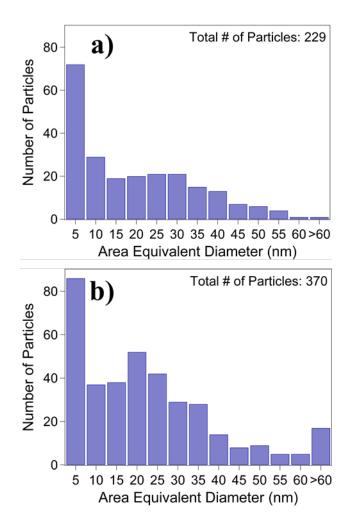
262

263


264

265

266


Figure 3: a) Representative TEM image of a single silver nanoparticle. b) Representative TEM image of a broken silver nanoparticle aggregate.

To gain a more comprehensive understanding of particles containing silver and nickel, and to subtract out background signals from the detector and grids, representative particles from the Revlon hairdryers were characterized with EDS mapping. The mapping software (ESpirit) allows for a quantitative elimination of background signal and the mapping itself allows for spatial resolution of particle composition. EDS mapping revealed that particles from the used hairdryer were primarily composed of silver with some nickel on the edges of the particles. It should be noted that while EDS provides elemental information, it does not indicate what form the element is in, and therefore the silver and nickel could be in their elemental forms or exist as oxides. A representative map of one of these particles is shown in Figure 4.

Figure 4: EDS map of a representative silver nanoparticle emitted by the used Revlon 1875-watt ceramic, ion hairdryer (Model RV484).

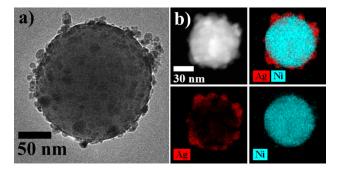

Using the data from the point EDS spectra, size resolved histograms were generated for the silver nanoparticles. The particles had a bimodal distribution centered on the 5 nm and 25 nm bins and 0 particles out of the 229 counted were > 100 nm (Figure 5a). The 5 nm bin is exceptionally high compared to the larger size bins. The large population in this bin is hypothesized to be due to loosely aggregated particles breaking free from one another upon impaction with the TEM grid (Figure 3b). This behavior has previously been observed when quartz is impacted onto SiO_x/Si substrates for scanning electron microscopy. ⁴⁶ This hypothesis is further supported by the morphology of particles that were not aggregated, as shown in Figure 6. In this EDS map, many small (<5 nm) particles appear to be loosely aggregated to a large nickel particle. This is not to say that the <5 nm particles are created by the aggregates, but that they have been there all along, and they are easier to locate and count during a TEM session due to their proximity to a larger more visible particle. Particles <5 nm shown in the histogram maybe, at least in part, due to these aggregates.

Figure 5: a) Histogram of particle sizes for silver-containing particles emitted by the Revlon Model RVDR5034 (new) hairdryer (median diameter = 13.8 nm). B) Histogram of particle sizes for silver-containing particles emitted by the Revlon Model RV484 (used) hairdryer (median diameter = 16.9 nm).

Similar results were obtained from the used hairdryer with the bimodal distribution again centered on the 5 nm and 25 nm size bins (Figure 5b). In contrast to the new hairdryer, this sample contained a significant number of particles greater than 60 nm in diameter. In this case, 5 particles out of 370 counted had diameters > 100 nm. A representative image of one of these large aggregates is shown in Figure 6a. Again, point EDS revealed that the particles from the used hairdryer were primarily composed of silver. Interestingly, particles that were greater than 60 nm were found to be composed of

Ni aggregated with small silver particles, as indicated by EDS mapping (Figure 6b). This kind of aggregation was not observed in the hair dryers that did not contain silver; however, some of the particles primarily composed of iron appeared to be coated in a carbon containing compound.

Figure 6: a) TEM image of a large aggregate emitted by the Revlon Model RVDR5034 hairdryer. b) EDS maps showing that the large aggregates emitted by the Revlon Model RVDR5034 hairdryer are nickel nanoparticles with smaller silver nanoparticles aggregated to them.

To determine the origin of the silver nanoparticles generated by the Revlon Model RVDR5034 hairdryer, it was carefully disassembled and each of the components were separated. All samples contained some silver, as expected due to the extended operation of the hairdryer. When the hairdryer is powered on and silver particles are generated, it is very likely that they are able to travel throughout the hairdryer and accumulate on all components.

The two components with the highest weight percent silver were the solder connecting the power cord to the switches in the handle of the hairdryer with 0.029 ± 0.001 wt% silver, and the metallic, foil-like cover surrounding the heating coil in the head of the hairdryer with 0.038 ± 0.002 wt% silver, marking these two components as the possible primary sources of silver nanoparticles. The heating coil cover has the largest surface area of all components and covers most of the interior of the hairdryer head,

raising the possibility that the majority of silver particles settle on this component during operation of the hairdryer as opposed to originating here. A second Revlon 1875-watt hairdryer (Model RVDR5034) was purchased, and immediately, without any operation of the hairdryer after distribution, samples of the same components were isolated and submitted for ICP-AES analysis. Unlike the first analysis, neither the metallic cover nor the solder contained the highest concentrations of silver. This validates the theory that the cover is accumulating silver during operation. Even without operating the device there was evidence of silver, ranging from 0.003 wt% to 0.020 wt%, in many different components indicating that there may not be any one major source of silver within the hairdryer, but rather multiple smaller sources. After continual operation, much of the silver collects onto the foil-like cover. The size scale of the particles emitted by the hairdryers is alarming as the particles in this range are easily inhaled and can enter the bloodstream. While we cannot directly compare the two hairdryers, it is to be noted that despite heavy usage over a long period, the used hairdryer still produced silver nanoparticles. This result indicates that long term exposure to silver is possible. Note also that the components found to contain silver are very common, but the emission of silver nanoparticles was only found for these two hairdryers.

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

The emissions from six different hairdryers were analyzed. All of the hairdryers were found to emit particles in the ultrafine range. Particles in the ultrafine range are known to cause adverse health effects such as cardiovascular and pulmonary diseases.³ The hairdryer ultrafine emission rates were found to be less than the ultrafine emissions of gas and electric stoves and more than measurements of ultrafine emissions from candles. Primarily, the particles measured with TEM were observed to be spherical.

Some research suggests that knowing the shape of these nanoparticles may be beneficial for the future of toxicological studies of indoor air pollution since some shapes may more easily pass into cells than others.⁴⁷ While in general, the hairdryers emitted particles composed of iron, copper, and carbon; the two Revlon hairdryers were shown to generate silver nanoparticles in the ultrafine particle range. Ultrafine silver particles have been shown to pose additional negative health effects in addition to those caused by uncategorized ultrafine particles.³¹ Specifically, silver nanoparticles can cause oxidative stress within cells which can lead to cellular death. Larger silver containing particles were found to be the result of aggregation of ultrafine particles. The Revlon 1875-watt hairdryer (Model RVDR5034) used in the study and a duplicate hairdryer were both disassembled and the components were tested for silver with ICP-AES. While no one component was the main source of silver, many components were found to contain silver. Due to their antimicrobial properties, silver nanoparticles can be harmful if they enter into the bloodstream and the particles observed in this study were small enough to pass through the blood-air barrier if inhaled. Even if such particles remain in the lungs they can cause irritation of the lung lining, which can lead to the onset of disease. Indoor air pollution sources are potentially harmful when operated in locations with poor ventilation. Without a removal method, ultrafine particulate matter produced by indoor sources can reach high concentrations. Sources, such as hairdryers, are often operated close to human airways and thus even when ventilation is available the proximity to pollution source may result in exposure to high concentrations of particles.

375

376

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

Supporting Information

Representative time traces for air exchange, particle deposition, and emission rate measurements. Size distributions for particles emitted from hairdryers.

Author Information

- Corresponding Author
- *To whom all correspondence should be addressed: maf43@psu.edu, 814-867-4267

Acknowledgments

The authors gratefully acknowledge support from the NSF CAREER program (CHE-1351383) and a seed grant from Penn State's Institute of Energy and the Environment. J. N. D. acknowledges funding from the NSF GRFP (NSF 1255832). We acknowledge the Materials Characterization Lab run by the Penn State Materials Research Institute for use of the FEI Talos and FEI Tecnai electron microscopes. We thank J. Gray and K. Wang from the Penn State Materials Research Institute for their expert feedback and assistance. We thank L. Liermann for her assistance with the ICP-AES. We are grateful to D. Rim for helpful discussions.

391 References

- 392 1. Dockery, D. W.; Pope, C. A.; Xu, X.; Spengler, J. D.; Ware, J. H.; Fay, M. E.; Ferris, B.
- 393 G.; Speizer, F. E., An Association between Air Pollution and Mortality in Six U.S. Cities. *New*
- 394 *England Journal of Medicine* **1993,** *329*, (24), 1753-1759.
- Pope III, C. A.; Thun, M. J.; Namboodiri, M. M.; Dockery, D. W.; Evans, J. S.; Speizer,
- 396 F. E.; Clark W. Heath, J., Particulate Air Pollution as a Predictor of Mortality in a Prospective
- 397 Study of U.S. Adults. American Journal of Respiratory and Critical Care Medicine 1995, 151,
- 398 (3), 669-674.
- 399 3. Pope III, C. A.; Burnett, R. T.; Thun, M. J.; Calle, E. E.; Krewski, D.; Ito, K.; Thurston,
- 400 G. D., Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air
- 401 Pollution. JAMA 2002, 287, (9), 1132-1141.
- 402 4. Miller, K. A.; Siscovick, D. S.; Sheppard, L.; Shepherd, K.; Sullivan, J. H.; Anderson, G.
- 403 L.; Kaufman, J. D., Long-Term Exposure to Air Pollution and Incidence of Cardiovascular
- 404 Events in Women. New England Journal of Medicine 2007, 356, (5), 447-458.
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X., The health effects of ambient PM2.5 and
- 406 potential mechansims,. Ecotoxicology and Environmental Safety 2016, 128, 67-74.
- 407 6. Heo, J.; Adams, P. J.; Gao, H. O., Public Health Costs of Primary PM2.5 and Inorganic
- PM2.5 Precursor Emissions in the United States. *Environmental Science & Technology* **2016**, *50*, (11), 6061-6070.
- 410 7. Oberdörster, G.; Celein, R. M.; Ferin, J.; Weiss, B., Association of Particulate Air
- 411 Pollution and Acute Mortality: Involvement of Ultrafine Particles? *Inhalation Toxicology* **1995**,
- *7*, (1), 111-124.
- 413 8. Ohlwein, S.; Kappeler, R.; Joss, M. K.; Künzli, N.; Hoffmann, B., Health effects of
- 414 ultrafine particles: a systematic literature review update if epidemiological evidence.
- 415 International Journal of Public Health 2019, 64, 547-559.
- 416 9. Schraufnagel, D., The health effects of ultrafine particles. Experimental & Molecular
- 417 *Medicine* **2020**, 52, 311-317.
- 418 10. Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig,
- 419 F.; Castranova, V.; Thompson, M., Understanding biophysicochemical interactions at the nano-
- 420 bio interface. *Nature Materials* **2009**, *8*, (7), 543-557.
- 421 11. Oberdörster, G.; Oberdörster, E.; Oberdörster, J., An emerging discipline evolving from
- studies of ultrafine particles supplemental web sections. Environ. Health Perspect 2005, 113, (7),
- 423 823-839.
- 424 12. W. Yang, S. T. Omaye, Air Pollutants, Oxidative Stress, and Human Health, Mutation
- 425 Research, 2009, 674, 45-54.
- 426 13. Klepeis, N. E.; Nelson, W. C.; Ott, W. R.; Robinson, J. P.; Tsang, A. M.; Switzer, P.;
- Behar, J. V.; Hern, S. C.; Engelmann, W. H., The National Human Activity Pattern Survey
- 428 (NHAPS): a resource for assessing exposure to environmental pollutants. *Journal of Exposure*
- 429 *Science & Environmental Epidemiology* **2001,** *11*, (3), 231-252.
- 430 14. Nel, A.; Xia, T.; Mädler, L.; Li, N., Toxic Potential of Materials at the Nanolevel.
- 431 *Science* **2006**, *311*, (5761), 622-627.
- 432 15. Verma, A.; Stellacci, F., Effect of Surface Properties on Nanoparticle–Cell Interactions.
- 433 *Small* **2010**, *6*, (1), 12-21.
- 434 16. Hussein, T.; Glytsos, T.; Ondráček, J.; Dohányosová, P.; Ždímal, V.; Hämeri, K.;
- 435 Lazaridis, M.; Smolík, J.; Kulmala, M., Particle size characterization and emission rates during
- indoor activities in a house. *Atmospheric Environment* **2006**, 40, (23), 4285-4307.

- 437 17. Géhin, E.; Ramalho, O.; Kirchner, S., Size distribution and emission rate measurement of
- fine and ultrafine particle from indoor human activities. *Atmospheric Environment* **2008**, *42*, (35),
- 439 8341-8352.
- 440 18. Pagels, J.; Wierzbicka, A.; Nilsson, E.; Isaxon, C.; Dahl, A.; Gudmundsson, A.;
- 441 Swietlicki, E.; Bohgard, M., Chemical composition and mass emission factors of candle smoke
- 442 particles. *Journal of Aerosol Science* **2009**, *40*, (3), 193-208.
- 443 19. Wallace, L.; Wang, F.; Howard-Reed, C.; Persily, A., Contribution of Gas and Electric
- 444 Stoves to Residential Ultrafine Particle Concentrations between 2 and 64 nm: Size Distributions
- and Emission and Coagulation Rates. *Environmental Science & Technology* **2008**, *42*, (23), 8641-
- 446 8647.
- 447 20. Rim, D.; Choi, J.-I.; Wallace, L. A., Size-Resolved Source Emission Rates of Indoor
- 448 Ultrafine Particles Considering Coagulation. Environmental Science & Technology 2016, 50,
- 449 (18), 10031-10038.
- 450 21. U.S. EPA National Ambient Air Quality Standards for Particulate Matter.
- www.epa.gov/criteria-air-pollutants/naaqs-table (November 27, 2020),
- 452 22. Nazaroff, W. W., Indoor particle dynamics. *Indoor Air* **2004**, *14*, (Supplement 7), 175-
- 453 183.
- 454 23. Ampollini, L.; Katz, E. F.; Bourne, S.; Tian, Y.; Novoselac, A.; Goldstein, A. H.; Lucic,
- 455 G.; Waring, M. S.; DeCarlo, P. F., Observations and Contributions of Real-Time Indoor
- 456 Ammonia Concentrations during HOMEChem. Environmental Science & Technology 2019, 53,
- 457 (15), 8591-8598.
- 458 24. Farmer, D. K.; Vance, M. E.; Abbatt, J. P. D.; Abeleira, A.; Alves, M. R.; Arata, C.;
- Boedicker, E.; Bourne, S.; Cardoso-Saldaña, F.; Corsi, R.; DeCarlo, P. F.; Goldstein, A. H.;
- Grassian, V. H.; Hildebrandt Ruiz, L.; Jimenez, J. L.; Kahan, T. F.; Katz, E. F.; Mattila, J. M.;
- 461 Nazaroff, W. W.; Novoselac, A.; O'Brien, R. E.; Or, V. W.; Patel, S.; Sankhyan, S.; Stevens, P.
- S.; Tian, Y.; Wade, M.; Wang, C.; Zhou, S.; Zhou, Y., Overview of HOMEChem: House
- Observations of Microbial and Environmental Chemistry. Environmental Science: Processes &
- 464 *Impacts* **2019,** 21, (8), 1280-1300.
- 465 25. Katz, E.; Boedicker, E.; Brown, W.; Day, D. A.; Jimenez, J. L.; Farmer, D.; Vance, M.;
- 466 Patel, S.; DeCarlo, P. F., Insights on Indoor Aerosol Emissions during the HOMEChem
- 467 Campaign and Potential Implications for Source Apportionment of Ambient Organic Aerosols. In
- 468 2019; Vol. 2019, pp U14C-11.
- 469 26. Patel, S.; Sankhyan, S.; Boedicker, E. K.; DeCarlo, P. F.; Farmer, D. K.; Goldstein, A.
- 470 H.; Katz, E. F.; Nazaroff, W. W.; Tian, Y.; Vanhanen, J.; Vance, M. E., Indoor Particulate Matter
- during HOMEChem: Concentrations, Size Distributions, and Exposures. *Environmental Science*
- 472 & Technology **2020**, *54*, (12), 7107-7116.
- 473 27. Tian, Y.; Arata, C.; Boedicker, E.; Lunderberg, D. M.; Patel, S.; Sankhyan, S.;
- 474 Kristensen, K.; Misztal, P. K.; Farmer, D. K.; Vance, M., Indoor emissions of total and
- fluorescent supermicron particles during HOMEChem. *Indoor Air* **2021**, *31*, 88-98.
- 476 28. Blaser, S. A.; Scheringer, M.; MacLeod, M.; Hungerbühler, K., Estimation of cumulative
- aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles.
- 478 *Science of The Total Environment* **2008**, *390*, (2), 396-409.
- 479 29. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials.
- 480 Biotechnology Advances **2009**, *27*, (1), 76-83.
- 481 30. Maillard, J.-Y.; Hartemann, P., Silver as an antimicrobial: facts and gaps in knowledge.
- 482 *Critical Reviews in Microbiology* **2013,** *39*, (4), 373-383.
- 483 31. Yang, X.; Gondikas, A. P.; Marinakos, S. M.; Auffan, M.; Liu, J.; Hsu-Kim, H.; Meyer,
- 484 J. N., Mechanism of Silver Nanoparticle Toxicity Is Dependent on Dissolved Silver and Surface

- 485 Coating in Caenorhabditis elegans. Environmental Science & Technology 2012, 46, (2), 1119-
- 486 1127.
- 487 32. Quadros, M. E.; Marr, L. C., Silver Nanoparticles and Total Aerosols Emitted by
- 488 Nanotechnology-Related Consumer Spray Products. Environmental Science & Technology 2011,
- 489 *45*, (24), 10713-10719.
- 490 33. Taylor, A. A.; Khan, M. Y.; Helbley, J.; Walker, S. L., Safety evaluation of hair-dryers
- marketed as emitting nano silver particles. *Safety Science* **2017**, *93*, 121-126.
- 492 34. U.S. Dept. of Labor. OSHA Permissible Exposure Limits / OSHA Annotated Table Z-1.
- 493 www.osha.gov/dsg/annotated-pels/tablez-1.html (November 28, 2019),
- 494 35. Afshari, A.; Matson, U.; Ekberg, L. E., Characterization of indoor sources of fine and
- 495 ultrafine particles: a study conducted in a full-scale chamber. *Indoor Air* **2005**, *15*, (2), 141-150.
- 496 36. L. Wallace, S.-G. Jeong, D. Rim, Dynamic Behavior of Indoor Ultrafine Particles (2.3 –
- 497 64 nm) due to burning candles in a residence, Indoor Air, 2019, 29, 1018-1027.
- 498 37. W. W. Nazaroff, Indoor Particle Dynamics, Indoor Air, 2004, 14, 175-183.
- 499 38. Donghyun Rim, Michal Green, Lance Wallace, Andrew Persily & Jung-Il Choi (2012)
- 500 Evolution of Ultrafine Particle Size Distributions Following Indoor Episodic Releases: Relative
- 501 Importance of Coagulation, Deposition and Ventilation, Aerosol Science and Technology, 46:5, 502 494-503.
- 503 39. A. C. K. Lai, Particle Deposition Indoors: A Review, Indoor Air, 2002, 12, 211-214.
- 504 40. T. Hussein, L. Kubincová, L. Džumbová, A. Hruška, P. Dohányosová, J. Hemerka, J.
- Smolík, Deposition of Aerosol Particles on Rough Surfaces Inside a Test Chamber, Building and Environment, 2009, 44, 2056-2063.
- Rim, D.; Green, M.; Wallace, L.; Persily, A.; Choi, J.-I., Evolution of Ultrafine Particle
- 508 Size Distributions Following Indoor Episodic Releases: Relative Importance of Coagulation,
- Deposition and Ventilation. *Aerosol Science and Technology* **2012**, *46*, (5), 494-503.
- 510 42. C. R. Keenan, R. Goth-Goldstein, D. Lucas, D. L. Sedlak, Oxidative Stress Induced by
- Zero-Valent Iron Nanoparticles and Fe(II) in Human Bronchial Epithelial Cells, EST, 2009, 43,
- 512 4555-4560.
- 513 43. A. Thit, H. Selck, H. F. Bjerregaard, Toxicity of CuO nanoparticles and Cu ions to tight
- epithelial cells from Xenopus laevis (A6): Effects on proliferation, cell cycle progression and cell
- death, Toxicology in Vitro, 2013, 27, 1596-1601.
- 516 44. B. Fahmy, S. A. Cormier, Copper oxide nanoparticles induce oxidative stress and
- 517 cytotoxicity in airway epithelial cells, Toxicology in Vitro, 2009, 23, 1365-1371.
- 518 45. El-Gendy, N.; Desai, V.; Berkland, C., Agglomerates of ciprofloxacin nanoparticles yield
- fine dry powder aerosols. *Journal of Pharmaceutical Innovation* **2010**, *5*, (3), 79-87.
- 520 46. Veghte, D. P.; Altaf, M. B.; Haines, J. D.; Freedman, M. A., Optical properties of non-
- absorbing mineral dust components and mixtures. Aerosol Science and Technology 2016, 50,
- 522 (11), 1239-1252.
- 523 47. Pal, S.; Tak, Y. K.; Song, J. M., Does the Antibacterial Activity of Silver Nanoparticles
- 524 Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia
- 525 coli. Applied and Environmental Microbiology **2007**, 73, (6), 1712-1720.

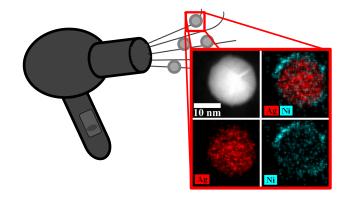


Figure 0: For TOC use only