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Robust Computations of Runup in Inclined U- and V-Shaped Bays
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Abstract—We present an exact analytical solution for com-
putations of runup in constantly inclined U- and V-shaped bays.
The provided solution avoids integration of indefinite double
integrals in (Rybkin et al., Water Waves 3(1):267-296, 2021) and
is based on a simple analytic expression for the Green’s function.
We analyze wave runup in parabolic and certain V-shaped bays, for
which a particularly wide class of solutions are determinable ana-
lytically and for which a robust computational algorithm could be
developed. Our results are effective in the context of narrow bays,
where a generalized form of the Carrier-Greenspan transformation
has been developed.

Keywords: Long wave runup, shallow water equations, Car-
rier-Greenspan transform, Green’s function.

1. Introduction

Tsunamis have been threatening coastal commu-
nities for centuries. One the main challenges in the
tsunami hazard mitigation is obtaining an accurate
and quick prediction of the tsunami runup at the
shore. Having this information at hand and promptly
can save numerous lives of coastal residents and
visitors (Bernard & Titov, 2015). In Alaska and
British Columbia, before arriving to the community’s
waterfront, a tsunami typically propagates through a
network of channels and fjords. Analyzing tsunamis
at the entrance can be used for developing of special
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robust computations of runup heights and estimates
of tsunami risk for communities at the head of bays.

Several empirical and numerical methods have
been proposed for computations of the tsunami runup
and the literature here is very extensive. At the same
time, many analytical solutions have been proposed
to compute the runup for constantly sloping plane
beaches based on the well-known Carrier-Greenspan
(CG) transform Carrier and Greenspan (1958), which
cast the nonlinear shallow-water equations (SWEs)
into a linear form with use of the hodograph trans-
form. The CG transform was generalized to the case
of constantly slopping bays (Rybkin et al., 2014) and
a comparison with the numerical results revealed that
this transformation work even in the double headed
fjords (Raz et al., 2018).

Analytic and semi-analytic solutions of the non-
linear SWEs for a plane beach are given usually for
initial disturbances with zero fluid velocity; see for
example papers (Pedersen & Gjevik, 1983; Synolakis
& Deb, 1988; Synolakis, 1991; Pelinovsky &
Mazova, 1992; Tinti & Tonini, 2005; Antuono &
Brocchini, 2007; Didenkulova et al., 2007, 2009;
Madsen & Fuhrman, 2008; Didenkulova, 2009;
Antuono & Brocchini, 2010; Dobrokhotov et al.,
2010; Dobrokhotov & Tirozzi, 2010; Madsen &
Schiffer, 2010; Dobrokhotov et al., 2013; Chugunov
et al., 2020), where the tsunami wave runup on plane
beached is analyzed. Similar analytical solutions for
tsunami wave runup in narrow bays have been also
derived and to lesser extent in narrow bays (Zahibo
et al., 2006; Didenkulova & Pelinovsky, 2009; Ryb-
kin et al., 2014; Harris et al., 2016; Garashin et al.,
2016; Shimozono, 2016, 2020, 2021).

It is important to note that papers cited above use
the initial disturbances only as water surface dis-
placement with no fluid velocity. A few studies have
considered nonzero initial velocities (Carrier et al.,
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2003; Kanoglu & Synolakis, 2006; Aydin & Kano-
glu, 2017; Nicolsky et al., 2018). It is important to
note that one of the complications with a non-zero
velocities is that the initial conditions in (x,# = 0)
line and not mapped to hodograph variables
(o,A=0), but rather on a manifold in the (g, 4)
coordinates. Recent works on providing appropriate
initial and boundary conditions the (o, 1) space help
to overcome these complications (Rybkin, 2019;
Rybkin et al., 2021).

In many above-mentioned manuscripts, analytical
solutions are based on the Bessel or Bessel-Hankel
transforms and require a computation of indefinite
double integrals with Bessel functions. In particular,
one has to map a function into the image space and
then pull back, while ensuring an accuracy control
over all calculations. For computing runup at the
plane beaches, Carrier et al. (2003) and later Kanoglu
and Synolakis (2006) introduced a Green’s function
alternative, which avoid the above-mentioned com-
putational challenges. In these works, using certain
physically based assumptions, both non-zero initial
conditions are transformed onto the line 4 =0 and
then integrated over with the Green’s function. The
latter has a finite support and could be easily com-
putable, though not in terms of elementary functions.
Finally Nicolsky et al. (2018); Rybkin (2019); Ryb-
kin et al. (2021) used a Taylor formula to extend the
initial conditions from the curve 4 = 1y(0) to the line
A =0 with an arbitrary degree of accuracy both for
plane and U-shaped bays. However, the double
integration over the Bessel functions is still present in
(Nicolsky et al., 2018; Rybkin et al., 2021).

Herein, we follow Carrier et al. (2003) and gen-
eralize this work in case of the U-shaped and V-
shaped bays. In particular, we derive a Green’s
function (in terms of the Legendre functions) for
runup problems and hence simplify the double inte-
gral computations commonly occurring in previous
works. The outline of our paper is as follows: In
Sect. 2, we discuss necessary background informa-
tion and notation, including a general description of
the shallow-water equations, Carrier-Greenspan
transform, and specific details regarding the context
of U-shaped and V-shaped bays. In Sect. 3, we con-
sider the initial-value problem in (o, A)-space and
derive a Green’s function for arbitrary initial

Pure Appl. Geophys.

conditions on (g, 0). In Sect. 4, the Green’s function
is evaluated explicitly for 2/(2k 4 1)-power bays,
yielding analytic solutions. The runup of a Gaussian
wave and leading depression N-wave are analyzed in
Sect. 5. Finally, Sect. 6 is devoted to additional dis-
cussion and concluding remarks.

2. Background Information

In this article, we consider the behavior of waves
in bays with cross section shown in Fig. 1. Cross-
sectionally averaging the 2-D SWEs for a given bay
cross-section S(H), assumed to functionally depend
on only the total water height H(x, f), yields the
associated 1-D system (Stoker, 1957; Johnson, 1997).
Our initial-value problem in (x, #) coordinates, posed
on (x,t) € (—o0,0) x (0,00), is then:

S[“‘(SM)X:O, u[+uux+ng:ghx7 (1)

for a given resting water depth 2 = h(x) and initial
conditions (ICs) specified by up(x) = u(x,0) and
1o(x) = n(x,0); the physical meanings of n(x,t) and
u(x, t) are respectively the water height displacement
from equilibrium along the central axis of the bay
(hence n(x,7) = H(x,t) — h(x)), and the cross-sec-
tionally averaged longitudinal flow velocity. For our
studies, h(x) = —ox is taken as a linear function of
slope o, representing an infinitely long inclined
channel with steepness h, = —a.

U-shaped and V-shaped bays are our primary
bathymetries of interest. For such bays, the transverse
geometry is of the form |y|" for the real parameter
m>0, and bay cross-section function
S=S(H)= mLHHH#. In this instance the 1-D shal-
low water equation (1) reduce to (Rybkin et al.,
2014),

H, + uH, +m(m+1)""Hu, = 0,
u; + uu, + gH, = —ga,

(2)

which transform into a second-order hyperbolic PDE
in (0, A) coordinates:

2
¢aa(a> )”) - ﬂ @U(O', /L) = O; (3)

mao

d%;y(ﬁ, j.) —

via a Carrier-Greenspan transform expressing 7, u, x,
and 7 as scalar fields on the hodograph plane (g, 1) by
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Figure 1
Bathymetry of a U-shaped bay. The upper left panel illustrates the geometric meaning of #, i, and H, o and coordinates z = |y|" + ox and x;
the upper right panel illustrates the transverse geometry of the bay; the lower panel gives a three-dimensional view of the same configuration

u(o.2) =" 6716, (6,),
m
’1(03 i) :zig¢/l(o-a )°) éu(a’ /1)23 A
0 0)=————" 241160 @
MO = dgm + 1 MR
1
t(a,2) :@(/1 —u(a,2)).

It is evident that all physical quantities as functions of
(g, A) are fully determined from the potential function
®(o,A) by the above transformations. From those
four fields we may obtain n(x,t) and u(x, f) by
associating n(o, 1) and u(o, 1) with spacetime point

(x(a,4),t(a, ).

A general solution to the runup problem in para-
bolic (z = y®) bays was found by Didenkulova and
Pelinovsky (2011a) for up(c) =0. As a general
property, it was stated that parabolic-bay solutions
must adopt the form (g(A+ 0) —g(A—o0))/a for
some function o. Further, an initial-value problem for
infinite length V-shaped and U-shaped bays on (0, 00)
was solved for arbitrary #,(x) recently (Garashin
et al., 2016), although with the constraint of uy(x) =
0 imposed. In the general case of arbitrary cross-
section function S(H), no general solution has been
obtained (Rybkin et al., 2014). At the same time, for
the U- and V-shaped bays, the solution involves
evaluating double integrals (Nicolsky et al., 2018;
Rybkin et al., 2021).
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The runup problem was solved by Carrier et al.
(2003) for the plane-beach case with arbitrary initial
®(0,0) and @,(0,0). The authors obtained a Green’s
function representation and implemented it via
numerical integration. We will follow Carrier et al.
(2003) and generalize the solution to the V- and
U-shaped bays with a Fourier-Bessel type transform,
deriving a Green’s function.

3. Solution for U-Shaped and V-Shaped Bays

In this section, a 1/m-th order Hankel-like trans-
form is applied to the initial-value problem in (o, 1)
for infinite-length U-shaped bays. Initial data is
specified along Zo(¢) =0 in the hodograph plane.
The inverse Hankel-like transform leads to an
expression for the Green’s function, for the case of
arbitrary @(¢,0) and @,(g,0). This results is a gen-
eralization of previous works (Carrier et al., 2003;
Garashin et al., 2016).

Following Garashin et al. (2016), we define
Q(s,2) as the 1/m-th order Hankel transform of
a'md(a, 1)

Qs, 2) = / ot 11 (a5)®(a, )da.  (5)
0 m

Upon multiplication of Eq. (3) through by

o'/ 17, ,,(as), integration with respect to ¢ from 0

to oo, we find that Q(s, ) behaves as

Q) +5Q=0, (6)
from which we trivially obtain a solution of the form:
Q(s, A1) = a(s) cos(sA) + b(s) sin(sA) (7)

We apply arbitrary initial conditions in (g, 4) space of
the form @(0,0) = p(g) and @,(0,0) = f(0), which
are transformed via Eq. (5) into Q(s,0) = p(s) and
Q;(s,0) = f(s), respectively. Evaluating (7) at 4 = 0
gives a(s) = p(s) and sb(s) =f(s), yielding the
solution in terms of (s, 1) variables:

Q(s, ) = p(s) cos(sA) + s 1f(s) sin(sA). (8)

We determine ®(g, A) through the inverse operation
of our Hankel-type transform (5), from which we
derive
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®(c,7) = o 0/ s/, (05){p(s) cos(s7) o)
+ 57 'f(s) sin(s2) }ds.

Expanding the terms p(s) and f(s) into their full
integral expressions, separating into two integrals and
utilizing column-vector notation in light of the simi-
larity of the two terms, we get

w”hxwwﬂdv—fﬁj”(?)
0

o0

sin(s) [ (100 )t sy | as
0

Further, by expressing p(¥) and p(y) as integrals of
o-functions with respect to a new variable ¢ (along-
side slight algebraic rearrangement, in the interest of
space), we compute

We may rearrange the functions p(&) and f(&) out
from under the integrals with respect to i and s, as
long as they remain under the ¢-integral. We do so by
exchanging integration order from &, V, s to y, s, &,
resulting in:
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/°° /°°J;a(ws>;<¢l; W)y

Evaluating the innermost integral (with integration
variable V), and rearranging further, we obtain

wo=1(15) (af)

144
& / (o
on "

0

J1(&s) sin(sA)ds pd¢.

(10)

The Green’s function G (q, /; ¢) is then defined as
what is within the braces in the above expression, or
equivalently

)G™ (5, 2 &)dE.

_|_
—
\
o~

The integral in (10) is evaluated by comparison with
formula (6.672.1) of Gradshteyn and Ryzhik (1996),
the result of which is

where P, is the v-th degree Legendre function of the

As m—oo, we have G (g,1;¢) =
& [y Jo(as)Jo(Es) sin(sA)ds, which is the Green’s
function for a planar beach Carrier et al. (2003) and
Kanoglu and Synolakis (2006). It was shown by
Carrier et al. (2003) to be expressible in terms of
complete elliptic integrals of the first kind, a repre-
sentation usable for computationally
numerical solutions. This limit can be seen straight-
forwardly from the intermediate form

efficient

oo

G"™(g,1;¢) =6~ wEl /

0

(a5)J1(Es) sin(sA)ds

1
m

a precursor to (12).

4. Solution for m =2/(2k + 1) bays

In this section, we consider a particular case of
bays, the bathymetry of which is associated with
m = 2/(2k 4 1), where k is a non-negative integer. A
parabolically shaped bay is described by k = 0, while
k=1,2,... relate to V-shaped bay bathymetries. In
these cases, we have n/m = kn + 7/2, and hence the
Green’s function, given by (12) simplifies to

(2/(2k+1)) Lrey™
G (0,48 == (>
2 \o

2,£2_ 2
{Pk("gﬁ_é)‘), jo—él<i<o+¢
0, otherwise

The Legendre function P; for a nonnegative integer k
becomes the Legendre polynomial of the degree k.

(_ ngizgj—)'z), o+ &<
ZZE_}“Z), lo — ¢l <i<a+ & (12)
0<i<|o— ¢

first kind, and Q, is the v-th degree Legendre function
of the second kind. Plots of Green functions
G"™(a,2; &) for various values of m are shown in
Fig. 2.

Furthermore, it is easy to note that |6 — {|<l<o + &
is equivalent to |0 — | <&<o+ A, and we thus
obtain
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G(Z/ (2k+1)) ( /1 6)

8V (0, ;¢),
0,
where

® . 71 § 1+k 0_2 + 62 _/12
8 (Ga /17 é) - 2 <0_> Pk 7266 .

Consequently, the potential @(o,

lo — A <é<ao+ 2
otherwise

/) is expressed by

0 o+A
00,1 = [ PO (0, e

o—7|
o+A

+ 1&g (o,

o]

o+
/| (p(i)gﬁk>(0, 28)

a—7|

4; €)d¢

18 (0, i é))dé

+plo+2)g¥ (0, 40+ 2)

—p(lo = )g¥ (o, % |0 —

A|)sign(2 — o).

After considering cases A <o and 4 > o, it is possible
to show that

s [ s (T e

20'k+1 lo—4| 20’6

L [ (82
_EWA—MPQK Pk<T)df

1 G‘i’/l k+1 .
—|—§ plo+ 1)

o

+§ (";")Mpuff— i),
(13)

In case of the parabolic bays, k=0, Pp =1 and
P, =0, and consequently the potential @ simplifies
to

&(a,)) =

(. 2) :zi

- [(6+ A)p(a+2)

(0+2)

+(o = Ap(lo —2]) + f(é)éag|.
o)
(14)
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Figure 2

Green’s functions with displacement ¢ = 1.5; upper four plots
correspond to bay-shapes with m € {1000,3,1,1/2}, while the
lower four plots are related to m € {2,2/3,2/5,2/7}. A multi-
plicative factor (¢/&)"/**1/™ is included to permit visualization of
the far-field behavior. The first four values of m, nonzero values
exist for the post-reflection region 1 > ¢ + &, while for the last four
values of m, the expression for G simplifies, i.e. the Legendre
functions become polynomials, and the field in the post-reflection
region vanishes. The m =2 Green’s function is taking on an
especially simple analytical form

This appears to be the general solution form for the
equation if m =2, reminiscent of d’Alembert’s
solution to the wave equation. It is extremely versa-
tile in that it solves the runup problem for a very
broad class of initial conditions. Clearly, the solution
is immediate and exact for arbitrary p(¢) and f(&),
but analytically limited to functions whose product
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with ¢ admits an antiderivative. Similarly, the family
of functions ug(o) for which p(&) is analytically
determinable in also restricted to those that have
explicit antiderivatives.

The result (14) agrees with the general finding of
Didenkulova and Pelinovsky that solutions ®(g, ) in
parabolic bays take the form
o '[g(Z+ o) — g(A— 0)]; here our g(z) is the func-

tion g(z) =zp(|z])/2 + ?f(é)édiﬂ for some
4

arbitrary A satisfying |6 — A| <A <o + A.

For the 2/3-power bays, k =1, P;(x) =x and
P\ (x) = 1. After simplifications, the potential (13)
reduces to

1 g+

A
F(&)E(* + & = 2%)a¢

1.3
4o lo—2]

y) o+A
/| p(&)éde

T 9.3
20° Jio-y

1o+ 7\
+§< - )p(o‘—i—);)

+§(“;i)300—ﬂy

The above is generalization of the analytical expres-
sion by Garashin et al. (2016) for the case of nonzero
velocity in the (o, 1) coordinates.

®(a, 1)

5. Properties and Runup Characteristics of Specific
Solutions

Taking into account the general discussion of the
previous section, we proceed to analyze runup
behavior for specific initial wave profiles.

5.1. Definition of the Initial Water Level and Velocity

Recalling our definitions p(o) = ®(¢,0) and
flo) = @,(0,0) we pose the initial value problem
on the hodograph plane using 7y(c) and up(o) as
follows. We approximate the initial velocity in the
canal according to Didenkulova and Pelinovsky
(2016):

R Ve e, B A
(15)

While assuming that the wave height n < h, the
relationship between x and ¢ given by (4) simplifies
and then

I m

~__
~

h=— .
x 4gm+16

Finally, using (4), we derive

®,(0,0) = "
m

+1u0%2g17,

®,(0,0) ~ 2¢n.
We now consider a special case of the initial condi-
tions, for which (13) is analytically computable. In
particular, we assume a superposition of Gaussian
initial displacements:

- —2(c—00)*
(o) =D ae 50, (16)
j=1

This summation is reducible to the forms chosen for
the leading-depression N-wave, leading-elevation N-
wave, and negative Gaussian initial profiles similar to
those chosen in Carrier et al. (2003). A single
Gaussian and leading depression N-wave profiles
under consideration are shown in Fig. 3. In case of
(16), we compute

x1074 5 %107

Figure 3
Initial wave profiles associated with the Gaussian (left) and leading
depression N-wave (right) in the physical coordinates. Casting
from the (o, A) plane to the physical coordinates is performed using
the linearized hodograph transform
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Figure 4

Computed potential @ (left) and water level # (right) in the case of

the parabolic bay (m = 2). Plots a and b are related to the Gaussian

wave with zero initial velocity, plots ¢ and d are associated with the

runup of the Gaussian wave with the nonzero initial velocity, and

finally plots e and f depict runup of the leading depression N-wave.

Detailed views of the water level and velocity near the shoreline
are shown in Fig. 5

= é o o~ Y a-ﬁ
p(é) 7/() ¢ﬂ'( 7O)d Ngjzzl '] Vj
[erf(yj(f - O'Oj)) + erf())jaoj)]7

F(&) ~28 Yy ae
=1

Analytical expressions for @, &, and @, could be
then derived for the above realisations of p(¢) and
(&), while taking into the account derivations by Ng
and Geller (1969).

5.2. Numerical Experiments

As an example, we consider runup of a single
Gaussian with the specific numerical values g = 9.8,
ay=1/2-1073, y, =1, and 6¢; = 4.5 on the para-
bolic and 2/3-power bays. The function @ and its
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Figure 5

Computed potential # (left) and water level u (right) in the case of

the parabolic bay (m = 2). Gray area is associated with the dray

land. Plots a and b are related to the Gaussian wave with zero

initial velocity, plots ¢ and d are associated with the runup of the

Gaussian wave with the nonzero initial velocity, and finally plots
e and f depict runup of the leading depression N-wave

derivatives are computed analytically using the
Symbolic Toolkit in (MATLAB, 2011), and then
numerically evaluated on the uniform grid (o, 4). The
contours of @(g, 1) are shown in the left panels of
Fig. 4. This is an exact analytic solution on the whole
quadrant (¢ >0,4>0); we do not need to resort to
numerical or even semi-analytic methods. The solu-
tion in (x, f) coordinates are obtained by solving (4)
using the Newton-Raphson method to an arbitrary
level of accuracy. We note that in order to compute a
Jacobian matrix in the Newton-Raphson method, the
derivatives x,,x;,t;, and ¢, are found analytically
using the Symbolic Toolkit and then evaluated
numerically. Plots of the water level #(x,7) are
shown on the right side of Fig. 4.

The first row demonstrates results for the initial
water disturbance with a zero water velocity, i.e.
p(£) =0. Note that the initial wave propagates in
both directions, as could be easily noted in the graphs
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Computed potential @ (left) and water level # (right) in the case of

the 2/3-power bay (m =2/3). Plots a and b are related to the

Gaussian wave with zero initial velocity, plots ¢ and d are

associated with the runup of the Gaussian wave with the nonzero

initial velocity, and finally plots e and f depict runup of the leading

depression N-wave. Detailed views of the water level and velocity
near the shoreline are shown in Fig. 7

of n(x,1), see Fig. 4b. The second and third row of
plots are related to scenarios, in which we assume
that the initial velocity is given according to (15).
Hence, the initial displacement propagates towards
the shore and then reflects from it. Finally, the third
row shows runup of the leading depression wave.
Unlike a single, nearly symmetrical runup, as exhib-
ited for the Gaussian wave, the leading depression
wave has a secondary runup and a great drawdown.

Figure 5 display detailed views of the water level
and velocity dynamics near the shore. Similarly, the
first row is associated with the case of a zero initial
velocity. Results in the second and third rows are
computed using the water velocity specified accord-
ing to (15). A reader is prompted to examine shore
line dynamics; the gray area is related to the dry land.
Comparing the first and second rows, we notice that

a b
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20 n(z,?) 0.02 20 (2,%) 05
15 15
10 0 10 0
5 5
0 -0.02 0 05
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B d -
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Figure 7

Computed potential # (left) and water level u (right) in the case of

the 2/3-power bay (m = 2/3). Gray area is associated with the dray

land. Plots a and b are related to the Gaussian wave with zero

initial velocity, plots ¢ and d are associated with the runup of the

Gaussian wave with the nonzero initial velocity, and finally plots
e and f depict runup of the leading depression N-wave

inclusion of the initial water velocity increases the
runup and water velocity at the shore line. The last
row is again associated with the leading depression
wave.

Similarly we compare runup of the leading
depression N-wave in the parabolic and 2/3-power
bays. To construct the N-wave we add a leading
depression to the existing Gaussian wave. The
depression is parameterized by a; = —1/3-1073,
v, = 1, and 6¢, = 4. The resultant profile describes a
surface displacement on the subduction thrust fault
(Carrier et al., 2003). Figure 6 shows the computed
potential &(a, ) and water level 5(x, 7). Similar to
the Gaussian wave, we note that when the initial
velocity is absent, the wave starts to propagate in both
directions from the beginning, see Fig. 6b. But unlike
in the case of the Gaussian wave, the leading
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Table 1

Initial waves and extreme values of runup and drawdown

Gaussian wave N-wave
a 0.5-1073 0.5-1073
71 1 .
ao1 4.5 4.5
a - 0.33-1073
72 1
g02 4
Maximum initial displacement 5.0-107* 2.8-107*
Parabolic bay, m =2 up =0 uy = /L&y up =0 o = /"
Maximum runup 1.98-1073 4.32-1073 1.82-1073 3.79-1073
Maximum drawdown -1.97-1073 -3.69-1073 -1.29-1073 - 2441073
Maximum shoreward velocity 2.05-1072 4.43-1072 2.82-1072 5.88-1072
Maximum offshore velocity —4.57-1072 -9.24.1072 -3.98-1072 - 7951072
2/3-power bay, m =2/3 up =0 uy = %%r] up =0 uy = %%r]
Maximum runup 3.85-1073 8.95-103 4.68-1073 1.02-1072
Maximum drawdown -17.57-1073 - 1511073 - 6431073 - 1271072
Maximum shoreward velocity 1.42-107! 2.76-107! 1.22-107! 2.37-1073
Maximum offshore velocity — 1.54-107! -3.24-107! - 1.65-107! -3.39.1073

depression is now clearly distinguishable in the #(x, )
plots. Detailed view of the water level and velocity
are shown in Fig. 7. The maximum runup as in the
previous simulation is twice greater, when the initial
water level is prescribed. Values of the maximum
runup and drawdown for all cases are listed in
Table 1. For the 2/3-power bay, the runup and
drawdown are significantly increased if compared to
those occurring in the parabolic bay. Furthermore, the
2/3-power bay again has an additional runup event,
which is a signature of this geometry.

We note that there are strong similarities between
Carrier et al. (2003) and dynamics in the parabolic
bay. In the case of the plane beach, they observed a
near symmetry of 7(x,¢) around the peak runup for
the Gaussian cases. Similarly, the parabolic bay case
has a significant amount of symmetry as well. The
symmetry starts to break down for the N-wave initial
displacement due to skewness of the initial displace-
ment. The symmetry is somewhat broken for the 2/3-
power bay, with the first runup larger than the second
one in case of the Gaussian wave.

5.3. Comparison with the Finite Difference Solution

In this section, we compare the analytical results
to direct numerical integration of (1) using a finite
difference method. Similar to Nicolsky et al. (2011),
we consider a flux-based implementation of (1):

St + Ux = 07 Ut + (MU)x + gS”Ix = Oﬂ (17)

where the flux U = uS and water level n = H — h. In
the case of m-power bays, the water depth H is related
to the area S according to H = (xS)"/*. Here,
a=1+1/m.

We approximate the system (17) on a staggered
uniform grid by finite differences. The spatial
derivatives are discretized by central difference and
upwind difference schemes (Fletcher, 1991). We also
employ the semi-implicit scheme in time using a first
order scheme (Kowalik & Murty, 1993). The runup
and rundown algorithm is based on Nicolsky et al.
(2011). The finite difference scheme is coded in
Matlab, and spatial and temporal time steps are Ax =
5-1073 and 4t=5-10"%, respectively. For the
initial conditions, we assume a leading depression
N-wave, which is cast from the (g, 1) plane to the
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Figure 8
Comparison of the analytically computed and numerically modeled
water level 1 and velocity u at several key moments during runup
of the leading depression N-wave in the 2/3-power bay

physical coordinates using the linearized hodograph
transform.

Figure 8 shows snapshots of the water level n and
velocity u at several key moments during runup of the
leading depression N-wave in the 2/3-power bay. In
the considered scenario, the initial water velocity is
prescribed according to (15). At each snapshot, we
compare the analytical solution to its finite difference
counterpart, as follows. At r=4, the wave
approaches the head of the bay. The first drawdown
occurs at r = 5.5, as the leading depression arrives in
full force. Then at r = 7.8 the first runup occurs,
followed by another drawdown at # = 10 and runup at
t = 12.3. The wave retreats and its shape is then
captured at r = 15. We note that in all cases, the
analytically computed water level x matches its
counterpart very well. Unfortunately, the comparison
is not so good for the water velocity near the
maximum runup. Recall that the finite difference

scheme is based on the flux formulated Eq. (17), and
hence the velocity is computed as u = U/S. When
S is close to zero, e.g. near the maximum runup, the
division U/S is prone to errors.

We emphasize the analytical solution is computed
by the Newton-Raphson method and is free of any
artifacts. Furthermore, the analytical solution could
be computed for any point (x, f) at once, without a
need to compute preceding wave dynamics. The
number of iterations in the Newton-Raphson method
is typically limited to six, before the machine
accuracy, e.g. 107'6 is obtained, and it takes less
than a second to do so, once all derivatives x,, x;, t,,
and t; are found symbolically.

6. Conclusions

We have posed and solved the initial-value
problem in U-shaped and V-shaped bays of infinite
length by integration of Green’s function. For arbi-
trary values of m, the Green’s function consists of
Legendre functions. The latter and its derivatives
could be readily computed by hypergeometric func-
tions in MATLAB, leading to evaluation of the
potential through a single integral. For 2/(2k + 1)-
power bays, the analytical expressions greatly sim-
plify, resulting in explicit, closed-form solutions for
initial displacements described by a sum of Gaussian
functions on the hodograph plane. For practical pur-
poses, for assessment of the initial conditions in the
physical plane, a linearized hodograph transform
could be used for casting a sum of Gaussian waves
from the hodograph plane to the physical space.
Parameters in Gaussian waves in the hodograph plane
could be adjust until a match to the desired wave in
the geophysical sense is obtained. Once all analytical
expressions for the potential and its derivatives are
found, evaluation of the water level and velocity is
completed through the hodograph transform using the
Newton-Raphson method to an arbitrary degree of
accuracy.
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