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Abstract— CPS safety, defined as the system state remaining
within a desired safe region, is a critical property in applications
including medicine, transportation, and energy. Sensor faults
and attacks may cause safety violations by introducing bias into
the system state estimation, which in turn leads to erroneous
control inputs. In this paper, we propose a class of Fault-
Tolerant Control Barrier Functions (FT-CBFs) that provide
provable guarantees on the safety of stochastic CPS. Our
approach is to maintain a set of state estimators, each of which
ignores a subset of sensor measurements that are affected by a
particular fault pattern. We then introduce a linear constraint
for each state estimator that ensures that the estimated state
remains outside the unsafe region, and propose an approach
to resolving conflicts between the constraints that may arise
due to faults. We present sufficient conditions on the geometry
of the safe region and the noise characteristics to provide a
desired probability of maintaining safety. We then propose a
framework for joint safety and stability by integrating FT-CBFs
with Control Lyapunov Functions. Our approach is validated
through a numerical study of a wheeled mobile robot.

I. INTRODUCTION

A cyber-physical system (CPS) is safe if it remains
within a predetermined safe region for all time. Safety is
a fundamental requirement in critical applications including
medicine, transportation, and energy, in which safety vio-
lations can cause catastrophic economic damage and loss
of human life. The need to ensure safety in systems with
dynamic environments, noisy and uncertain dynamics, and
malicious attacks has resulted in substantial literature on
design and verification of safe CPS [1], [2].

Safety is an especially challenging problem when the
system dynamics are affected by faults and malicious at-
tacks. Sensor faults occur when one or more sensors used
to measure the system state provide arbitrary, inaccurate
readings. Sensor faults affect safety in two ways. First, they
may prevent the system from detecting and preventing safety
violations. Second, they may bias estimates of the system
state, leading to erroneous control signals that drive the true
system state to an unsafe operating point. Both of these cases
are especially damaging when sensors are compromised by
malicious adversaries, who may deliberately design sensor
signals to evade detection [3], [4]. There has been research
attention on detecting sensor faults [5] and attacks [6], [7],
as well as ensuring stability [8], [9] under sensor attacks.

In this paper, we propose sufficient conditions for a control
policy to guarantee safety under one or more possible sensor
faults. We develop our approach within the framework of

The authors are with the Department of Electrical and Computer En-
gineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester,
MA, USA 01609. Email: {aclark,zli4,hzhang9}@wpi.edu. This work was
supported by NSF grant CNS-1941670 and ONR grant N00014-17-1-2946.

Control Barrier Functions (CBF) [10]. An advantage of
CBFs is that they can be readily integrated into existing
control policies by adding linear constraints on the control
input.

We propose a class of Fault-Tolerant Control Barrier
Functions (FT-CBFs) for CPS with sensor faults, which we
construct as follows. When there is one possible fault pattern,
a straightforward approach is to add a CBF constraint on
the state estimate produced by the other, non-faulty sensors.
Typically, however, there are multiple possible fault patterns,
each of which may cause a distinct set of sensors to fail. This
shortcoming can be addressed by maintaining a set of state
estimators, each omitting a set of sensors associated with
one fault pattern, and then using CBFs to ensure that each
of the estimated states remains within the safe region. Such
an approach, however, may be impossible when faults occur
and the state estimates deviate due to the presence of the
fault, making it impossible to satisfy all CBF constraints.

In order to resolve such conflicts, we maintain a sec-
ond set of estimators, each of which estimates the state
using all sensors that do not belong to a given pair of
fault patterns. Given two constraints that conflict with each
other, we compare each state estimate to the corresponding
estimator that excludes all sensors affected by both fault
patterns. If the difference between the baseline exceeds a
given threshold, we relax the corresponding constraint. We
make the following specific contributions:

• We construct FT-CBFs and derive sufficient conditions
to ensure that safety is satisfied with a desired proba-
bility.

• We consider half-plane and ellipsoidal safe regions and
derive conditions on the problem geometry that ensure
that there are no conflicts between CBFs.

• We compose CBFs with Control Lyapunov Functions
(CLFs) to provide joint guarantees on the safety and
stability of a desired goal set under faults.

• We evaluate our approach via a numerical study. The
proposed control policy ensured convergence to a goal
set without violating safety under sensor attack.

The paper is organized as follows. Section II reviews the
related work. Section III states the problem formulation
and gives background on CBFs. Section IV proposes a
CBF-based control policy and gives sufficient conditions
for safety. Section V proposes a framework for joint safety
and stability via CBF-CLFs. Section VI presents simulation
results. Section VII concludes the paper.
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II. RELATED WORK

Fault detection and isolation in control systems has been
studied for decades. See [11] for an in-depth treatment.
Standard approaches include statistical hypothesis testing
for stochastic systems [12], unknown input observers for
deterministic systems [13], and sliding-mode control [14].
More recently, data-driven approaches to fault tolerance have
shown promise [15]. Several of these works aim to guarantee
stability in the presence of faults [16], which is related to
but distinct from the safety criteria we consider. While the
approach of using Kalman filter residues to identify potential
faults is related to our conflict resolution approach, fault-
tolerant control via CBFs has not been studied.

Related to fault-tolerant control is resilient control in the
presence of sensor attacks, which differ from faults due to the
adversary’s ability to evade detection and bias the control to
a desired operating point. A variety of schemes for detecting
compromised sensors and computing state estimates in the
presence of compromised sensor inputs have been proposed
for deterministic and stochastic systems [3], [8], [17]–[22].

Safety verification of cyber-physical systems is an area
of extensive research, with popular methods including
finite-state approximations [23], barrier certificates [24],
simulation-driven approaches [25], and counterexample-
guided synthesis [26]. Among these methods, CBFs were
proposed in [27]. CBFs for stochastic systems were inves-
tigated in [28], [29]. CBFs for high relative degree systems
were presented in [30]–[34]. CBFs for safe reinforcement
learning were introduced in [35]. Applications to domains
such as multi-agent systems [36] and autonomous vehicles
[37] have been considered. None of these existing works,
however, incorporated the effects of faults and attacks.

III. PRELIMINARIES AND PROBLEM STATEMENT

This section presents the system model and problem
statement. We then give background on the Extended Kalman
Filter and control barrier functions.

A. System Model and Problem Statement

Notations. For a set S, let int(S) and ∂S denote the interior
and boundary of S, respectively. For any vector v, we let [v]i
denote the i-th element of v. For a matrix c and set of indices
S, we let c(S) denote the matrix with rows indexed in S.
We let λ(A) denote the magnitude of the largest eigenvalue
of A, noting that this is equal to the largest eigenvalue when
A is symmetric and positive definite. When the value of A
is clear, we write λ.

We consider a nonlinear control system with state xt ∈ Rn
and input ut ∈ Rp at time t. The state dynamics are described
by the stochastic differential equation

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (1)

where f : Rn → Rn and g : Rn → Rn×p are locally
Lipschitz, σt ∈ Rn×n, and Wt is an n-dimensional Brownian
motion.

The system output is denoted as yt ∈ Rq . The output
may be affected by one of m faults. The set of possible

faults is indexed as {r1, . . . , rm}. Each fault ri maps to a
set of affected observations F(ri) ⊆ {1, . . . , q}. We assume
that F(ri) ∩ F(rj) = ∅ for i 6= j. Let r ∈ {r1, . . . , rm}
denote the index of the fault experienced by the system. The
observation vector yt has dynamics

dyt = (cxt + at) dt+ νt dVt (2)

where c ∈ Rq×n, at ∈ Rq , νt ∈ Rq×q , and Vt is a q-
dimensional Brownian motion. The vector at represents the
impact of the fault and is constrained by supp(at) ⊆ F(r).
Hence, if fault r occurs, then the outputs of any of the sensors
indexed in F(ri) can be arbitrarily modified by the fault.
The sets F(r1), . . . ,F(rm) are known, but the value of r
is unknown. In other words, the set of possible faults is
known, but the exact fault that has occurred is unknown to
the controller. Define f(x, u) = f(x) + g(x)u. We assume
that the system is controllable. The detectability property is
defined as follows.

Definition 1: The pair [∂f∂x (x, u), c] is uniformly de-
tectable if there exists a bounded, matrix-valued function
Θ(x) and a real number η > 0 such that

wT
(
∂f

∂x
(x, u) + Θ(x)c

)
w ≤ −η||w||2

for all w, u, and x.
We assume that, for each i, j ∈ {1, . . . ,m}, the pair

[∂f∂x (x, u), c({1, . . . , q} \ (F(ri) ∪ F(rj)))] is uniformly de-
tectable. In other words, if we compute an estimate that does
not incorporate data from sensors affected by any pair of
faults, then that estimate satisfies uniform detectability. The
safe region of the system is a set C ⊆ Rn defined by

C = {x : h(x) ≥ 0}, ∂C = {x : h(x) = 0} (3)

where h : Rn → R is twice-differentiable on C. We assume
throughout the paper that x0 ∈ int(C), i.e., the system is
initially safe.
Problem Statement: Given a set C defined as above and a
parameter ε ∈ (0, 1), construct a control policy that, at each
time t, maps the sequence {yt′ : t′ ∈ [0, t)} to an input ut
and, for any fault r ∈ {r1, . . . , rm}, Pr(xt ∈ C ∀t) ≥ (1−ε)
when fault r occurs.

B. Background and Preliminary Results

The Extended Kalman Filter (EKF) for the system

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (4)
dyt = cxt dt+ νt dVt (5)

is defined by

dx̂t = (f(x̂t) + g(x̂t)ut)dt+Kt(dyt − cx̂t),

where Kt = Ptc
TR−1

t and Rt = νtν
T
t . The matrix Pt is the

positive-definite solution to

dP

dt
= AtPt + PtA

T
t +Qt − PtcTR−1

t cPt

where Qt = σtσ
T
t and At = ∂f

∂x (x̂t, ut). We first introduce
the following assumptions.
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Assumption 1: The SDEs (1) and (2) satisfy the condi-
tions:

1) There exist constants β1 and β2 such that E(σtσ
T
t ) ≥

β1I and E(νtν
T
t ) ≥ β2I for all t.

2) The pair [∂f∂x (x, u), c] is uniformly detectable.
3) Let φ be defined by

f(x, u)− f(x̂, u) =
∂f

∂x
(x− x̂) + φ(x, x̂, u).

Then there exist real numbers kφ and εφ such that

||φ(x, x̂, u)|| ≤ kφ||x− x̂||22
for all x and x̂ satisfying ||x− x̂||2 ≤ εφ.

The following result describes the accuracy of the EKF.
Theorem 1 ( [38]): Suppose that the conditions of As-

sumption 1 hold. Then there exists δ > 0 such that if
σtσ

T
t ≤ δI and νtνTt ≤ δI , then for any ε > 0, there exists

γ > 0 such that

Pr

(
sup
t≥0
||xt − x̂t||2 ≤ γ

)
≥ 1− ε.

For the remainder of the paper, we assume that the system
satisfies the conditions of Theorem 1. We note that for
observable linear systems, the conditions of Theorem 1 hold
with δ = ∞. We next provide background and preliminary
results on control barrier functions. The following theorem
provides sufficient conditions for safety.

Theorem 2: For a system (4)–(5) with safety region de-
fined by (3), define

hγ = sup {h(x) : ||x− x0||2 ≤ γ for some x0 ∈ h−1({0})}

and ĥ(x) = h(x) − hγ . Let x̂t denote the EKF estimate of
xt, and suppose that there exists a constant δ > 0 such that
whenever ĥ(x̂t) < δ, ut is chosen to satisfy

∂h

∂x
(x̂t)f(x̂t, ut)− γ||

∂h

∂x
(x̂t)Ktc||2

+
1

2
tr

(
νTt K

T
t

∂2h

∂x2
(x̂t)Ktνt

)
≥ −ĥ(x̂t). (6)

Then Pr(xt ∈ C ∀t| ||xt − x̂t||2 ≤ γ ∀t) = 1.
The proof of Theorem 2 is very similar to the proof of

Theorem 2 from [29] and is omitted due to space constraints.
We call a function h satisfying (6) a Stochastic Control

Barrier Function (SCBF). Intuitively, Eq. (6) implies that
as the state approaches the boundary, the control input is
chosen such that the rate of increase of the barrier function
decreases to zero. Hence Theorem 2 implies that if there
exists an SCBF for a system, then the safety condition is
satisfied with probability (1− ε) when an EKF is used as an
estimator and the control input is chosen at each time t to
satisfy (6).

IV. PROPOSED SAFE CONTROL STRATEGY

This section presents our proposed CBF-based approach
to safe control. We first describe the control policy and
derive conditions for it to guarantee safety with the desired
probability. We then analyze these conditions for special
cases of the safe region. Finally, we discuss computation
of parameters associated with the control policy.

A. Control Policy Definition

The intuition behind our approach is as follows. If the
fault pattern r is known, then safety can be guaranteed
with probability (1 − ε) by constructing an estimator that
ignores the sensor measurements from the set F(r), defining
an SCBF, and then applying a linear constraint to the
control input derived from Eq. (6). Since the fault pattern
is unknown, we can instead maintain a set of m EKFs and
m SCBFs, each corresponding to a different possible fault
pattern in {r1, . . . , rm}, and each resulting in a different
linear constraint on the control input.

The potential drawback of this approach, however, is that it
may be infeasible to select a control input that satisfies all m
constraints simultaneously at time t, particularly when faulty
sensor measurements cause the state estimates to diverge. We
resolve conflicts between the constraints by defining a set
of
(
m
2

)
EKFs, each of which omits all sensors affected by

either fault ri or fault rj for some i, j ∈ {1, . . . ,m}. These
estimators are used to remove conflicting constraints.

The policy is defined formally as follows. Define ci to
be the c matrix with the rows indexed in F(ri) removed,
yt,i to be equal to the vector y with the entries indexed
in F(ri) removed, and νt,i to be the matrix νt with rows
and columns indexed in F(ri) removed. Let Rt,i = νt,iν

T
t,i

and Kt,i = P t,ic
T
i (Rt,i)

−1. Here P t,i is the solution to the
Riccati differential equation

dP t,i
dt

= At,iP t,i + P t,iA
T
t,i +Qt − P t,icTi R

−1

t,i ciP t,i

with At,i = ∂f
∂x (x̂t,i, ut). Define a set of m EKFs with

estimates denoted x̂t,i via

dx̂t,i = (f(x̂t,i)+g(x̂t,i)ut) dt+Kt,i(dyt,i−cix̂t,i dt). (7)

Each of these EKFs represents the estimate obtained by
removing the sensors affected by fault ri. Furthermore, define
yt,i,j , νt,i,j , ci,j , Rt,i,j , and Kt,i,j in an analogous fashion
with entries indexed in F(ri)∪F(rj) removed. We assume
that the R matrices are invertible. We then define a set of(
m
2

)
estimators x̂t,i,j as

dx̂t,i,j = (f(x̂t,i,j) + g(x̂t,i,j)ut) dt

+Kt,i,j(dyt,i,j − ci,j x̂t,i,j dt). (8)

When F(ri) ∪ F(rj) = {1, . . . , q}, the open-loop estimator
is used for x̂t,i,j .

We then select parameters γ1, . . . , γm ∈ R+, and {θij :
i < j} ⊆ R+, δ > 0. The set of feasible control actions is
defined at each time t using the following steps:

1) Define Xt(δ) = {i : ĥi(x̂t,i) < δ}. Let Zt = Xt(δ).
Define a collection of sets Ωi, i ∈ Zt, by

Ωi ,

{
u :

∂hi
∂x

(x̂t,i)f(x̂t,i, ut)− γi||
∂h

∂x
(x̂t,i)Kt,ic||2

+
1

2
tr(νTt,iK

T
t,i

∂2hi
∂x2

(x̂t,i)Kt,iνt,i) ≥ −ĥi(x̂t,i)
}
.

(9)
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Select ut satisfying ut ∈
⋂
i∈Xt(δ)

Ωi. If no such ut
exists, then go to Step 2.

2) For each i, j with ||x̂t,i−x̂t,j ||2 > θij , set Zt = Zt\{i}
(resp. Zt = Zt \ {j}) if ||x̂t,i− x̂t,i,j ||2 > θij/2 (resp.
||x̂t,j − x̂t,i,j ||2 > θij/2). If

⋂
i∈Zt

Ωi 6= ∅, then select
ut ∈

⋂
i∈Zt

Ωi. Else go to Step 3.
3) Remove the indices i from Zt corresponding to the

estimators with the largest residue values yt,i − cix̂t,i
until there exists ut ∈

⋂
i∈Zt

Ωi.
This policy attempts to select a control input that guarantees
safety regardless of the fault pattern that is experienced (Step
1). If no such input exists, then the set of constraints is
pruned by looking for constraints Ωi such that x̂t,i deviates
from x̂t,i,j by more than a threshold value, since such
deviations are likely to be due to faults. Meanwhile, if the
fault pattern is ri, then the estimates x̂t,i and x̂t,i,j will likely
be close to one another for all t and j 6= i, since both
estimators do not rely on the faulted sensor. We note that
these constraints are compatible with feedback policies as
well as more general history-based control policies.

At each time t, this policy requires maintaining m +(
m
2

)
EKFs, checking

(
m
2

)
inequalities of the form ||x̂t,i −

x̂t,i,j ||2 > θij/2 in the worst-case, and checking the feasi-
bility of m linear inequalities. The following result gives
sufficient conditions for this control policy to guarantee
safety.

Theorem 3: Define

hγi = sup
{
h(x) : ||x− x0||2 ≤ γi

for some x0 ∈ h−1({0})
}

and ĥi(x) = h(x)−hγi . Suppose γ1, . . . , γm, and θij for i <
j are chosen such that the following conditions are satisfied:

1) Define Λi(x̂t,i) = ∂hi

∂x (x̂t,i)g(x̂t,i). There exists δ >
0 such that for any X ′t ⊆ Xt(δ) satisfying ||x̂t,i −
x̂t,j ||2 ≤ θij for all i, j ∈ X ′t, there exists u such that

Λi(x̂t,i)u > 0 (10)

for all i ∈ X ′t.
2) For each i, when r = ri,

Pr(||x̂t,i−x̂t,i,j ||2 ≤ θij/2 ∀j, ||x̂t,i−xt||2 ≤ γi ∀t)
≥ 1− ε. (11)

Then Pr(xt ∈ C ∀t) ≥ 1 − ε for any fault pattern r ∈
{r1, . . . , rm}.

Proof: Suppose that r = ri. We will show that if ||x̂t,i−
xt||2 ≤ γi and ||x̂t,i−x̂t,i,j ||2 ≤ θij/2 for all t, then ut ∈ Ωi
holds whenever ĥi(x̂t,i) < δ. Hence xt ∈ C for all t by
Theorem 2.

At time t, suppose that ĥi(x̂t,i) < δ, so that i ∈ Xt(δ),
and that ||x̂t,i − x̂t,i,j ||2 ≤ θij/2. We consider three cases,
namely (i) ||x̂t,j − x̂t,k||2 ≤ θjk for all j, k ∈ Xt(δ), (ii)
||x̂t,i − x̂t,j ||2 ≤ θij for all j ∈ Xt(δ), but there exist j, k ∈
Xt(δ) \ {i} such that ||x̂t,j − x̂t,k||2 > θjk, and (iii) ||x̂t,i−
x̂t,j ||2 > θij for some j ∈ Xt(δ).

Case (i): We will show that there exists u ∈ ∩j∈Xt(δ)Ωj , and
hence in particular ut satisfies Ωi. Each Ωj can be written
in the form

Ωj = {u : Λj(x̂t,j)ut ≥ ωj} (12)

where ωj is a real number that does not depend on ut. Under
the assumption 1) of the theorem, there exists u satisfying
(10) for all i ∈ Xt(δ). Choose

ut =

(
max
j
{|ωj |}/||u||2

)
u.

This choice of ut satisfies ut ∈
⋂
j∈Xt(δ)

Ωj , in particular
ut ∈ Ωi.
Case (ii): In this case, Step 2 of the procedure is reached and
constraints Ωj are removed until all indices in Zt satisfy
||x̂t,j − x̂t,k||2 ≤ θjk. Since ||x̂t,i − x̂t,j ||2 ≤ θij already
holds for all j ∈ Xt(δ), i will not be removed from Zt
during this step. After Step 2 is complete, the analysis of
Case (i) holds and there exists a u which satisfies all the
remaining constraints, including Ωi.
Case (iii): Suppose j satisfies ||x̂t,i− x̂t,j ||2 > θij . We have

θij < ||x̂t,i − x̂t,i,j + x̂t,i,j − x̂t,j ||2
≤ ||x̂t,i − x̂t,i,j ||2 + ||x̂t,i,j − x̂t,j ||2 (13)
≤ θij/2 + ||x̂t,i,j − x̂t,j ||2 (14)

where Eq. (13) follows from the triangle inequality and (14)
follows from the assumption that ||x̂t,i − x̂t,i,j ||2 ≤ θij/2.
Hence ||x̂t,j − x̂t,i,j ||2 > θij/2 and j is removed from Zt.
By applying this argument to all such indices j, we have that
i is not removed during Step 2 of the procedure, and thus
the analyses of Cases (i) and (ii) imply that ut ∈ Ωi.

From these cases, we have that Ωi holds whenever
ĥi(x̂t,i) < δ. Therefore, by Theorem 2,

Pr(xt ∈ C ∀t|||x̂t,i−x̂t||2 ≤ γi, ||x̂t,i−x̂t,i,j ||2 ≤ θij/2 ∀t)
= 1

and Pr(xt ∈ C ∀t) > 1− ε by (11).
If functions h1, . . . , hm that satisfy the conditions of The-
orem 3, then they are referred to as Fault-Tolerant Control
Barrier Functions (FT-CBF).

B. FT-CBF Construction

The conditions of Theorem 3 are not guaranteed to hold
and depend on the system dynamics, level of noise, and the
geometry of the safe region. In what follows, we develop
sufficient conditions for LTI systems with dynamics

dxt = (Fxt +Gut) dt+ σdWt. (15)

We consider two cases of the safe region, namely, safe
regions defined by half-planes and safe regions defined by
ellipsoids. Since Eq. (11) depends on the accuracy of the
estimator instead of the set C, we will focus on satisfying
constraint (10).
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1) Half-Plane Constraint with LTI System: We first con-
sider constraints of the form h(x) = aTx − b. In this case,
∇ĥi(x) = aT for all i and x, and hence Λi(x̂t,i) = aTG.

Lemma 1: Suppose that aTG 6= 0. Then at each time t,
there exists u satisfying (10).

Proof: For any values of x̂t,i, we can choose an index
l ∈ {1, . . . , p} such that [aTG]l 6= 0, set [u]s = 0 for s 6= l
and select [u]l > 0 if [aTG]l > 0 and [u]l < 0 if [aTG]l < 0.
Hence, for all x̂t,i we can choose u satisfying (10).
Next, we consider the case where aTG = 0. If the LTI
system is controllable, then there exists a minimum i such
that aTF iG 6= 0. Define a set of functions h0, . . . , hi as
h0 = h(x),

hk+1(x) =
∂hk
∂x

Fx+
1

2
tr

(
σT
(
∂2hk
∂x2

)
σ

)
− γ||∂hk

∂x
(x)Kc||2 + hk(x).

Define Ck = {x : hk(x) ≥ 0}. The following result gives a
sufficient condition for safety in this case.

Theorem 4 ( [29]): Suppose that x0 ∈
⋂i
k=0 Ck and, for

all t,

∂hi
∂x

g(x)u ≥ −∂hi
∂x

f(x)− 1

2
tr

(
σT

∂2hi
∂x2

σ

)
− γ||∂hk

∂x
(x)Kc||2 − hi(x). (16)

Then Pr(xt ∈ C ∀t) = 1. Furthermore, ∂hi

∂x Gu = aTF iGu.
As a corollary to Theorem 4, we can choose an index
l ∈ {1, . . . , p} such that [aTF iG]l 6= 0, set [u]s = 0 for
s 6= l, and select [u]l > 0 if [aTF iG]l > 0 and [u]l < 0
if [aTF iG]l < 0. Hence a high relative degree half-plane
constraint can be satisfied with the desired probability.

2) Ellipsoid Constraint with LTI System: We next con-
sider an ellipsoid constraint of the form C = {x : (x −
x′)TΦ(x−x′) ≤ 1} for some positive definite matrix Φ and
x′ ∈ Rn, so that h(x) = 1−(x−x′)TΦ(x−x′). We therefore
have ĥi(x̂) = 1−hγi − (x−x′)TΦ(x−x′). The gradient of
hi is then given by ∇hi(x) = −2((x−x′)TΦ). In this case,

Λi(x̂t,i) = −2(x̂t,i − x′)TΦG.

We first consider the case where rank(G) = n. Define θ =
max {θij : i < j} and h = max {hγi : i = 1, . . . ,m}.

Proposition 1: Suppose θ ≤
√

2(1−h)

λ(Φ)
and rank(G) = n.

Then there exists δ such that (10) is satisfied.
Proof: Choose δ < 1−h− 1

2λθ
2
. We select u such that

Gu = (x̂t,i − x′) for some i ∈ X ′t. For this choice of u, we
have that Λj(x̂t,j)u is proportional to (x̂t,j−x′)TΦ(x̂t,i−x′).
We therefore need to show (x̂t,j − x′)TΦ(x̂t,i − x′) > 0.

Let zt,i = Φ1/2(x̂t,i − x′) and zt,j = Φ1/2(x̂t,j − x′). We
have ||zt,i||22 ∈ (1−δ−h, 1−h), ||zt,j ||22 ∈ (1−δ−h, 1−h),
and

||zt,i − zt,j ||2 = ||Φ1/2(x̂t,i − x̂t,j)||2
≤ ||Φ1/2||2||x̂t,i − x̂t,j ||2 ≤ θ

√
λ

Furthermore,

(x̂t,i − x′)TΦ(x̂t,j − x′) = zTt,izt,j = ||zt,i||2||zt,j ||2 cos ζ,

where ζ is the angle between zt,i and zt,j . By the law of
cosines,

cos ζ =
||zt,i||22 + ||zt,j ||22 − ||zt,i − zt,j ||22

2||zt,i||2||zt,j ||2

≥ 2(1− δ − h)− λθ2

2||zt,i||2||zt,j ||2
> 0

due to the choice of δ. Hence Λj(x̂t,j)u > 0 for all j.
When rank(G) < n, the above approach may be insuffi-

cient to ensure the existence of an FT-CBF, since −(x̂t,i−x′)
might not be in the span of G. We next propose two sufficient
conditions for an FT-CBF to guarantee safety. The first is a
condition on the state trajectory, which can be used to guide
offline trajectory planning. The second approach imposes
additional constraints that reduce the size of C but ensure the
existence of an FT-CBF. Define H as the projection matrix
onto the span of Φ1/2G and define H as the projection onto
the orthogonal space to the span of Φ1/2G.

Proposition 2: Let r = ri and suppose there exist φ and
δ such that

(x̂t,i − x′)TΦ1/2HΦ1/2(x̂t,i − x′)
(x̂t,i − x′)TΦ(x̂t,i − x′)

≥ φ (17)

whenever i ∈ Xt(δ). If θ
2 ≤ (1−δ−h)φ

λ
, then at each time t

with i ∈ Xt(δ) there exists u satisfying (10).
The proof of Proposition 2 is omitted due to space

constraints.
One approach to ensuring safety in the presence of faults

when rank(G) < n is to introduce an auxiliary half-plane
constraint of the form (x− x′)TΦv < 0, which changes the
safe region from C to C , C ∩ {x : (x− x′)TΦv < 0}. This
constraint ensures that there is a control input u satisfying
(10) at each time step, as shown by the following theorem.

Theorem 5: At each time t, if x̂t,i ∈ C for all i, then there
exists ut such that

∂hi
∂x

(x̂t,i)Gut < 0 (18)

−vTGut < 0 (19)

Furthermore, if ut satisfies (18) and (19) at each time step,
then Pr(xt ∈ C) > 1− ε.

Proof: Select ut such that Gut = v. The gradient
associated with the auxiliary half-plane constraint is given
by −vT v < 0, and hence (19) is satisfied. The gradient for
the ellipsoid constraint is equal to (x̂t,i − x′)TΦv < 0 by
choice of v for each i, and hence (18) is satisfied. Both
equations imply that Eq. (10) holds for both the set C and
the set {x : (x − x′)TΦv < 0}. Thus xt ∈ C for all t with
probability at least (1− ε) by Theorem 3.
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C. Computation of θ, γ, and hγ
The computation of γi, i = 1, . . . ,m, and θij for i < j

is briefly considered as follows. For the parameter γi, we
observe that for an LTI system, (xt − x̂t,i) is a Gaussian
random process with mean 0 and covariance matrix Pt,
where Pt is the solution to the Riccati equation

dP

dt
= FPt + PtF

T + σt − PtCT ν−1
t,i CPt.

The minimum γ satisfying Pr(||x̂t,i − xt||2 > γ) < 1 − ε
can be computed based on this distribution.

In the case of θij , a simple bound can be obtained by using
the fact that (x̂t,i − xt) and (x̂t,i,j − xt) are both Gaussian
processes described above. Hence, ||x̂t,i− x̂t,i,j ||2 ≤ ||x̂t,i−
xt||2 + ||x̂t,i,j − xt||2, and ||x̂t,i − x̂t,i,j ||2 can be bounded
above by deriving bounds on each of the two terms.

Computation of hγ is described for half-plane constraints
in [28]. For ellipsoid constraints, we have the following
closed form for hγ . The proof is omitted.

Proposition 3: Suppose that h(x) = 1−(x−x′)TΦ(x−x′)
where Φ is a positive definite matrix and x′ ∈ Rn. Then

hγ =


1, γ ≥ 1√

λ(Φ)

1−
(

1− γ
√
λ(Φ)

)2

, else

V. JOINT SAFETY AND STABILITY

This section presents a framework for jointly ensuring
safety and stability in systems with faults via Control Lya-
punov Functions (CLFs) and CBFs. Such an approach has
been widely used in fault-free scenarios. We first give the
problem statement, followed by our proposed joint CBF-CLF
based policy and results on the CBF-CLF construction.

The stability problem is stated as follows. Define the goal
set G by G = {x : w(x) ≥ 0} for some function w.
The goal of the system is to asymptotically approach the
set G with some desired probability. Our approach towards
satisfying this constraint is through the use of stochastic
Control Lyapunov Functions. A function V : Rn → R≥0

is a stochastic CLF for the SDE (1) if, for each x, we have

inf
u

{
∂V

∂x
f(x) +

∂V

∂x
g(x)u+

1

2
tr

(
σT

∂2V

∂x2
σ

)}
< −ρV (xt)

(20)
for some ρ > 0. The parameter ρ can be chosen to
increase the convergence rate of the algorithm, at the cost
of potentially making the condition (20) infeasible.

We next state a control policy that combines CLFs and
CBFs to ensure safety and stability. Define a threshold
parameter V . At each time t, the set of feasible control
actions is defined as follows:

1) Define Yt(V ) = {j : V (x̂t,j) > V ), and initialize
Ut = Yt(V ). Define a collection of sets Υi, i ∈ Ut, by

Υi ,

{
u :

∂Vi
∂x

f(x̂t,i, u) + γi||
∂Vi
∂x

(x̂t,i)Ktc||2

+
1

2
tr

(
νTt,iK

T
t,i

∂2V

∂x2
(x̂t,i)Kt,iνt,i

)
< −ρV (x̂t,i)

}
(21)

for i = 1, . . . ,m. Select any

ut ∈

( ⋂
i∈Zt

Ωi

)
∩

 ⋂
j∈Ut

Υj

 ,

where Ωi is defined as in (9). If no such ut exists, go
to Step 2.

2) For each i, j with ||x̂t,i−x̂t,j ||2 > θij , set Zt = Zt\{i}
and Ut = Ut \ {i} (resp. Zt = Zt \ {j} and Ut = Ut \
{j}) if ||x̂t,i−x̂t,i,j ||2 > θij/2 (resp. ||x̂t,j−x̂t,i,j ||2 >
θij/2). If ( ⋂

i∈Zt

Ωi

)
∩

 ⋂
j∈Ut

Υj

 6= ∅,
then select ut from this set. Else go to Step 3.

3) Remove the sets Ωi and Υi corresponding to the
estimators with the largest residue values until there
exists a feasible ut.

This policy is similar to the CBF-based approach of Section
IV, with additional constraints to satisfy the stability condi-
tion. This leads to another m linear inequalities.

We omit the analysis of this scheme due to space con-
straints. A controller that reaches a goal set defined by a
function V while satisfying a safety constraint C = {x :
h(x) ≥ 0} can be obtained by solving

minimize uTt Rut
s.t. ut ∈

⋂
i∈Zt

Ωi (CBF)
ut ∈

⋂
j∈Ut

Υj (CLF)
(22)

at each time step, where R is a positive definite matrix
representing the cost of exerting control.

VI. CASE STUDY

A simulation of our approach on a wheeled mobile robot
(WMR) is described as follows. We first describe the system
model. We then present the results of the simulation.

A. System Model

We consider a WMR with dynamics[ẋt]1
[ẋt]2
θ̇t

 =

cos θt 0
sin θt 0

0 1

([ωt]1
[ωt]2

)
+ wt (23)

where ([xt]1, [xt]2, θt)
T is the vector of the horizontal,

vertical, and orientation coordinates for the wheeled mobile
robot, ([ωt]1, [ωt]2)T (the linear velocity of the robot and
the angular velocity around the vertical axis) is taken as the
control input, and wt is the process noise.

The feedback linearization [39] is utilized to transform the
original state vector and the WMR model into the new state
variable xt = ([xt]1, [xt]2, [ẋt]1, [ẋt]2)T and the controllable
linearized model

[ẋt]1
[ẋt]2
[ẍt]1
[ẍt]2

 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




[xt]1
[xt]2
[ẋt]1
[ẋt]2

+


0 0
0 0
1 0
0 1

([ut]1
[ut]2

)
+w

′

t

(24)
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(a) (b)

Fig. 1: Evaluation of our proposed approach on a linearized wheeled mobile robot model case study. (a) The robot trajectory
converges to the goal set (green circular region) without reaching the unsafe region (red rectangular region) in spite of a
constant error of a = 1. A baseline scheme that computes CBF and CLF constraints including the faulty sensor violates
safety. (b) Lyapunov function of the proposed approach shows lower values than Lyapunov function of the baseline, and
converges to zero, proving stability.

where w
′

t is the process noise. The following compensator
is used to calculate the input [ωt]1 and [ωt]2 into (23)

[ωt]1 =

∫ t+

t−
[ut]1 cos θt + [ut]2 sin θt dt (25)

[ωt]2 = ([ut]2 cos θt − [ut]1 sin θt)/[ωt]1. (26)

Here we assume that the observation for the orientation
coordinate θt is attack-free and noise-free, which enables
feedback linearization based on the variable θt.

In the linearized model, we use the observation equation
[yt]1
[yt]2
[yt]3
[yt]4
[yt]5
[yt]6

 =


1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1




[xt]1
[xt]2
[ẋt]1
[ẋt]2

+ at + vt (27)

where at and vt describe the impact of the attack and the
measurement noise. Note that there is one redundant sensor
each for the horizontal and vertical coordinates.

Here we let the safe region C = {xt : h(xt) = [xt]2 +
0.2[ẋt]2 + 0.05 ≥ 0, t ≥ 0} and the goal region G = {xt :
ω(xt) = d − ||xt − xg||2 ≥ 0}, where xg is the center and
d = 0.05 is the radius of the goal region. In order to reach
the goal region, we choose the CLF

V (x) = (xt − xg)TPd(xt − xg) (28)

where Pd = 108

(
1
dI 0
0 I

)
PL

(
1
dI 0
0 I

)
, PL is the solution

of the Lyapunov equation ATPL + PLA = −I , and I is
the identity matrix [30], [40]. We set ρ = 1/(dλ̄(Pd)) in the
linear constraints corresponding to CLF. The control input ut
is computed at each time step by solving (22) with R = I .

B. Numerical Study

A numerical study of the proposed algorithm was per-
formed using Matlab. We set m = 2 and F(r1) = 2,

F(r2) = 4, which correspond to the redundant horizontal
and vertical observations. In order to test the safety and sta-
bility of the system, an attack given by at = (0, 0, 0, 1, 0, 0)T

is injected into the redundant vertical observation [y]4. This
input caused the robot to appear to be farther from the safe
region than it actually was, which could potentially cause the
controller to violate the safety constraint. We test the algo-
rithm under the attack with start point x0 = (1, 0, 0, 0)T and
goal region G = {xt : ω(xt) = 0.05−||xt−(0, 0, 0, 0)T ||2 ≥
0}. The noises w

′

t and vt are Gaussian processes with means
identically zero and covariances 10−3I . The values of γi and
θi,j are 0.001 and 0.045.

The results are shown in Fig. 1. In Fig. 1(a), we plot
the first two dimensions of the state, which describe the
horizontal and vertical coordinates. Note that the robot stays
in the safe region and eventually reaches the goal region,
and hence satisfies safety and stability. For comparison, the
baseline based on all sensors (including the faulty sensors)
defined in [28] resulted in a safety violation. As shown in
Fig. 1(b), the value of V (xt) for our proposed scheme is
always smaller than the value of V (xt) for the baseline, and
V (xt) converges to zero under our approach.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposed a new class of Control Barrier Func-
tions (CBFs) for safety and stability of stochastic systems
under sensor faults and attacks. Under our model, the set of
possible fault patterns is known, but the specific fault pattern
experienced by the system is unknown. Our approach was
to compute a set of state estimators, each of which excluded
a set of possibly faulted sensors in order to mitigate the
impact of a particular fault pattern. We then constructed
a CBF for each state estimator, which guaranteed safety
provided that a linear constraint on the control input was
satisfied at each time step. We proposed a scheme for using
additional state estimators to resolve conflicts between these
constraints and derived sufficient conditions for ensuring
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safety with a desired probability for linear systems under
different geometries of the safe region, including half-plane
and ellipsoidal regions. We then showed how to compose our
proposed CBFs with Control Lyapunov Functions (CLFs) to
achieve joint safety and stability under faults and attacks. Our
approach was validated using a numerical study of a wheeled
mobile robot. Future work will include attacks that affect
sensors and actuators, as well as analysis under arbitrary
geometries and nonlinear dynamics.
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