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1. Introduction

Safety, defined as ensuring that the state of a control sys-
tem remains within a particular region, is an essential prop-
erty in applications including transportation, medicine, and
energy. The need for safety has motivated extensive research into
synthesizing and verifying controllers to satisfy safety require-
ments. Methodologies include barrier methods (Prajna, Jadbabaie,
& Pappas, 2007), discrete approximations (Chutinan, 1999; Mitra,
Wongpiromsarn, & Murray, 2013; Ratschan & She, 2005), and
reachable set computation (Althoff, Le Guernic, & Krogh, 2011;
Girard, Le Guernic, & Maler, 2006).

Recently, Control Barrier Functions (CBFs) have emerged as a
promising approach to ensure safety while maintaining compu-
tational tractability (Ames, Xu, Grizzle, & Tabuada, 2016). A CBF
is a function that either decays to zero (Zero CBF, or ZCBF) or di-
verges to infinity (Reciprocal CBF, or RCBF) as the state trajectory
approaches the boundary of the safe region. Safety of the system
can be guaranteed by adding a constraint to the control input,
which ensures that the CBF remains finite in the case of RCBF
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and positive in the case of ZCBF (Fig. 1). The CBF approach has
been successfully applied to bipedal locomotion (Hsu, Xu, & Ames,
2015; Nguyen & Sreenath, 2016b), automotive control (Chen,
Peng, & Grizzle, 2017; Mehra et al., 2015), and UAVs (Wu &
Sreenath, 2016). Furthermore, by composing a CBF with a Con-
trol Lyapunov Function (CLF), optimization-based control policies
with joint guarantees on safety and stability can be designed.

Existing CBF techniques are applicable to deterministic sys-
tems with exact observation of the system state. Many control
systems, however, operate in the presence of noise in both the
system dynamics and sensor measurements. A CBF framework
for stochastic systems would enable computationally tractable
control with probabilistic guarantees on safety by making the CBF
method applicable to a broader class of systems.

In this paper, we generalize CBF-based methods for safe con-
trol to stochastic systems. We consider complete information
systems, in which the exact system state is known, as well as in-
complete information systems in which only noisy measurements
of the state are available. For both cases, we formulate stochastic
versions ZCBF and RCBF, and show that a linear constraint on the
control at each time step results in provable safety guarantees.
We make the following contributions:

e In the complete information case, we formulate ZCBFs and
RCBFs and derive sufficient conditions for the system to
satisfy safety with probability 1.

e In the incomplete information case, we consider a class
of controllers in which the state estimate is obtained via
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Fig. 1. Illustration of (a) Reciprocal CBF and (b) Zero CBF.
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Extended Kalman Filter (EKF). We derive bounds on the
probability of violating the safety constraints as a function
of the estimation error of the filter.

o We derive sufficient conditions for constructing ZCBFs for
high relative degree systems, and analyze the special case
of linear systems with affine safety constraints and complete
state information.

e We construct optimization-based controllers that integrate
stochastic CLFs with CBFs to ensure safety and performance.
The controllers solve quadratic programs at each time step
and thus can be implemented on embedded systems.

e We evaluate our approach via numerical study on multi-
agent collision avoidance. We find that the proposed ZCBF
guarantees safety while still allowing the agents to reach
their desired final states.

The rest of the paper is organized as follows. Section 3 presents
needed background. Section 4 presents CBF constructions in the
complete information case. Section 5 considers the incomplete
information case. Section 6 presents control policy constructions
via stochastic CBFs. Section 7 contains numerical results. Section 8
concludes the paper.

2. Related work

The CBF method for synthesizing safe controllers was pro-
posed in Ames, Grizzle, and Tabuada (2014) and Ames et al.
(2016). For a comprehensive survey of recent work on CBFs,
see Ames et al. (2019). Composition of CBFs with CLFs for
guaranteed safety and stability was proposed in Romdlony and
Jayawardhana (2016). CBFs have been proposed for input-
constrained systems (Rauscher, Kimmel, & Hirche, 2016), sys-
tems with delays (Jankovic, 2018), self-triggered systems (Yang,
Belta, & Tron, 2019), and linearizable systems (Xu, 2018). Ex-
tensions to incorporate signal temporal logic constraints were
developed in Lindemann and Dimarogonas (2019). A framework
for exponential CBFs that enable safety guarantees in high relative-
degree systems was proposed in Nguyen and Sreenath (2016a).
High relative-degree deterministic systems were also considered
in Khojasteh, Dhiman, Franceschetti, and Atanasov (2020) and
Xiao and Belta (2019). While the present paper also considers
high relative degree systems, we propose a different approach
and, moreover, consider the problem in a stochastic setting.
Learning-based methods for CBFs in systems with incomplete
information due to uncertainties were presented in Cheng, Kho-
jasteh, Ames, and Burdick (2020), Cheng, Orosz, Murray, and
Burdick (2019), Fan et al. (2020) and Khojasteh et al. (2020).

The problem of verifying safety of a given system and con-
troller has been studied extensively over the past several decades
(Chutinan, 1999; Dolginova & Lynch, 1997; Ratschan & She, 2005;
Tabuada, 2009; Tomlin, Pappas, & Sastry, 1998). In the verification
literature, the approach that is closest to the present work is
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the barrier function method (Prajna & Jadbabaie, 2004; Prajna
et al., 2007). Barrier certificates provide provable guarantees that
a system with given controller does not enter an unsafe region.
More recently, a tighter barrier function construction that enables
controller synthesis for stochastic systems was proposed in San-
toyo, Dutreix, and Coogan (2019). Barrier certificate methods,
however, enable safety verification of a given system, but do
not provide an approach for synthesizing controllers with safety
guarantees. Indeed, existing techniques for synthesizing barrier
certificates using sum-of-squares optimization are inapplicable
to designing control barrier functions. A discrete-time barrier
certificate for ensuring satisfaction of temporal logic properties
via control barrier functions was proposed in Jagtap, Soudjani,
and Zamani (2020), however, this problem setting differed from
our continuous-time, infinite-horizon approach. A finite-horizon
sum-of-squares based CBF for continuous systems was proposed
in Jahanshahi, Jagtap, and Zamani (2020).

The preliminary conference version of this paper (Clark, 2019)
introduced CBFs for stochastic systems, including what this paper
refers to as reciprocal CBFs. The present paper introduces the
additional notion of zero CBFs for stochastic systems, as well as
methodologies for computing CBFs for high relative degree sys-
tems. We also extend our results in the incomplete information
case to systems where the output is nonlinear in the input.

3. Background

This section provides background on martingales and stochas-
tic differential equations (SDEs). In what follows, we let -t =
max {-,0}, -~ = min{-, 0}, E(-) denote expectation, and tr(-)
denote the trace. A function @ : R — R is class-K if it is strictly
increasing and «(0) = 0. We let [x]; denote the ith element of
vector X.

We consider stochastic processes with respect to a probability
space (2, F, Pr), where £2 is a sample space, F is a o-field over
£2,and Pr : F — [0, 1] is a probability measure. A filtration
{F: : t = 0} is a collection of sub-o-fields with 7z C 7, C F for
0 < s <t < o0. A stochastic process is adapted to filtration {7} if,
for each t > 0, X; is an F;-measurable random variable (Karatzas
& Shreve, 2012).

Definition 1. The random process x; is a martingale if E(x;|xs) =
xs for all t > s, a submartingale if E(x;|xs) > xs for all t > s, and a
supermartingale if E(x;|x;) < x; for all t > s.

A stopping time is defined as follows.

Definition 2. A random time 7 is a stopping time of a filtration
F; if the event {r < t} belongs to the o-field 7; for all t > 0.

Let x; be a submartingale (resp. supermartingale) and let t be a
stopping time. If t A t denotes the minimum of t and t, then x; .,
is a submartingale (resp. supermartingale). The following result
gives bounds on the maximum value of a submartingale.

Theorem 1 (Doob’s Martingale Inequality Karatzas & Shreve, 2012).
Let x; be a submartingale, [to, t1] a subinterval of [0, c0), and A > 0.
Then

kPr( sup X; > A) < E(x)). (1)

to=<t<ty

The following result follows directly from Doob’s Martingale
Inequality.

Corollary 1. Let x; be a supermartingale, [to, t1] a subinterval of
[0, 00), and A > 0. Then

APF ( inf x < —k) < E(x;) — E(x;,). (2)
telto.t1] !
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Proof. Since x; is a supermartingale, —x; is a submartingale.
Applying (1) with the submartingale —x; completes the proof. O

The quadratic variation (X) of a random process X is the unique
adapted increasing process for which (X)o = 0 and X> — (X) is a
martingale (Karatzas & Shreve, 2012).

We next define a semimartingale and give a composition
result on semimartingales.

Definition 3. A continuous semimartingale x; is a stochastic
process which has decomposition x; = xo + M; + A; with
probability 1, where M; is a martingale and A; is the difference
between two continuous, nondecreasing, adapted processes.

For any stopping time 7z and semimartingale X;, X, iS a
semimartingale. The following lemma gives a composition rule
for semimartinigales.

Lemma 1 (It6’s Lemma Karatzas & Shreve, 2012). Let f(x,t) be a
twice-differentiable function and let x, be a semimartingale. Then
f(x;) is a semimartingale that satisfies

Fx) = flxo) + / F(xs) dM, + / F(x) dAs
0 0

1 [t ,
+1 / £ (%) d(M)s
2 Jo
with probability 1 for all t.

A stochastic differential equation (SDE) in It6 form is defined
by

dx; = a(x, t) dt + o(x, t) dW, (3)

where a(x, t) and o(x, t) are continuous functions and W, is a
Brownian motion. The dimension of x; is equal to n, while the
dimension of W; is equal to g. A strong solution to an SDE is
defined as follows.

Definition 4. A strong solution of SDE (3) with respect to
Brownian motion W; and initial condition x is a process {x; :
t € [0, 00)} with continuous sample paths and the following
properties:

(1) Pr(xo = x) =
(ii) For every 1 <

t
Pr(/ |ai(Xz,T)|+OiJ2(XT,t)d1:<oo>:].
0

1
i<nl1<j<r,andt € [0, c0),

(iii) The integral equation

t t
xt:X0+/ a(r,xr)dt-i-/ o(t,x;) dWy,
0 0

where the latter term is a stochastic integral with respect
to the Brownian motion W;, holds with probability 1.

Any strong solution of an SDE is a semimartingale. For such
strong solutions, if f(x, t) is a twice differentiable function and
z¢ = f(x;, t), then It6’s Lemma reduces to

dZt =
2
(%{ + Lo 04 St (“(’" o Gaote ”)) «
+ (afa(x, t)) dW; “)
ax

4. Complete-information CBFs

This section presents our construction of control barrier func-
tions for stochastic systems where the controller has complete
state information.
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4.1. Problem statement

We consider a system with time-varying state x, € R" and
control input u; € R™. The state x; follows the SDE

dxe = (f(x¢) + g(x)ue) dt + o (x,) dW; (5)

where f : R" — R", g : R" - R™™ and o : R" — RY are locally
Lipschitz continuous functions and W; is a Brownian motion. We
assume that (5) has a strong solution for any control signal u;.

The system is required to satisfy a safety constraint for all
time t, which is expressed as x; € C for all t where C is a
safe operating region. The set C is defined by a locally Lipschitz
function h : R" — R as

C={x:h(x)>0}, ocCc={x:h(x)=0}.
The set of interior points of C is denoted as int(C).

Problem studied: How to design a control policy that maps the
sequence {xy : t’ € [0, t)} to an input u, such that x; € ¢ for all t
with probability 1?

We observe that, for systems where it is not possible to design
a policy that ensures safety with probability 1, there may be
policies that provide policy with some probability ¢ € (0, 1).
Constructing such policies is a direction for future work.

4.2. Reciprocal control barrier function construction

We present our first stochastic CBF construction, which is a
reciprocal CBF (RCBF) analogous to Ames et al. (2016).

Definition 5. Let x; be a stochastic process described by (5).
A reciprocal CBF is a function B : R" — R that is locally
Lipschitz, twice differentiable on int(C), and satisfies the following
properties:

(1) There exist class-K functions «; and «, such that
1 1
<B(x) <
a1 (h(x))
for all x € int(C).
(2) There exists a class-K function a3 such that, for all x €
int(C), there exists u € R™ such that

(6)

2 ax2
< as(h(x)) (7)

In the deterministic case (Ames et al., 2016), the reciprocal CBF
construction ensures that B(x) tends to infinity as the system state
approaches the boundary of the safe region C. Definition 5 ex-
tends this approach to the stochastic case by providing sufficient
conditions for the system to remain bounded in expectation, and
hence almost surely finite, as shown by the following theorem.

2
D000+ g + Str (a(x)T 7B a(x))

Theorem 2. Suppose that there exists an RCBF B for a controlled
stochastic process x; described by (5), and at each time t, u, satisfies
(7). Then Pr(x; € C Vt) = 1, provided that xq € C.

The proof is omitted due to space constraints. Theorem 2
implies that, by choosing u; at each time t to satisfy (7), safety
is guaranteed with probability 1.

4.3. Zero control barrier function construction
An alternative construction for CBFs is the zero-CBF (ZCBF).

The deterministic ZCBF ensures that % = 0 when h(x) = 0,
so that the system does not enter the unsafe area. Ensuring that
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d[ = 0, however, may be inadequate in the presence of stochastic
noise. We present a zero-CBF construction for stochastic systems
that generalizes the construction in the deterministic case by
using the It derivative instead of the Lie derivative.

Definition 6. The function h(x) serves as a zero-CBF for a system
described by SDE (5) if for all x satisfying h(x) > 0, there is a u
satisfying

2

We next state the main result on safety via zero-CBFs.

2
O ) + gou) + ~tr (o 8—’}:) > —h(x) (8)
ax 0

Theorem 3. If u; satisfies (8) for all t, then Pr(x, € C Vt) = 1,
provided xy € C.

Proof. We will show that, for all t, Pr(xy € C Vt’ < t) = 1, and
hence
Pr(x; € CVt) = tlim Pr(xy € CVt' €[0,t]) = 1.

—00

It is sufficient to show that, for any t > 0, any € > 0, and any
§€(0,1),

Pr (inf h(xy) < —e) < 4.
t/<t

Let & = min {2, h(xo)}. By Itd’s Lemma, we have that h(x,) is
given by

t3h
hxe) = hxo) + f P70 + gl )
0 X
2
+%tr (a(x,)TgX}zla(x,)> dr

4 / o) aw, (9)
0 ox

We construct a sequence of stopping times »; and ¢; for i =
0,1,...as
7’)0:0, g“ozinf{t:h(x[)>9}
ni = inf{t : h(x;)) <0,t > ¢_1},i=1,2,...,
g=inf{t: h(x;) > 0,t > ni_1},i=1,2,...,
The stopping times n; and ¢; are the down- and up-crossings of

h(x.) over 0, respectively. Define a random process U; as follows.
Let Uy = 6, and let U; be given by

° Gint Sint gh
=UO+Z[/ —6 dt+/ o— dwr]. (10)
i—0 NNt nint ax

We have that U; is a semimartingale. Furthermore, we have

o0 Eint
E(U,|U;) = U + E (Z [/ —6 dr
i=0 L/ mAt
GAt 9h
-I-/ o— dW, i|>
nint ax
> Gint
:Us—l—E(Z/ —9dr> < U,
i niNt

i=0
and therefore U, is a supermartingale.

We will first prove by induction that h(x;) > U; and U; < 6.
Initially, Uy = 6 < h(xp) by construction. Suppose the result holds
up to time t € [n;, ¢;] for i > 0. Then the first term of (9) is an
upper bound on the first term of (10) and the third terms are
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equal. For t € [n;, ¢, h(x;) and U; are given by

h(X[)—hX,h)—i- |: X‘L’ +gxr) )
1 9%h ¢ 3h
t — d — dw, 11
+2r< ox2 )} T+/mgax (m
t t ah
Uy = Um.+/ -6 dt—i—/ o— dW;,. (12)
Ui Ui 9x

We have that U,, < h(x,;) = 6 by induction, and the third terms
of (11) and (12) are equal. Since h(x;) < 6 for t € [n;, ¢i], Eq. (8)
implies
oh 3%h
—_ —t i
7 0+ g0u) + r(a o 20)

> —h(x) = -6

so that the integrand of the second term of (11) is an upper bound
on the integrand of the second term of (12). Hence h(x;) > U;.
Furthermore, for t € [#;, ¢i], h(x;) < 6, and thus U, < 6.

For t € [¢;, niy1], we have that

U = Uy < h(x) =6 < h(x,)

by definition of ¢;.
Since U; < h(x;), we have that

Pr (inf h(xy) < —e) <Pr (inf Uy < —e) .
t' <t t' <t
Corollary 1 implies that

€ePr (inf Uy < —e) < E(U;") — E(Uy).
t' <t

The expectation of U; is bounded as follows. Taking expectation
of both sides of (10) yields

0o Lint
E(U,) = Uy +E Z/ —0dr|.
i nint

i—0

Since 6 > 0, the second term is bounded below by —6t, and so
we have E(U;) > 6 — 6t. Since U, < 6, we have E(U") < 6.
Combining these yields

E(U,)<0t—0+6=ot.

We therefore have

—E) <Pr (inf Uy < —e)
t' <t

completing the proof. O

Pr (inf h(xy) <
t'<t

4.4. High relative degree systems

The safety guarantees of the preceding section rely on the
existence of a control input satisfying (7) and (8) at each time
t. The conditions (7) and (8), however, may fail if g—f’(g(x) = 0.
In systems with high relative degree, however, it may be the
case that %g(x) = 0 for some x, potentially preventing the
system from satisfying the conditions and rendering the safety
guarantees inapplicable. We propose an approach to construct
ZCBFs for such high-degree systems. We define a set of functions
hi(x) fori=0, 1, ..., as ho(x) = h(x),

2p.
f( )+ %tr <0T (%g) 0) + hi(x). (13)

h1+1( )
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This approach is similar to the high relative degree stochastic
RCBF construction presented in Sarkar, Ghose, and Theodorou
(2020), albeit for stochastic ZCBF. Define ¢; = {x : hj(x) > 0}
and, for any r > 0, let

Theorem 4. Suppose that there exists r such that, for any x € Cr,
we have "a—ljjg(x) >0 fori<r and

oh, 1 9%h,
oy () gu) + Str <<7T Y, U) = —h(x). (14)

Then Pr(x; € C Vt) = 1if xg € C,.

Proof. Suppose that u, satisfying the conditions of the theo-
rem is chosen at each time t. By Theorem 3, (14) implies that
h(x;) > O for all t. By definition of h,(x) and the assumption that

a"g; lg(x)u > 0, we also have hy_;(x,) > 0 for all t. Proceeding

inductively, we then have h;j(x;) > 0 for alli = 0,...,r, and
hence in particular h(x;) = ho(x;) > O forallt. O

In what follows, we show that the conditions of Theorem 4
can be satisfied for an important subclass of systems, namely,
controllable linear systems in which the safety constraint can be
expressed as a half-plane. For such systems we have f(x) = Fx
and g(x) = G for some matrices F and G, and the function
h(x) = a’x — b for some a € R* and b € R. Since the system is
controllable, we have a’ FiG # 0 for some i. The following lemma
describes the structure of the h;’s.

Lemma 2. The function h;(x) can be written in the form

hi(X) — Z IBITO«-'--"Fl-O(aTFOX)rO . (aTFi—lX)r,',1
0

9s--sTi—1
+ a'Fix
. . 10,---sTi
for some values of the coefficients p; "

The proof is omitted due to space constraints. Define r’ =
min {I : aTF/’G # 0}. By the preceding lemma, we have, for any
xeC2_yCi
oh; _ 0,
i den
We are now ready to state the safety result for high relative
degree LTI systems.

i<r’

=l (15)

Theorem 5. Letr =r1'. If xo € C and

oh, oh;, 1 1 0%hy
0x g = = 0x 0= Etr (G o’

) — h(x) (16)

for all t, then Pr (xt € 5) = 1. In particular, x; satisfies the safety
constraint {h(x;) > 0} with probability 1.

Proof. By Theorem 4, it suffices to show that (14) holds and
%g(x)ut > 0 for all i < r. Eq. (14) holds by Eq. (16), and
a—h"g(x) =0fori<rby(15). O

X

5. Incomplete information CBFs

This section presents CBF techniques for ensuring safety of
stochastic systems with incomplete information due to noisy
measurements. We give the problem statement followed by RCBF
and ZCBF constructions.
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5.1. Problem statement

We consider a system with time-varying state x; € R", a
control input u; € R™, and output y; € RP described by the SDEs

dx; = (f(x¢) + g(xc)ue) dt + o dV; (17)
dyt = b(X[) dt + v dW[ (]8)

where V; and W, are Brownian motions and f : R" — R",
g :R" - R™ and b : R*" x R™ — RP are locally Lipschitz
continuous functions. Define f(x, u) = f(x) + g(x)u. Note that,
unlike in the complete information case, we assume that o; and
v: do not depend on x;. This assumption is needed to ensure the
existence of bounds on the estimation accuracy.

In the incomplete case, our CBF approaches are in two parts.
First, we compute an estimate of the system state and construct
a safe region for the estimated state based on the accuracy of
the estimator. Second, we show that the problem reduces to a
complete-information stochastic SDE on the estimated state value
and apply the approaches developed in Section 4.

Definition 7 (Reif, Gunther, Yaz, & Unbehauen, 2000). The pair

i(x, w), x| is uniformly detectable if there exist a bounded,
ax ax

matrix-valued function A(x) and a real number p > 0 such that

w' (f;f(x, u)+ A(x)ab(x)> w < —pllwl?
X 0x

for all w, z, and x.

Uniform detectability is a standard requirement for bound-
ing the error of estimators such as the Extended Kalman Fil-
ter (Jazwinski, 2007; Li, Wei, Ding, Liu, & Alsaadi, 2016; Reif
et al.,, 2000). Note that uniform detectability and detectability are
equivalent for LTI systems.

The safety condition is defined as in Section 4.1. In the in-
complete information case, the problem studied is stated as, For
given € € (0,1), how to design a control policy that maps the
sequence {yy : t' € [0, t)} to an input u, at each time t such that
Pr(x; € C Vt) > (1 — €)? In other words, how to ensure that the
system remains safe with a given probability (1 — €)?

We use the Extended Kalman Filter (EKF) (Reif et al., 2000)
as a state estimator. Let X; denote the estimated value of x;, and
define matrix A; by
A = %{{(Ar, u).

Let ¢ = (%), R = !, @ = o0/, and P; be equal to the
solution to the Riccati differential equation

dj _ T _ Tp—1

dr —A[Pt+PtAt + Q PtCth c¢Py.

The EKF estimator is defined by the SDE

d}’é[ =f(>A<[, ut) dt + Kt(dyt - Ct)’zt dt) (]9)

where K; = P[cth‘1 is the Kalman filter gain. Under this approach,
the estimation error ¢, = X, — X, evolves according to the SDE

dv,
dge = ((Ac — Keco)ge +ne) dt + I (dwﬂ) ’

where
ne = ¢(Xe, Xe, up) — Ke x (xe, &) (20)
B = Ot — Ktvt (21)

We make the following additional assumptions on the system
dynamics to ensure stability of the EKF.



A. Clark

Assumption 1. The SDEs (17) and (18) satisfy:

(1) There exist constants ¢, r € Rsq such that ;0] > gI and
vev! >l for all x and t.!

(2) The pair ["f (x, u), Bx] is uniformly detectable.

(3) There exist real numbers €y, kg4, €,, k, such that the func-
tions ¢ and y in (20) and (21) are bounded by

lp(x, &, u)ll < kyllx — X[
Ix(x, ) < kyllx — X[

for x, X satisfying [x — X[l2 < €y, X — X|| < €.

The first assumption states that E(o;0) > gl and E(vv]) > 11
for some q, r, and implies that the noise matrices are uniformly
bounded below. The uniform detectability assumption ensures
that all of the system modes can be observed, and that the covari-
ance of the filter can be bounded, which is necessary for deriving
error bounds. The third assumption states that the linearized
approximation to f is approximately accurate in a neighborhood
of x and x. We further assume that the initial state xo is known.
The following result describes the stability and accuracy of the
EKF.

Proposition 1. Suppose that the conditions of Assumption 1 hold,
and that there exists ¢ such that ||c;|l2 < ¢ for all t. There exists
8 > 0 such that if o0 < 81 and vv] < 81, then for any € > 0,
there exists y > 0 with

Pr (sup IXe — Xl < y) >1—e. (22)
t>0

We make two remarks on Proposition 1. First, the accuracy
guarantees of the EKF do not depend on the magnitude of the
control input u;. Second, if the system is highly nonlinear, then
the constant § > 0 may be small (Reif et al., 2000), rendering the
results inapplicable. The following lemma considers the special
case of LTI systems.

Lemma 3. Suppose that f(x;) = Fx; and g(x;) = G for some ma-
trices F and G such that (F, G) is detectable. Let A* = sup; Apmax(Pt),
where Amax(-) denotes the maximum eigenvalue of a matrix. Let

y = ,/%. Then Pr(x; € C Vt) > (1 —€).

The proof of this lemma appears in the preliminary conference
version of this paper (Clark, 2019) and is omitted due to space
constraints.

Define h(x) = inf {h(X) : ||x — X||> < y}. We have that, if h(X;) >
0 and ||x; — &2 < y for all t, then h(x;) > O for all t. When h(x)
is difficult to compute or non-differentiable, define

(o).

The following lemma gives a sufficient condition for safety of the
incomplete information system.

h,,_sup{ (x): |Ix —x°||, < y for some x° € h™

Lemmad4. If |x; — X, <y forallt and h(X;) > h, for all t, then
X € C forallt.

The proof is omitted due to space constraints. Combining
Proposition 1 and Lemma 4, we have that it suffices to select y
such that ||x, — X ||, is bounded by y with probability (1 —€), and
then design a control law such that h(k;) > Ey for all t. Define
h(x) = h(x) — h,.

1 Here “>" refers to inequality in the semidefinite cone.
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5.2. Reciprocal CBF approach

The RCBF for incomplete information systems is described as
follows.

Theorem 6. Suppose that the conditions of Proposition 1 are
satisfied and there exist a function B : R" — R and class-K functions
o, oz, and a3 such that

1 1
—— < B(x) < — (23)
b))~ o)
F): 32B
9x —fRe, ue) + J/|| KtC”Z + tl' < TKtT 3 ZKtvt>
< as(h(%)) (24)

and y satisfies (22) for some € > 0. Pr(x; € ¢ Vt) > (1 —€) if
h(x¢) > 0.

Proof. We show that h(x;) > 0 for all t if ||x, — X||» < y for all t.
Combining Eqs. (18) and (19) yields
di: = f(Re, up) dt + Ke(cx; dt + vy dW; — c&; dt)
= (f(Re, ur) + Kec(xe — X)) dt + Keve dW,
Define B; = B(X;). Hence

0B - . N
dB; = (a(f(xt, ue) + Kec(xe — x¢))

1 3B B
+otr <u[1<fﬁ1<tvt)> dt + PR dw, (25)

If |, — X;|l2 < ¥, then
dB
—K;c(x;
ax

Hence, if (24) holds, then

~ 0B R 0B
—X) < | =Keclallxe — xell2 < vl = Keclla-
0x ax

JdB — . R 1 3B
&U(Xt’ ue) + Kee(xe — X)) + 5“’( K — 92 KtW)

0B (- . 0B
=< x <f(xt» ug) + )/||*K[C||2>

1 9°B PP

+ 2tr( TKtT 5 ZKtvt) < as(h(x;))

and thus Pr(h(f(t) > 0Vt) = 1 by Theorem 2. Hence, by Lemma 4,
Pr(h(x;) > 0 Vt|[lx — X2 < y Vt) = 1, and so Pr(h(x;) > 0) >
1—e. O

Theorem 6 implies that, if the parameter y is chosen such
that the estimation error remains bounded by y with sufficient
probability, then selecting a control input u; at each time t such
that (24) holds is sufficient to ensure safety. This constraint is
linear in u;, and all other parameters can be evaluated based on
the noise characteristics and system and Kalman filter matrices.

5.3. Zero CBF construction

The following definition describes the zero CBF in the incom-
plete information case.

Definition 8. The function fz(x) serves as a zero CBF for an
incomplete-information system described by (17) and (18) if for
all x satisfying h(x) > 0, there exists u satisfying
dh oh dh
—8u = ——f(x) + | —Keclay

X ax

ox
1 [ ,9%h ~
—Etl‘ (O' 3){20) — h(Xt) (26)
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Table 1

Constraints for the CBF-based control policies in complete and information systems (Egs. (31
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) and (32)).

Solution approach

Linear constraint £2;

RCBF, complete information
ZCBF, complete information
RCBF, incomplete information 28

ZCBF, incomplete information

Bglxeue < as(h(x)) —
Bglxue > —Lf(x) — dtr(oT Lho) — h(x,)
Bo(Ru < as(h()) — Lf (%) —

Bgau = — Lf ) + || BKeclly - Ser (UTMG) )

Be(x) - dr (o(x )T B x)

VI EKeclly — Ser (v KT 22K,

~—

The following theorem describes the safety guarantees of the
incomplete-information ZCBF.

Theorem 7. Suppose that x, satisfies fz(xo) > 0 and, at each time t,
u, satisfies (26). If the conditions of Proposition 1 are satisfied, then
Pr(x; € CVt) > (1—¢).

Proof. Our approach is to show that fl(fc[) > 0 for all t when
llx: — X¢|l2 < y, and hence safety is satisfied with probability at
least (1—¢€) by Lemma 4. The dynamics of X, are given by the SDE
(17). Note that

. ah oh
Kic(xe — %) < | == 3 ~Kecll2 )X — Xell2 < || KrCllz)/ (27)

9k
We then have
ah ) 1 32h
- (k) + Kec(xe — &) — St (O’T (8&2) o) (28)
< M+ 1 1<c|| Lee (o7 (20 (20)
- ——tr|o” o
=Tk 2y =5 Fra
ah
< =8 ue (30)
0x

where (29) follows from (27) and (30) follows from (26). Hence,
by Theorem 3, h(X;) > O for all t if ||x; — X||], < y for all t, and
thus Pr (h(x;) > 0Vt) >(1—¢). O

6. CBF-based control policies

In what follows, we describe control policies that use stochas-
tic CBFs to provide provable safety guarantees. We consider a case
where the goal of the system is to minimize the expected value
of a positive-definite quadratic objective function V(x;, u;). In the
complete information case, the controller input u; at time t can
be computed as the solution to the quadratic program

minimize,,  Vi(x;, u;)

s.t. U € 2¢(x;) (31)

where the set §2;(x;) is an affine subspace in u,. The value of
£2:(x;) depends on whether the RCBF or ZCBF construction is used,
as shown in Table 1.

In the incomplete information case, the controller contains an
Extended Kalman Filter, which computes an estimate X, of the
state x; as a function of the prior observations {y, : = € [0, t)}.
The controller computes each control input u; as a solution to the
optimization problem

ur € 2:(%:)} (32)

where £2;(x,) is an affine subspace in u;. The values of £2,(X;) are
shown in Table 1.

We observe that these quadratic programs can be extended
to describe multiple safety constraints, for example, when the
region C = ﬂf’:] {x : hj(x) > 0}. This extension can be performed
by having a set of linear constraints, one for each safety condition
{hi(x) > 0}. There is no guarantee, however, that such a program
has a feasible solution u;.

min {V,(X, ue) :

An advantage of the CBF method in the deterministic case is
that CBFs can be composed with Control Lyapunov Functions to
provide joint guarantees on safety and stability. Such CLFs are
defined in the stochastic setting as follows.

Proposition 2 (Florchinger, 1997). Suppose there exists a function
V : R" — R such that, for every x, there exists u satisfying

2
W 50 + glxu) + tr (aT”a) <0 (33)
X ax2

If u; is chosen to satisfy (33) at each time t, then 0 is stochastically
asymptotically stable.

Proposition 2 implies that stability requirements can be incor-
porated as a linear constraint on the optimization-based control.
Hence, if the control input can be chosen at each time t to jointly
satisfy the appropriate CBF constraint of Table 1 and the CLF
constraint (33), then the system is guaranteed to asymptotically
approach the desired operating point while remaining safe for all
time.

7. Numerical study

We performed a numerical study of a multi-agent collision
avoidance scenario using Matlab. Our case study is based on Bor-
rmann, Wang, Ames, and Egerstedt (2015). We considered a set
of n agents, indexed i = 1,...,n, where agent i has position
and velocity [p;]; and [v¢]; with d[p;]; = [v:]; dt + o, dW; and
d[v:]i = [u:]; dt + o, dW;. The agents were uniformly placed on
a circle of radius p = 150, with each agent attempting to travel
to the opposite point on the circle while avoiding collisions. Each
pair of agents (i, j) had a safety constraint

hi = |lpi — pjlla = Ds > 0,

where D; = 10. The sensor measurements satisfied dy, =
x; dt + v dW,; where v = I. We set 0, = o0, = I. The cost
function to be minimized was equal to |[u — ul|, where u is
obtained using a linear control law tt; = —kq([p¢]i — [r];) — ka[v¢]i.
The CBF constraints were constructed using the method for high
relative degree systems introduced in Section 4.4. We compared
our approach with a simplified CBF-based controller, in which a
deterministic CBF constraint of the form in Ames et al. (2019) is
applied to the state estimate X, obtained using the Kalman filter.

The agent trajectories are shown in Fig. 2(a). Each agent moves
to reach the desired destination while avoiding collisions. We
observe that all agents avoid traversing the center in order to
minimize collisions. Fig. 2(b) shows the gap between the de-
sired and actual control input over time. The proposed stochastic
ZCBF led to a reduced deviation from the desired control input
compared to the simplified CBF.

The minimum distances achieved by the three policies are
shown in Fig. 2(c). The linear control law leads to safety viola-
tions as the agents attempt to reach their desired final positions
while disregarding safety. The CBF-based approaches both avoid
safety violations, with the stochastic ZCBF approaching the unsafe
region before recovering to maintain a safe distance and still
converging to the desired final position.
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o Vehicle trajectories under proposed CBF-based control

Change in control signal due to CBF
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Safety comparison between control policies
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Fig. 2. Evaluation of stochastic CBFs using multi-agent collision avoidance. Ten agents are initially placed equidistant on a circle and must reach the opposite point
without colliding in the presence of process and measurement noise. We compare our stochastic ZCBF approach with a proportional linear control law that does not
incorporate safety, as well as a simplified CBF that uses the deterministic CBF of Ames et al. (2016) on the estimated state. (a) The agent trajectories. Each agent
has double-integrator dynamics and avoids the center of the circle to prevent collisions. (b) Comparison of the deviation between the control action chosen and
the desired action under a linear control law. The simplified CBF leads to higher deviation compared to our proposed stochastic ZCBF. (c) The minimum distance
between vehicles under the linear control law and two CBF-based approaches. The linear controller leads to safety violations, while the CBF-based approaches avoid

collisions.
8. Conclusion

This paper developed a framework for safe control of stochas-
tic systems via Control Barrier Functions. We considered two
scenarios, namely, complete information in which the true state is
known to the controller at each time, and incomplete information
in which the controller only has access to sensor measurements
that are corrupted by Gaussian noise. For each case, we con-
structed Reciprocal and Zero CBFs, which ensure that the system
remains safe provided that the CBF is finite (RCBF) or nonnega-
tive (ZCBF). We proved that both constructions guarantee safety
with probability 1 in the complete information case, and provide
stochastic safety guarantees that depend on the estimation ac-
curacy in the incomplete information case. We proposed control
policies that ensure safety and stability by solving quadratic pro-
grams containing CBFs and stochastic Control Lyapunov Functions
(CLFs) at each time step. We evaluated our approach through a
numerical simulation on a multi-agent collision avoidance sce-
nario. Future work will consider techniques for more general high
relative-degree systems, as well as systems that are not affine in
the control input. Another direction for future work consists of
exploring the distinctions between RCBF- and ZCBF-based control
policies. For example, in the deterministic case, the fact that the
ZCBF is well-defined even outside the safe region can be used to
design controllers that converge to the safe region if the initial
state is outside the safe region. Generalizing such results to the
stochastic setting remains an open problem.
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