


 

methods to overcome the discrepancies of a fiber network over 

stretching, shrinking, and distortion.  

 

    In this paper, we demonstrate the integration of MEMS 

gripper devices with fabric having random alignment. Figure 

1(a) is an idealized vision showing how the grippers curl up from 

a wafer to attach electronic devices to the underside of a fabric. 

The actual integration of MEMS structures with fabric is highly 

irregular due to the non-uniform loom woven fabric, for example 

Figure 1(b), and random device alignment without 

foreknowledge of the intersection locations.  

 

    Thanks to increased speeds, it is becoming practical to use 

direct-write lithography systems to write a single custom MEMS 

layout. The layout could potentially be customized to a fabric 

swatch. But first we need to extract the fabric structure and use 

it to lay out the design. Three image processing algorithms are 

discussed for identifying fiber crossings: 

 

1. Hough Line Transform algorithm identifies fiber 

crossings as intersections of line segments which are 

used to model the fiber threads.  

 

2. Binary image analysis identifies crossings as unique 

patterns of 1s and 0s. 

 

3. Correlation value pyramid pattern matching 

implemented in Vision Assistant- LabVIEW, compares 

a reference template to the image to extract fiber 

intersections.  

 

    Test Fabric swatches with varying fiber density, irregular fiber 

spacing, curved fiber paths etc., are created to replicate the 

discrepancies of an actual fabric. The three algorithms are 

implemented on these test swatches to extract fiber intersection 

information, and the results are illustrated. With the knowledge 

of the intersections in a fabric, we then demonstrate how to 

employ T-cells, a programmable CAD object, to customize 

MEMS gripper designs toward the integration of MEMs devices 

as idealized in Figure 1. 

 

 

           (a) 

 

 
 

 (b) 

 
. 

FIGURE 1: a. ABOVE LEFT & RIGHT: ELECTRONIC LAYOUT 

PAIRED WITH HIGHLY REGULAR FABRIC FOR PACKAGING 

ELECTRONICS; b. ACTUAL LOOM-WOVEN FABRIC IS NOT 

PERFECTLY UNIFORM. NON-UNIFORM FIBER DIAMETERS, 

UNEVEN SPACING, AND SLIGHTLY CURVED FIBER PATHS 

ARE COMMON IN REAL FABRICS. 

2.    MATERIALS AND METHODS 
 

2.1 Mechanical gripping as a method to connect 
electronics to fibers 
 

In this work, we use “pop up” microgrippers to make 
mechanical and electrical contact between MEMS and fibers. 

Bilayer cantilevers arranged in a circular fashion as shown in the 

figure 2 are designed to clasp at the intersections in the fabric. 

Strain mismatched bilayer grippers are fabricated as 

follows: 130nm thick Chrome layer is deposited on an oxidized 

wafer with 400 nm thick oxide. Photolithographic patterning is 

done to imprint the gripper design on the wafer, followed by wet 

chrome etching and plasma assisted oxide etch. The fabric is 

randomly aligned and placed over the die. The gripper structures 

are released through isotopic Si etching in a XeF2 (Xactix, Inc.) 

chamber. The strain mismatched bilayers curl when released and 

clasp on to the fabric mesh. The process is detailed further in  

[11] and the fabrication process is illustrated in figure 3. 

 

 

 
FIGURE 2: GRIPPER LAYOUT 
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Figure 3: FABRICATION PROCESS A) SI WAFER B) SIO2 

DEPOSITION C) CR DEPOSITION D) PHOTOLITHOGRAPHIC 

PATTERNING E) CR ETCHING F) SIO2 LAYER ETCHING USING 

METAL LAYER AS THE MASK G)  ALIGNMENT OF 

PATTERNED STRUCTURES WITH FIBER INTERSECTIONS G) 

XEF2 ETCHING TO RELEASE THE STRUCTURES TO GET 

MECHANICALLY ATTACHED TO THE FIBER CROSS SECTION 
 

2.2 Creating test swatches for fabric feature 
identification 
 
    Test swatches were made to replicate the discrepancies of an 

actual fabric such as uneven spacing of the fibers, non-uniform 

fiber diameters, splits within each fiber, and slightly curved fiber 

paths (Figure 3). White reflective threads are stitched on the 

black cloth which is used to provide a contrast background. 

Color threads are included to have unique color intersections for 

identification. The color threads are used to model functional 

fibers such as conductive, insulated, or optical fibers etc., that 

need to be uniquely identified among ordinary threads, for a 

macroscale application. One example is packaging temperature-

sensing electronics on fabrics having heater wires. 

 

      

FIGURE 4: TEST SAMPLES MODELLING A REAL FABRIC. 

LEFT: FABRIC WITH FIBRES OF DIFFERENT COMPOSITIONS. 

RIGHT: FABRIC WITH CURVED FIBRE PATHS (SCALE BARS 

0.5 mm) 

2.3 Three methods for identifying intersections  
Hough Line Transform Algorithm  

The fiber crossings in a fabric can be detected through a 

feature extraction algorithm extensively used in image analysis 

called the Hough line transform. The fibers in a mesh can be 

approximated to be line segments, thus detecting fiber crossings 

as intersections of these line segments. In this algorithm, a 2D 

matrix is used to represent a detected line defined in polar 

coordinates as follows: 

 𝑦 = (𝑐𝑜𝑠𝛳/𝑠𝑖𝑛𝛳)𝑥 + (𝑟/𝑠𝑖𝑛𝛳)  (1)
 𝑟 = 𝑥𝑐𝑜𝑠𝛳 + 𝑦𝑠𝑖𝑛𝛳                         (2)
 

 

The algorithm determines the possibility of a line feature in 

the image that passes through each pixel at (x,y) and computes 

the (r,ϴ) parameters of the line and stores in another 2D matrix 
that has the information of the unique line segments in the image. 

The algorithm is implemented in MATLAB’s Image Processing 
Toolbox (MathWorks, Inc.) , with binary image as the input, the 

‘hough’ function returns the (r,ϴ) parameters and H, the standard 
Hough transform matrix which is used as input for the 

‘houghpeaks’ function. The most likely feature to be called a line 

is determined with the help of the ‘houghpeaks’ function which 
uses threshold to compute the peaks. In our case the threshold is 

30% of maximum ‘H’ while detecting 100 lines. The 
‘houghlines’ function returns the end points of the line segments 

for various (r,ϴ) parameters, with binary image, (r,ϴ), Hough 

transform matrix and peaks as the inputs. Appropriate conditions 

are applied so that the ϴ values either lie between -5 and 5 

degrees or between 85 and 95 degrees. The accuracy of line 

detection largely depends on efficient edge detection and 

accurate input parameters.    
 

Binary Image Analysis 
   In this method we developed, the original image is converted 

to binary after being obtained under a highly contrasting 

background. In our case, the fibers and the background account 

for the two different values of the binary image. Crossings of the 

fibers are determined as a series of white pixels crossing a nearly 
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perpendicular series of white pixels. This algorithm detects a 

mass of points at the crossing of the fibers, computing the 

centroid of which gives the single pixel information of the 

crossing.  

 

    This algorithm is implemented in MATLAB, wherein 

‘rgb2gray’ function is used to convert the colored image to 

grayscale and ‘imbinarize’ function is used to obtain the binary 
matrix of the image. The following image is an example of ideal 

binary matrix for our algorithm, wherein vertical series of ‘ones’ 
representing the length of the fiber cross horizontal series of 

‘ones’ representing another fiber. Here, the crossing pixel is 
identified by the pixels it is surrounded by. In a real scenario, the 

fiber thickness will correspond to more than one pixel. This 

results in a collection of points being identified at the 

intersection, whose centroid can be used as the location of the 

crossing. This algorithm sustains errors such as uneven spacing 

of the fibers. Curved fiber paths are sustained to a large extent, 

but crossings at certain range of acute angles such as between 30 

to 60 degrees can be misleading.   

 

                          
 

FIGURE 5: (LEFT) BINARY MATRIX EQUIVALENT OF AN 

IDEAL BINARY IMAGE OF THE FIBER CROSSINGS (RIGHT)  

Correlation Value Pyramid-Pattern matching 
    The fiber cross sections can also be identified by feature 

matching to a reference template of the intersection in the image. 

A prevalent pattern of the fiber crossing is chosen as the 

reference template. The pattern matching algorithm is a twostep 

process consisting of image acquisition and matching 

implemented in Vision Assistant- LabVIEW. The algorithm 

acquires either the gray value information complementing the 

fine textures and dense edges in the image or the edge gradient 

information from the filtered pixels at the edges on the basis of 

illumination and resolution of the image. Subsequently pattern 

matching is done through normalized cross correlation. This step 

is time consuming as it involves serial multiplication; to increase 

the computational speed, the algorithm employs a pyramidal 

matching technique wherein using the gaussian pyramidal 

function, the image as well as the reference template are sampled 

to a quarter of their original sizes at each pyramidal level. This 

step allows faster computation but works at lower resolutions. 

The matching pattern of the fiber cross-section is evaluated 

based on the matching score which is 100 for the reference 

template itself. Patterns with matching score greater than 80 are 

identified as fiber crossings.  
 

2.4 Customizing the Gripper Design in L-Edit: T-Cells 
 
       Based on the fiber intersections data from the algorithms, 

we customize the gripper design by defining the design 

parameters such as gripper length, gripper to gripper distance etc. 

In L-Edit software (Tanner, Inc.) this task can be automated 

using programmable T-Cells which allow us to change 

parameters by defining 1D “ports” for H-Stretch, V-Stretch etc.  

  

 
 

FIGURE 6: GENERATING INSTANCES OF T-CELLS WITH 

DIFFERENT PARAMETER VALUES FOR STRETCH PORTS. 200 

MICRON GRIPPER LENGTH STRETCHED TO 486 MICRONS 

 

3. RESULTS AND DISCUSSION 
 

3.1 Results of clasping success or failure vs distance from 

randomly aligned fibers 

Fabric mesh with diameter 50 to 100-micron range and 

having mesh openings in the 500 microns to 1 mm diameter 

range was randomly aligned and placed on the MEMS bilayer 

gripper structures on the Si wafer. The structures were released 

from the Si substrate and were transferred to the fiber substrate 

through curling and mechanical tangling due to strain mismatch 

in the bilayer of Chrome-oxide grippers. The grippers at a 

relative distance (distance from the gripper center to the mesh 

fiber in units of mesh width) of less than 0.4 from the fiber 

successfully got  hold of the fabric while at relative distances 

greater than 0.4, most of the gripper arms missed the fabric. 

Figure 6 shows the binary clasping versus the relative distance 

from the mesh fiber. And Figure 7. pictorially compares a 

successful clasp versus an unsuccessful one. 

  
 

FIGURE 7: BINARY CLASPING VERSUS RELATIVE 

DISTANCE FROM THE MESH FIBRE  

Copyright © 2020 ASMEV002T09A004-4

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/M

S
E

C
/p

ro
c
e
e
d
in

g
s
-p

d
f/M

S
E

C
2
0
2
0
/8

4
2
6
3
/V

0
0
2
T

0
9
A

0
0
4
/6

6
1
9
2
6
7
/v

0
0
2
t0

9
a
0
0
4
-m

s
e
c
2
0
2
0
-8

4
5
6
.p

d
f b

y
 A

n
d
riy

 S
h
e

re
h
iy

 o
n
 2

1
 D

e
c
e
m

b
e

r 2
0
2
1



 

 

 
FIGURE 8: EXAMPLE OF SUCCESSFUL AND 

UNSUCCESSFUL CLASP OF RANDOMLY ALIGNED MEMS 

GRIPPERS ON A COMMERCIALLY PRODUCED FABRIC MESH 

 

3.2 Identifying Colored Intersections  

 All the three algorithms work with the binary equivalent of 

the image as shown in Figure 8. Identifying colored intersections 

in MATLAB among the identified fiber crossings is a two-step 

process, wherein we can either employ the Hough line transform 

algorithm or binary image analysis to filter the pixel coordinates 

of the intersections. From the original image, we can obtain the 

indexed image and the color map that quantifies each pixel with 

RBG (Red-Blue Green) coordinates. [12] The colored 

intersection pixels have unique RGB values, for example greater 

value on Red compared to other intersection pixels in the case of 

our test sample. Colored pattern matching algorithm 

implemented in Vision Assistant-LabVIEW (National 

Instruments, Inc.), to achieve the same. [11] 

 

 
FIGURE 9: TEST SAMPLE LEFT: BLACK/WHITE. RIGHT: 

ORIGINAL IMAGE. 

 

3.3 Results from the three algorithms 
From Table 1, it is observed that compared to the binary 

image analysis and the pattern matching algorithm, the Hough 

line transform algorithm has the lowest accuracy since it 

identifies fiber strands as near-vertical lines and horizontal lines 

with 10-degree tolerance. Thereby a single fiber may be 

approximated by a number of line-segments or might not even 

be detected as a line segment, if it is not in the tolerance angle or 

if it has a curved trajectory. With a greater number of fiber cross 

sections per unit space, there is a notable increase in percentage 

accuracy using the same three algorithms. 

Also, the pattern matching algorithm has the fastest 

computation speed as it employs a pyramidal matching 

technique wherein using the Gaussian pyramidal function, the 

image as well as the reference template are sampled to a quarter 

of their original sizes at each pyramidal level. This step allows 

faster computation but works at lower resolutions. 

 

Table 2 gives an insightful observation of the results, by 

comparing the algorithms over the two different samples. The 

three algorithms work well with higher fiber density in the fabric 

swatch. The Hough line transform though has lower accuracy 

compared to other algorithms when observed over individual 

samples, it works better when the fiber density is increased as is 

evident in it having a greater percentage increase in accuracy of 

17.22% compared to other algorithms for the given samples. An 

obvious increase in execution time with sample 2 is predictable.  

 

a)                                                 b) 

                              

1.                                                 1.  

              
     2.                                                    2.           

          
   3.                                                     3.  

         
 

FIGURE 10: FIBER CROSSINGS IDENTIFIED USING 1. 

HOUGH LINE TRANSFORM-INTERSECTIONS OF LINE 

SEGMENTS 2. BINARY IMAGE ANALYSIS 3. CORRELATION 

VALUE PYRAMID-PATTERN MATCHING FOR COLUMN a) 

SAMPLE 1 COLUMN b) SAMPLE 2  (SCALE BARS 0.5 mm) 
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To compare the three algorithms, we looked at their 

consistency in successfully identifying the seven intersections in 

each of the five rows (Figure 10), and  measured their speed and 

accuracy (Table 1). Another aspect of these methods is their 

output formats. Local pixel-neighborhood methods such as 

pattern matching and binary image analysis give a list of 

coordinates, while the Hough method returns equations of lines 

that often run through multiple intersections. Hough results 

therefore contain additional information on the network structure 

of the fiber junctions. While Hough can operate directly on color 

images, the other two algorithms are still able to get color 

information at each intersection location by going back into the 

original image. One can assign a material or a two-material 

junction to these intersections using a two-step process. 

 

     False positives occurred while using the Hough line transform 

and Binary Image Analysis.. With pattern matching there was 

only the issue of non-detection of some intersections (false 

negatives). The percentage false positives using Hough Line 

transform for sample 1 is 6%, while with sample 2 it is 35%. On 

the other hand, with binary image Analysis it was 2.5% for 

sample 2, while for sample 1, we didn’t encounter any false 
negatives. There is a path to increasing the number of fiber 

junctions identified using the pattern matching algorithm by 

choosing additional appropriate reference templates. 

     

 Observing the number of fiber intersections identified per row 

allows a unique understanding of how the algorithms work with 

a straight fiber path verses a curved one, with each row 

corresponding to a continuous fiber path. 

 

 

 
 

FIGURE 11: FIBER CROSSINGS IDENTIFIED ON EACH 

ROW FIBER USING THE THREE ALGORITHMS FOR SAMPLE 1 

 

 

 

 

 
 

FIGURE 12: FIBER CROSSINGS IDENTIFIED ON EACH 

ROW FIBER USING THE THREE ALGORITHMS FOR SAMPLE 2   
 

 

 

TABLE 1: ALGORITHMS EVALUATED OVER VARIOUS 

PARAMETERS  

 
  

Algorithm  

 

          Sample 1 

 

        Sample 2 

% 

Accuracy 

Execution  

time  

  

% 

Accuracy 

Execution  

time  

  

Hough 

Line 

Transform 

 54.28%  1.896 s  63.63%  3.219 s 

Binary 

Image 

Analysis 

 91.42%  3.015 s  94.8% 2.244 s  

Pattern 

matching  

 65.71%  39.02ms  72.72%  55.4ms 
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Table 2: ALGORITHMS EVALUATED AMONGST THE TEST 

SAMPLES  

 
  

Algorithm  

 

Between Sample 1 and 

Sample 2,  

% Change in 

 

 

         Aggregate 

Accuracy Execution 

time  

  

% 

Accuracy 

Execution  

time  

  

Hough 

Line 

Transform 

 17.22%  69.77%  59.82%  2.55 s 

Binary 

Image 

Analysis 

 3.69%  34.35%  93.75%  2.62 s 

Pattern 

matching  

 10.66%  41.97%  69.64%  47.21ms 

 
4.   CONCLUSION 
 

    The binary image analysis algorithm correctly identified the 

maximum number of fiber intersections in the test sample 1, 

while the pattern matching algorithm exhibited highest 

computation speed. The comparative results were consistent 

with sample 2 as well, yet there was a notable percentage 

increase in accuracy when the fiber density is increased. This 

change in accuracy is significant for the Hough Line Transform 

Algorithm. Considering more samples with more discrepancies 

such as samples with varying fiber textures, orientation or 

uneven fiber width can demonstrate more parameters that can 

affect the comparative working of the algorithms.  We 

demonstrated a MEMS gripper process that was forgiving of 

slight misalignment (Figure 6 and 7). The output of our 

algorithm was a table of x,y coordinates of the junction centers, 

which could feed a programmable CAD system information on 

how to position and lay out grippers (Figure 5) for maximum 

success aligning with a given piece of fabric. Fabrics have great 

potential as passive and active supports for electronics, but 

because real fabrics are irregular, such customized alignment 

will be important when packaging electronics on individual 

fabric fibers having specific functions. 
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