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Abstract—We present an exact analytical solution for com-

putations of runup in constantly inclined U- and V-shaped bays.

The provided solution avoids integration of indefinite double

integrals in (Rybkin et al., Water Waves 3(1):267–296, 2021) and

is based on a simple analytic expression for the Green’s function.

We analyze wave runup in parabolic and certain V-shaped bays, for

which a particularly wide class of solutions are determinable ana-

lytically and for which a robust computational algorithm could be

developed. Our results are effective in the context of narrow bays,

where a generalized form of the Carrier-Greenspan transformation

has been developed.

Keywords: Long wave runup, shallow water equations, Car-

rier-Greenspan transform, Green’s function.

1. Introduction

Tsunamis have been threatening coastal commu-

nities for centuries. One the main challenges in the

tsunami hazard mitigation is obtaining an accurate

and quick prediction of the tsunami runup at the

shore. Having this information at hand and promptly

can save numerous lives of coastal residents and

visitors (Bernard & Titov, 2015). In Alaska and

British Columbia, before arriving to the community’s

waterfront, a tsunami typically propagates through a

network of channels and fjords. Analyzing tsunamis

at the entrance can be used for developing of special

robust computations of runup heights and estimates

of tsunami risk for communities at the head of bays.

Several empirical and numerical methods have

been proposed for computations of the tsunami runup

and the literature here is very extensive. At the same

time, many analytical solutions have been proposed

to compute the runup for constantly sloping plane

beaches based on the well-known Carrier-Greenspan

(CG) transform Carrier and Greenspan (1958), which

cast the nonlinear shallow-water equations (SWEs)

into a linear form with use of the hodograph trans-

form. The CG transform was generalized to the case

of constantly slopping bays (Rybkin et al., 2014) and

a comparison with the numerical results revealed that

this transformation work even in the double headed

fjords (Raz et al., 2018).

Analytic and semi-analytic solutions of the non-

linear SWEs for a plane beach are given usually for

initial disturbances with zero fluid velocity; see for

example papers (Pedersen & Gjevik, 1983; Synolakis

& Deb, 1988; Synolakis, 1991; Pelinovsky &

Mazova, 1992; Tinti & Tonini, 2005; Antuono &

Brocchini, 2007; Didenkulova et al., 2007, 2009;

Madsen & Fuhrman, 2008; Didenkulova, 2009;

Antuono & Brocchini, 2010; Dobrokhotov et al.,

2010; Dobrokhotov & Tirozzi, 2010; Madsen &

Schäffer, 2010; Dobrokhotov et al., 2013; Chugunov

et al., 2020), where the tsunami wave runup on plane

beached is analyzed. Similar analytical solutions for

tsunami wave runup in narrow bays have been also

derived and to lesser extent in narrow bays (Zahibo

et al., 2006; Didenkulova & Pelinovsky, 2009; Ryb-

kin et al., 2014; Harris et al., 2016; Garashin et al.,

2016; Shimozono, 2016, 2020, 2021).

It is important to note that papers cited above use

the initial disturbances only as water surface dis-

placement with no fluid velocity. A few studies have

considered nonzero initial velocities (Carrier et al.,
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2003; Kânoğlu & Synolakis, 2006; Aydin & Kâno-

ğlu, 2017; Nicolsky et al., 2018). It is important to

note that one of the complications with a non-zero

velocities is that the initial conditions in ðx; t ¼ 0Þ
line and not mapped to hodograph variables

ðr; k ¼ 0Þ, but rather on a manifold in the ðr; kÞ
coordinates. Recent works on providing appropriate

initial and boundary conditions the ðr; kÞ space help

to overcome these complications (Rybkin, 2019;

Rybkin et al., 2021).

In many above-mentioned manuscripts, analytical

solutions are based on the Bessel or Bessel-Hankel

transforms and require a computation of indefinite

double integrals with Bessel functions. In particular,

one has to map a function into the image space and

then pull back, while ensuring an accuracy control

over all calculations. For computing runup at the

plane beaches, Carrier et al. (2003) and later Kânoğlu

and Synolakis (2006) introduced a Green’s function

alternative, which avoid the above-mentioned com-

putational challenges. In these works, using certain

physically based assumptions, both non-zero initial

conditions are transformed onto the line k ¼ 0 and

then integrated over with the Green’s function. The

latter has a finite support and could be easily com-

putable, though not in terms of elementary functions.

Finally Nicolsky et al. (2018); Rybkin (2019); Ryb-

kin et al. (2021) used a Taylor formula to extend the

initial conditions from the curve k ¼ k0ðrÞ to the line

k ¼ 0 with an arbitrary degree of accuracy both for

plane and U-shaped bays. However, the double

integration over the Bessel functions is still present in

(Nicolsky et al., 2018; Rybkin et al., 2021).

Herein, we follow Carrier et al. (2003) and gen-

eralize this work in case of the U-shaped and V-

shaped bays. In particular, we derive a Green’s

function (in terms of the Legendre functions) for

runup problems and hence simplify the double inte-

gral computations commonly occurring in previous

works. The outline of our paper is as follows: In

Sect. 2, we discuss necessary background informa-

tion and notation, including a general description of

the shallow-water equations, Carrier-Greenspan

transform, and specific details regarding the context

of U-shaped and V-shaped bays. In Sect. 3, we con-

sider the initial-value problem in ðr; kÞ-space and

derive a Green’s function for arbitrary initial

conditions on ðr; 0Þ. In Sect. 4, the Green’s function

is evaluated explicitly for 2=ð2k þ 1Þ-power bays,

yielding analytic solutions. The runup of a Gaussian

wave and leading depression N-wave are analyzed in

Sect. 5. Finally, Sect. 6 is devoted to additional dis-

cussion and concluding remarks.

2. Background Information

In this article, we consider the behavior of waves

in bays with cross section shown in Fig. 1. Cross-

sectionally averaging the 2-D SWEs for a given bay

cross-section S(H), assumed to functionally depend

on only the total water height H(x, t), yields the

associated 1-D system (Stoker, 1957; Johnson, 1997).

Our initial-value problem in (x, t) coordinates, posed

on ðx; tÞ 2 ð�1;1Þ � ð0;1Þ, is then:

St þ ðSuÞx ¼ 0; ut þ uux þ gHx ¼ ghx; ð1Þ

for a given resting water depth h ¼ hðxÞ and initial

conditions (ICs) specified by u0ðxÞ ¼ uðx; 0Þ and

g0ðxÞ ¼ gðx; 0Þ; the physical meanings of gðx; tÞ and
u(x, t) are respectively the water height displacement

from equilibrium along the central axis of the bay

(hence gðx; tÞ ¼ Hðx; tÞ � hðxÞ), and the cross-sec-

tionally averaged longitudinal flow velocity. For our

studies, hðxÞ ¼ �ax is taken as a linear function of

slope a, representing an infinitely long inclined

channel with steepness hx � �a.
U-shaped and V-shaped bays are our primary

bathymetries of interest. For such bays, the transverse

geometry is of the form jyjm for the real parameter

m� 0, and bay cross-section function

S ¼ SðHÞ ¼ m
mþ1

H1þ1
m. In this instance the 1-D shal-

low water equation (1) reduce to (Rybkin et al.,

2014),

Ht þ uHx þ mðm þ 1Þ�1Hux ¼ 0;

ut þ uux þ gHx ¼ �ga;
ð2Þ

which transform into a second-order hyperbolic PDE

in ðr; kÞ coordinates:

Ukkðr; kÞ � Urrðr; kÞ �
m þ 2

mr
Urðr; kÞ ¼ 0; ð3Þ

via a Carrier-Greenspan transform expressing g, u, x,

and t as scalar fields on the hodograph plane ðr; kÞ by

H. Hartle et al. Pure Appl. Geophys.



uðr; kÞ ¼m þ 1

m
r�1Urðr; kÞ;

gðr; kÞ ¼ 1

2g
Ukðr; kÞ �

1

2g
uðr; kÞ2;

xðr; kÞ ¼ � 1

4ag

m

m þ 1
r2 þ 1

a
gðr; kÞ;

tðr; kÞ ¼ 1

ag
k� uðr; kÞð Þ:

ð4Þ

It is evident that all physical quantities as functions of

ðr; kÞ are fully determined from the potential function

Uðr; kÞ by the above transformations. From those

four fields we may obtain gðx; tÞ and u(x, t) by

associating gðr; kÞ and uðr; kÞ with spacetime point

ðxðr; kÞ; tðr; kÞÞ.

A general solution to the runup problem in para-

bolic (z ¼ y2) bays was found by Didenkulova and

Pelinovsky (2011a) for u0ðrÞ ¼ 0. As a general

property, it was stated that parabolic-bay solutions

must adopt the form ðgðkþ rÞ � gðk� rÞÞ=r for

some function r. Further, an initial-value problem for

infinite length V-shaped and U-shaped bays on ð0;1Þ
was solved for arbitrary g0ðxÞ recently (Garashin

et al., 2016), although with the constraint of u0ðxÞ ¼
0 imposed. In the general case of arbitrary cross-

section function S(H), no general solution has been

obtained (Rybkin et al., 2014). At the same time, for

the U- and V-shaped bays, the solution involves

evaluating double integrals (Nicolsky et al., 2018;

Rybkin et al., 2021).

Figure 1
Bathymetry of a U-shaped bay. The upper left panel illustrates the geometric meaning of g, h, and H, a and coordinates z ¼ jyjm þ ax and x;

the upper right panel illustrates the transverse geometry of the bay; the lower panel gives a three-dimensional view of the same configuration
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The runup problem was solved by Carrier et al.

(2003) for the plane-beach case with arbitrary initial

Uðr; 0Þ and Ukðr; 0Þ. The authors obtained a Green’s

function representation and implemented it via

numerical integration. We will follow Carrier et al.

(2003) and generalize the solution to the V- and

U-shaped bays with a Fourier-Bessel type transform,

deriving a Green’s function.

3. Solution for U-Shaped and V-Shaped Bays

In this section, a 1/m-th order Hankel-like trans-

form is applied to the initial-value problem in ðr; kÞ
for infinite-length U-shaped bays. Initial data is

specified along k0ðrÞ ¼ 0 in the hodograph plane.

The inverse Hankel-like transform leads to an

expression for the Green’s function, for the case of

arbitrary Uðr; 0Þ and Ukðr; 0Þ. This results is a gen-

eralization of previous works (Carrier et al., 2003;

Garashin et al., 2016).

Following Garashin et al. (2016), we define

Xðs; kÞ as the 1/m-th order Hankel transform of

r1=mUðr; kÞ:

Xðs; kÞ ¼
Z 1

0

r
1
mþ1J1

m
rsð ÞU r; kð Þdr: ð5Þ

Upon multiplication of Eq. (3) through by

r1=mþ1J1=mðrsÞ, integration with respect to r from 0

to 1, we find that Xðs; kÞ behaves as

Xkk þ s2X ¼ 0; ð6Þ

from which we trivially obtain a solution of the form:

Xðs; kÞ ¼ aðsÞ cosðskÞ þ bðsÞ sinðskÞ ð7Þ

We apply arbitrary initial conditions in ðr; kÞ space of
the form Uðr; 0Þ ¼ pðrÞ and Ukðr; 0Þ ¼ f ðrÞ, which
are transformed via Eq. (5) into Xðs; 0Þ ¼ �pðsÞ and

Xkðs; 0Þ ¼ �f ðsÞ, respectively. Evaluating (7) at k ¼ 0

gives aðsÞ ¼ �pðsÞ and sbðsÞ ¼ �f ðsÞ, yielding the

solution in terms of ðs; kÞ variables:

Xðs; kÞ ¼ �pðsÞ cosðskÞ þ s�1 �f ðsÞ sinðskÞ: ð8Þ

We determine Uðr; kÞ through the inverse operation

of our Hankel-type transform (5), from which we

derive

Uðr; kÞ ¼ r�
1
m

Z1

0

sJ1
m
rsð Þ �pðsÞ cosðskÞf

þ s�1 �f ðsÞ sinðskÞgds:

ð9Þ

Expanding the terms �pðsÞ and �f ðsÞ into their full

integral expressions, separating into two integrals and

utilizing column-vector notation in light of the simi-

larity of the two terms, we get

Uðr; kÞ ¼
Z1

0

J1
m
rsð Þ
r

1
m

�
s cosðskÞ
sinðskÞ

� �
�
Z1

0

pðwÞ
f ðwÞ

� �2
4

w1þ1
mJ1

m
ðwsÞdw

#
ds ¼

Z1

0

J1
m
rsð Þ
r

1
m

ok

1

� �
�

� sinðskÞ
Z1

0

pðwÞ
f ðwÞ

� �
w1þ1

mJ1
m
ðwsÞdw

2
4

3
5ds

Further, by expressing pðwÞ and pðwÞ as integrals of
d-functions with respect to a new variable n (along-

side slight algebraic rearrangement, in the interest of

space), we compute

Uðr; kÞ ¼
Z1

0

J1
m
rsð Þ
r

1
m

ok

1

� �
�

� sinðskÞ
Z1

0

Z1

0

pðnÞ
f ðnÞ

� �
dðn� wÞdn

0
@

1
A

2
4

J1
m
ðwsÞ

w�1�1
m

dw

#
ds:

We may rearrange the functions pðnÞ and f ðnÞ out

from under the integrals with respect to w and s, as

long as they remain under the n-integral. We do so by

exchanging integration order from n, w, s to w, s, n,
resulting in:

H. Hartle et al. Pure Appl. Geophys.



Uðr; kÞ ¼
Z1

0

pðnÞ
f ðnÞ

� �
�

ok

1

� �

Z1

0

Z1

0

J1
m
ðwsÞdðn� wÞdw

w�1�1
m

2
4

3
5

8<
:
J1

m
rsð Þ sinðskÞds

r
1
m

gdn:

Evaluating the innermost integral (with integration

variable w), and rearranging further, we obtain

Uðr; kÞ ¼
Z1

0

pðnÞ
f ðnÞ

� �
�

ok

1

� �

n1þ
1
m

r
1
m

Z1

0

J1
m
rsð ÞJ1

m
ðnsÞ sinðskÞds

8<
:

9=
;dn:

ð10Þ

The Green’s function GðmÞðr; k; nÞ is then defined as

what is within the braces in the above expression, or

equivalently

Uðr; kÞ ¼
Z1

0

pðnÞGðmÞ
k ðr; k; nÞdn

þ
Z1

0

f ðnÞGðmÞðr; k; nÞdn:

ð11Þ

The integral in (10) is evaluated by comparison with

formula (6.672.1) of Gradshteyn and Ryzhik (1996),

the result of which is

where Pm is the m-th degree Legendre function of the

first kind, and Qm is the m-th degree Legendre function

of the second kind. Plots of Green functions

GðmÞðr; k; nÞ for various values of m are shown in

Fig. 2.

As m ! 1, we have Gð1Þðr; k; nÞ ¼
n
R1
0

J0 rsð ÞJ0ðnsÞ sinðskÞds; which is the Green’s

function for a planar beach Carrier et al. (2003) and

Kânoğlu and Synolakis (2006). It was shown by

Carrier et al. (2003) to be expressible in terms of

complete elliptic integrals of the first kind, a repre-

sentation usable for computationally efficient

numerical solutions. This limit can be seen straight-

forwardly from the intermediate form

GðmÞðr; k; nÞ ¼ r�
1
mn1þ

1
m

Z1

0

J1
m
rsð ÞJ1

m
ðnsÞ sinðskÞds;

a precursor to (12).

4. Solution for m ¼ 2=ð2k þ 1Þ bays

In this section, we consider a particular case of

bays, the bathymetry of which is associated with

m ¼ 2=ð2k þ 1Þ, where k is a non-negative integer. A

parabolically shaped bay is described by k ¼ 0, while

k ¼ 1; 2; ::: relate to V-shaped bay bathymetries. In

these cases, we have p=m ¼ kpþ p=2, and hence the

Green’s function, given by (12) simplifies to

Gð2=ð2kþ1ÞÞðr; k; nÞ ¼ 1

2

n
r

� �1þk

Pk
r2þn2�k2

2rn

� �
; jr� nj\k\rþ n

0; otherwise

(
:

The Legendre function Pk for a nonnegative integer k

becomes the Legendre polynomial of the degree k.

Furthermore, it is easy to note that jr� nj\k\rþ n
is equivalent to jr� kj\n\rþ k, and we thus

obtain

GðmÞðr; k; nÞ � n
r

� �1
mþ1

2

� 1
p cos

p
m

� �
Q1

m�1
2
� r2þn2�k2

2rn

� �
; rþ n\k

1
2

P1
m�1

2

r2þn2�k2

2rn

� �
; jr� nj\k\rþ n

0; 0\k\jr� nj

8>>><
>>>:

; ð12Þ
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Gð2=ð2kþ1ÞÞðr; k; nÞ ¼

gðkÞðr; k; nÞ; jr� kj\n\rþ k

0; otherwise

(
;

where

gðkÞðr; k; nÞ ¼ 1

2

n
r

� �1þk

Pk
r2 þ n2 � k2

2rn

� �
:

Consequently, the potential Uðr; kÞ is expressed by

Uðr; kÞ ¼ o

ok

Z rþk

jr�kj
pðnÞgðkÞðr; k; nÞdn

þ
Z rþk

jr�kj
f ðnÞgðkÞðr; k; nÞdn

¼
Z rþk

jr�kj
pðnÞgðkÞ

k ðr; k; nÞ
�

þ f ðnÞgðkÞðr; k; nÞ
�

dn

þ pðrþ kÞgðkÞðr; k; rþ kÞ
� pðjr� kjÞgðkÞðr; k; jr� kjÞsignðk� rÞ:

After considering cases k\r and k[ r, it is possible
to show that

Uðr; kÞ ¼ 1

2

1

rkþ1

Z rþk

jr�kj
f ðnÞnkþ1Pk

r2 þ n2 � k2

2rn

� �
dn

� 1

2

k
rkþ2

Z rþk

jr�kj
pðnÞnkP0

k

r2 þ n2 � k2

2rn

� �
dn

þ 1

2

rþ k
r

� �kþ1

pðrþ kÞ

þ 1

2

r� k
r

� �kþ1

pðjr� kjÞ:

ð13Þ

In case of the parabolic bays, k ¼ 0, P0 ¼ 1 and

P0
0 ¼ 0, and consequently the potential U simplifies

to

Uðr; kÞ ¼ 1

2r
ðrþ kÞpðrþ kÞ½

þðr� kÞpðjr� kjÞ þ
ZðrþkÞ

jr�kj

f ðnÞndn

3
75:

ð14Þ

This appears to be the general solution form for the

equation if m ¼ 2, reminiscent of d’Alembert’s

solution to the wave equation. It is extremely versa-

tile in that it solves the runup problem for a very

broad class of initial conditions. Clearly, the solution

is immediate and exact for arbitrary pðnÞ and f ðnÞ,
but analytically limited to functions whose product

Figure 2
Green’s functions with displacement n ¼ 1:5; upper four plots

correspond to bay-shapes with m 2 f1000; 3; 1; 1=2g, while the

lower four plots are related to m 2 f2; 2=3; 2=5; 2=7g. A multi-

plicative factor ðr=nÞ1=2þ1=m
is included to permit visualization of

the far-field behavior. The first four values of m, nonzero values

exist for the post-reflection region k[ rþ n, while for the last four
values of m, the expression for GðmÞ simplifies, i.e. the Legendre

functions become polynomials, and the field in the post-reflection

region vanishes. The m ¼ 2 Green’s function is taking on an

especially simple analytical form

H. Hartle et al. Pure Appl. Geophys.



with n admits an antiderivative. Similarly, the family

of functions u0ðrÞ for which pðnÞ is analytically

determinable in also restricted to those that have

explicit antiderivatives.

The result (14) agrees with the general finding of

Didenkulova and Pelinovsky that solutions Uðr; kÞ in
parabolic bays take the form

r�1 gðkþ rÞ � gðk� rÞ½ �; here our g(z) is the func-

tion gðzÞ ¼ zpðjzjÞ=2þ
Rjzj
A

f ðnÞndn=2 for some

arbitrary A satisfying jr� kj\A\rþ k.
For the 2/3-power bays, k ¼ 1, P1ðxÞ ¼ x and

P0
1ðxÞ ¼ 1. After simplifications, the potential (13)

reduces to

Uðr; kÞ ¼ 1

4r3

Z rþk

jr�kj
f ðnÞn r2 þ n2 � k2

� �
dn

� k
2r3

Z rþk

jr�kj
pðnÞndn

þ 1

2

rþ k
r

� �2

pðrþ kÞ

þ 1

2

r� k
r

� �2

pðjr� kjÞ:

The above is generalization of the analytical expres-

sion by Garashin et al. (2016) for the case of nonzero

velocity in the ðr; kÞ coordinates.

5. Properties and Runup Characteristics of Specific

Solutions

Taking into account the general discussion of the

previous section, we proceed to analyze runup

behavior for specific initial wave profiles.

5.1. Definition of the Initial Water Level and Velocity

Recalling our definitions pðrÞ ¼ Uðr; 0Þ and

f ðrÞ ¼ Ukðr; 0Þ we pose the initial value problem

on the hodograph plane using g0ðrÞ and u0ðrÞ as

follows. We approximate the initial velocity in the

canal according to Didenkulova and Pelinovsky

(2016):

u ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m þ 1

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh þ gÞ

p
�

ffiffiffiffiffi
gh

p� �
�

ffiffiffiffiffiffiffiffiffiffiffiffi
m þ 1

m

r ffiffiffi
g

h

r
g:

ð15Þ

While assuming that the wave height g	 h, the

relationship between x and r given by (4) simplifies

and then

h ¼ �ax � 1

4g

m

m þ 1
r2:

Finally, using (4), we derive

Urðr; 0Þ ¼
m

m þ 1
ur � 2gg; Ukðr; 0Þ � 2gg:

We now consider a special case of the initial condi-

tions, for which (13) is analytically computable. In

particular, we assume a superposition of Gaussian

initial displacements:

g0ðrÞ ¼
Xn

j¼1

aje
�c2j ðr�r0jÞ2 : ð16Þ

This summation is reducible to the forms chosen for

the leading-depression N-wave, leading-elevation N-

wave, and negative Gaussian initial profiles similar to

those chosen in Carrier et al. (2003). A single

Gaussian and leading depression N-wave profiles

under consideration are shown in Fig. 3. In case of

(16), we compute

Figure 3
Initial wave profiles associated with the Gaussian (left) and leading

depression N-wave (right) in the physical coordinates. Casting

from the ðr; kÞ plane to the physical coordinates is performed using

the linearized hodograph transform

Robust Computations of Runup



pðnÞ ¼
Z n

0

Urðr; 0Þdr � g
Xn

j¼1

aj

ffiffiffi
p

p

cj

erf cjðn� r0jÞ
� �

þ erf cjr0j

� �	 

;

f ðnÞ � 2g
Xn

j¼1

aje
�c2j ðn�r0jÞ2 :

Analytical expressions for U, Ur and Uk could be

then derived for the above realisations of pðnÞ and

f ðnÞ, while taking into the account derivations by Ng

and Geller (1969).

5.2. Numerical Experiments

As an example, we consider runup of a single

Gaussian with the specific numerical values g ¼ 9:8,

a1 ¼ 1=2 � 10�3, c1 ¼ 1, and r01 ¼ 4:5 on the para-

bolic and 2/3-power bays. The function U and its

derivatives are computed analytically using the

Symbolic Toolkit in (MATLAB, 2011), and then

numerically evaluated on the uniform grid ðr; kÞ. The
contours of Uðr; kÞ are shown in the left panels of

Fig. 4. This is an exact analytic solution on the whole

quadrant ðr� 0; k� 0Þ; we do not need to resort to

numerical or even semi-analytic methods. The solu-

tion in (x, t) coordinates are obtained by solving (4)

using the Newton-Raphson method to an arbitrary

level of accuracy. We note that in order to compute a

Jacobian matrix in the Newton-Raphson method, the

derivatives xr; xk; tr, and tk are found analytically

using the Symbolic Toolkit and then evaluated

numerically. Plots of the water level gðx; tÞ are

shown on the right side of Fig. 4.

The first row demonstrates results for the initial

water disturbance with a zero water velocity, i.e.

pðnÞ ¼ 0. Note that the initial wave propagates in

both directions, as could be easily noted in the graphs

Figure 4
Computed potential U (left) and water level g (right) in the case of

the parabolic bay (m ¼ 2). Plots a and b are related to the Gaussian

wave with zero initial velocity, plots c and d are associated with the

runup of the Gaussian wave with the nonzero initial velocity, and

finally plots e and f depict runup of the leading depression N-wave.

Detailed views of the water level and velocity near the shoreline

are shown in Fig. 5

Figure 5
Computed potential g (left) and water level u (right) in the case of

the parabolic bay (m ¼ 2). Gray area is associated with the dray

land. Plots a and b are related to the Gaussian wave with zero

initial velocity, plots c and d are associated with the runup of the

Gaussian wave with the nonzero initial velocity, and finally plots

e and f depict runup of the leading depression N-wave

H. Hartle et al. Pure Appl. Geophys.



of gðx; tÞ, see Fig. 4b. The second and third row of

plots are related to scenarios, in which we assume

that the initial velocity is given according to (15).

Hence, the initial displacement propagates towards

the shore and then reflects from it. Finally, the third

row shows runup of the leading depression wave.

Unlike a single, nearly symmetrical runup, as exhib-

ited for the Gaussian wave, the leading depression

wave has a secondary runup and a great drawdown.

Figure 5 display detailed views of the water level

and velocity dynamics near the shore. Similarly, the

first row is associated with the case of a zero initial

velocity. Results in the second and third rows are

computed using the water velocity specified accord-

ing to (15). A reader is prompted to examine shore

line dynamics; the gray area is related to the dry land.

Comparing the first and second rows, we notice that

inclusion of the initial water velocity increases the

runup and water velocity at the shore line. The last

row is again associated with the leading depression

wave.

Similarly we compare runup of the leading

depression N-wave in the parabolic and 2/3-power

bays. To construct the N-wave we add a leading

depression to the existing Gaussian wave. The

depression is parameterized by a2 ¼ �1=3 � 10�3,

c2 ¼ 1, and r02 ¼ 4. The resultant profile describes a

surface displacement on the subduction thrust fault

(Carrier et al., 2003). Figure 6 shows the computed

potential Uðr; kÞ and water level gðx; tÞ. Similar to

the Gaussian wave, we note that when the initial

velocity is absent, the wave starts to propagate in both

directions from the beginning, see Fig. 6b. But unlike

in the case of the Gaussian wave, the leading

Figure 6
Computed potential U (left) and water level g (right) in the case of

the 2/3-power bay (m ¼ 2=3). Plots a and b are related to the

Gaussian wave with zero initial velocity, plots c and d are

associated with the runup of the Gaussian wave with the nonzero

initial velocity, and finally plots e and f depict runup of the leading

depression N-wave. Detailed views of the water level and velocity

near the shoreline are shown in Fig. 7

Figure 7
Computed potential g (left) and water level u (right) in the case of

the 2/3-power bay (m ¼ 2=3). Gray area is associated with the dray

land. Plots a and b are related to the Gaussian wave with zero

initial velocity, plots c and d are associated with the runup of the

Gaussian wave with the nonzero initial velocity, and finally plots

e and f depict runup of the leading depression N-wave
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depression is now clearly distinguishable in the gðx; tÞ
plots. Detailed view of the water level and velocity

are shown in Fig. 7. The maximum runup as in the

previous simulation is twice greater, when the initial

water level is prescribed. Values of the maximum

runup and drawdown for all cases are listed in

Table 1. For the 2/3-power bay, the runup and

drawdown are significantly increased if compared to

those occurring in the parabolic bay. Furthermore, the

2/3-power bay again has an additional runup event,

which is a signature of this geometry.

We note that there are strong similarities between

Carrier et al. (2003) and dynamics in the parabolic

bay. In the case of the plane beach, they observed a

near symmetry of gðx; tÞ around the peak runup for

the Gaussian cases. Similarly, the parabolic bay case

has a significant amount of symmetry as well. The

symmetry starts to break down for the N-wave initial

displacement due to skewness of the initial displace-

ment. The symmetry is somewhat broken for the 2/3-

power bay, with the first runup larger than the second

one in case of the Gaussian wave.

5.3. Comparison with the Finite Difference Solution

In this section, we compare the analytical results

to direct numerical integration of (1) using a finite

difference method. Similar to Nicolsky et al. (2011),

we consider a flux-based implementation of (1):

St þ Ux ¼ 0; Ut þ ðuUÞx þ gSgx ¼ 0; ð17Þ

where the flux U ¼ uS and water level g ¼ H � h. In

the case of m-power bays, the water depth H is related

to the area S according to H ¼ aSð Þ1=a. Here,

a ¼ 1þ 1=m.

We approximate the system (17) on a staggered

uniform grid by finite differences. The spatial

derivatives are discretized by central difference and

upwind difference schemes (Fletcher, 1991). We also

employ the semi-implicit scheme in time using a first

order scheme (Kowalik & Murty, 1993). The runup

and rundown algorithm is based on Nicolsky et al.

(2011). The finite difference scheme is coded in

Matlab, and spatial and temporal time steps are Dx ¼
5 � 10�3 and Dt ¼ 5 � 10�4, respectively. For the

initial conditions, we assume a leading depression

N-wave, which is cast from the ðr; kÞ plane to the

Table 1

Initial waves and extreme values of runup and drawdown

Gaussian wave N-wave

a1 0:5 � 10�3 0:5 � 10�3

c1 1 1

r01 4.5 4.5

a2 - 0:33 � 10�3

c2 1

r02 4

Maximum initial displacement 5:0 � 10�4 2.8�10�4

Parabolic bay, m ¼ 2 u0 ¼ 0 u0 ¼
ffiffiffiffiffiffiffiffiffiffi
mþ1

m
g
h

q
g u0 ¼ 0 u0 ¼

ffiffiffiffiffiffiffiffiffiffi
mþ1

m
g
h

q
g

Maximum runup 1.98�10�3 4.32�10�3 1.82�10�3 3.79�10�3

Maximum drawdown – 1.97�10�3 – 3.69�10�3 – 1.29�10�3 – 2.44�10�3

Maximum shoreward velocity 2.05�10�2 4.43�10�2 2.82�10�2 5.88�10�2

Maximum offshore velocity – 4.57�10�2 – 9.24�10�2 – 3.98�10�2 – 7.95�10�2

2/3-power bay, m ¼ 2=3 u0 ¼ 0 u0 ¼
ffiffiffiffiffiffiffiffiffiffi
mþ1

m
g
h

q
g u0 ¼ 0 u0 ¼

ffiffiffiffiffiffiffiffiffiffi
mþ1

m
g
h

q
g

Maximum runup 3.85�10�3 8.95�10�3 4.68�10�3 1.02�10�2

Maximum drawdown – 7.57�10�3 – 1.51�10�3 – 6.43�10�3 – 1.27�10�2

Maximum shoreward velocity 1.42�10�1 2.76�10�1 1.22�10�1 2.37�10�3

Maximum offshore velocity – 1.54�10�1 – 3.24�10�1 – 1.65�10�1 – 3.39�10�3

H. Hartle et al. Pure Appl. Geophys.



physical coordinates using the linearized hodograph

transform.

Figure 8 shows snapshots of the water level g and

velocity u at several key moments during runup of the

leading depression N-wave in the 2/3-power bay. In

the considered scenario, the initial water velocity is

prescribed according to (15). At each snapshot, we

compare the analytical solution to its finite difference

counterpart, as follows. At t ¼ 4, the wave

approaches the head of the bay. The first drawdown

occurs at t ¼ 5:5, as the leading depression arrives in

full force. Then at t ¼ 7:8 the first runup occurs,

followed by another drawdown at t ¼ 10 and runup at

t ¼ 12:3. The wave retreats and its shape is then

captured at t ¼ 15. We note that in all cases, the

analytically computed water level g matches its

counterpart very well. Unfortunately, the comparison

is not so good for the water velocity near the

maximum runup. Recall that the finite difference

scheme is based on the flux formulated Eq. (17), and

hence the velocity is computed as u ¼ U=S. When

S is close to zero, e.g. near the maximum runup, the

division U/S is prone to errors.

We emphasize the analytical solution is computed

by the Newton-Raphson method and is free of any

artifacts. Furthermore, the analytical solution could

be computed for any point (x, t) at once, without a

need to compute preceding wave dynamics. The

number of iterations in the Newton-Raphson method

is typically limited to six, before the machine

accuracy, e.g. 10�16 is obtained, and it takes less

than a second to do so, once all derivatives xr; xk; tr,

and tk are found symbolically.

6. Conclusions

We have posed and solved the initial-value

problem in U-shaped and V-shaped bays of infinite

length by integration of Green’s function. For arbi-

trary values of m, the Green’s function consists of

Legendre functions. The latter and its derivatives

could be readily computed by hypergeometric func-

tions in MATLAB, leading to evaluation of the

potential through a single integral. For 2=ð2k þ 1Þ-
power bays, the analytical expressions greatly sim-

plify, resulting in explicit, closed-form solutions for

initial displacements described by a sum of Gaussian

functions on the hodograph plane. For practical pur-

poses, for assessment of the initial conditions in the

physical plane, a linearized hodograph transform

could be used for casting a sum of Gaussian waves

from the hodograph plane to the physical space.

Parameters in Gaussian waves in the hodograph plane

could be adjust until a match to the desired wave in

the geophysical sense is obtained. Once all analytical

expressions for the potential and its derivatives are

found, evaluation of the water level and velocity is

completed through the hodograph transform using the

Newton-Raphson method to an arbitrary degree of

accuracy.

Figure 8
Comparison of the analytically computed and numerically modeled

water level g and velocity u at several key moments during runup

of the leading depression N-wave in the 2/3-power bay
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