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Abstract

Winds from massive stars have velocities of 1000 km s−1 or more and produce hot, high-pressure gas when they
shock. We develop a theory for the evolution of bubbles driven by the collective winds from star clusters early in
their lifetimes, which involves interaction with the turbulent, dense interstellar medium of the surrounding natal
molecular cloud. A key feature is the fractal nature of the hot bubble’s surface. The large area of this interface with
surrounding denser gas strongly enhances energy losses from the hot interior, enabled by turbulent mixing and
subsequent cooling at temperatures T∼ 104–105 K, where radiation is maximally efficient. Due to the extreme
cooling, the bubble radius scales differently ( µ tb

1 2) from the classical Weaver et al. solution and has
expansion velocity and momentum lower by factors of 10–102 at given b, with pressure lower by factors of
102–103. Our theory explains the weak X-ray emission and low shell expansion velocities of observed sources. We
discuss further implications of our theory for observations of the hot bubbles and cooled expanding shells created
by stellar winds and for predictions of feedback-regulated star formation in a range of environments. In a
companion paper, we validate our theory with a suite of hydrodynamic simulations.

Unified Astronomy Thesaurus concepts: Star formation (1569); Stellar wind bubbles (1635); Stellar winds (1636);
Molecular clouds (1072); Star clusters (1567); Young star clusters (1833)

1. Introduction

Star formation is a notoriously inefficient process, with only
a few percent of the gas mass in galaxies being converted to
stellar mass over the relevant gravitational timescales (e.g.,
Kennicutt 1998; Krumholz & Tan 2007; Evans et al. 2009;
Murray 2011; Lee et al. 2016; Vutisalchavakul et al. 2016;
Barnes et al. 2017; Utomo et al. 2018; Kruijssen et al. 2019).
This inefficiency is thought to be caused and regulated by
feedback from stars that inject mass, momentum, and energy
into their surroundings. This injection happens from the scale
of protostellar outflows in cores (e.g., Matzner & McKee 2000;
Bally 2016; Offner & Chaban 2017), to individual massive
stars in their natal clouds (e.g., Rogers & Pittard 2013; Geen
et al. 2015b; Haid et al. 2018), to star clusters in galactic disks
(e.g., Kim et al. 2013; Hennebelle & Iffrig 2014; Gatto et al.
2017; Kim & Ostriker 2017), with many different processes
playing important roles.

On the scale of clouds, feedback is thought to be dominated by
energy provided to the interstellar medium (ISM) by massive stars
early in their lives (e.g., Krumholz et al. 2019; Chevance et al.
2020b; Girichidis et al. 2020). This energy can take a number of
forms: direct radiation pressure (e.g., Wolfire & Cassinelli 1987;
Krumholz & Matzner 2009; Raskutti et al. 2016), pressure from
warm gas heated by photodissociating/ionizing radiation leading
to ionized and neutral outflows (e.g., Whitworth 1979; Franco
et al. 1994; Matzner 2002; Kim et al. 2018, 2021), pressure from
infrared (IR) radiation created through the reprocessing of the
starlight by dust grains (e.g., Thompson et al. 2005; Murray et al.
2010; Skinner & Ostriker 2015), and the direct input of
mechanical energy in the form of stellar winds (e.g., Avedisova
1972; Castor et al. 1975; Weaver et al. 1977; Koo & McKee
1992a, 1992b; Vink et al. 2001).

The importance of these mechanisms has been debated in the
recent literature, with several observational studies attempting
to assess the relative contributions. This includes observations

of evolved clusters in the Large Magellanic Cloud (LMC) by
Pellegrini et al. (2011), Lopez et al. (2011, 2014), and McLeod
et al. (2019), as well as in the Milky Way (Rosen et al. 2014),
in nearby “normal” galaxies (Chevance et al. 2020a; McLeod
et al. 2020), and in nearby galaxies with more extreme star-
forming environments (Levy et al. 2021). The recent works of
Olivier et al. (2021) and Barnes et al. (2020) have sought to
make the same evaluation but at very early times (in deeply
embedded clusters) in the Milky Way.
Prior to these recent empirical studies intercomparing different

feedback effects, earlier observations suggested that the X-ray
luminosities of nebulae were too low to be explained by standard
wind models (Dunne et al. 2003; Townsley et al. 2003, 2006,
2011). Other works sought to explain this deficit (Garcia-Segura
et al. 1996; Capriotti & Kozminski 2001; Mackey et al. 2015;
Toalá & Arthur 2018; El-Badry et al. 2019), suggesting turbulent
mixing and radiative cooling as sinks of energy, and with Harper-
Clark & Murray (2009) appealing to the leakage of hot wind gas
out of the cloud interior due to turbulence-induced porosity.
In this paper, we present a model for the evolution of bubbles

driven by stellar winds in the presence of strong interface cooling,
induced by turbulent mixing. Turbulent motions in the hot gas are
derived from the kinetic energy of the wind, with Kelvin–
Helmholz and other instabilities growing at interfaces with the
dense cloud material, itself highly structured owing to background
turbulence. Motivated by recent work on turbulent cooling-mixing
layers in the context of multiphase galactic winds and the
circumgalactic medium (Gronke & Oh 2018; Fielding et al. 2020;
Tan et al. 2021), we argue that this cooling can be very strong,
removing up to 99% of the injected energy. The cooling is strong
enough to make the dominant phase of the bubble evolution
momentum driven (i.e., p∝ t). Our model therefore differs
significantly from the well-known Weaver et al. (1977) solution,
which is energy driven (E∝ t, with energy conserved interior to
the bubble). Building on previous models for momentum-driven
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winds (Steigman et al. 1975), we derive predictions for the
evolution of important quantities such as the bubble’s size and
expansion rate, the momentum carried by the swept-up gas
exterior to the bubble, and the energy and pressure interior to the
bubble. Our goals are to characterize the dependence of bubble
evolution on input wind power and ambient cloud properties and
to explain the physical mechanisms controlling the evolution.

In a companion paper (Lancaster et al. 2021, hereafter
Paper II) we present numerical simulations to validate the
theory we develop here and to constrain its few free parameters.
We also discuss past numerical studies that have explored this
subject.

We have, by design, simplified the problem under
consideration. Our model ignores the effects of magnetic fields
and extended star formation (in both space and time). Real
astronomical systems of course have multiple sources of energy
and additional physical elements (such as magnetic fields and
strong stellar radiation). By tackling a simpler problem,
however, we are able to develop a theoretical framework and
make quantitative predictions that can be applied to interpret
observations of star-forming clouds. We regard this as a
valuable first step toward comprehensive understanding of the
role of winds within the array of feedback processes.

The structure of this paper is as follows. In Section 2 we lay
out the details of our theory for evolution of wind-driven
bubbles in the turbulent ISM. In Section 3 we provide a guide
to applying our theory in interpreting observations. Finally, we
place our work in context in Section 4, and we conclude with a
summary of our findings in Section 5.

2. Theory

In this section we briefly review previous analytic theory of
stellar wind bubble evolution and then provide an in-depth
explanation of our new theory.

2.1. Classical Stellar Wind Bubble

The classical solution for the structure and evolution of the
bubble produced by a constant-luminosity wind expanding into
a uniform background medium was described by Weaver et al.
(1977) (see also, e.g., Avedisova 1972; Castor et al. 1975;
McCray & Kafatos 1987). We focus on the pressure-driven
(PD) stage of evolution. This stage was traditionally thought to
characterize most of the evolution when a wind-blown bubble
is produced in a star-forming cloud by a single massive star or
cluster. In this evolutionary stage, energy injected by the wind
builds up within the expanding bubble’s interior, stored in hot
gas that is highly overpressured relative to the ambient
surrounding cloud. As it expands into the ambient medium,
the overpressured bubble performs work on the background
medium, accelerating ambient gas and collecting it in a dense
shell surrounding the low-density bubble interior. Provided that
the bubble expansion is supersonic with respect to ambient gas
(always true for the cold gas in giant molecular clouds
[GMCs]), the ambient gas is initially shocked to high
temperature and then rapidly cools down to condense into the
shell that surrounds the hot bubble interior.

Weaver et al. (1977) divide the structure of the solution into
four distinct regions:

(i) free hypersonic wind;
(ii) shocked stellar wind;
(iii) shocked, cooled shell of interstellar gas;

(iv) ambient interstellar gas.

This structure is laid out schematically in of Figure 1(a).
Under the assumption that all of the thermal energy created

in the leading shock is radiated away while the bubble interior
remains nonradiative, the similarity solution for the bubble
radius is
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where w is the wind luminosity, r̄ is the mass density of the
background, and t is the time. We use the “W” subscript to
denote the Weaver solution. The dimensionless prefactor is
approximately 0.76. During a short-lived earlier stage before
the shocked ambient gas cools (analogous to the Sedov–Taylor
stage of a supernova remnant), the self-similar solution for the
outer radius has the same form, but with a dimensionless
prefactor 0.88.
The pressure in the shocked stellar wind evolves as
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In the PD bubble solution, the radial momentum carried by the
shell1 is given by
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Of the total wind energy  tw emitted up to time t, nearly half
(45%) is stored in thermal energy in the bubble interior:
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3
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where VW is the volume of the bubble in this solution.
Meanwhile, a much smaller fraction (19%) has gone into the
kinetic energy of the swept-up shell
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where pr=M R4 3sh
3¯ assuming that all the swept-up gas is

concentrated in the shell. The remaining 27/77≈ 35% of the
wind energy is presumed to be radiated away from ISM gas
that was shocked as it was swept into the advancing front of the
bubble, and then cooled efficiently at high density. It is
important to note that in the simplest version of the PD bubble
solution, radiative cooling only occurs for post-shock, swept-up
ISM gas. However, Weaver et al. (1977) do also discuss late-
stage evolution when the interior of the bubble drops to low
enough temperature that it becomes radiative.

2.2. Pressure-driven Bubble with Interface Cooling

It is widely appreciated that it is difficult to maintain an
idealized contact discontinuity, as exists in the classical
PD bubble solution, between hot, diffuse gas in the bubble
interior (shocked wind) and cool, dense gas of the shell
surrounding it (swept-up ISM; e.g., Garcia-Segura et al. 1996;

1 Throughout this work we will treat the total radial momentum of a given
solution as synonymous with the radial momentum in the swept-up shell, as the
momentum in the bubble interior is negligible.
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Capriotti & Kozminski 2001). Turbulent motions at this
interface, arising from ISM turbulence or from nonlinear
development of instabilities (e.g., Vishniac 1983, 1994; Vishniac
& Ryu 1989; Blondin et al. 1998; Bucciantini et al. 2004; Folini
& Walder 2006; Ntormousi et al. 2011; Michaut et al. 2012;
Sano et al. 2012; Pittard 2013; Badjin et al. 2016), will mix
together the hot and cool gas. Given the efficiency of cooling at
the resulting intermediate temperatures, most of the energy
carried into the interface by the hot gas would be radiatively
cooled away.

El-Badry et al. (2019) used this fact to derive a simple
modification to the PD bubble evolution for the case in which a
fraction θ of the wind luminosity is lost to radiation owing to
turbulent mixing at the interface between the hot interior and
the dense shell of the bubble:

q º



, 6int

w
( )

where int denotes the total radiative loss from the interface.
Allowing for these losses, and assuming that θ is constant in
time, the overall bubble evolution follows the same form as in
Equations (1)–(5) with the substitution q - 1w w( ) . This
solution has the same dependence that the Weaver solution has
on all of the relevant parameters. For example, the shell radius
and outward radial momentum would follow
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We note that, physically, the bubble expansion is still assumed
to be primarily driven by the thermal pressure of the interior,
just at a reduced rate.
The interface cooling, int, is quite distinct from the energy

that is lost to radiation as shocked ISM gas cools down and
joins the outside of the shell. In the El-Badry et al. (2019)
solution, the radiative losses at the leading shock become

q- 27 77 1 w( )( ) , i.e., the same fraction of “available”
energy is still lost to cooling in the swept-up, shocked ISM
(region (iii) in Figure 1(a)). To make this distinction more
explicit, we will define the total fraction of energy that is lost to
radiative cooling as

Q º


E
. 8cool

w
( )



For the El-Badry et al. (2019) solution, Θ= 0.35+ 0.65θ and
thus2 q- Q = -1 0.65 1( ).
El-Badry et al. (2019) evaluated θ in the case where the

mixing is governed by an effective turbulent diffusivity
κeff= λδv, where the right-hand side represents the product
of a spatial (λ) and velocity (δv) scale of turbulence in the
mixing layer. Since the simulations were spherical, κeff= λδv
was treated as an arbitrary parameter, and a range of values
were explored.
Based on a combination of predicted scaling relations and

numerical measurements, El-Badry et al. (2019) showed that
θ depends on the ambient medium density r̄ and cooling rate

Figure 1. Schematic diagrams illustrating the structure of an expanding wind-driven bubble for (a) the classical PD bubble of Weaver et al. (1977), with a uniform
background and cooling only at the leading shock, and (b) the case explored in the present work, where the background is a turbulent medium and there is efficient
cooling at the interface between the wind and the shell. For both, the innermost region (i) is the same, consisting of a free-flowing (hypersonic) radial stellar wind. In
both cases, there is strong shock in which much of the wind’s kinetic energy is thermalized; outside of this is region (ii), consisting of hot, shocked stellar wind. Both
phases of the stellar wind have low density and minimal cooling. In panel (b), dense clumps of gas create bow shocks that increase the overall obliquity of the shock
front, so that the post-shock radial velocity remains higher. In panel (a), there is a contact discontinuity (and an evaporative flow, if conduction is included) at the
interface between the shocked wind and the surrounding dense shell. In panel (b), the shocked wind flows into the dense shell, interacting strongly in a turbulent
interface layer, which has a fractal structure. The intermediate-temperature mixture of hot shocked wind gas and dense shell gas cools rapidly and merges into the
shell. In both panels (a) and (b), most of the mass in the shell consists of shocked ISM gas that has cooled down. The outermost region (iv) is ambient ISM gas,
uniform in panel (a) but turbulent and inhomogeneous in panel (b). Image credit: Cameron Lancaster.

2 Here we use 0.65 (0.35) as approximate shorthand for 50/77 (27/77).
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Λ(Tpk) at the temperature of maximal cooling, Tpk, as
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where kB is the Boltzmann constant.
The pressure is relatively constant in a mixing/cooling

interface, but the temperature varies. It is useful to define the
minimum cooling time as

º
L

=
L

t
P

n T

k T

P T
. 10cool 2

pk

B pk
2

pk( )
( )

( )
( )

It is straightforward to show that Equation (9) is equivalent to
q q k- » t R1 1.1 eff cool

1 2
EB( ) ( )  for the modified PD bub-

ble solution.
We further note that the El-Badry et al. (2019) simulations

included classical microphysical (“Spitzer”) thermal conduc-
tion in addition to turbulent diffusivity. As discussed in that
paper (following Weaver et al. 1977), nonzero thermal
conduction leads to evaporation of gas from the interface into
the hot interior, which results in an increase of the hot-gas mass
and a decrease of its temperature (with pressure unchanged).3

The thermal conduction does not lead to significant cooling
because the conduction is only important at high temperatures
when cooling is weak. The cooling that does occur is a result of
turbulent mixing.

2.3. The Efficiently Cooled (EC) Solution

We now suppose that the energy losses in the bubble/shell
interface are so extreme that the PD regime is no longer
relevant. A schematic of this scenario is given in Figure 1(b). In
this limit, the mixing (and subsequent radiative cooling) of the
shocked wind and dense shell gas is extremely efficient, so that
little or no energy builds up in the interior of the bubble. When
cooling is maximal, only momentum conservation need be
considered. We adopt the term “efficiently cooled” (EC) to
describe the solution in this limit.

Given a constant mechanical luminosity w and mass-loss
rate Mw , the wind has asymptotic velocity w and momentum
input rate pw given by
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These parameters fully determine the fluid variables in the free
wind (section (i) of Figure 1(b)). For the shocked wind (section
(ii) of Figure 1(b)), in the Appendix we assume a steady
subsonic radial flow to evaluate the fluid variables.

In the limit that no energy is able to build up within the wind
bubble, the momentum evolution of the shell surrounding the
bubble is entirely determined by the input momentum pw . In
reality, the actual momentum can be somewhat larger than the
input wind momentum, though we expect these deviations to

be small. We parameterize any enhancement via a “momentum
enhancement factor” αp (the fundamental free parameter of our
theory) and write the momentum equation as

a=
d
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M v p , 13r psh w( ) ( )

where Msh is the mass swept into a shell by the expanding
bubble from the ambient ISM and 〈vr〉 is the mass-weighted
average radial velocity of that swept-up gas. Assuming that αp

and pw are constant in time, the radial momentum of the shell is
therefore
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where pEC is the result for the case when αp= 1, when cooling
is maximally efficient.
It is reasonable to assume, given the statistical homogeneity

of the turbulent background mass density field, that the swept-
up mass is approximately the product of the volume of the
bubble and the mean background density

r»M V . 15bsh ¯ ( )
Given the statistical isotropy of the background turbulence, it

is also reasonable to assume that 〈vr〉 is mainly dependent on
the rate of change of the bubble volume and not on its specific
geometry. To this end we define the bubble’s “effective radius”
as
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The deviations from equality in Equations (15) and (17) are
essentially geometric and mostly driven by the inhomogeneity
and anisotropy of the surrounding gas. For example, the bubble
might preferentially expand in directions where the ambient gas
has lower density, so that r<M Vbsh ¯ .
We now rewrite Equation (13) as
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where αR is an order-unity parameter that accounts for any
departure from equality in Equations (15) and (17). We note
that, unlike the case for other parameters related to energy (see
below), there is not a direct relationship between αR and αp.
However, as we show in Paper II, αR is very close to 1 for our
simulated bubbles. Taking αR to be approximately constant,
Equation (18) can be integrated to obtain
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Here REC denotes the solution for an exactly spherical bubble
expanding in a uniform ambient medium when the shell
momentum is taken to increase at a constant rate pw , as
has been derived by many authors (e.g., Steigman et al. 1975;
Koo & McKee 1992a, 1992b; Kim et al. 2017); this would

3 Ablation (by conduction or Kelvin–Helmholz instabilities) of clouds that
have been shocked and overtaken by the expanding high-velocity wind bubble
can also add mass to the hot gas (e.g., Cowie & McKee 1977; Klein et al. 1994;
Scannapieco & Brüggen 2015; Schneider & Robertson 2017; Gronke &
Oh 2018).
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apply in the limit of no energy buildup within the bubble
interior.

We now wish to determine the energetics of the bubble
interior. In the Appendix we give a derivation of the expected
values for the fluid variables in the bubble interior under the
assumption of spherical geometry with a perpendicular shock
dividing the free wind from the post-shock subsonic, steady,
radial downstream flow.

Under these assumptions the energy of the bubble interior
can be expressed as

a a= = E p E
1

2
. 20b b R p bw

1 4
,EC( ) ( )

Here =E p R 2b,EC w EC is the bubble energy in the case where the
bubble is occupied solely by the free wind, with a= = 1p .
More generally,  encodes the extra energy contained within the
bubble ( > 1 when αp> 1), with Equations (A16) and (A13)
relating  to αp.  is approximately linear in αp, with a» p

within 6%.
The pressure in the shocked wind is nearly constant, equal to

its immediate post-shock value, pp3 16w f
2( ) , wheref is the

outer radius of the free wind region, defined analogously to
Equation (16). Written in terms of b and αp, this is
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where the term in square brackets is≈ (3αp− 1)/2 within 4%
for the range 1� αp� 4 we find in Paper II.

We now consider the kinetic energy of the shell driven by
the bubble. If we assume that the vast majority of the input
momentum at any time is stored in the shell, we may write its
radial kinetic energy as

a
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The ratio of the bubble interior’s energy to the radial kinetic
energy of the shell is only weakly dependent on time as

a
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which should be approximately 2 since a» p and αR∼ 1.
This can be compared to the ratio between Equations (4) and
(5), which is equal to 7/3= 2.3. Thus, even though the EC
solution has two (or more) orders of magnitude lower energy
than the Weaver solution because most energy is radiated
away, the ratio of interior to shell energy is comparable.

In addition to expanding radially, the shell may also acquire
turbulent motion, such that Esh= Er,sh+ Eturb,sh is its total
kinetic energy. This shell turbulence is a side effect of the
interface instabilities that induce mixing and cooling. There is
no a priori prediction for the turbulent energy, but we can
describe the level of turbulent energy relative to the radial
kinetic energy as
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With this definition, the total energy of the shell plus bubble
interior (neglecting the small thermal energy of the shell) will
be a a+ = + + E E f E1 2b R psh turb r,sh( ) .
We can use the above to formulate an expression for the

fraction of the energy input rate lost to cooling, Θ. From
conservation of energy, the energy that is not lost to cooling is

ò - Q dt1w ( ) , and this must be equal to Esh+Eb. Using
Equations (12) and (22) and taking a derivative in time, we obtain
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Evidently, because µ - tb
1 2 , the fraction of energy available

after cooling is expected to be initially large but decreasing in
time. Correspondingly, the fraction Θ of energy lost to cooling
is expected to be initially small but increasing with time. In the
EC solution, the bubble energy increases as µ µE t ;b

1 2

this may be contrasted with E∝ t in classical wind-driven
bubble solutions.
Since the dimensionless prefactor in Equation (25) is order

unity, the fraction of energy retained (1−Θ) is comparable to
the ratio of the shell expansion velocity to the original wind
velocity ( b w

 ), which we show (in Paper II) drops to ∼1%
or lower over time for bubbles expanding in the dense
environments of star-forming clouds.
Having explained the evolution of the main physical quantities

in the EC theory, we illustrate the significant differences between
our theory and that of Weaver et al. (1977) (reviewed in
Section 2.1) in Figure 2. Specifically, we show the evolution of
the bubble’s radius (or b in our theory), the velocity and radial
momentum carried by the swept-up gas, and the pressure in
shocked wind in the bubble’s interior. We show results for three
different wind strengths (set by M*= 103, 104, 105 Me),
considering a cloud with mass Mcloud= 105 Me and radius
Rcloud= 20 pc or Rcloud= 2.5 pc. The mean ambient density for
the larger (smaller) cloud is nH= 86 cm−3 (nH= 4.4× 104 cm−3).
For all cases the central source has specific luminosity = Mw *- -10 erg s M34 1 1

 and specific mass-loss rate of =M Mw *


- -10 Myr2.5 1, based on Starburst99 (Leitherer et al. 1999). As
shown below in Figure 3, these values are appropriate for the first
∼2.5 Myr of star cluster evolution at solar metallicity. We have
assumed a a= = = 1R p for this comparison, so b is
equivalent to REC. The difference between our theory and that
of Weaver et al. (1977) is striking. In particular, for the radial
momentum and interior pressure, the predictions differ by factors
of 10–100.

2.4. The Turbulent Diffusivity

We now consider expectations for the properties of the
mixing layer and magnitude of the effective diffusivity κeff. In
general, a mixing/cooling interface layer of thickness Lmc

must have a balance between diffusion of energy at
volumetric rate k~ P Leff mc

2 and radiative losses at volumetric
rate∼ n2Λ= P/tcool in the mixed gas. For resolved interface
layers with a range of κeff, El-Badry et al. (2019) numerically
evaluated profiles and found k»L t2mc eff cool

1 2( ) , consistent
with this expectation; this tcool is based on the maximal
cooling rate at a given pressure, defined in Equation (10).
If we consider a flow entering a mixing/cooling interface at

velocity vrel, it carries an enthalpy flux (5/2)vrelP. This flux
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must be balanced by the cooling per unit area, n2ΛLmc=
PLmc/tcool. Equating these rates, we obtain =v 2 5rel ( )

k»L t t0.8mc cool eff cool
1 2( ) .

What sets κeff? A turbulent boundary layer would in general
have a range of physical scales ℓ, with corresponding velocities
vt(ℓ).

4 The spectrum of velocity fluctuations is usually assumed

to follow a power law,

=v ℓ v L
ℓ

L
, 26t t

p
⎛
⎝

⎞
⎠

( ) ( ) ( )

where p is the power-law index of this scaling, L is the largest
scale on which this turbulent structure function applies, and
vt(L) is the velocity at that scale.

Figure 2. Temporal evolution of physical quantities for a wind-driven bubble in both the Weaver theory (dashed lines) and the theory presented here (solid lines).
From top to bottom we show the bubble radius, the velocity and radial momentum of the swept-up gas surrounding the bubble, and the thermal pressure in shocked
wind in the bubble interior. We consider a cloud with mass Mcloud = 105 Me and a radius of Rcloud = 20 pc (left panels) or Rcloud = 2.5 pc (right panels). The
horizontal gray line in each of the top panels indicates the cloud radius. For every value we explore three different values of the mass of the star cluster driving the
wind, M* = 103, 104, and 105 Me in yellow, orange, and red, respectively.

4 Here vt(ℓ) refers to turbulence in the hot gas; Fielding et al. (2020) discuss
the relation between turbulent amplitudes in the hot and cool (mixed) gas.
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At scale ℓ, the eddy turnover (or flow-crossing) time is

º = =
- -

t ℓ
ℓ

v ℓ

ℓ

L

L

v L

ℓ

L
t L . 27e

t

p

t

p

e

1 1
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ) ( )

( ) ( )

Since p< 1 in general, te(ℓ) increases with ℓ. Thus, if the
cooling time is short enough that tcool< te(L)= L/vt(L), there
always exists some scale ℓcool such that tcool= te(ℓcool)=
ℓcool/vt(ℓcool) is satisfied. In the language of Tan et al. (2021),
this condition is the same as saying that the Damköhler number
is greater than 1, which is generally true in our simulations (see
Paper II). As noted by Fielding et al. (2020), it is this critical
scale, which has ℓcool= vt(ℓcool)tcool, that is most relevant for
mixing-mediated cooling. Turbulent eddies at ℓ> ℓcool will be
too slow to directly mix gas in a way that enables rapid cooling,
while eddies at ℓ< ℓcool will simply further enhance mixing.
Thus, the most relevant value for the effective turbulent
diffusivity is

k = =ℓ v ℓ t v ℓ . 28t teff cool cool cool cool
2( ) [ ( )] ( )

Using this diffusivity, the thickness of the mixing/cooling
layer would be Lmc≈ 2ℓcool and the inflow velocity of hot gas

to the interface would be

= »v v ℓ
ℓ

t
0.8 . 29trel cool

cool

cool
( ) ( )

The scale at which mixing/cooling occurs and the
characteristic velocity at that scale can be written in terms of
the turbulent properties at the energy-containing scale as

=
-

ℓ L
v L t

L
30t p

cool
cool

1
1⎡

⎣
⎤
⎦

( ) ( )

and

=
-

v ℓ v L
v L t

L
. 31t t

t

p
p

cool
cool 1⎡

⎣
⎤
⎦

( ) ( ) ( ) ( )

The above describe expectations for the turbulent diffusion
and the velocity of flow into the interface. In addition to the
inflow velocity, the rate of energy loss also depends on the area
of the interface. If the main energy-containing scale for the
turbulence is L, the interface will be irregular at scales L.
While turbulent mixing and cooling would still lead to inflow
to the interface at vrel∼ vt(ℓcool), the net cooling is enhanced by
having a surface that is highly corrugated at small scales. We
turn to this in the next section.

Figure 3. Evolution of several key wind quantities as calculated using the Starburst99 code (Leitherer et al. 1999). We show (a) the wind luminosity per unit mass of
the star cluster, (b) the mass-loss rate in the wind per unit stellar mass, (c) the wind momentum injection rate per unit stellar mass, and (d) the ratio of wind momentum
input rate to radiation momentum input rate. Solid lines show the result for a standard Kroupa IMF, dashed lines are for a “top-heavy” IMF in which d N d mlog log
is changed from −2.3 to −1.8 at m > 0.5 Me, and dotted lines show the results for a standard IMF but at low metallicity, Z = Ze/7.
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2.5. Fractal Nature of the Turbulent Boundary Layer

In a recent investigation of turbulent, cooling boundary
layers driven by Kelvin–Helmholtz instabilities between hot
diffuse gas and cool dense gas, Fielding et al. (2020) pointed
out that the surface of the interface obeys a fractal scaling law
(see also Tan et al. 2021, who connect this to results in the
combustion literature). Fielding et al. (2020) used this fractal
nature to derive a prediction for the rate of mixing and cooling
that occurs at shearing interfaces between cool, dense gas and
hot, diffuse gas.

In particular, Fielding et al. (2020) argue that the rate of
thermal energy loss to cooling will be equal to the rate at which
energy can be simultaneously mixed and cooled into the
turbulent interface,

»E Pv ℓ A ℓ
5

2
,t cool cool( ) ( )

where A(ℓcool) is the area of the (fractal) interface at scale
5
ℓcool.

The above corresponds to the same characteristic inflow
velocity of hot gas vrel≈ vt(ℓcool)= ℓcool/tcool as given in
Equation (29), while the total cooling rate takes into account
the fractal area A(ℓcool) of the interface at the scale ℓcool. The
above relation is valid up to an order-unity constant, which is
quantified in Fielding et al. (2020) for the case where the
interface is planar on large scales. The coefficient may depend
somewhat on the details of the problem (including how
turbulence is driven and large-scale geometry), so for present
purposes we concentrate on scalings.

For the wind-blown bubble problem, we define an
“equivalent” thermal energy flux Φcool that can be lost to
cooling via interface mixing as the rate of energy loss divided
by the surface area of an equivalent sphere,

p
F » Pv ℓ

A r ℓ

r

5

2

;

4
. 32t

b
cool cool

cool
2

( ) ( ) ( )

Here Ab(r; ℓcool) is now the full fractal surface area of the wind-
blown bubble when the bubble has some linear scale (e.g., its
radius) r.

We will make the assumption that the thin interface between
the shocked wind and the cool shell (i.e., between regions (ii)
and (iii) in Figure 1(b)) can be described by a fractal of
dimension D> 2 (as it is an interface). We will refer to its
“excess dimensionality” as d≡D− 2.
Physically, this means that if the bubble has an overall linear

scale r, the area of the bubble surface measured on scale ℓwill
be

p»A r ℓ r
r

ℓ
; 4 . 33b

d
2⎛
⎝
⎞
⎠

( ) ( )

As in Section 2.4, we assume that the energy-containing
scale of turbulence in hot gas near the interface is L and that the
turbulence can be described by a structure function of the form
of Equation (26) for ℓ� L. The power-law index is expected to
take on a value p∼ 1/3 because the turbulence in the hot gas is
generally subsonic. The amplitude vt(L) likely depends
primarily on instabilities at the interface since the wind is the
main source of free energy, but the background cloud
turbulence may be important in seeding them.

Using Equations (30) and (31), the equivalent energy flux is
expected to follow

F » Pv ℓ
r

ℓ

5

2
34at

d

cool cool
cool
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We emphasize that the fractal nature of the interface plays a
major role in enhancing energy losses, given by the factor
r ℓ d

cool( ) in Equation (34a). It is important to note that strong
inhomogeneity in a cloud (due to preexisting high Mach
number turbulence) can make the fractal structure global, with
r? L; from Equation (34c) this strongly enhances cooling.
Fielding et al. (2020) measured d≈ 1/2 for the excess

dimensionality of the fractal interface in the mixing/cooling
layer of their simulations. Combining this with p= 1/3 for
subsonic turbulence yields

F »
-

Pv L
v L t

L

r

L

5

2
. 35t

t
cool

cool
1 4 1 2

⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

( ) ( ) ( )

Since the Fielding et al. (2020) simulations were for a local
rectangular box with a shear layer, rather than a global
expanding bubble, in the situation they studied r/L→ 1. The
predicted scaling F µ -v L ttcool

3 4
cool
1 4( ) with the measured

large-scale turbulent velocity vt(L) and imposed cooling time
tcool were found to be in excellent agreement with numerical
results.
For present purposes, in order to keep the relation to the

spherical case more explicit and use the variables that we have
already developed to represent the linear scale of the bubble,
we will write the fractal area relation as

paº 


A ℓ
ℓ

; 4 , 36b b A b
b

d
2⎛
⎝

⎞
⎠

( ) ( )

where αA is an order-unity constant, which we quantify in
Paper II.
Finally, we note that even if a properly calibrated

κeff= vt(ℓcool)ℓcool were used and the cooling length were
resolved in one-dimensional simulations, it would not be
possible to capture the fractal nature of the interface, and
hence the total cooling would not be correctly captured.
To achieve the proper energy-loss rate, an “area-corrected”
effective diffusivity k = v ℓ ℓ r ℓt

d
corr,1D cool cool cool

2( ) ( ) would
have to be adopted instead, where r now denotes the radius
of the interface between the hot bubble and ambient medium in
the 1D simulation. From Equation (30), this can be written in
terms of the energy-containing scale of the turbulence as

k =
+ -

-

v L L
v L t

L

r

L
. 37t

t
d

corr,1D
cool

2p d
p

1 2
1

⎡
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⎤
⎦

⎛
⎝

⎞
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( ) ( ) ( )

2.6. Conditions for Efficient Cooling

Here we analyze the conditions under which a wind can
become “efficiently cooled.” One such condition could be
stated as the point at which the momentum incurred by pressure
work, given for the PD bubble with cooling by Equation 7(b),

5 Fielding et al. (2020) adopt the notation w for the critical scale that here we
denote ℓcool.
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is less than the direct momentum input from the wind,
=p t pw EC (Equation (14), which is the total momentum in the

EC case). This condition can be expressed formally as

- Q <


R
1 4

5

6
. 38

1 4
EC

w

⎛
⎝

⎞
⎠

( )


Since REC∝ t1/2, the term on the right above varies as t−1/2. If
cooling losses are sufficiently weak, the efficient-cooling
condition may be satisfied only at the earliest times. If,
however, cooling losses are strong, 1−Θ= 1, essentially the
whole bubble evolution may be in the efficient-cooling regime.

The above gives us a necessary condition on Θ for the wind
to be “efficiently cooled.” If an estimate of the cooling losses
were known, then this test would decide whether the cooling-
modified PD (Section 2.2) or EC (Section 2.3) bubble solution
is valid. Since, however, we have no a priori knowledge of Θ
(except through Equations (9) and (37)), it is more useful to
obtain a physically motivated condition for the EC solution to
apply.

To this end, we compare the estimated thermal energy flux
that can be lost to cooling at a turbulent interface, Φcool

(Equation 34(c)), to the thermal energy flux that an unimpeded
shocked wind would carry. Immediately after the shock, at radius
f , this flux is Φw≈ (5/2)Ppsvps with p= P p3 16ps w f

2( ) and
= v 4ps w for a spherical shock. Since the pressure is

approximately constant in the subsonic post-shock region while
energy is conserved (see the Appendix), the energy flux carried
into the boundary layer is F »  P v5 2 bw ps ps f

2( ) ( ) .
The condition for efficient cooling is that the capacity for

mixing/cooling matches or exceeds the rate at which thermal
energy is advected to the interface (ΦwΦcool), which may be
expressed as

a -

-
- v v L

v L t

L L

2

3 1
. 39
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t
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p d
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For the numerical coefficient on the left-hand side we have used
the small-αp approximation given in Equation (A14); when
αp? 1, the prefactor would instead become 3/(4αp), from
Equation (A13). The exponent (p− d)/(1− p) depends on the
exact fractal dimension, as well as the power of the turbulent
structure function. If d≈ 1/2 and p≈ 1/3, as previously
suggested by Fielding et al. (2020), this exponent is−1/4, but
in any case it is likely to be small and negative. Still, tcool can be as
small as∼10–100 yr in dense clouds (see Paper II for numerical
results). With typical ~ - v L 0.1 100 km st w

1( ) and ~L
 0.1 1 pcb , the efficient-cooling condition is satisfied for a

strong shock with = v 4ps w . Even if oblique shocks yield
a larger hot-gas velocity vps w, the efficient-cooling condition
is likely to be at least marginally satisfied.

If we think of Equation (39) as representing an outer
boundary condition on the flow within the bubble, it shows that
lower turbulence levels will allow for larger αp, i.e., more
buildup of shocked gas within the bubble. Very high turbulence
levels and large fractal dimension, in contrast, would lead to
extremely efficient mixing, with αp∼ 1.

Finally, we remark that in numerical simulations limited
numerical resolution may impose a minimum resolved scale

~ Dℓ xmin , where < <ℓ ℓ Lcool min . Following the arguments

leading to Equations (34a)–(34b) and then Equation (39),
mixing at ℓmin would provide sufficient cooling for the EC
solution to be satisfied provided that

a -
v v ℓ
ℓ

2

3 1
40a
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With p− d∼− 1/6, the cooling rate would tend to increase as
resolution and ℓmin get smaller. Thus, if Equation (40a) is
already satisfied for resolved turbulence at scale ℓmin of a few
Δx, further improvement in the resolution would not alter the
behavior given by Equation (19).
In Paper II we use Equation (40a) as an additional check of

whether we are in the efficiently cooled regime. However, due
to resolution effects, the structure function of the turbulence is
often steeper than it should be, meaning that cooling does not
necessarily increase with decreasing scale all the way to
the resolution limit. If the true mixing rate is higher than the
rate achieved in our simulations owing to resolution limitations,
the EC conditions in reality would be even better satisfied, with
αp even closer to unity.

3. Application to Star-forming Clouds

Here we write down several formulae that will equip the
reader to make practical use of our theory. To inform this
discussion, we show in Figure 3 the evolution in time of several
quantities related to stellar winds as calculated using the
Starburst99 code (Leitherer et al. 1999). We show the evolution
of the specific wind luminosity, the specific mass-loss rate, the
specific momentum input rate, and the so-called “wind
efficiency parameter,” which is the ratio of momentum input
rate in the wind and in radiation, p L cw bol( ) .
For all quantities we show the evolution for a standard solar

metallicity (Z= 0.014), Kroupa initial mass function (IMF;
Kroupa 2001) (solid lines); for a “top-heavy” IMF with a
shallower slope at m> 0.5 Me and solar metallicity (dashed
lines); and for a standard IMF with Z= 0.002≈ 10−0.85 Ze
(dotted lines, same as “low-Z” models in Leitherer et al. 2014).
Additionally, in panel (a) we separately show the contributions
from OB stars (green lines), Wolf-Rayet (W-R) stars (yellow
lines), and the total (black lines). There are also very minor
contributions to the total  Mw * from luminous blue variable
stars and red supergiant stars. We do not show these separately,
but they are included in the displayed total. The choice of the
slope for the alternative IMF, = -d N d mlog log 1.8 (instead
of −2.3 for the standard IMF), is motivated by observations
indicating that super star clusters (SSCs), including those in the
Galactic center, may be top-heavy (McCrady et al. 2005; Lu
et al. 2013; Hosek et al. 2019).
Our theory, as well as the simulations of Paper II, assumes

that all the wind properties are constant in time. Figure 3 shows
that this assumption is reasonable during the first∼2Myr of
wind evolution, before the onset of significant energy input
from W-R stars. For all of the numerical estimates below, we
adopt the standard Kroupa IMF. With a top-heavy IMF, pw
would be a factor of 4 higher, whereas pw would be an order of
magnitude lower with a low-metallicity IMF.
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For the purposes of enabling quick calculations, the formulae
we present below are written as simply as possible, setting
fturb= 0, αR= 1. Where appropriate, we comment on the range
of adjustments that would be expected based on the numerical
results presented in Paper II. Additionally, in Figure 4 we
provide a comparison of the predictions of our theory and that
of Weaver et al. (1977) for several key quantities of interest. As
we shall show, the shell velocities, cloud dispersal timescales,
and hot-gas pressures in the EC solution can be orders of
magnitude below the corresponding values for the Weaver
et al. (1977) solution. This also implies that much higher star
formation efficiency (SFE) would be required to disperse the
cloud when interface cooling is taken into account.

The primary application of our results is to bubbles
collectively driven by the winds from young massive stars in
clusters within star-forming clouds. We shall take the total
stellar mass of the cluster (including both low- and high-mass
stars) as M* and assume a centrally concentrated wind source.
Using the result from SB99 with a standard Kroupa IMF, the
direct wind momentum input rate is

= - -p M8.6 km s Myr ; 41w
1 1

* ( )

here the coefficient is based on an average over the first Myr,
while the value would be slightly lower (≈7.85) for an average

over 0.1 Myr. Averaging over the same time period,
= - 3512 km sw

1. Our solution allows for the momentum
input rate to be enhanced by a factor αp relative to the ideal
“momentum-conserving” limit (see Equation (14)).
We shall assume that after a time t the gas surrounding the

central cluster has been swept up in a shell of mass Msh by the
wind. The shell’s velocity will then be

a= -v
M

M

t
8.6 km s

Myr
. 42psh

1

sh

* ( )

When the input wind power is very low (e.g., M* 103 Me),
we show in Paper II that αp∼ 1.5− 4. This range could apply
in moderate-density GMCs, where the efficiencies of star
cluster formation are only M*/Mcloud≡ ε*∼ 1%− 10% (Lada
et al. 2010; Vutisalchavakul et al. 2016). However, winds are
likely to be most important relative to other feedback processes
in very dense clouds, such as those forming SSCs, where
ε* 10% (Leroy et al. 2017; Emig et al. 2020; Levy et al.
2021). For this range, the momentum enhancement above the
direct wind input is modest, αp∼ 1.2− 2 (see Paper II).
The evolutionary time is difficult to ascertain in observa-

tions, but from Equation (19) the shell velocity can also be

Figure 4. Comparison of several quantities as predicted by our theory (solid lines) and that of Weaver et al. (1977) (dashed lines). For the top two panels we show
results as a function of cloud radius and SFE ε* = 1%, 10%, and 50%, while the bottom left shows results for M* = 103, 104, and 105 Me (yellow, orange, and red,
respectively), using Mcloud = 105 Me for the dashed lines. Panels show (a) shell velocity vdisp when the bubble has reached the edge of the cloud, (b) time tdisp taken
for this to occur, (c) the bubble interior pressure at this time, and (d) the SFE needed to disperse the surrounding cloud. Here we show ε*,disp as a function of Rcloud for
Mcloud = 106 and 105 Me displayed as the thick and thin lines, respectively.

10

The Astrophysical Journal, 914:89 (17pp), 2021 June 20 Lancaster et al.



expressed in terms of its mass Msh, radius = R bsh , and pw as

a
=v

p R

M2
43a

p
sh

w sh

sh

1 2

⎜ ⎟
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⎝

⎞
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( )


a= - M

M

R
2.0 km s

1 pc
, 43bp

1

sh

sh
1 2

*⎜ ⎟
⎛
⎝

⎞
⎠

( )

where we have assumed p r=M R4 3sh sh
3 ¯ . Given that

a ~ -1 2p
1 2 , Equation 43(b) makes clear that a wind-driven
shell can only reach velocity>10 km s−1 if M*?Msh,
assuming that Rsh is in the range∼1–25 pc of observed star-
forming clouds. We note, however, that a top-heavy IMF
would increase the shell momentum and velocity somewhat.

We can also use Equation (19), setting = Rb cloud, to
obtain an estimate for the time required for a wind-driven
bubble from an embedded cluster to disperse the entire
surrounding parent cloud. For this simple estimate, we set
M* = ε*Mcloud and Msh= (1− ε*)Mcloud. The cloud dispersal
time can then be written as

a
e

e
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The shell velocity vdisp at this time is obtained by replacing
M*/Msh→ ε*/(1− ε*) and Rsh→ Rcloud in Equation (43b). It
is interesting that these expressions are not (explicitly)
dependent on the total cloud mass. As before, the enhancement
of the momentum input rate relative to the ideal (αp= 1) EC
solution would imply at most a ∼30% reduction in tdisp for
cases with ε* 10%. A key point is that compact clouds with
high ε* would be dispersed by wind feedback very rapidly,
well before supernovae commence.

It is important to note that the expansion rate and therefore
other derived values such as the cloud dispersal time are very
different in the EC solution from what they would be if the
classical Weaver et al. (1977) solution were applied. For
example, using the Weaver et al. (1977) solution, equivalent
calculations to the above would instead yield
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for the cloud dispersal time and the shell velocity at that time,
respectively.

In the top two panels of Figure 4, we compare the EC and
Weaver solutions for the breakout time and corresponding
velocity. For the EC solution, the breakout velocity (breakout
time) is a factor ∼5–10 lower (higher). Since Equation (45)
underestimates the dispersal timescale by up to an order of
magnitude, we caution against its use. We also caution that the
estimates in Weaver et al. (1977) and Mac Low & McCray
(1988) of the cooling time for wind-blown bubbles cannot be
used to modify the solution of Equation (1), as they are

obtained under the assumption that the hot bubble interior is
itself cooling, rather than cooling losses occurring as a result of
turbulent mixing at the interface between hot and cool gas.
Our above estimates, and the analysis and simulations of this

paper and Paper II more generally, neglect the effects of
gravity. In reality, the rate at which the expanding shell gains
momentum will be instantaneously reduced by the gravitational
force of the cluster on the shell, GM M Rsh sh

2
* , and the

gravitational force of the shell on itself, GM R2sh
2

sh
2( ).

Allowing for gravity, the wind can drive expansion only
provided that
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For a self-gravitating cloud to be fully dispersed by an
expanding wind bubble, we again set Rsh=Rcloud, M*=
ε*Mcloud, and Msh= (1− ε*)Mcloud and solve the inequality to
obtain a condition on the SFE, ε*. We express this condition in
terms of the original surface density of gas in the cloud,

pS º M Rcloud cloud cloud
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The point at which ε* is large enough that this inequality is
satisfied is a simple estimate for the SFE needed to disperse the
cloud, ε*,disp. For “normal” GMCs with Σcloud∼ 102Me pc−2,
Equation (47b) reduces to

e
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For high surface density clouds Σcloud∼ 104–105Me pc−2 such
as those forming SSCs, this reduces to
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Clearly, extremely high surface densities would translate to an
expected SFE very close to unity if winds were the only form
of feedback acting. In the bottom right panel of Figure 4, we
compare the estimate for ε*,disp based on the EC solution with
an equivalent calculation based on the Weaver et al. (1977)
theory. Evidently, the loss of energy to cooling renders winds
far less effective at limiting star formation in molecular clouds.
It is worth noting that Equation (47a) also applies in estimating

the SFE for momentum sources other than winds, by substituting
an alternative specific momentum input rate for a p Mp w * . For
example, for the same fully sampled Kroupa IMF (Kroupa 2001),
SB99 gives a specific momentum injection rate from radiation of
L*/(cM*)≈ 20 km s−1 Myr−1, a factor of 2.3 larger than the
stellar wind momentum input rate in Equation (41) (see Figure 3).
With αp∼ 1–4 as obtained from our simulations (Paper II), the
direct momentum input rates from radiation and winds would be
comparable. Allowing for the combined momentum injection rate
would respectively reduce the right-hand side of Equation (48) or
increase the right-hand side of Equation (49) by a factor of ∼2.
The above simple estimates of SFEs are interesting, but

important caveats should be kept in mind. First, there is an
implicit assumption that all wind momentum is retained in a
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cloud, but in fact it is likely that a significant portion is lost once
the bubble size becomes comparable to that of the parent cloud,
because the fractal bubble can break out through fingers and vent
the shocked wind gas. For radiation feedback, estimates of the
SFE based on the simple spherical assumption significantly
underestimate the SFE obtained from simulations with realistic
turbulent clouds owing to cancellation from multiple sources and
escape through low-density channels (e.g., Raskutti et al. 2016;
Dale 2017; Raskutti et al. 2017; Kim et al. 2018, 2019), and this is
likely to be true for winds as well. Thus, Equations (48) and (49)
should not be taken too seriously as direct predictions, but more
properly as bracketing the potential impact of winds on ε*.

Second, the effects of mass loss due to photoevaporation and
ionized gas pressure acting on neutrals are not considered above.
In fact, at low and moderate surface densities photoionization (and
to a lesser extent direct radiation pressure) is quite effective in
limiting star formation and dispersing clouds (e.g., Krumholz &
Matzner 2009; Dale et al. 2012; Raskutti et al. 2016; Geen et al.
2017; Grudić et al. 2018; Kim et al. 2018, 2021; He et al. 2019).
Our expectation is that stellar winds would aid in quenching star
formation but are likely to rival the importance of photoevapora-
tion only in clouds of quite high surface density (see Section 4).

Our results also provide an estimate for the thermal pressure
of hot gas in the interior of the bubble, which is a key
observable. Equation (21) gives the pressure as a function of
bubble radius ;b writing this in dimensional form, the result is
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In the bottom left panel of Figure 4, we compare the bubble
pressure when = Rb cloud to the bubble pressure predicted by
the Weaver et al. (1977) theory for several different cluster
masses. It is striking that the pressures differ by two or three
orders of magnitude over much of the parameter space.

Even with cooling losses, the pressure given by Equation (50)
would be quite high for small bubbles powered by luminous,
massive clusters. Larger bubbles around lower-mass clusters
would have much more moderate pressure. For the wind bubbles
around single O stars rather than stellar clusters, the predicted
pressure in hot gas is
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where =p E M2w w w,1 ,1 ,1
1 2( )   is the single-star wind momentum

input rate.
For our simulations, as presented in Paper II (see Figures 1

and 2 there), the hot-gas pressure is far lower than that
predicted in the original Weaver solution because most of the
energy deposited by the wind is lost to cooling. Paper II shows
that the measured energy reduction factor 1−Θ∼ 0.1–0.01 is
in good agreement with Equation (25). Taking a» p, the
instantaneous fraction of the injected wind energy that is not
radiated away is predicted to be

a- Q » ´ -
-

v
1 4 10

10 km s
52p

3 sh
1

( )

in terms of the shell’s expansion velocity = v bsh
 . Even if this

velocity is not measured directly, it may be estimated from
other observables through Equation (43b).

The comparisons of this section between results obtained
using the EC solution and the classical Weaver et al. (1977)
solution show that neglect of energy losses due to interface
mixing can lead to erroneous conclusions regarding the
importance of stellar winds compared to other feedback
mechanisms. For star clusters prior to breakout from molecular
clouds, the EC conditions of this paper will generally apply,
and we recommend use of formulae in this section. For a
cluster after breakout or for runaway stars, the ambient density
would be lower, leading to a longer cooling time tcool. Lower
power sources than the clusters of M* 103Me considered
here would produce lower turbulent velocities vt. In the
longer-tcool, smaller-vt situations where interface energy losses
are more moderate, we instead recommend use of the formulae
in El-Badry et al. (2019) with an appropriate diffusion
parameter (such as Equation (37)).

4. Discussion

4.1. Observations

This work was inspired in part by observations of evolved
H II regions, which suggest that the classical model of Castor
et al. (1975) and Weaver et al. (1977)—in which nearly half of
the wind energy remains in a hot bubble that can emit X-rays
and drive rapid shell expansion (∼10–50 km s−1 from
Figure 4)—is not in agreement with observations (Townsley
et al. 2003, 2006; Harper-Clark & Murray 2009; Lopez et al.
2011, 2014; Rosen et al. 2014). Instead, observations suggest
that wind energy must be lost either through leakage (Harper-
Clark & Murray 2009) or through radiative cooling at
intermediate temperatures. The former is encouraged by the
highly inhomogeneous structure of clouds, while the latter is
facilitated by turbulent mixing. We have explored the
consequences of turbulent mixing and cooling as a major
energy sink for shocked wind gas. In Paper II, we show that
such extreme cooling is not only possible but also quite typical.
These effects are expected to be especially important for early
evolution before wind bubbles break out of their natal cloud.
We have proposed (and show in Paper II) that the interfaces
between hot and cool gas in wind bubbles are fractals; this is
crucial in enhancing mixing and also important to breakout, as
bubble “fingers” can vent gas earlier than would otherwise
occur.
The EC model may be able to explain several observations.

Rosen et al. (2014) showed that, for the four dense star clusters
they studied, only 3%–30% of the energy deposited by stellar
winds could be accounted for by radiative cooling internal to
the bubble (negligible for the most part) combined with
mechanical work on the surroundings (bottom left panels of
Figures 6–9 in that work), suggesting that up to 97% of the
wind energy is lost. While Rosen et al. (2014) were able to
explain the missing energy in some of the clusters by appealing
to thermal conduction (under the assumption that energy is lost,
rather than leading to evaporation) and dust-reprocessed
radiation, these calculations are more uncertain and sometimes
overaccount for the lost energy. Rosen et al. (2014) also raised
the possibility of significant energy losses by “turbulent
conduction” (turbulent mixing+cooling in our terminology),
but they did not attempt to estimate this. Since we find (see
Paper II, Figure 17) that as little as 1% of the input energy
remains in our simulation, we conclude that radiative cooling in
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turbulent mixing layers would easily account for the missing
wind energy in observed star-forming regions.

Olivier et al. (2021) recently observed deeply embedded H II
regions, where our theory should be most applicable, but were
only able to put upper limits on effects of stellar winds owing
to a lack of long-exposure X-ray observations. Further work on
this front should allow a quantitative test of our theory.

The nearby Orion Molecular Cloud has some of the best
observations of ongoing star formation feedback in action.
Using X-ray observations with the XMM-Newton satellite,
Güdel et al. (2008) showed that the bubble being driven by the
Trapezium cluster is pervaded by (1.7–2.1)× 106 K gas and
estimated an electron density ne= 0.2–0.5 cm−3, implying
thermal pressure of Pb/kB= 2neT= (0.68–2.1)× 106 K cm−3.
Using the wind parameters quoted for θ1 Ori C (the most
massive star in the Trapezium) by Güdel et al. (2008),

= -M M0.8 Myrw
1  and = - 1650 km sw

1, we get =pw
´ - -M1.32 10 km s Myr3 1 1

 . Using Equation (51) and an
effective radius of 2 pc (Güdel et al. 2008 suggest a range of
1–4 pc, uncertain owing to geometry), we find we would
require αp≈ 5 to obtain pressure agreement at the lower end of
the estimated range. This value of αp is similar to the results we
find in our simulations for our lowest momentum input rate,

= ´ - -p M1.8 10 km s Myrw
4 1 1  (Paper II), considering the

considerable uncertainties in the observational parameters; for
example, substituting the estimated wind momentum input rate
of Gagné et al. (2005) would increase the pressure by a factor
of two.

Our work helps to explain why observational (listed above)
and numerical (Dale et al. 2014; Geen et al. 2015a, 2021)
works have found winds to be inefficient at cloud dispersal
compared to effects from ionizing radiation. However, taking
these results to mean that winds are unimportant is an
oversimplification. Winds remain important not only because
they pollute the gas surrounding nascent star clusters, perhaps
changing the chemical composition of subsequent stellar
populations (e.g., Bastian & Lardo 2018; Gratton et al.
2019), but also because they may be the primary mechanism
for cloud dispersal in some environments.

Very recently, new empirical evidence of feedback in
extreme environments was obtained by Levy et al. (2021),
who observed the environment of nascent SSCs in NGC 253
with 0.5 pc resolution ALMA observations in multiple
molecular lines. From analysis of P Cygni profiles, indicative
of cluster-scale outflows, Levy et al. (2021) obtained estimates
of the mass and momentum carried by outflows around three of
the SSCs in NGC 253 and applied our theory of stellar wind
feedback to test whether this could explain the observations.
They found that given modest momentum enhancement
factors, αp∼ 1–4, winds could plausibly be the dominant
feedback mechanism. However, our numerical findings (see
Paper II, Figure 8) suggest that αp∼ 1–1.5 in the dense
environments of SSCs (assuming high SFE). Given the
uncertainty in the measurements, winds could still be the main
drivers of feedback in these systems. The inferred αp 2
could, however, also be a sign of the contribution of other
feedback mechanisms, such as radiation. A top-heavy IMF
(see Figure 3) or a supersolar-metallicity (not shown) stellar
population could also boost the input momentum/stellar mass
(Leitherer et al. 1992; Vink et al. 2001; Leitherer et al. 2014).

4.2. Other Models of Momentum-driven Bubbles

In Section 3, we explicitly compared our results to what
would be predicted based on the classic “Weaver-type”
solution described in Section 2.1. This type of solution can
be classified as “energy-driven” evolution because the energy
of the bubble increases linearly in time, with the bubble radius
expanding as µ tb

3 5. In contrast, in our EC solution it is the
momentum that increases linearly in time, while energy only
increases as the square root of time. Evolution in the EC
solution may therefore be classified as “momentum driven.”
Momentum-driven solutions for wind bubble expansion are

characterized by µ tb
1 2 and have been considered by

several previous authors. Steigman et al. (1975) simply
assumed momentum-driven evolution, disregarding the impor-
tance of shocks and internal bubble structure. Avedisova
(1972), Castor et al. (1975), and Weaver et al. (1977) clarified
the role of internal wind shocks and argued for the importance
of energy buildup within the bubble. Subsequent authors
discussed the possibility of momentum-driven evolution due to
enhanced cooling within the bubble interior, due to a variety of
mechanisms described below. Two key differences of our
theory from these earlier proposals are that (1) in our model
energy is lost through strong radiative cooling at intermediate
temperature in a turbulent mixing layer at the surface of the
bubble, and (2) fractal structure of the interface is essential to
efficient cooling.
The wind models of Koo & McKee (1992a, 1992b) specify a

so-called “slow wind” that leads to momentum-driven bubble
evolution. However, in this model the momentum-driven
evolution is caused by the interior of the bubble being radiative
when the wind is sufficiently dense and slow, where “slow”
here is hundreds of kilometers per second, much slower than
the > - 10 km sw

3 1 winds under consideration in this paper.
Similarly, Section 7B of Ostriker & McKee (1988) considers

that interior radiative losses could be enhanced owing to the
evaporation of clouds overtaken by the wind (see Cowie &
McKee 1977). In this scenario, the majority of the cooling
would still occur in the shocked bubble interior.
In Silich & Tenorio-Tagle (2013) and Mac Low & McCray

(1988) (following Weaver et al. 1977) it is emphasized that
conduction acting at the boundary between the shocked wind
and swept-up material creates a temperature gradient and
includes a regime where cooling would be efficient, which
would eventually lead to the evolution becoming momentum
driven. This is the scenario most similar to our model.
However, as discussed in Silich & Tenorio-Tagle (2013), for
typical parameters this transition is only expected to occur after
∼10Myr, long past the timescales of evolution considered here
or over which the wind can be treated as constant luminosity
(as evidenced by Figure 3). In our model, radiative cooling in a
turbulent mixing layer is far more efficient than the conduction-
induced cooling, due in part to the fractal nature of the
interface, and the bubble becomes momentum driven at much
earlier times.

4.3. Comparison to Radiative Feedback

Several studies have argued analytically or demonstrated
numerically that radiation feedback becomes much less
efficient at dispersing clouds and limiting star formation in
very high density environments (e.g., Fall et al. 2010;
Dale et al. 2012; Kim et al. 2016, 2018; Raskutti et al. 2016;
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Grudić et al. 2018; Rahner et al. 2019; Fukushima et al. 2020),
even allowing for reprocessed radiation (Skinner & Ostri-
ker 2015; Tsang & Milosavljević 2018). In such dense clouds,
the evolutionary timescales are also too short for supernovae to
be important in dispersing cloud material.

Quantitatively, Kim et al. (2018) (Figures 8 and 12) show that
when the surface density of a cloud exceeds∼103Me pc−2, the
total momentum injection rate per stellar mass due to EUV and
far-UV radiation pressure6 drops below that in Equation (41) for
winds. This suggests that winds could potentially be the
dominant feedback process in higher-density environments. In
particular, our theory may be able to explain several aspects of
the extremely compact molecular clouds seen to be forming
SSCs in nearby galaxies (Johnson et al. 2015; Oey et al. 2017;
Turner et al. 2017; Leroy et al. 2018; Emig et al. 2020). As
SSCs/young massive clusters (e.g., Whitmore 2003; Portegies
Zwart et al. 2010) are the densest redshift-zero loci of star
formation, understanding their formation not only is interesting
in itself but also provides a window on globular cluster
formation.

It may be noted that the linear dependence of ε* on surface
density given by Equation (48) is similar to the case of
radiation-pressure-driven cloud dispersal under the idealization
of a spherical system (Fall et al. 2010; Kim et al. 2016; see also
Grudić et al. 2018; Li et al. 2019). This differs from the
e µ Scloud

1 2
* dependence reported by Fukushima et al. (2020). A
relation e µ Scloud

1 2
* is close to what would be predicted if the

cloud lifetime scales linearly with the propagation time of a
self-similarly expanding ionization front, while the star
formation rate scales inversely with the cloud freefall time.
However, the generality of the Fukushima et al. (2020) result
may be questioned, since their simulations adopted very
strongly self-gravitating clouds with a limited range of initial
gas surface density. In contrast, the radiation-hydrodynamic
simulations of Kim et al. (2018) found a non-power-law scaling
of ε* with Σcloud (see their Equation (26)) over a wider
parameter range for clouds that were initially marginally
bound. The difference between simple scaling predictions and
full numerical results for the case of radiation-driven cloud
destruction serves as a caution against taking Equation (47a) as
more than a general indicator of the trend in SFE. Full
numerical simulations will be needed to assess the effectiveness
of winds in limiting star formation in clouds of varying
conditions.

Regardless of the environment, winds may be more important
than ionizing radiation at early stages of evolution when the radius
of the H II region is small. Similar to the approach in Krumholz &
Matzner (2009), one can make a simple comparison of the wind
momentum input rate a pp w to the nominal force imposed by
thermal pressure of photoionized gas. For an effective bubble
radius b, the latter is p µ n k T Q2 4e b bB II

2
i

1 2( ) ( ) , where we
have used a p= n f Q3 4e bion i B

3 1 2[ ( )] for ionization equili-
brium with a source of ionizing photon rate Qi and a fraction
fion of photons available for ionization, and TII denotes the
temperature of the photoionized gas. The force from the wind
would exceed that from radiation when the radius is smaller than a

characteristic radius
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Adopting TII= 8000 K, αB= 3.03× 10−13 cm3 s−1, and
fion= 0.5, the characteristic radius for a bubble driven by a
single massive star with = - -p M10 km s Myrw

4 1 1  and
Qi= 4× 1049 s−1 is a= 0.11 pcb p,ch

2 . For a star cluster with

Qi≈ 4× 1046 s−1 (M*/Me) and = - -p M8.6 km s Myrw
1 1

* ,
we obtain a» M M0.79 10 pc;b p,ch

2 4
*( ) the wind is

expected to play a greater role than photoionization for bubbles
created by massive cluster stars in an early stage of evolution.
Therefore, similar to the situation analyzed by Kim et al.

(2016), where the role of wind momentum input is played by
radiation pressure, for sufficiently small radii it would be
expected that the wind dominates the dynamics. The ionized
gas layer would be compressed by the wind into a narrow layer
near the ionization front. The wind would indirectly drive the
shell expansion by enhancing density and thermal pressure of
the H II region. The relative volumes of the hot-gas and
photoionized-gas regions can be obtained by requiring that the
pressures match. In the regime where winds dominate,
radiation pressure is expected to contribute to the expansion
by further increasing the density at the ionization front (Kim
et al. 2016; Rahner et al. 2017). Later in evolution when the
radius of the H II region is large, the photoionized gas would
instead compress the hot interior of the bubble. Expansion
would be driven primarily by photoionized gas that fills most of
the bubble volume.
We note that the quantitative predictions above are based on

the assumption that there is no significant leakage of hot gas
and radiation. At a late stage of bubble evolution ( ~ Rb cloud),
both (hot and photoionized) gas and radiation are expected to
break out through low-density holes created by turbulence.

4.4. Other Physics

The theory presented here, as well as the simulations
described in Paper II, are highly idealized, not considering
many aspects of physical processes and the astronomical
parameter space that could be important to the problem at hand.
We briefly discuss some of these issues here.
First, the relevance of our results may be metallicity

dependent. We note that wind mass loss is almost linear with
metallicity, ~d M d Zlog log 0.7w , while the wind velocity
has a weak dependence on metallicity (Vw∝ Z0.13), so that the
wind momentum input rate is almost linear in metallicity (Vink
et al. 2001). Lower metallicity in the cloud could in principle
also make cooling less effective. However, we show in Paper II
that most cooling in the turbulently mixed interface gas occurs
near T∼ 104 K, where cooling is mostly due to hydrogen
(Lyα), implying that a change in metallicity should not have a
strong effect. Therefore, the effect of winds is expected to
decrease at lower metallicity.
Second, we ignore thermal conduction. As noted above and

in El-Badry et al. (2019), thermal conduction can act to
increase the density and decrease the temperature of the bubble
interior at fixed pressure. While it is not known whether
the effect of thermal conduction in the presence of genuine
turbulent mixing acts the same as for a parameterized

6 From Figure 7 of Kim et al. (2018), direct radiation pressure dominates over
effects of photoevaporation and ionized gas pressure in this regime.
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diffusivity, if this is the case, we might still expect the thermal
pressure to follow Equations (50) and (51).

Finally, while we do not include magnetic fields in our
models, in general we would expect them to have at least two
effects. First, they would add to the external pressure and
tension that the bubble must “fight against” to expand.
However, our power-law solutions already neglect external
turbulent and thermal stresses; when accounted for, these and
the magnetic stresses would slow expansion when pp 4 bw

2( )
becomes comparable to the total external stress (and depending
on the field geometry, the bubble may also expand preferen-
tially along the field lines). Second, a magnetic field could act
to inhibit development of the turbulent mixing that leads to
cooling. For example, the Kelvin–Helmholtz instability is
suppressed if the Alfvén speed in the shell gas exceeds
vshear/χ

1/2, where vshear is the shear velocity and χ is the ratio
between the density of shell gas and shocked wind gas. Even if
primary instabilities take place, magnetic tension may limit
turbulent cascades to small scales. Also, inclusion of radiation,
as discussed above, would imply that the hot gas may
principally interact with a layer of photoevaporated gas rather
than directly with the shell gas. Numerical study will be needed
to assess the parameter regime where the mixing/cooling
process and bubble evolution are strongly affected.

5. Conclusion

We have presented a theory for stellar wind bubble evolution
with extremely efficient energy losses to radiative cooling, such
that bubble expansion is determined by the original wind
momentum injection rate. In this theoretical model, the extreme
energy losses are the result of turbulent mixing and subsequent
radiative cooling at the interface between hot and cool gas at
the bubble surface, strongly enhanced by the large interface
area that arises from the fractal geometry of the bubble.

In a companion paper, referred to throughout this work as
Paper II, we validate our theory using three-dimensional
hydrodynamic simulations of wind-driven bubble evolution,
demonstrating excellent agreement. In Paper II we quantify the
few free parameters of our theory and provide a full analysis of
thermal and dynamical structure and evolution.

The treatment of stellar winds in this paper and its
companion has been largely simplified (constant luminosity
with central point-like star clusters put in by hand). This
treatment allowed us to gain a deeper theoretical understanding
of the stellar wind bubble physics that controls evolution. Still,
a fully self-consistent treatment of star formation with wind
feedback for a range of cloud parameters—both normal GMCs
and clouds capable of forming SSCs—remains an important
goal. The fractal theory developed here will serve as a valuable
tool aiding interpretation in this kind of numerical effort, as
well as observational studies of star-forming cloud structure
and evolution. In addition, the theory developed here may
potentially be applied to understanding the history of chemical
enrichment of natal clouds by embedded clusters, which would
illuminate many long-standing problems involving multiple
stellar populations within globular clusters (e.g., Lochhaas &
Thompson 2017; Wünsch et al. 2017; Bastian & Lardo 2018;
Gratton et al. 2019).
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Appendix
The Wind Interior

Here we provide a derivation for some of the properties of
the free and shocked wind phases. This analysis allows us to
write the energy enhancement factor  , post-shock pressure,
and the relative volume of free and shocked wind in terms of a
“momentum enhancement factor” αp.
We assume spherical geometry for the bubble with < r f

occupied by the free wind phase, where p= V3 4f f
1 3( ) for

the volume Vf occupied by the free wind and < < r bf
occupied by shocked wind gas.
In the free wind the flow expands with hypersonic wind

velocity w and the thermal energy is negligible, so that
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with an adiabatic equation of state,
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By substituting in for P and ρ in the Bernoulli equation, we
obtain
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which can be rearranged to arrive at

=
-
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While this equation does have an analytic solution, it is quite
complicated; an approximation that is good to within 10% is

»
v
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With Equation (A10), both the density and pressure are
approximately constant throughout the post-shock region, equal
to their immediate post-shock values given in Equations (A2) and
(A4), ρ= ρps and P=Pps.

The total rate of momentum transport across a surface of
radius r is

p r= +p r r P v4 ,2 2( ) ( )

which in the free wind region is =p r pw( )  . Using our solution
in the shocked wind region, this becomes
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This function is strictly increasing for >r 1f .
The total momentum input to the shell is obtained by taking
 r b, which from the definition in Equation (13) implies
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We can invert to obtain  b f in terms of αp as
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A useful and simple approximation for the above, which is
good to within 4% for 1� αp� 4, is given by
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alternatively, at large αp, a»  4 3b pf
2( ) . The free wind’s

volume is a fraction - b f
3( ) of the whole wind bubble.

Finally, under the assumption of spherical symmetry, the
total energy in the bubble interior is
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Given that only the kinetic energy term contributes in the free
wind, we can use Equation (A1) to derive the total energy in
the free wind as p 2w f . For the shocked wind we can derive
the energy as
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Putting these together, the total energy in the bubble interior is

=
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is the enhancement in energy above the case where the whole
wind bubble is made up of free wind ( = b f and = 1).
Using Equation (A12), one can show that a» p to within 6%.
We note that to account for the shock between the free and

post-shock wind being oblique,7 Equation (A3) can be
multiplied by a factor 4− 3μ2 to obtain the post-shock radial
velocity, while for the post-shock pressure Equation (A4) is
multiplied by μ2. Here μ is the average value of the dot product
of the unit radial vector (r̂) with the unit normal to the
shock (nshockˆ ).
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