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A Differentially Private Incentive Design for Traffic Offload

to Public Transportation

LUYAO NIU and ANDREW CLARK, Worcester Polytechnic Institute, USA

Increasingly large trip demands have strained urban transportation capacity, which consequently leads to
traffic congestion and rapid growth of greenhouse gas emissions. In this work, we focus on achieving sus-
tainable transportation by incentivizing passengers to switch fromprivate cars to public transport.We address
the following challenges. First, the passengers incur inconvenience costs when changing their transit behav-
iors due to delay and discomfort, and thus need to be reimbursed. Second, the inconvenience cost, however, is
unknown to the government when choosing the incentives. Furthermore, changing transit behaviors raises
privacy concerns from passengers. An adversary could infer personal information (e.g., daily routine, region
of interest, and wealth) by observing the decisions made by the government, which are known to the public.
We adopt the concept of differential privacy and propose privacy-preserving incentive designs under two
settings, denoted as two-way communication and one-way communication. Under two-way communication,
passengers submit bids and then the government determines the incentives, whereas in one-way communi-
cation, the government simply sets a price without acquiring information from the passengers. We formulate
the problem under two-way communication as a mixed integer linear program and propose a polynomial-
time approximation algorithm. We show the proposed approach achieves truthfulness, individual rationality,
social optimality, and differential privacy. Under one-way communication, we focus on how the government
should design the incentives without revealing passengers’ inconvenience costs while still preserving dif-
ferential privacy. We formulate the problem as a convex program and propose a differentially private and
near-optimal solution algorithm. A numerical case study using the Caltrans Performance Measurement Sys-
tem (PeMS) data source is presented as evaluation. The results show that the proposed approaches achieve a
win-win situation in which both the government and passengers obtain non-negative utilities.
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1 INTRODUCTION

Rapid urbanization is a global trend [13]. Compared to public and non-motorized transport modes,
private vehicles are an increasingly popular transport choice to meet the huge traffic demands
associated with the fast-growing urban population [15]. It has been shown that around 47% of daily
trips in cities are made by private motorized vehicles [46]. If such trends continue, it is predicted
that there will be 6.2 billion daily trips made by private vehicles in 2025 [46].
Several challenges are raised due to the fast-growing trip demands and increasingly pervasive

uses of private vehicles. First, road transport is overly consumed, resulting in traffic congestion,
which leads to economic losses. For example, the cost caused by congestion in urban areas in the
US in 2010 is approximately $101 billion [50]. The European Union (EU) estimates the cost incurred
due to congestion to be 1% of its annual gross domestic product (GDP) [8]. Second, environmental
concerns are raised due to the growth of private car use. The Greenhouse Gas (GHG) emissions
due to the transportation sector will reach 40% by 2050 [30].
Reducing the dependence on private cars has been identified as one of the objectives of govern-

ments to achieve sustainability [14]. One approach is to promote public transportation, which is
shown to be more sustainable compared to private cares [7, 26], as an alternative [24].
In this work, we investigate the problem of how the government could incentivize the passen-

gers to use public transport instead of private cars. There are several challenges faced by the gov-
ernment to encourage passengers to change transit behaviors—from private cars to public trans-
port. First, although the government discourages the use of private cars, passengers’ trip demands
still need to be satisfied. Moreover, the passengers incur inconvenience costs when switching from
private cars to public transport. The inconvenience cost is due to several factors including reduced
quality of service (QoS) and delay of arrival time. The passengers need to be reimbursed for these
costs. Furthermore, the inconvenience cost, which varies from passenger to passenger, is unknown
to the government. The passengers might be unwilling to reveal the inconvenience costs or lie
about their inconvenience costs to earn benefits during the interaction with the government. Al-
though existing literature has experimentally identified the factors that prevent passengers from
changing transit behavior [5, 31, 47, 54], a theoretical analysis on how to incentivize the passengers
to change their transit behaviors with privacy guarantee has received little research att ention.
In this article, we model and analyze how the government could incentivize the passengers to

satisfy their traffic demands via public transport instead of private cars under two settings, named
two-way communication and one-way communication. Under two-way communication, the gov-
ernment and passengers can communicate with each other. Under one-way communication, the
government can send information to the passengers but not vice versa. We not only address the
challenges faced by the government but also address the passengers’ privacy concerns when shift-
ing from private cars to public transport. The privacy concerns are raised since an untruthful
party can observe how the passengers respond to incentives and learn the passengers’ private in-
formation including region of interest and daily routine. Such privacy concerns, which have been
reported in transportation system design [2, 25], discourage privacy-sensitive passengers to switch
from private cars to public transport. We make the following contributions:

• We model the interaction between the government and passenger under two-way com-
munication using a reverse auction model. We formulate the problem of incentivizing the
passengers as a mixed integer linear program. We propose an efficient algorithm to reduce
the computation complexity for computing the passengers selected by the government and
the associated incentives.

• We prove that the proposed mechanism design under two-way communication achieves
approximate optimal social welfare, truthfulness, individual rationality, and differential
privacy.
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• For the one-way communication setting, we formulate the problem as an online convex
program. We give a polynomial-time algorithm to solve the problem. We prove that the
proposed mechanism is differentially private and provides the same asymptotic utility as
the best fixed price, that is, achieves Hannan consistency.

• We present a numerical case study with real-world trace data as evaluation. The results
show that the proposed approach achieves individual rationality and non-negative social
welfare, and is privacy preserving.

The remainder of this article is organized as follows. We discuss the related works in Section 2.
In Section 3, we present the problem formulation under two-way and one-way communication
settings, respectively. We present the proposed incentive mechanism design in Section 4 for the
two-way communication setting. Section 3.3 gives the proposed solution for the one-way com-
munication setting. The proposed approaches are demonstrated using a numerical case study in
Section 6. We conclude the article in Section 7.

2 RELATEDWORK

In this section, we present literature review on intelligent transportation systems and differential
privacy. Significant research effort has been devoted to achieving intelligent and sustainable trans-
portation systems. Planning and routing navigation problems have been investigated by trans-
portation and control communities [9, 10, 34, 45, 52, 55]. Various approaches have been proposed
to improve operation efficiency of existing transportation infrastructure, amongwhich vehicle bal-
ancing [38] has been extensively studied for bike sharing [51] and taxis [39]. Metering strategies
have also been investigated [11, 20]. Traffic signal scheduling has been extensively studied [19, 28,
40, 49] to mitigate urban traffic congestion. Different from the works mentioned above, this article
focuses on the demand-side management, with particular interest on how to encourage passengers
to change their transit behaviors via incentive design.
We next discuss related works on demand-side management. Alternative travel infrastructures

such as a bike-sharing system [12] have been implemented all over the world. Moreover, the ride-
sharing system and the associated ride-sharing match system have been investigated [33, 36],
which group passengers with similar itineraries and time schedules together to reduce the number
of operating vehicles. Most of these works focus on taxis and ride-hailing services such as Uber
and Lyft and ignore the potential from public transport. Pricing schemes have been proposed to
reduce the number of operating vehicles at peak hours [21, 32]. These works focus on private cars
and ignore public transport. Researchers have identified the factors (e.g., passengers’ attitude and
government’s policy) that prevent passengers from taking public transport [4, 5, 31, 44, 47, 54].
However, to the best of our knowledge, there has been little research attention on how to design
incentives to encourage passengers to switch from private to public transit services.
Mechanism design has recently been used in engineering applications such as cloud comput-

ing. In particular, the Vickrey-Clarke-Groves (VCG) mechanism [53] is widely used to preserve
truthfulness. However, truthful communication raises privacy concerns. To address the privacy
issue, we adopt the concept of differential privacy [16–18]. Mechanism designs with differential
privacy, such as exponential mechanism, have been proposed [18, 23, 29, 37]. However, they are not
readily applicable to the problem investigated in this article because the presence of inconvenience
cost functions leads to violations of individual rationality. Moreover, the exponential mechanism is
computationally complex, and hence in this article we propose efficient approximation algorithms.
Trial-and-error implementation for toll pricing has been proposed in [56]. Different from [56],

we consider a closed-loop Stackelberg information pattern and compute the optimal incentive
price. To solve the problem under the one-way communication setting, we adopt the Laplace
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mechanism to preserve differential privacy [18]. This article extends our preliminary conference
version [42], in which the two-way communication setting is studied. We extend the preliminary
work by also investigating the one-way communication setting.

3 PROBLEM FORMULATION

In this section, we first give the problem overview. Then we present the problem formulations
under two settings, denoted as two-way communication and one-way communication. We finally
discuss the privacy model.

3.1 Problem Overview

Let S = {1, . . . , S } denote the set of origin-destination (OD) pairs that will require passengers to
switch to public transport over time horizon t = 1, . . . ,T . When passengers switch from private
cars to public transport, they can provide some amount of traffic offload.1 We assume each OD pair
s ∈ S requiresQs,t amount of traffic offload at time t to achieve sustainability. LetN = {1, . . . ,N }
be the set of passengers. At each time t , any passenger i ∈ N that switches to public transport
for any OD pair s ∈ S receives revenue ri,s,t (qi,s,t ) issued by the government, where qi,s,t ≥ 0 is
the amount of traffic offload that passenger i can provide for OD pair s at time t and ri,s,t (0) = 0.
Passenger i also incurs inconvenience cost Ci,s (qi,s,t ) if it switches from private to public transit
service due to discomfort and time-of-arrival delays. We remark that each passenger is physically
located close to some OD pair s at each time t . Hence, each passenger is only willing to switch
to public transport for one OD pair s that is physically close to its current location. For other OD
pairs s ′ � s , we can regard the associated inconvenience cost as infinity. We assume that the incon-
venience cost functionCi,s (qi,s,t ) is continuously differentiable, strictly increasing with respect to
qi,s,t for all s ∈ S, and convex with Ci,s (0) = 0 for all i and s . The utility of the passenger at each
time step t is given by

Ui,t =
∑
s

[ri,s,t (qi,s,t ) −Ci,s (qi,s,t )]. (1)

In this work, we assume the passengers are selfish and rational; that is, the passengers selfishly
maximize their utilities.

3.2 Case 1: Interaction with Two-Way Communication

In this subsection, we present the problem formulation under two-way communication. In this
case, the interaction between the government and the set of passengers is captured by a reverse
auction model.
The passengers act as the bidders. Each passenger can submit a bid bi,t = [bi,1,t , . . . ,bi,S,t ] to

the government at each time t , where element bi,s,t = (ζqi,s,t , C̄i,s (qi,s,t )) contains the amount of
traffic offload that passenger i can provide and the associated inconvenience cost. Here ζ converts
the amount of traffic offload from utilities in dollars. Without loss of generality, we assume
ζ = 1 in the remainder of this article. Note that C̄i,s (qi,s,t ) is the inconvenience cost claimed by
passenger i , which does not necessarily equal the true cost Ci,s (qi,s,t ).
The government is the auctioneer. It collects the bids from all passengers and then selects a

set of passengers that should participate in traffic offload. In particular, the government computes
a selection profile X ∈ {0, 1}N×S×T , with each element xi,s,t = 1 if passenger i is selected and 0
otherwise. If a passenger i is selected by the government for OD pair s , an associated incentive
ri,s,t (qi,s,t ) is issued to passenger i .

1In the remainder of this article, we use ‘traffic offload’ and ‘reduce the use of private car’ interchangeably.
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The utility (Equation (1)) of each passenger i at time t is rewritten as

Ui,t =
∑
s

xi,s,t
[
ri,s,t (qi,s,t ) −Ci,s (qi,s,t )

]
, ∀i, t . (2)

The social welfare can be represented as

Ω(X ,B) =
∑
t

∑
s

∑
i

[
xi,s,t (qi,s,t −Ci,s (qi,s,t ))

]
, (3)

where B contains bi,t for all i and t . The government aims at maximizing social welfare Ω(X ,B).
This social welfare maximization problem is given as

max
X

∑
t

∑
s

∑
i

[
xi,s,t (qi,s,t −Ci,s (qi,s,t ))

]
(4a)

s.t.
∑
s ∈S

xi,s,t ≤ 1, ∀i, t (4b)

∑
i ∈N

xi,s,tqi,s,t ≥ Qs,t , ∀s, t (4c)

xi,s,t ∈ {0, 1}, ∀i, s, t . (4d)

Constraint (4b) implies that a passenger can only be selected for one OD pair at each time
t . Constraint (4c) requires that the desired traffic offload Qs,t must be satisfied for all s and t .
Constraint (4d) defines binary variable xi,s,t .
Under the two-way communication setting, a malicious adversary aims at inferring the incon-

venience cost function of each passenger by observing the selection profile X . The adversary can
observeX by eavesdropping on the communication channel. LetXt be the selection profile at time
t . Then the information perceived by the adversary up to time t is Itwo

t = {Xt ′ |t ′ ≤ t }. There-
fore, the government needs to compute a privacy-preserving incentive mechanism so that the
social welfare is (approximately) optimal. Compared to encryption, which successfully prevents
an eavesdropper, we will propose a mechanism that ensures a desirable trade-off between social
welfare and privacy guarantee and requires no computation from any passenger. Moreover, our
proposedmechanism is not only resilient to a third-party adversary but also an honest-but-curious
passenger.
Besides the privacy guarantees, we state some additional desired properties that the government

needs to achieve under this two-way communication setting. First, individual rationality for each
passenger should be achieved; that is, each passenger must obtain non-negative utility when be-
ing selected by the government. Second, the government wishes to reveal the true inconvenience
cost functions from the passengers to seek the optimal solution to Equation (4). Therefore, the
government needs to ensure that the passengers bid truthfully. Truthfulness is defined as follows.

Definition 3.1 (Truthfulness). An auction is truthful if and only if bidding the true incon-
venience cost function, that is, C̄i,s (qi,s,t ) = Ci,s (qi,s,t ) for all qi,s,t , is the dominant strategy
for any passenger i regardless of the bids from the other passengers. In other words, bidding
C̄i,s (qi,s,t ) = Ci,s (qi,s,t ) maximizes the utility (Equation (2)) of passenger i for all i .

3.3 Case 2: Interaction with One-Way Communication

In this subsection, we present a problem formulation when two-way communication is infeasi-
ble while one-way communication from the government to the passengers is enabled. Under this
setting, the passengers cannot report any information to the government. The government hence
broadcasts an incentive price ps,t for each OD pair s at each time step t , and then observes the re-
sponses from the passengers to design the incentive price for the next time step (t + 1). Different
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from two-way communication, the passengers respond to the incentive price rather than bidding
a fixed amount of traffic offload. Hence, the amount of traffic offload provided by each passenger
i for OD pair s at time t is defined as a function of incentive price ps,t , denoted as qi,s (ps,t ). We
assume that the traffic offload qi,s (ps,t ) provided by each passenger i is strictly increasing with
respect to ps,t .

The government predicts the traffic condition for the set of OD pairs S = {1, 2, . . . , S } in the
near-future time horizon t = 1, . . . ,T based on the historical traffic information (e.g., traffic con-
ditions during rush hours). Suppose the government requiresQs,t ≥ 0 amount of traffic offload on
OD pair s at each time index t . To satisfy Qs,t amount of traffic offload, the government designs
a unit incentive price ps,t for each time index t to incentivize individual passengers to participate
in the traffic offload program. The information perceived by the government Iдovt up to time t
includes the following: (1) the historical incentives {ps,t ′ |t ′ = 1, . . . , t − 1, s ∈ S} and (2) the his-
torical traffic offload offered by the passengers {qi,s (ps,t ′ ) |i ∈ N , s ∈ S, t ′ = 1, . . . , t − 1}. Thus, the
government’s decision on ps,t for each time t and OD pair s can be interpreted as a policy mapping
from the information set to the set of non-negative real numbers ps,t : Iдovt �→ R≥0.
At each time step t , the passengers observe the incentives ps,t and then decide whether to par-

ticipate in traffic offload and earn the incentive ps,tqi,s (ps,t ) based on their own utility functions.
Passengers that participate in traffic offload incur inconvenience cost Ci,s (qi,s (ps,t )). The incon-
venience cost function Ci,s (qi,s (ps,t )) is private to each passenger i . The information Iit avail-
able to passenger i up to time t includes the following: (1) the historical incentives {ps,t ′ |t ′ =
1, . . . , t , s ∈ S}, (2) the traffic offload function {qi,s (·) |s ∈ S}, and (3) its inconvenience cost func-
tion {Ci,s (·) |s ∈ S}.

Let pt = [p1,t , . . . ,pS,t ] be the incentive prices for all OD pairs s ∈ S at time t . The utility of
each passenger i at time step t can be represented as

Ui,t (pt ) =
∑
s ∈S

{
ps,tqi,s (ps,t ) −Ci,s (qi,s (ps,t ))

}
, ∀i, t . (5)

The social cost is given by

Λ(p) =
∑
t

∑
s ∈S

⎧⎪⎨⎪⎩
∑
i ∈N

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+ ⎫⎪⎬⎪⎭, (6)

where p = [p1, . . . , pT ]T contains the incentive prices for all s and t , [·]+ represents max{·, 0}, and
βs represents the penalty due to deficit of traffic offload. The social cost minimization problem is
formulated as minp Λ(p).
Under the one-way communication setting, the malicious party could not observe the partici-

pation of each passenger directly as in a two-way communication setting. We focus on a malicious
party that can observe the incentive prices issued by the government up to time t and then infer
the amount of traffic offload offered by each passenger i , which might be further used to infer pri-
vate information of the passengers [2, 25]. Denote the information obtained by the government up
to time t as Iдovt . Then we have Iдovt = {ps,t ′,qi,s (ps,t ′ ) |∀s,∀t ′ ≤ t }. The objective of a malicious
party is to compute qi,s (ps,t ′ ) given Imal

t . In this case, the government’s objective is to compute a
privacy-preserving incentive design such that the social welfare is (approximately) maximized.
Besides the privacy guarantee, we briefly discuss the game-theoretic properties under the one-

way communication setting. Since the government broadcasts the incentive price while the pas-
sengers decide if they will participate or not, individual rationality is automatically guaranteed for
rational passengers. Truthfulness is not required under the one-way communication setting since
the passengers cannot send messages to the government under this setting.
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3.4 Notion of Privacy

In this subsection, we give the notion of privacy adopted in this article. We focus on differential
privacy [16, 17], which is defined as follows.

Definition 3.2 (ϵ-Differential Privacy). Given ϵ ≥ 0, a computation procedure M is said to be ϵ-
differentially private if for any two inputs C1 and C2 that differ in a single element and for any
set of outcomes L ⊆ Range(M ), the relationship Pr (M (C1) ∈ L) ≤ exp(ϵ ) · Pr (M (C2) ∈ L) holds,
where Range(M ) is the set of all outcomes ofM .

Definition 3.2 requires computation procedureM to behave similarly given similar inputs, where
parameter ϵ models how similarly the procedure should behave. The choice of ϵ is application
dependent and is not considered in this work. A risk-analysis-based approach is given in [35], while
a budget-constraint-based approach is presented in [27]. In this article, we provide an analysis on
the trade-off between performance and privacy guarantee. A more relaxed and general definition
of differential privacy is as follows.

Definition 3.3 ((ϵ,δ )-Differential Privacy). Given ϵ ≥ 0 and δ ≥ 0, a computation procedureM is
said to be (ϵ,δ )-differentially private if for any two inputsC1 andC2 that differ in a single element
and for any set of outcomes L ⊆ Range(M ), inequality Pr (M (C1) ∈ L) ≤ exp(ϵ ) · Pr (M (C2) ∈ L) +
δ holds.

To quantify the privacy leakage using the proposed incentive designs, we adopt the concept
of min-entropy leakage [3]. We first introduce the concepts of min-entropy and conditional min-
entropy [48], and then define the min-entropy leakage. LetV andY be random variables. The min-
entropy ofV is defined as H∞ (V ) = limα→∞

1
1−α log2

∑
v Pr (V = v )

α , where Pr (V = v ) represents
the probability of V = v . The conditional min-entropy is defined as H∞ (V |Y ) = − log2

∑
y Pr (Y =

y)maxv Pr (v |y), where Pr (v |y) is the probability that V = v given that Y = y. Then the min-
entropy leakage [3] is defined as L = H∞ (V ) − H∞ (V |Y ).
Under the two-way communication setting, the min-entropy leakage is computed as

L = lim
α→∞

1

1 − α log2
∑
B

Pr (B)α − ��− log2
∑
X

Pr (X )max
B

Pr (B |X )�� ,
where Pr (B) is the probability that a bidding profile B is submitted, and Pr (B |X ) is the probability
that the bidding profile B is submitted given the selection profileX is observed. Under the one-way
communication setting, the min-entropy leakage is computed as

L = lim
α→∞

1

1 − α log2
∑
C

Pr (C )α − ���− log2
∑
p

Pr (p)max
C

Pr (C |p)��� ,
where Pr (C ) is the probability that the collection of passengers’ inconvenience cost functions isC ,
and Pr (C |p) is the probability that the collection of inconvenience costs is C given the historical
incentive p is observed.

4 SOLUTION FOR TWO-WAY COMMUNICATION SETTING

Motivated by the exponential mechanism [29, 37], we present an incentive design for the two-way
communication setting in this section. We propose a payment scheme that achieves individual
rationality. We mitigate the computation complexity incurred by the exponential mechanism us-
ing an iterative algorithm. We prove that the desired properties are achieved using the proposed
incentive design.
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4.1 Solution Approach

In this subsection, we give an exact solution under two-way communication. We formally prove
that truthfulness, approximate social welfare maximizing, and differential privacy are achieved
using the proposed mechanism.
The mechanism is presented in Algorithm 1. The algorithm takes the bid profile from the pas-

sengers as input and gives the selection profile X and the incentives issued to each selected pas-
senger. The algorithm proceeds as follows. At each time t ≤ T , the government selects a feasible
solution to the social welfare maximization problem (Equation (4)). The probability of selecting
each feasible X is proportional to the exponential function evaluated at the associated social wel-
fare Ω(X ,B) with scale ϵ

2Δ , where Δ is the difference between the upper and lower bound of social
welfare Ω(X ,B).
Although the computation of selection profile X is motivated by the exponential mechanism

[29, 37], the VCG-like payment scheme adopted by the exponential mechanism is not applicable
to the problem investigated in this work. The reason is that the VCG-like payment scheme violates
individual rationality and truthfulness in our case, due to the fact that the passengers not only have
valuations over the incentives but also inconvenience costs during traffic offload. To this end, the
payment scheme (Equation (11)) is proposed for the problem of interest, in which the incentive
issued to each passenger is determined by the social cost introduced by each passenger. In the
following, we characterize the mechanism presented in Algorithm 1.

Theorem 4.1. The mechanism described in Algorithm 1 achieves truthfulness, individual rational-

ity, near-optimal social welfare, and ϵ-differential privacy.

Proof. We first show that the mechanism achieves near-optimal social welfare. Suppose the
selection profile is subject to some probability distribution D̃. Then the expected social welfare
can be rewritten as

E
X∼D̃
{Ω(X ,B)}

=
∑
X

PrX∼D̃ (X )
∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )

=
2Δ

ϵ

∑
X

PrX∼D̃ (X )
∑
s ∈S

∑
i ∈N

ϵ

2Δ
xi,s (hi,s − ci,s )

=
2Δ

ϵ

∑
X

PrX∼D̃ (X ) ln ��exp ��
∑
s ∈S

∑
i ∈N

ϵ

2Δ
xi,s (hi,s − ci,s )����

=
2Δ

ϵ

∑
X

PrX∼D̃ (X ) ln ���
exp
(∑

s ∈S
∑

i ∈N
ϵ
2Δxi,s (hi,s − ci,s )

)
∑

X exp
(∑

s ∈S
∑

i ∈N
ϵ
2Δxi,s (hi,s − ci,s )

) ���
+
2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )����
=
2Δ

ϵ

∑
X

PrX∼D̃ (X ) ln (PrX∼D (X )) +
2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )���� , (7)

where the last equality follows from Equation (10). Following [41], we introduce the concept of
free social welfare defined as

Ω̃(X ,B) = E
X∼D̃
{Ω(X ,B)} + 2

ϵ
E (D̃), (8)

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 2, Article 20. Publication date: January 2021.



A Differentially Private Incentive Design for Traffic Offload to Public Transportation 20:9

where E (·) is the Shannon entropy. Substituting Equation (7) into Equation (8), the free social
welfare can be rewritten as

Ω̃(X ,B) =
2Δ

ϵ

∑
X

PrX∼D̃ (X ) ln

(
PrX∼D (X )

PrX∼D̃ (X )

)
+
2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )����
=

2Δ

ϵ
DKL (D | |D̃) +

2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )���� , (9)

where DKL (D | |D̃) is the KL-divergence. Observing that the second term is independent of D̃, by
the property of KL-divergence, we have that Equation (9) is maximized if D̃ is computed following
Equation (10).

ALGORITHM 1:Mechanism design for the government

1: procedure Mechanism(B)
2: Input: Bid profile B
3: Output: Selection profile X , incentives R
4: while t ≤ T do

5: Choose a selection profile X that is feasible for social welfare maximization problem
(Equation (4)) with probability

Pr (X ) ∝ exp
( ϵ
2Δ

Ω(X ,B)
)
. (10)

6: For each passenger that is selected, issue incentive ri as

ri,s,t = E
X∼D (bi,t ,B−i,t )

{∑
j

∑
s

x j,s,tqj,s,t −
∑
j′�i

∑
s

x j′,s,tCj′,s (qj′,s,t )

}
+
2Δ

ϵ
E (D (bi,t ,B−i,t ))

−2Δ
ϵ

ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)�� , (11)

where Δ is the difference between the upper and lower bound of social welfare Ω(X ,B), E (·) is the Shan-
non entropy,D (·) is the probability distribution over selection profileB, andX−i,t andB−i,t are thematrix
obtained by removing the ith row and ith column in the selection profile and bid profile, respectively.

7: t ← t + 1
8: end while

9: end procedure

By the definition of free social welfare (Equation (8)), we have that the free social welfare is
obtained by adding a term into the social welfare Ω(X ,B). Hence, we have that the mechanism
described in Algorithm 1 gives near-optimal social welfare.

We then show truthfulness. We prove truthfulness by showing that for each player i , truth-
telling is the dominant strategy. Denote the truthful and non-truthful bid from player i as bi and
b̂i , respectively. By definition, the truth-telling bid bi contains the real inconvenience cost of pas-
senger i , that is, c̄i,s = ci,s , ∀s , while bid b̂i is the bid in which the passenger lies about its incon-
venience cost, that is, c̄i,s � ci,s , ∀s . Let ri,s be the incentive associated with bid bi and r̂i,s be the
incentive associated with bid b̂i . Then we prove truthfulness by showing that for each player i ,
truth-telling is the dominant strategy. The difference between the utility of passenger i by bidding
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20:10 L. Niu and A. Clark

bi and b̂i is represented as

��ri −
∑
s

xi,sci,s�� − ��r̂i −
∑
s

x̂i,sci,s��
= E

X∼D (bi ,B−i )

{
Ω(X, (bi ,B−i ))

}
+
2Δ

ϵ
E (D (bi ,B−i )) −

2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)��

− E
X∼D (b̂i ,B−i )

{
Ω
(
X , (b̂i ,B−i )

)}
− 2Δ

ϵ
E (D (b̂i ,B−i )) +

2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i

)��
= E

X∼D (bi ,B−i )

{
Ω(X, (bi ,B−i ))

}
+
2Δ

ϵ
E (D (bi ,B−i )) − E

X∼D (b̂i ,B−i )

{
Ω
(
X , (b̂i ,B−i )

)}
− 2Δ

ϵ
E (D (b̂i ,B−i ))

= Ω̃ (X , (bi ,B−i )) − Ω̃
(
X , (b̂i ,B−i )

)
, (12)

where the last equality holds by definition of free social welfare (Equation (8)). Since near-optimal
social welfare is achieved, the free social welfare is maximized when X ∼ D (bi ,B−i ). Therefore,
we have

ri −
∑
s

xi,sci,s − ��r̂i −
∑
s

x̂i,sci,s�� = Ω̃ (X , (bi ,B−i )) − Ω̃
(
X , (b̂i ,B−i )

)
≥ 0.

Hence, bidding truthfully is the dominate strategy for each passenger i .
Next, we show individual rationality. By truthfulness, we have that the passengers always bid

truthfully. In the following, we show that the passengers obtain non-negative utilities when bid-
ding truthfully.
The utility of passenger i can be rewritten as

Ui = ri −
∑
s

xi,sci,s

= E
X∼D (bi ,B−i )

⎧⎪⎪⎨⎪⎪⎩
∑
j

∑
s

x j,shj,s −
∑
j′�i

∑
s

x j′,sc j′,s

⎫⎪⎪⎬⎪⎪⎭ +
2Δ

ϵ
E (D (bi ,B−i ))

− 2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)�� −
∑
s

xi,sci,s

= ˜Ω(X ,B) − 2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)�� . (13)

By Equation (9), we have that the maximum free social welfare can be represented as

Ω̃(X ,B) =
2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )���� .
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Hence, we have that Equation (13) can be rewritten as

Ui = Ω̃(X ,B) − 2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)��

=
2Δ

ϵ
ln ��
∑
X

exp ��
ϵ

2Δ

∑
s ∈S

∑
i ∈N

xi,s (hi,s − ci,s )���� −
2Δ

ϵ
ln ��
∑
X

exp
( ϵ
2Δ

Ω(X−i ,B−i )
)��

≥ 0,

where the inequality holds by the fact that the free social welfare is maximized.
We finally show that differential privacy holds. The proof follows from the analysis on the expo-

nential mechanism [37]. We consider two bid profiles B and B̂ that differ in a single entry. Denote
the selection profiles associated with B and B̂ as X and X̂ , respectively. Then the ratio of the prob-
ability of obtaining selection profile X and X̂ given bid profiles B and B̂ is

Pr (X )

Pr (X̂ )
=

exp
(
ϵ
2ΔΩ(X ,B)

)
/
∑

X ′ exp
(
ϵ
2ΔΩ(X ′,B)

)
exp
(
ϵ
2ΔΩ(X̂ , B̂)

)
/
∑

X ′ exp
(
ϵ
2ΔΩ(X ′, B̂)

)

=
exp
(
ϵ
2ΔΩ(X ,B)

) ∑
X ′ exp

(
ϵ
2ΔΩ(X ′, B̂)

)
exp
(
ϵ
2ΔΩ(X̂ , B̂)

) ∑
X ′ exp

(
ϵ
2ΔΩ(X ′,B)

)

≤
exp
(
ϵ
2Δ

(
Ω(X̂ , B̂) + Δ

)) ∑
X ′ exp

(
ϵ
2Δ (Ω(X ′,B)) + Δ

)
exp
(
ϵ
2ΔΩ(X̂ , B̂)

) ∑
X ′ exp

(
ϵ
2ΔΩ(X ′,B)

)
= exp

(ϵ
2

)
· exp

(ϵ
2

)
= exp(ϵ ). (14)

By Equation (14), we have Pr (X ) ≤ exp(ϵ )Pr (X̂ ), satisfying Definition 3.2. �

The mechanism proposed in Algorithm 1 is computationally expensive. The payment scheme
(Equation (11)) is intractable when the passenger set is large since Equation (11) needs to com-
pute the social welfare associated with X and X−i for all i . Therefore, a computationally efficient
algorithm is desired.

4.2 Approximation Algorithm

In this subsection, we give a mechanism that achieves the desired game-theoretic properties and
privacy guarantees and runs in polynomial time.
In real-world implementation, since the passengers are geographically distributed, the govern-

ment can decompose the social welfare maximization problem (Equation (4)) with respect to OD
pair s . Then Equation (4) becomes a set of optimization problems associated with each OD pair s
as follows:

max
xs

∑
i ∈N

xi,s,t
(
qi,s −Ci,s (qi,s )

)
(15)

s.t.
∑
i ∈N

xi,s,tqi,s,t ≥ Qs,t , ∀s, t

xi,s,t ∈ {0, 1}, ∀i, s, t .
Given the set of decomposed problems, if we can achieve the optimal solution to each decom-

posed problem using an incentive design, then we can obtain a social optimal solution. Thus, our

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 2, Article 20. Publication date: January 2021.



20:12 L. Niu and A. Clark

objective is to design a mechanism that achieves the (approximate) optimal solution of each de-
composed problem, individual rationality, truthfulness, and differential privacy.
The proposed efficient algorithm for each decomposed problem is presented in Algorithm 2. The

algorithm iteratively computes the set of passengersWs,t selected by the government for OD pair
s at time t . First, the setWs,t is initialized as an empty set. Then at each iteration k , the probability
of selecting a passenger i that has not been selected at time t is proportional to the exponential
function exp

(
ϵ ′(qi,s,t − C̄i,s (qi,s,t ))

)
, that is,

Pr
(Ws,t ←Ws,t ∪ {i}

) ∝
{
exp
(
ϵ ′(qi,s,t − C̄i,s (qi,s,t ))

)
, if i has not been selected;

0 otherwise,
(16)

where ϵ ′ = ϵ
e ln(e/δ ) . Then the set of selected passengersWs,t is removed from the passenger set

N . For each i ∈ Ws,t , the government issues incentive ri,s,t computed as

ri,s,t = (qi,s,t + z) exp
(
ϵ ′(qi,s,t − C̄i,s (qi,s,t ))

)
−
∫ qi,s,t+z

0
exp(ϵ ′y)dy, (17)

where z =
C̄i,s (qi,s,t )

exp(ϵ ′ (qi,s,t−C̄i,s (qi,s,t )))
. We characterize the solution presented in Algorithm 2 as follows.

Lemma 4.2. Algorithm 2 achieves truthfulness, individual rationality, and ( ϵΔ
e (e−1) ,δ )-differential

privacy. Moreover, Algorithm 2 achieves near-optimal social welfare Ω∗s −
O (lnQs )

ϵ ′ with probability at

least 1 − 1
Qs

O (1) , where Ω
∗
s is the maximum social welfare for OD pair s and ϵ ′ = ϵ

e ln(e/δ ) .

Proof. First, we give a lower bound of the social welfare by using Algorithm 2. By the property
of differential privacy, we have

Pr ��
∑
i

(hi,s − ci,s ) < Ω∗s −
ln |L|
ϵ
− t

ϵ
�� ≤ exp(−t ),

where Ω∗s is the optimal social welfare for sub-problem indexed s . Ignore the term ln |L |
ϵ

and let

t = ln(Qs ). We have Pr (
∑

i (hi,s − ci,s ) < Ω∗s −
O (lnQs )

ϵ ′ ) ≤ 1
Qs

O (1) . Reversing the inequality, we then

have that with probability of at least 1 − 1
Qs

O (1) ,

∑
i

(hi,s − ci,s ) > Ω∗s −
O (lnQs )

ϵ ′
. (18)

Before analyzing the truthfulness property, we define a concept named virtual bid bvi for each
passenger as bvi = [bvi,1,b

v
i,2, . . . ,b

v
i,S ], where each entry bvi,s = hi,s − c̄i,s . Then we characterize

how the truthfulness property is preserved when using Algorithm 2 in the following theorem.
Denote the set of passengers that are selected by the government asWs . Assume that i �Ws .

Then the probability thatWs is selected by the government is represented as

Pr (i �Ws ) =
(
1 − exp(ϵ ′(hi,s − c̄i,s ))

) |Ws | .

Weobserve that the probability of not selecting i is monotone decreasingwith respect to the virtual
bid bvi,s . As a consequence, the probability of selecting passenger i is monotone non-decreasing
with respect to virtual bidbvi,s . By [1], we have that the solution proposed in Algorithm 2 is truthful
in expectation.
Next, we consider the individual rationality property. By Algorithm 3, we have that only the

passengers that can provide the government non-negative social welfare can be selected.Moreover,
we have shown that truthfulness is preserved using the proposed algorithm. Therefore, we have
hi,s − c̄i,s = hi,s − ci,s ≥ 0. By observing Equation (17), we have that the first term models the size
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of a rectangle whose length is hi,s − c̄i,s and width is exp
(
ϵ ′(hi,s − c̄i,s )

)
, while the second term

models the size of the area below the curve exp
(
ϵ ′(hi,s − c̄i,s )

)
. By the convexity of the exponential

function, we have that the payment scheme in Equation (17) is always non-negative.
We finally prove that Algorithm 2 achieves differential privacy with respect to passengers’ bids.

Consider two bid profiles B and B̂ that differ in a single entry for some road segment s . Denote the
sets of passengers that are selected associated with B and B̂ asWs and Ŵs , respectively, where
Ws = Ŵs = {1, 2, . . . ,W }. Then the ratio of the probability of obtaining selection profileWs and
Ŵs given bid profiles B and B̂ is represented as

Pr (Ws )

Pr (Ŵs )

=

W∏
i=1

exp
(
ϵ ′(hi,s − ci,s )

)
/
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

)
exp
(
ϵ ′(ĥi,s − ĉi,s )

)
/
∑

j ∈N i
s
exp
(
ϵ ′(ĥj,s − ĉ j,s )

)

=

W∏
i=1

exp
(
ϵ ′(hi,s − ci,s )

)
exp
(
ϵ ′(ĥi,s − ĉi,s )

) ·
W∏
i=1

∑
j ∈N i

s
exp
(
ϵ ′(ĥj,s − ĉ j,s )

)
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

) , (19)

where N i
s is the set of passengers that have not been selected at iteration i .

In the following, we consider the following two cases. Suppose hi,s − ci,s > ĥi,s − ĉi,s . Then
Equation (19) can be rewritten as

W∏
i=1

exp
(
ϵ ′(hi,s − ci,s )

)
exp
(
ϵ ′(ĥi,s − ĉi,s )

) ·
W∏
i=1

∑
j ∈N i

s
exp
(
ϵ ′(ĥj,s − ĉ j,s )

)
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

)

≤
W∏
i=1

(
exp
(
ϵ ′
(
hi,s − ci,s −

(
ĥi,s − ĉi,s

))))

= exp ��ϵ ′
W∑
i=1

(
hi,s − ci,s −

(
ĥi,s − ĉi,s

))��
= exp(ϵ ′Δs ),

where Δs is the difference between the social welfare associated with B and B̂ for s . The first
inequality holds by the fact that the second term in Equation (19) is upper bounded by one.
Next, we suppose that hi,s − ci,s < ĥi,s − ĉi,s . Then Equation (19) can be rewritten as

W∏
i=1

exp
(
ϵ ′(hi,s − ci,s )

)
exp
(
ϵ ′(ĥi,s − ĉi,s )

) ·
W∏
i=1

∑
j ∈N i

s
exp
(
ϵ ′(ĥj,s − ĉ j,s )

)
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

)

≤
W∏
i=1

∑
j ∈N i

s
exp
(
ϵ ′(ĥj,s − ĉ j,s )

)
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

)

=

W∏
i=1

∑
j ∈N i

s
exp
(
ϵ ′
(
ĥj,s − ĉ j,s − (hj,s − c j,s )

))
exp
(
ϵ ′(hj,s − c j,s )

)
∑

j ∈N i
s
exp
(
ϵ ′(hj,s − c j,s )

)

=

W∏
i=1

Ej ∈N i
s

{
exp(ϵ ′βj,s )

}
,

where βj,s = ĥj,s − ĉ j,s − (hj,s − c j,s ). The first inequality holds because the first term in Equa-
tion (19) is upper bounded by one. For all ϵ ′ ≤ 1 and βj,s ≤ 1 (which can be achieved by
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normalizing the social welfare), we have

W∏
i=1

Ej ∈N i
s

{
exp(ϵ ′βj,s )

}
≤

W∏
i=1

Ej ∈N i
s

{
1 + (e − 1)ϵ ′βj,s

}

≤ exp ��(e − 1)ϵ ′
W∑
i=1

Ej ∈N i
s
{βj,s }�� ,

where the first inequality holds because for all β ≤ 1, exp(β ) ≤ 1 + β (e − 1). When
Ej ∈N i

s
{βj,s } ≤ Δ ln(e/δ ), we have

exp ��(e − 1)ϵ ′
W∑
i=1

Ej ∈N i
s
{βj,s }�� ≤ exp ((e − 1)ϵ ′Δ ln(e/δ )) = exp

(
ϵΔ

e (e − 1)

)
.

By [22], the probability that Ej ∈N i
s
{βj,s } > Δ ln(e/δ ) is at most δ . Hence, we have

Pr (Ws ) ≤ exp

(
ϵΔ

e (e − 1)

)
Pr (Ŵs ) + δ . �

Given Algorithm 2 for each decomposed problem, we present Algorithm 3, which utilizes Al-
gorithm 2 as a subroutine, to solve for the selection profile X for Equation (4). Algorithm 3 works
as follows. It first makes S copies of the passenger set N , with each denoted as Ns for all s ∈ S.
Then Algorithm 2 is invoked iteratively to compute the selected passengers for each OD pair s .
The selection profile X for time t is finally returned as the union ∪sWs,t .

ALGORITHM 2: Solution algorithm for decomposed Equation (15)

1: procedure Decompose(B)
2: Input: Bid profile B, current time t
3: Output: Selection profileWs,t

4: Initialization: Selected passenger setWs,t ← ∅, ϵ ′ ← ϵ
e ln(e/δ )

5: while |Ws,t | ≤ Qs ∧ N � ∅ do
6: for i ∈ N do

7: Compute the probability of selecting passenger i as Equation (16).
8: end for

9: if passenger i is chosen then

10: N ← N \ {i}
11: end if

12: end while

13: returnWs,t

14: end procedure

We conclude this section by characterizing the properties achieved by Algorithm 3.

Theorem 4.3. Algorithm 3 achieves truthfulness, individual rationality, and ( ϵΔS
e (e−1) ,δS )-

differential privacy. Moreover, Algorithm 3 achieves near-optimal social welfare Ω∗ − SO (lnQs )
ϵ ′ with

at least probability 1 − 1
Q∗O (1) , where Ω∗ is the maximum social welfare, Q∗ = maxs Qs , and ϵ ′ =

ϵ
e ln(e/δ ) .

Proof. The properties of truthfulness, individual rationality, and achieving near-optimal social
welfare can be shown following a similar approach used in the proof of Lemma 4.2. Differen-
tial privacy can be shown by applying the composability rule of differential privacy over all OD
pairs. �
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ALGORITHM 3: Solution algorithm for Equation (4)

1: procedure Social_Max(B)
2: Input: Bid profile B
3: Output: Selection profile X
4: while t ≤ T do

5: Initialization: Ns = N for all s
6: Remove all passengers that provide negative social welfare B ← [(qi,s , C̄i,s ) : qi,s,t , C̄i,s (qi,s,t ) ≥

0]
7: for s ∈ S do

8: Decompose(B)
9: Ns = Ns \ ∪s−1s ′=1Ws ′

10: end for

11: return X = ∪s ∈SWs,t

12: t ← t + 1
13: end while

14: end procedure

5 SOLUTION FOR ONE-WAY COMMUNICATION SETTING

In this section, we analyze the problem formulated in Section 3.3. We first present an incentive
mechanism design without privacy guarantee. Then we give an incentive design that satisfies
differential privacy.

5.1 Incentive Mechanism Design without Privacy Guarantee

Different from the two-way communication scenario, the passengers observe the incentive price
signal sent by the government and respond to it by maximizing their own utility. In the following,
we first analyze passengers’ best responses to the price signal. Then we analyze how the govern-
ment should design the incentive price to achieve optimal social welfare.

Lemma 5.1. Given an incentive price ps,t , a selfish and rational passenger would contribute

qi,s (ps,t ) = [C ′
−1
i,s (qi,s (ps,t ))]

+ amount of traffic offload to maximize its utility Ui,t (pt ).

Proof. Let s ∈ S be the OD pair that passenger i can contribute to. Then for any s ′ � s , we
have qi,s ′ (ps ′,t ) = 0. Given an incentive price ps,t , the maximizer of Ui,t (pt ) can be computed as
the solution to ps,t = C ′i,s (qi,s (ps,t )) due to the convexity of Ci,s (·). Therefore, we have that if the
incentive price ps,t is no less than the marginal cost of contributing C ′i,s (0) for each passenger i ,
then passenger i participates in traffic offload. By solving ps,t = C

′
i,s (qi,s (ps,t )) for qi,s (ps,t ), we

have qi,s (ps,t ) = [C ′
−1
i,s (ps,t )]

+, where the operator [·]+ is due to the fact that qi,s (ps,t ) ≥ 0, and the
existence of the solution follows by the convexity of Ci,s (·). �

We have the following two observations by Lemma 5.1. First, a selfish and rational passenger
that optimizes its utility will contribute the amount of traffic offload C ′

−1
i,s (qi,s (ps,t )) if and only if

it can obtain non-negative utility. Moreover, by observing the participation of each passenger, the
government can infer the gradients of inconvenience cost functions.
Taking the amount of traffic offload of each participating passenger qi,s (ps,t ) as feedback, the

government can then use the gradient descent algorithm [57] to approximately minimize the social
cost. In Algorithm 4, the government first initializes a set of learning rates {η1, . . . ,ηT } that adjusts
the step size between two time instants. Meanwhile, Algorithm 4 initializes p1 of small value for
time t = 1. Then for each time step t = 2, . . . ,T , the government iteratively updates the incentive
price pt+1 as max{ps,t −

∑
i ηtC

′
i,s (q

∗
i,s ), 0}.
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ALGORITHM 4: Computation of incentive price

1: Initialize the sequence of learning rates η1, . . . ,ηT−1
2: while t ≤ T do

3: Initialize incentive price p1 > 0 for time step t = 1 arbitrarily

4: Update incentive price as ps,t+1 = max
{
ps,t −

∑
i ηtC

′
i,s (q

∗
i,s ), 0

}
for all s

5: end while

In the following, we characterize Algorithm 4 by analyzing the social cost incurred using the
incentive price returned by Algorithm 4. Analogous to the online convex algorithm [57], we define
the regret of the government. The regret over time horizon T is defined as

R (T ) = Λ(p) − Λ∗, (20)

where Λ(p) is the social cost when selecting a sequence of incentive prices {ps,t }S,Ts=1,t=1 as defined
in Equation (6), and

Λ∗ = min
p

∑
t

∑
s ∈S

⎧⎪⎨⎪⎩
∑
i ∈N

Ci,s (qi,s (p)) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p)
⎤⎥⎥⎥⎥⎦
+ ⎫⎪⎬⎪⎭ (21)

is the optimal social cost when using a fixed price. Then the regret (Equation (20)) models the dif-
ference between the social cost when selecting a sequence of incentive prices {pt }Tt=1 and optimal
social cost from using a fixed price p∗s for each s .

In the following, we characterize the mechanism design proposed for one-way communication
by analyzing the regret (Equation (20)). In particular, we analyze the regret (Equation (20)) by
showing that it satisfies Hannan consistency, that is,

lim sup
T→∞

R (T )

T
→ 0. (22)

Hannan consistency implies that the average regret (Equation (22)) vanisheswhen the time horizon
approaches infinity. We define the following notations. Define row vectors gs,t ∈ RN and hs,t ∈
RN as

gs,t =
[
C ′1,s (qi,s (ps,t )), . . . ,C

′
N ,s (qi,s (ps,t ))

]
(23)

hs,t =
[
q′1,s (ps,t ), . . . ,q

′
N ,s (ps,t )

]
. (24)

We denote the vectors gs,t and hs,t that are associated with ps,t = p∗s as g
∗
s,t and h

∗
s,t , respectively.

Let д̄ = maxs,t gs,t (ps,t ) and д = mins,t дs,t . Denote the maximum incentive price the government

would issue as p̄. We also define column vectors for all s and t as qs,t =
[
q1,s (ps,t ), . . . ,qN ,s (ps,t )

]T .
Similarly, vector q∗s,t represents the vector associated with ps,t = p

∗
s . We finally define ks,t =

gs,t · hs,t + βshs,t1N , where gs,t · hs,t is the dot product of gs,t and hs,t . Let k̄ = maxs,t ks,t be
the maximum ks,t for all s and t . Next we show that the regret (Equation (20)) is upper bounded.

Lemma 5.2. The regret of Algorithm 4 is bounded as R (T ) ≤ ∑s

{
p̄2ks,T

2ηT gs,T 1N
+
∑T

t=1
ηt д̄

2N 2ks,t
2gs,t 1N

}
.

Proof. The proof is motivated by [57]. Denote the optimal incentive price associated with op-
timal social cost Λ∗ as p∗s for each OD pair s . Due to the convexity of inconvenience cost functions
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Ci,s (·), for any qi,s (ps,t ) and ps,t we have

∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

≥
∑
i

{
C ′i,s
(
q∗i,s
) (

qi,s (ps,t ) − q∗i,s
)
+Ci,s (q

∗
i,s )

}
+ βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

.

By definition of gs,t (Equation (23)), we have that the optimal social cost satisfies the following
inequalities:

∑
i

Ci,s (qi,s (p
∗
s )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+

≥ gs,t
(
q∗s,t − qs,t

)
+
∑
i

Ci,s
(
qi,s (ps,t )

)
+ βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+

(25)

≥ gs,t
(
q∗s,t − qs,t

)
+
∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t − hs,t1N (p∗s − ps,t ) −
∑
i

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

(26)

≥ gs,t
(
q∗s,t − qs,t

)
+
∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

− βs
[
hs,t1N (p∗s − ps,t )

]+ ,
(27)

where 1N = [1, . . . , 1]T with dimension N , Inequality (25) follows by the convexity of Ci,s (·), In-
equality (26) follows by the first-order Taylor expansion of concave function qi,s (·), and Inequality
(27) holds by the fact that [a − b]+ ≥ [a]+ − [b]+. Rearranging the inequality above, we have that

∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

−
∑
i

Ci,s (qi,s (p
∗
s )) − βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+

≤ βs
[
hs,t1N (p∗s − ps,t )

]+ − gs,t (q∗s,t − qs,t )
≤ βs

[
hs,t1N (p∗s − ps,t )

]+ − gs,t · hs,t (p∗s − ps,t )
≤ ks,t (p∗s − ps,t ),

where ks,t = I {p∗ ≥ps,t }βshs,t1N − gs,t · hs,t , I {p∗ ≥ps,t } is an indicator that equals to 1 ifp∗ ≥ ps,t and
0 otherwise, and gs,t · hs,t represents the dot product of gs,t and hs,t . At time step t + 1, we have

(ps,t+1 − p∗s )2 ≤
(
ps,t − ηtgs,t1N − p∗s

)2 (28)

≤ (ps,t − p∗s )2 − 2ηtgs,t1N (ps,t − p∗s ) + η2t д̄2N 2, (29)

where Inequality (28) holds by the updating rule of ps,t and Inequality (29) holds due to
gs,t1N ≤ д̄N . Then we obtain gs,t1N (p∗s − ps,t ) ≤ 1

2ηt
[(ps,t − p∗s )2 − (ps,t+1 − p∗s )2 + η2t д̄2N 2]. By
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Equation (20), we have

R (T ) = Λ(p) − Λ∗

=
∑
t

∑
s

⎧⎪⎨⎪⎩
∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

−
∑
i

Ci,s (qi,s (p
∗
s )) − βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+ ⎫⎪⎬⎪⎭

≤
∑
s

p̄2

2

{
ks,1

η1gs,11N
+

T∑
t=2

(
ks,t

ηtgs,t1N
−

ks,t−1
ηt−1gs,t−11N

)
+

T∑
t=1

ηt д̄
2N 2ks,t

2gs,t1N

}

=
∑
s

⎧⎪⎨⎪⎩
p̄2ks,T

2ηT gs,T 1N
+

T∑
t=1

ηt д̄
2N 2ks,t

2gs,t1N

⎫⎪⎬⎪⎭ ,
which completes our proof. �

Leveraging Lemma 5.2, we then show that the Hannan consistency holds for the proposed in-
centive mechanism design.

Proposition 5.3. Let ηt =
1√
t
. The regret defined in Equation (20) along with the incentive design

proposed in Algorithm 4 achieves the Hannan consistency.

Proof. The average regret satisfies

R (T )

T
≤
∑
s

⎧⎪⎨⎪⎩
p̄2ks,T

2ηT gs,T 1NT
+

T∑
t=1

ηt д̄
2N 2ks,t

2gs,t1NT

⎫⎪⎬⎪⎭
≤
∑
s

⎧⎪⎨⎪⎩
p̄2k̄

2ηTNдT
+

T∑
t=1

ηt д̄
2N 2k̄

2Nд

⎫⎪⎬⎪⎭
=
∑
s

⎧⎪⎨⎪⎩
p̄2k̄

2ηTNдT
+

T∑
t=1

ηt д̄
2Nk̄

2дT

⎫⎪⎬⎪⎭ ,
where the first inequality holds by Lemma 5.2, and the second inequality holds by the facts that

k̄ = maxs,t ks,t and д̄ = maxs,t gs,t . Moreover, we have
∑T

t=1 ηt =
∑T

t=1
1√
t
≤
∫ T
t=1

1√
t
= 2
√
T − 1.

Thus,

lim sup
T→∞

R (T )

T
≤ lim sup

T→∞

⎧⎪⎨⎪⎩
∑
s

��
p̄2k̄

2
√
TNдT

+
д̄2Nk̄

(
2
√
T − 1

)
2дT

��
⎫⎪⎬⎪⎭,

which approaches zero as T → ∞. Therefore, we have that the Hannan consistency holds. �

5.2 Incentive Mechanism Design with Privacy Guarantees

In this subsection, we give the differentially private incentive price ps,t under the one-way com-
munication setting.
To achieve the privacy guarantee, we perturb the incentive price returned by Algorithm 4 as

follows:
ps,t = p

∗
s,t + δt , ∀s, t , (30)

where δt ∼ L ( Δpϵ ) is a random variable that follows Laplace distribution with scale Δp/ϵ , and Δp
is the maximum difference of the incentive price under two sets of observations that differ in one
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passenger, which is obtained by solving

max
s,t,qs,t ,q

′
s,t

ps,t+1 − p ′s,t+1

s.t. ‖qs,t − q′s,t ‖1 = 1,

where ps,t+1 and p ′s,t+1 are incentive prices returned by Algorithm 4 given traffic offloads qs,t and
q′s,t , respectively.
In the sequel, we show that differential privacy is preserved.

Theorem 5.4. Incentive price design (Equation (30)) achieves ((T −∑T−1
t=1 ηt )ϵ )-differential

privacy.

Proof. We prove by induction. We first prove that differential privacy holds for a single time
step. Thenwe generalize the analysis on a one-time-step scenario to amultiple-time-steps scenario.
Since the passengers’ utility function is deterministic, given an incentive price ps,t , passengers’
participation is deterministic. Given the initial incentive price ps,1 at t = 1, the contribution of
passenger i is determined as qi,s (ps,1). We compare the p.d.f.’s at ps,2 = p ′s,2.

P
(
ps,2
)

P ′
(
p ′s,2
) = exp

(
− ϵ |ps,1−

∑
j η1C

′
j,s (qj,s (ps,1 ))−ps,2 |
Δp

)

exp
(
− ϵ |p′

s,1−
∑
j η1C

′
j,s (qj,s (p

′
s,1 ))−ps,2 |

Δp

)

≤ exp ���−ϵ
�������ps,1 −

∑
j

η1C
′
i,s (qi,s (ps,1)) +

���p
′
s,1 −

∑
j

η1C
′
j,s (qj,s (p

′
s,1))

���
������� /Δp

���
= exp

(
ϵ
{����p ′s,1 − ps,1 + η1 [C ′i,s (qi,s (p ′s,1)) −C ′i,s (qi,s (ps,1))] ����

}
/Δp

)

= exp((1 − η1)ϵ ),

where the inequality follows from triangle inequality, and the last equality follows by Lemma 5.1.
Thus, we have (1 − η1)ϵ-differential privacy.

We note that since the scheme follows Stackelberg setting, a malicious party can only infer the
passengers’ behavior at time t = 1 by observingps,2. Thus, the analysis on a single time step serves
as our induction base.
At time t , the information perceived by the malicious party is Imal

t = {ps,t ′ |∀s, t = 1, . . . , t }. We

analyze the ratio of
P (ps,t )
P ′(p′s,t )

under the following scenarios. First, if ps,t ′ = p ′s,t ′ for all t
′ < t and ps,t

distinguishes from ps,t , then we have (1 − ηt )-differential privacy. In the following, we focus on
the general setting in which ps,t ′ differs from p ′s,t ′ for all t

′ < t such that qs,1:t and q′s,1:t differ in
at most one entry. Then we have

P
(
ps,t
)

P ′
(
p ′s,t
) =

t∏
τ=2

���
Pr
(
ps,τ |ps,τ−1

)
Pr
(
p ′s,τ |p ′s,τ−1

) ���
=

t∏
τ=1

{
exp

[
ϵ
[���ps,τ − p ′s,τ + ητ (C ′i,s (qi,s (p ′s,τ )) −C ′i,s (qi,s (ps,τ ))] ���/Δp]

}

= exp ����T −
t∑

τ=1

ητ �� ϵ�� .
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Therefore, we have that the proposed approach achieves ((T −∑T−1
t=1 ηt )ϵ )-differential

privacy. �

In the remainder of this section, we characterize the social welfare using the incentive design
(Equation (30)). We start with the expected regret defined as the probabilistic counter-part of Equa-
tion (20): E{R (T )} = Ep{Λ(p)} − Λ∗, where Ep{·} represents expectation with respect to p.

Lemma 5.5. The expected regretE{R (T )} under the incentive (Equation (30)) is bounded from above

as

E{R (T )} ≤ E
⎧⎪⎨⎪⎩
∑
s

⎡⎢⎢⎢⎢⎣
p̄2ks,T

2ηT gs,T 1N
+

T∑
t=1

ηt д̄
2N 2ks,t

2gs,t1N

⎤⎥⎥⎥⎥⎦
⎫⎪⎬⎪⎭ . (31)

Proof. The proof is the probabilistic counter-part of that of Lemma 5.2. �

Before closing this section, we finally show that Hannan consistency holds under incentive
design (Equation (30)), that is,

lim sup
T→∞

R (T )

T
= 0 with probability one. (32)

Theorem 5.6. The Hannan consistency (Equation (32)) holds for incentive design (Equation (30)).

To prove Theorem 5.6, we first give the following lemma.

Lemma 5.7. Let Pr (·) be the probability of an event. Then the following inequality holds:

Pr ��lim sup
T→∞

⎧⎪⎨⎪⎩
T∑
t=1

Sk̄ max
s
‖p∗s − ps,t ‖∞/T

⎫⎪⎬⎪⎭ ≤ 0�� ≥ lim sup
T→∞

Pr ��
T∑
t=1

Sk̄ max
s
‖p∗s − ps,t ‖∞/T ≤ 0�� .

(33)

Proof. LetV = lim supT→∞
∑T

t=1 Sk̄ maxs ‖p∗s − ps,t ‖∞/T . ThenV can be interpreted as the fol-
lowing two statements for all for all ϕ > 0:

⎧⎪⎨⎪⎩t :
t∑

t ′=1

Sk̄ max
s
‖p∗s − ps,t ′ ‖∞/t > V + ϕ

⎫⎪⎬⎪⎭ is finite

⎧⎪⎨⎪⎩t :
t∑

t ′=1

Sk̄ max
s
‖p∗s − ps,t ′ ‖∞/t < V − ϕ

⎫⎪⎬⎪⎭ is infinite.

Then, by the property of limit superior for sequence of sets, we have that Equation (33) holds. �

Now we are ready to prove Theorem 5.6.

Proof (Proof of Theorem 5.6). Let k̄ = maxs,t ks,t be the maximum ks,t for all s and t , and
д = mins,t дs,t . Then, following the proof of Lemma 5.2, we have

∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

−
∑
i

Ci,s (qi,s (p
∗
s )) − βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+

≤ ks,t (p∗s − ps,t ) ≤ k̄ (p∗s − ps,t ).
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Summing the inequality above over t and s , we have

Λ(p) − Λ∗

=
∑
t

∑
s

��
∑
i

Ci,s (qi,s (ps,t )) + βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (ps,t )
⎤⎥⎥⎥⎥⎦
+

−
∑
i

Ci,s (qi,s (p
∗
s )) − βs

⎡⎢⎢⎢⎢⎣Qs,t −
∑
i ∈N

qi,s (p
∗
s )
⎤⎥⎥⎥⎥⎦
+ ��

≤
∑
t

∑
s

(
ks,t (p

∗
s − ps,t )

)

≤
∑
t

∑
s

(
k̄ (p∗s − ps,t )

)
≤
∑
t

∑
s

(
k̄ ‖p∗s − ps,t ‖∞

)
.

Let Pr (·) be the probability of an event. Then we have

Pr

(
lim sup
T→∞

R (T )

T
≤ 0

)
≥ Pr ��lim sup

T→∞

⎧⎪⎨⎪⎩
∑
t

∑
s

(
k̄ ‖p∗s − ps,t ‖∞

)
/T

⎫⎪⎬⎪⎭ ≤ 0��
≥ Pr ��lim sup

T→∞

⎧⎪⎨⎪⎩
∑
t

Sk̄ max
s
‖p∗s − ps,t ‖∞/T

⎫⎪⎬⎪⎭ ≤ 0��
≥ lim sup

T→∞

⎧⎪⎨⎪⎩Pr ��
∑
t

Sk̄ maxs ‖p∗s − ps,t ‖∞
T

≤ 0��
⎫⎪⎬⎪⎭ (34)

≥ lim sup
T→∞

⎧⎪⎨⎪⎩1 − Pr ��
∑
t

Sk̄ maxs ‖p∗s − ps,t ‖∞
T

≥ Δp

ϵ
��
⎫⎪⎬⎪⎭ (35)

= lim sup
T→∞

{
1 − exp

(
− T

Sk̄

)}
= 1,

where Inequality (34) holds by Lemma 5.7, and Inequality (35) holds by Equation (30) and the
definition of δt . Therefore, we have that Hannan consistency holds. �

6 NUMERICAL CASE STUDY

6.1 Case Study Setup

We consider a government aiming at initiating traffic offload for S = 5 OD pairs for the next day.
Suppose the time horizonT = 24 and each time slot t is set as 1 hour. The desired amount of traffic
offload at each OD pair is obtained from the Caltrans Performance Measurement System (PeMS)
data source [6]. The five roads that we used in the dataset are county “INY”with direction S , county
“LA” with direction N , county “KER” with directionW , county “FRE” with direction S , and county
“IMP” with direction S2. If a road appears multiple times in the data source, we take the average
over the peak volume as the data used in the case study. To show the performance of traffic offload,
we use the ahead peak hour traffic volume in [6] as the traffic volume without traffic offload. Since
the ahead hourly traffic volume data is not available, we treat the ahead traffic data at different
post miles as the traffic volume data at different times.
The size of the passenger set isN = 50,000.We assume the inconvenience cost functionCi,s (qi,s )

of each passenger i is a linear combination of four factors denoted as comfort, reliability, delay on
time of arrival, and cost [5, 31]. Different passengers assign different weights on these factors. The

2We omit the result of OD pair IMP due to space limits. See [43] for the result of IMP.

ACM Transactions on Cyber-Physical Systems, Vol. 5, No. 2, Article 20. Publication date: January 2021.



20:22 L. Niu and A. Clark

Fig. 1. In Figure 1(a) to Figure 1(d), we present the traffic volume before and after traffic offload under two-

way communication. The solid curve is the traffic volume before traffic offload, whereas the dashed curve

represents the traffic volume after traffic offload. In Figure 1(e) to Figure 1(h), we present the traffic volume

before and after traffic offload under one-way communication. The solid curve is the traffic volume before

traffic offload, whereas the dashed curve represents the traffic volume after traffic offload.

weights for each passenger are generated using a multivariate normal distribution, with mean
[0.16, 0.27, 0.36, 0.21] and variance 0.3I [31], where I is the identity matrix.
We set two baselines for comparison under two-way and one-way communication settings. In

the baseline of two-way communication, the government solves the social welfare maximization
problem (Equation (4)) without any privacy guarantee by adopting the VCG mechanism [53]. In
the baseline of one-way communication, the government uses a fixed price p∗s to minimize the
social cost for each s ∈ S.

6.2 Two-Way Communication

In this section, we demonstrate the proposed approach for the two-way communication scenario.
We first generate the passengers’ bids. As shown in Theorem 4.3, the passengers bid truthfully
to the government, and hence the government knows the inconvenience cost function of each
passenger. The amount of traffic offload contributed by each passenger is generated using a normal
distribution with mean 3.5 and variance 0.3.We remark that the contributions model the best effort
of all passengers, that is, the capabilities of all passengers.
We compute the incentives and selection profile following Algorithm 3. First, we show the traffic

volume on each OD pair before and after traffic offload in Figure 1(a) to Figure 1(d). The solid
curve is the traffic volume before traffic offload, whereas the dashed curve represents the traffic
volume after traffic offload. As observed in Figure 1(a) to Figure 1(d), the traffic volume decreases
by incentivizing the passengers to switch from private to public transit services. Moreover, the
gap between the solid curve and dashed curve gives the amount of traffic offload due to passengers
switching from private to public transit services.We next compare the total social welfare achieved
at all OD pairs at 7 : 00AM using our proposed approach and the baseline with respect to the
privacy parameter ϵ in Figure 2(a). Since the baseline ignores the privacy guarantee, it achieves
the optimal social welfare (the dotted red line in Figure 2(a)). We also observe that we can tune the
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Fig. 2. In Figure 2(a), we present the total social welfare of all OD pairs at 7 : 00AM under two-way com-

munication using the proposed approach (blue solid line) and the baseline approach (red dotted line) with

respect to the privacy parameter ϵ . In Figure 2(b), we present the min-entropy leakage for OD pair INY at

12 : 00 PM when parameter ϵ varies from 0.01 to 1.

trade-off between the social welfare and privacy guarantee. In particular, by decreasing the value
of parameter ϵ , we achieve a stronger privacy guarantee at the expense of social welfare loss.
We present the min-entropy leakage in Figure 2(b) to validate that the proposed incentive design

in Algorithm 3 is privacy preserving. We compute the min-entropy for OD pair INY at 12 : 00PM
when differential privacy parameter ϵ varies from 0.01 to 1. We observe that the min-entropy
is monotone increasing with respect to parameter ϵ , which agrees with our privacy-preserving
property. That is, when the mechanism is designed with a stronger privacy guarantee, there exists
less min-entropy leakage for each individual passenger. We also give the min-entropy leakage of
the baseline approach, which selects the passengers deterministically. The min-entropy leakage of
the baseline is 250000, which is significantly higher compared to that of our proposed approach.

6.3 One-Way Communication

In this subsection, we demonstrate the proposed approach for the one-way communication sce-
nario. The government initializes a first guess of incentive price 0.02. Given the incentive priceps,t ,
the response from each passenger is computed by Lemma 5.1. The capability of each passenger is
adopted from the setting under two-way communication.
We present the traffic volume on each OD pair before and after traffic offload in Figure 1(e) to

Figure 1(h). We have the following observations. First, the traffic volume decreases due to pas-
sengers switching from private to public transit services. Similar to Figure 1(a) to Figure 1(d), the
gap between the curves represents the amount of traffic offload. Finally, the traffic volume after
traffic offload is lower than that under the two-way communication setting for some time t ; that is,
the amount of traffic offload contributed by the passengers is higher than that under the two-way
communication setting. The reasons are twofold. First, the government does not know the incon-
venience cost function of each passenger under the one-way communication setting and has no
ability to select the participating passengers. Therefore, the participating passengers could con-
tribute more than Qs,t for all s and t under the one-way communication setting. However, the
government selects the winners under the two-way communication setting and onlyQs,t amount
of traffic offload is realized for all s and t . Second, the passengers’ inconvenience costs are modeled
as a linear function. Hence, any passenger i such that ps,t ≥ C ′i,s (qi,s ) would participate in traffic
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Fig. 3. In Figure 3(a) to Figure 3(b), we present the social cost incurred under one-way communication setting

with different parameter β using the proposed approach and the baseline approach. The parameter β is set

as 0.5 and 1 in Figure 3(a) and 3(b), respectively. In Figure 3(c), we show the min-entropy leakage L for OD

pair INY over time.

offload by shedding the maximum amount of traffic offload, that is, contribute its maximum effort.
We then give the social cost incurred during traffic offload under the one-way communication
setting using our proposed approach and baseline in Figure 3(a) to Figure 3(b) with different pa-
rameter β . In particular, the parameter β is set as 0.5 and 1 in Figure 3(a) and 3(b), respectively. We
observe that as β increases, the social cost increases. The reason is that there exist some time steps
(e.g., 10 : 00 AM at IMP) at which the desired traffic offload is not satisfied and hence the govern-
ment incurs high penalties. Moreover, the government incurs slightly higher social cost compared
to the optimal social cost incurred using the baseline approach. The average regret is 26.458 and
52.916 when β = 0.5 and β = 1, respectively.
We finally present the min-entropy leakage for OD pair INY under the one-way communication

setting in Figure 3(c). In this case study, parameter ϵ is set as 0.015. We show how privacy is
preserved over time.We observe that the privacy leakage increases over time. The reason is that the
malicious party perceives more information over time. Hence, more information can be inferred
by the adversary as time increases. Using the baseline approach, the min-entropy leakage is 2 for
all time t , which is 199 times higher compared to our approach.

7 CONCLUSIONS

In this article, we investigated the problem of incentivizing passengers to switch from private to
public transit service to mitigate traffic congestion and achieve sustainability. We considered two
settings denoted as two-way communication and one-way communication. We modeled the inter-
action under the two-way communication setting using a reverse auction model and proposed a
polynomial-time algorithm that achieves approximate social optimal, truthfulness, individual ra-
tionality, and differential privacy. In the one-way communication setting, we presented an online
convex algorithm to solve for the incentive price. The proposed approach achieves Hannan con-
sistency and differential privacy. We evaluated the proposed approaches using a numerical case
study with the PeMS data source.
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