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ABSTRACT

The mapper algorithm is a popular tool from topological data
analysis for extracting topological summaries of high-dimensional
datasets. In this paper, we present Mapper Interactive, a web-based
framework for the interactive analysis and visualization of high-
dimensional point cloud data. It implements the mapper algorithm
in an interactive, scalable, and easily extendable way, thus support-
ing practical data analysis. In particular, its command-line API can
compute mapper graphs for 1 million points of 256 dimensions in
about 3 minutes (4 times faster than the vanilla implementation).
Its visual interface allows on-the-fly computation and manipula-
tion of the mapper graph based on user-specified parameters and
supports the addition of new analysis modules with a few lines of
code. Mapper Interactive makes the mapper algorithm accessible to
nonspecialists and accelerates topological analytics workflows.

1 INTRODUCTION

The mapper algorithm, first introduced by Singh ez al., is a popular
tool from topological data analysis (TDA) for extracting topological
summaries of high-dimensional datasets in the form of simplicial
complexes [19]. It is rooted in the idea of “partial clustering of the
data guided by a set of functions defined on the data” [19]. In many
practical scenarios, the 1D skeletons of such simplicial complexes
— the mapper graphs — serve as simple descriptions of the data and
capture important information about their topological structures.

From a theoretical perspective, researchers are actively studying
the mapper algorithm and its properties (e.g., [2,4, 15]). From an
implementational perspective, a few open-sourced tools exist that im-
plement the mapper algorithm and support data analysis, including
KeplerMapper [24], giotta-tda [21], Gudhi [23], and Python Map-
per [14]. Mapper Interactive focuses on simultaneously addressing
important aspects of the mapper algorithm involving scalability, ex-
tensibility, and interactivity in an integrated way, which differentiates
it from existing implementations.

Mapper Interactive makes the mapper algorithm accessible to
nonspecialists, and those with a passing knowledge of programming
concepts and TDA. At the same time, it gives specialists the ability to
extend the system by adding analysis and visualization components
in a modular fashion.

In summary, we introduce Mapper Interactive, a toolbox for the
visual exploration of high-dimensional data. It comes with both a
command line API for offline computation and a web-based interface
for online computation of mapper graphs. Our contributions include:

» Extendability: We demonstrate the extendability of our tool-
box via simple examples for both novice and expert users.
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 Interactivity: We provide three case studies that demonstrate
the strengths of Mapper Interactive in supporting fast insight
generation for well-known and new datasets.

Scalability: We present a simple but effective strategy for
speeding up mapper graph computations. Such a strategy
is applicable to any mapper algorithm implementation us-
ing DBSCAN as a subroutine. The command line API of
Mapper Interactive computes mapper graphs for 1 million
points of 256 dimensions in 3 minutes; and it is in general
3 to 6 times faster than the vanilla implementation. The GPU
implementation provides an additional 2 times acceleration for
1 million points in comparison to its CPU counterpart.

Mapper Interactive is open source under the MIT license and is
available via Github!.

2 RELATED WORK

A few open-source implementations of the mapper algorithm are
described in the literature. Miillner and Babu implemented Python
Mapper [14], which computes a mapper graph with a set of predeter-
mined parameters. It contains a graphical user interface (GUI) that
interfaces with the library and visualizes the resulting mapper graph.
However, it does not provide any interactive analytic features.

Recently, Veen and Saul presented KeplerMapper [24], a versa-
tile and user-friendly implementation of the mapper algorithm. Ke-
plerMapper provides some limited interactive capabilities in the vi-
sual encoding of a single mapper graph. For instance, users can color
the nodes of a mapper graph and glean some information regarding
the distribution of data points within each node. KeplerMapper also
includes an adapter for NetworkX [8], where users can manually cre-
ate a visualization of a mapper graph (generated by KeplerMapper)
using NetworkX. Similar to Python Mapper, KeplerMapper precom-
putes each mapper graph with a set of predetermined parameters;
the resulting visualization is exported as a separate HTML file to be
loaded in a browser. However, its mapper implementation does not
scale with a large number of points.

The mapper algorithm is also included in the giotto-tda li-
brary [21], which implements visualization capabilities as widgets
within the Jupyter Notebook environment [11]. Users can visualize
the mapper graph in a static or an interactive mode. In the interactive
mode, a Jupyter Notebook widget is used to modify some of the map-
per parameters; although the interactivity enabled w.r.t. the mapper
graph object is limited. giotto-tda uses Plotly, a wrapper over D3.js
to provide some visualization capabilities. It focuses on creating
a Pipeline object that interfaces with scikit-learn for downstream
analysis (e.g., using the mapper graph for classification or parameter
tuning via a grid search). Both giotto-tda and Mapper Interactive are
equipped with on-the-fly computation of mapper graphs; however,
the latter comes with a more scalable and extendable implementa-
tion. Mapper Interactive provides more opportunities to interact
with the mapper graphs via data analysis and machine learning (ML)
modules (such as applying linear regression to a subset of nodes in a
mapper graph).

Uhttps://mapperinteractive.github.io/
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Gudhi [23] is a TDA toolkit that contains a version of the mapper
algorithm. It defers the visualization of the mapper graph to other
tools, such as Graphviz [6], Geomview [17], and KeplerMapper.

Comparison with the state-of-the-art. To further illustrate the ca-
pabilities of Mapper Interactive, we compare its features against
two of the state-of-the-art tools, namely, giotto-tda (GT) and Ke-
plerMapper (KM), as shown in Table 1. Features that are unique
to Mapper Interactive include (but are not limited to): supporting
interactive parameter adjustment via a visual interface; selecting
nodes from a mapper graph that form connected components or
paths for comparative analysis and ML tasks; easily-extendable
visual interface via low-code development; and scalable GPU imple-
mentations for high-dimensional (100D+) point cloud data. In par-
ticular, Mapper Interactive supports path selection, as certain paths
in the mapper graphs have been shown to be interesting in studying
high-dimensional parameter space of plant phenomics [10]. Neither
KeplerMapper nor giotto-tda supports the selection of paths or con-
nected components of graphs for local, on-the-fly ML tasks such as
dimensionality reduction or linear regression. Although KeplerMap-
per provides certain interactivity in exploring a pre-computed map-
per graph (such as selecting and displaying details for a single node),
it does not allow interactive exploration of multiple parameter com-
binations on-the-fly. giotto-tda recomputes mapper graphs based
on parameters with a Python widget; however it has to regenerate
HTML widgets for each dataset, and its mapper graph layout is
static. On the other hand, giotto-tda and KeplerMapper have their
unique features. Both giotto-tda and KeplerMapper can be run as
libraries inside another Python script. giotto-tda outputs a Pipeline
object that interfaces naturally with other scikit-learn objects.

3 BACKGROUND

We review the mapper construction introduced by Singh et al. [19].
Mapper Interactive visualizes the 1D skeleton of a mapper construc-
tion, referred to as the mapper graph, which provides a “skeleton-
like” topological summary of a high-dimensional point cloud.

Given a high-dimensional point cloud X € R?, we construct the
nerve of a covering. A cover of X is defined as a set of open sets in
RY, U = {U;}ics such that X C U;c;U; (I being the index set). The
1D nerve of U, denoted as N7 (), is a graph. Each node i € I in
N1(U) represents a cover element U;, and there is an edge between
i,j € Iif U;NU; is nonempty. Fig. 1a gives an example in which X
is a 2D point cloud sampled from the silhouette of a snowman. The
cover U of X consists a collection of rectangles on the plane. The
1D nerve NV (U) of U is the graph in Fig. lc.
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Figure 1: A mapper graph of a point cloud sampled from the silhouette
of a snowman.

Given a point cloud X, how does one obtain a cover of X? In the
classic mapper construction [19], obtaining a cover is guided by a
set of scalar functions defined on X. For simplicity, we work with a
single scalar function f definedon X, f: X — R.

We start with a finite cover of a subset of the real line using inter-
vals, that is, a cover V = {V;} (1 <k <n) of f(X) C R, such that

Features | MI| GT[ KM
Mapper graph computation and visualization
Visualize a pre-computed mapper graph
Dynamic mapper graph layout
Compute mapper graphs via command line API
Compute mapper graphs via a standalone GUI
Update colormaps for continuous variables
Enable glyphs for categorical variables
Dynamic node size adjustment
Node contraction and edge filtering in GUI
Node selection
Select and display details for a single node
Select and display labels for a subset of nodes
Select nodes from a component for analysis
Select nodes along a particular path for analysis
Data analysis and machine learning (ML)
Apply ML to the entire mapper graph
Apply ML to a selected subset of nodes
Compare nodes with regression
Compare mapper results with other ML results
Parameter control
Adjust parameters via a standalone GUI
Adjust parameters in a Jupyter Notebook
Changing clustering approaches via scikit-learn
Change filter function
Implementation and I/O
Easily extensible GUI (low-code development)
GPU implementation for mapper computation
Run as a library inside Python scripts
Provides scikit-learn Pipeline object
Caching of intermediate steps with Pipeline
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Table 1: Comparing features of Mapper Interactive (Ml) against giotto-
TDA (GT), and Kepler Mapper (KM) respectively. Blue means “yes”
(Y), pink means “no” (N), purple means “almost yes” (A).

F(X) C UrVy; see Fig. 1b. We obtain a cover U of X by considering
the clusters induced by points in f~! (V) for each Vj as cover ele-
ments. The 1D nerve of U, denoted as M = M(X, f) := N (U), is
the mapper graph of (X, f).

Take Fig. 1 as an example: a point cloud X is equipped with
a height function, f : X — R. Six intervals form a cover V =
{V1,Va,-++,Vs} of the image of f, that is, f(X) C Uy Vk. For each
k(1<k<06), f_l (Vi) induces some clusters that are subsets of X;
such clusters form cover elements of X. For instance, as illustrated in
Fig. 1a, £~ '(V;) induces a single cluster of points that are enclosed
by the orange cover element U;, and £~ (V5) induces two clusters of
points enclosed by the blue cover elements U, and Us. The mapper
graph in Fig. 1c shows an edge between node 1 and node 2 since
U NU, # 0. It captures the overall shape of the snowman.

Algorithmic details in practice. Given a point cloud X, several
parameters are needed to compute the mapper graph M, including
a function f : X — R (referred to as the filter function), the number
of cover elements n and their percentage of overlaps p, the metric
dx on X, and the clustering method. For instance, for the example
in Fig. 1, f is the height function, n = 6 and p = 30%, dx is the
Euclidean distance, and the clustering method is DBSCAN.

In practice, the choice of the filter function f is nontrivial. Com-
mon choices include the Ly-norm, variants of geodesic distances,
and eccentricity [1, 19]. The mapper graph M (X, f) captures the
topological summary of the data (X, f), that is, X coupled with
f; hence, a different choice of f gives rise to a different type of
summary. Each interval (cover element) typically has uniform size.
Some libraries (such as giotto-tda) offer a “balanced” cover where



the inverse image of each interval contains an equal number of
points.

A common choice for the clustering method is DBSCAN [7],
which is a density-based clustering algorithm. DBSCAN contains
two parameters: € is the neighborhood size of a given point, and
minPts is the minimum number of points needed to consider a col-
lection of points as a cluster.

The filter function f may be generalized to be a multivariate
function, that is, f : X — R™ (for m > 2). In most practical scenarios,
m = 2, and the resulting mapper graph is referred to as a 2D mapper
graph. The corresponding cover elements of R become rectangles.
Mapper Interactive supports the computation of both 1D and 2D
mapper graphs.

4 DESIGN AND IMPLEMENTATION

We discuss three main capabilities of Mapper Interactive: interac-
tive user interface for on-the-fly computation and exploration of
mapper graphs across a range of parameters; extendable visualiza-
tion design for novice and expert users; and a command line API
that provides scalable backend computation of mapper graphs.

4.1 Interactivity

The user interface of Mapper Interactive is shown in Fig. 2. It
contains three main interactive panels: (a) the graph visualization
panel, (b) the selection panel, and (c) the control panel.

Mapper Interactive
View  SelectNodes  Select Clusters  Select Path

Figure 2: User interface of Mapper Interactive.

The graph visualization panel (a) visualizes the resulting map-
per graph using a force-directed layout, which summarizes the un-
derlying structure of an input point cloud dataset. It enables basic
interactive operations such as zooming, dragging, and panning. In
Fig. 2, we see an example of a mapper graph computed from the
snowman point cloud ( Fig. 2d) that appears in Fig. 1 of Sect. 3.

The selection panel (b) enables users to select a subset of mapper
graph nodes (and their underlying data points) under three data
selection modes. As illustrated in Fig. 3, under the select nodes
mode (Fig. 3a), users can select any number of the nodes in the
mapper graph. Under the select clusters mode (Fig. 3b), users can
select connected components of the mapper graph. Under the select
paths mode (Fig. 3c), users can specify the start and end point of a
path in the mapper graph and select a shortest path between them
(if one exits). The path can also be extended by selecting another
ending point (Fig. 3d). After selection, various analysis modules can
be applied to the selected data points, including linear regression
and dimensionality reduction, to study the properties associated with
the selected data.

The control panel (c¢) provides parameter controls for computing
mapper graphs on the fly. It includes data wrangling via the visual
interface in addition to data wrangling provided via the command
line API. When loading a point cloud dataset, the input data can
be preprocessed through different normalization schemes such as
min-max and L, normalization. Either 1D or 2D mapper graphs can

be constructed, depending on the number of filter functions. A filter
function can be specified based on a chosen dimension (column) of
the input data, or based on derived properties from the point clouds
such as Lp-norm, density, and eccentricity [19]. For clustering,
the default approach is DBSCAN. Agglomerative clustering and
mean shift clustering are also available through the user interface
and command line tool. As the parameters change, the resulting
mapper graph can be computed on the fly. In addition, the control
panel interfaces with precomputed mapper graphs obtained from the
command line APIL.
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Figure 3: Three data selection modes for the mapper graph: (a) select
nodes, (b) select clusters, and (c) select paths that include (d) path
extensions.

The control panel also specifies parameters associated with the
visual encoding of the mapper graph. Nodes can be colored accord-
ing to a chosen dimension (variable/column) of the input data, or
by the number of points contained in them. For discrete variables,
a pie chart that reflects the composition of each node is drawn on
top of each node. For continuous variables, a continuous colormap
is applied, with user-specified color encodings and range of values.
The size of the nodes can be adjusted using the value of a chosen
variable or the number of points in the cluster (see Fig. 4). When
a subset of nodes is selected, the control panel displays the details
of each node by drawing a bar chart of average values for numer-
ical columns, and displaying the individual information of points
contained in each node cluster (see Fig. 5).

(®

oo

-
&% ®e -
Figure 4: An example of the nodes colored by the average x coordi-

nates (a) and the point labels (b). The size of each node is adjusted
using its average x coordinate.

The control panel also provides data analysis and machine learn-
ing modules for users to better understand the results of the mapper
algorithm, which is currently not possible with other existing tools.
Machine learning techniques, including linear regression and princi-
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Figure 5: (a) In the mapper graph, nodes 6, 8, 14 are selected. (b) The
bar chart of average values of x and y coordinates for each selected
node. (c) The row indices of the union of all points contained in the
selected nodes. (d) The labels of the union of all points contained in
the selected nodes.

pal component analysis (PCA), can be applied to analyze a selected
subset of nodes. If no selected nodes are available, the entire dataset
will be taken as input. Take Fig. 6 for example: (a) shows a 3D point
cloud sampled from the model of a horse; (b) is the 2D PCA result
with k-means clustering applied to the projected data, where colors
represent different clusters; (c) is the mapper graph of (a) generated
by Mapper Interactive with nodes 1, 7, 13, 19 at the four feet of the
horse, node 8 at its tail, and node 34 at its head; and (d) shows the
results of applying linear regression to the point cloud, where x and
z are the independent variables, and y is the dependent variable.
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Figure 6: (a) A three-dimensional (3D) point cloud sampled from a
model of a horse. (b) the 2D PCA result combined with k-means
clustering where k = 4. (c) The resulting mapper graph. (d) Linear
regression result of regressing y on x and z.

4.2 Extendability

Mapper Interactive allows users to easily extend the framework by
adding new data analysis and visualization modules to the control
panel, primarily via interfacing with Python’s scikit-learn package.
Such extendability brings flexibility for users to apply machine
learning techniques to nodes (clusters) of interest that arise from
the mapper graph. It also enables users to explore the properties
associated with these nodes.

We provide two modes for different user groups to extend the
framework: the novice user mode and the expert user mode.

Novice user mode. For users with limited programming experience,
we provide an easy way for them to add new modules. All they
need to do is to describe the new module information within the
new_modules.json file, and the system will detect and generate

all the new modules inside that json file automatically. Currently,
Mapper Interactive allows the addition of supervised and unsuper-
vised learning algorithms that are available via scikit-learn. For
each new module, users need to specify the function name, function
parameters, and whether it is a supervised or unsupervised model
for the Python backend to fit the model correctly, along with a list
of visual component types for the JavaScript frontend to visualize
the result. For a supervised learning module, users need to provide
additional information about the independent and dependent vari-
ables. For visualization purpose, we provide commonly used visual
components, such as scatter plots, line graphs, and tables, to be
integrated with the result of a new module.

@("modules":

[

{
"name": "TSNE",
"function-name": "sklearn.manifold.TSNE",
"function-parameters":{"n_components":2},
"module-type": "unsupervised_learning",
"components": ["scatter plot"]

}

]
}
TSNE(::) X
( Run TSNE ]
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Figure 7: An example of adding t-SNE module to the control panel of
Mapper Interactive.

Expert user mode. For expert users with programming experience,
we provide a template function call_module_function in Python
within Mapper Interactive. It supports customizable and multistep
analysis pipelines. We also provide a template class in JavaScript
for creating new visual components using D3.js. With a few lines of
code, users can add a new drawing method within the template class
to modify a visual encoding. The styles of visual components are
changed via a CSS file.

We give an example in Fig. 7 for adding a t-SNE module to the
Mapper Interactive interface. t-SNE is a nonlinear dimensionality
reduction technique that is quite popular in practice. In (a), un-
der the novice user mode, the information of a new module that
performs t-SNE-based dimensionality reduction is added to the
new_modules.json file. With less than six lines of code, the t-SNE
module is now part of the Mapper Interactive interface where a 3D
point cloud from a horse is visualized in 2D (b). In (c), under the
expert user mode, by adding a few lines of code to the Python script
call_module_function, the t-SNE result can be further enhanced
using k-means clustering (where k = 4).

4.3 Scalability

Mapper Interactive is equipped with scalable backend computation
of mapper graphs. In particular, it comes with a command line API
for data wrangling and the computation of mapper graphs. The
single processor CPU implementation of the mapper algorithm in
Mapper Interactive is 3 to 6 times faster than its vanilla implemen-



tation. We also provide a GPU implementation that provides an
additional 2-fold speedup for 1 million points in 128 dimension.

Key implementational idea. We present a simple but effective
strategy for speeding up any mapper algorithm framework that uses
DBSCAN as a subroutine.

The backend mapper implementation of Mapper Interactive is
built upon KeplerMapper. KeplerMapper is a user-friendly imple-
mentation of the mapper algorithm that provides some interactive
capabilities. However, its default mapper graph computation (consid-
ered as the vanilla implementation) does not scale well with the size
of the point cloud. The computational bottleneck happens during the
DBSCAN clustering stage in which the algorithm queries all pair-
wise distances. The first idea is parallelizing individual clustering
instances, that is, computing the clusters for the inverse map of each
interval. This strategy provides some amount of speed-up, which is
employed by both Mapper Interactive and giotto-tda.

In Mapper Interactive, we push the parallelization even further.
We modify the algorithm by precomputing the distance matrix of
points within each interval using scikit-learn’s highly optimized
pairwise_distance function. This function converts the distance
computations in the clustering algorithm to a lookup in the precom-
puted matrix, achieving significant speed-up at the cost of higher
memory usage entailed by storing the precomputed distances. For
Mapper Interactive, such a strategy is shown to be 6 times faster than
the vanilla implementation for 300K points for ImageNet dataset.

In fact, the strategy employed by Mapper Interactive is applica-
ble to any mapper framework employing DBSCAN as a clustering
subroutine. By enforcing pre-computation of distance matrices as
a user-specified parameter in DBSCAN, our strategy also helps to
speed up mapper graph computation for both giotto-tda and Ke-
plerMapper, when the point clouds are of significantly high dimen-
sion (100D+). It is also important to point out that precomputing
distances ceases to be effective when the pullback cover sets become
too large. It also does not lead to significant speed-up when the
dimensionality is not sufficiently large.

In the experiments below, we perform runtime analysis for
Mapper Interactive, KeplerMapper (version 1.2.0) and giotto-tda
(version 0.3.1), where GT and KM represent their default config-
urations, respectively. To demonstrate that our strategy will speed
up any DBSCAN-based mapper framework, we give performance
numbers for GT* and KM*, which represent the improved config-
urations using the strategy of Mapper Interactive in precomputing
distances, respectively?.

Datasets. The ImageNet and Cifar datasets are created by pass-
ing input images to InceptionV1 and ResNet-18 neural networks
respectively and collecting the activation vectors at an intermediate
layer. The ImageNet dataset has 512 dimensions and 300K points,
while the Cifar dataset has 256 dimensions and 3 million points. For
the Random vector datasets, we sample 10 million points of 128
dimensions; each dimension is drawn from a uniform distribution
over [0, 1]. For our experiments, we subsample each of the datasets
at various order of magnitudes to demonstrate run time performance
of each method at different input sizes.

Runtime analysis with the command line API. We first show com-
parisons of peak memory usage among Mapper Interactive (MI),
GT, KM, GT*, and KM* in Fig. 8, the numerical values can be
found in Table 2 of the supplement. Roughly speaking, for all three
datasets, Mapper Interactive has up to 1.7 x increase in peak mem-
ory usage compares to its vanilla implementation. Using our strategy,
GT* has up to 4.0x memory increase over GT; and KM* has up to
1.9x memory increase over KM.

The runtime comparison is shown in Fig. 9(a-c) and Table 3
in the supplement. By employing space-time tradeoff of MI via
the pre-computation of distance matrices, both GT and KM can

2Via detailed discussions with a giotto-tda developer.
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Figure 8: Peak memory usage (in Gigabytes) on three datasets, each
with 100K points. The number of intervals is set to 100. The ImageNet,
CIFAR, and Random datasets contain 512, 256, and 128 dimensional
point clouds respectively.

be improved to achieve comparable performance with MI. For the
ImageNet dataset of 300K points, MI achieves an approximately 6x
speedup against its vanilla implementation (KM); with our strategy,
GT* gets 9x speedup against GT, and KM* achieves 7x speedup
w.r.t. to KM. For the Cifar dataset of 3 million points, MI achieve
4x speed-up against its vanilla implementation; while GT* gets
3x speed-up against GT, and KM* obtains 5x against KM. For
the Random dataset of 10 million points, our command line API
computes a mapper graph in 29 minutes, obtaining a 3x speed-up
against its vanilla implementation; while KM* achieves 2x speed
up vs KM, and GT* and GT run out of memory.

We perform the above experiments on an Intel Xeon 2.4GHz
CPU with 16 cores and 32 GB RAM. For parallel computations,
we restrict the methods to 8 cores to minimize effects from OS
processes. We set the n_jobs parameters for the clustering algorithm
in KeplerMapper to 8 and the same parameter for the giotto-tda
implementation to 8 as well, to compare against the parallelized
versions of our implementations.

Runtime analysis with the visual interface. Additional I/O and
memory overhead is associated with computing the mapper graph
via the visual interface in comparison with the command line API.

To test the scalability of the visual interface, we use a macOS
system on an Intel 2.3 GHz Core i5 CPU and 8 GB RAM. For a
dataset with 100K points in 512 dimensions, it takes an average 3
minutes to compute and render the mapper graph in the browser.
When the number of points increases to 200K, the computation and
renders takes an average of 1 hour. On the other hand, if we generate
the mapper graphs with 1 million points using the command line
API, the interface can easily load the resulting mapper graphs in
under 1 minute. By interfacing with the command line API, we are
able to explore larger point cloud data via the visual interface with
precomputed mapper graphs.

GPU accelerated distance computation. Finally, in order to fur-
ther speed up our parallel mapper algorithm, we introduce a GPU-
based distance computation. We use PyTorch to accelerate the dis-
tance computation, moving away from scikit-learn. Our results are
based on a computer with a 32-core Intel Xeon CPU (1.8 GHz),
132 Gb of RAM, and a Nvidia Titan V GPU with CUDA 10.1. We
notice a roughly 2x speed-up in comparison with our CPU imple-
mentation for our larger point clouds, see Fig. 9(c-f) (numerical
values are shown in Table 4 of the supplement). In particular, for
1 millions points, our GPU implementation achieves a 1.6x, and
2.1x speed-up for the Cifar and the Random dataset, respectively.
In summary, the backend GPU implementation of mapper graph
computation achieves (on average) between 6x to 12x speed-up in
comparison with the CPU-based vanilla implementation. However,
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Figure 9: Top row (a-c): CPU runtime (in seconds) on the ImageNet, Cifar, and Random datasets, respectively. Bottom row (e-f): GPU runtime (in
seconds) in comparison with CPU runtime for our implementation. Labels are shown on the x-axis using a log scale.

a communication overhead is incurred when large arrays of data are
moved from CPU to GPU and back. As a result, experiments with
a higher number of intervals (500+) do not provide as large of a
speed-up.

4.4 Implementation

The visual interface of Mapper Interactive is implemented using
HTML/CSS/JavaScript stack with D3.js and JQuery JavaScript li-
braries. It interfaces with a Python backend via a Flask server. The
mapper graph computation is modified from the KeplerMapper im-
plementation. Python libraries, including scikit-learn, statsmodels,
and scipy, are used for its machine learning modules.

We also provide a Python command line API which is designed
for data wrangling and offline mapper graph computations for large
datasets. The wrangling process handles missing values, identifies
numerical and categorical columns, and removes non-numerical
elements from the numerical columns. The wrangled data may
be imported to the visual interface for interactive exploration. To
compute mapper graphs via the API, users can specify the range
of parameters for the mapper algorithm, including the number of
intervals, the amount of overlap, the number of threads to use when
computing pairwise distances, parameters for DBSCAN, etc. Users
can also specify GPU acceleration for computation via the command
line API. The resulting mapper graphs are put into a single folder to
be interfaced with the visual interface for interactive exploration.

5 UsEe CASES

We demonstrate the utility of Mapper Interactive via three use cases
on well-known and new datasets from image classifiers, breast
cancer, and COVID-19. By applying Mapper Interactive to these
datasets, we showcase the usability, interactivity and extensibil-
ity of the tool. While a subset of the findings in these use cases
may be obtained using existing frameworks, the main advantage
of Mapper Interactive is that it provides the largest set of features
unavailable with existing frameworks (cf. Table 1), and it makes map-
per algorithms accessible to nonspecialists (with little background in
Python and TDA) via a low-code development environment. In ad-

dition, with zero or a few lines of code, Mapper Interactive enables
a quick way to check if TDA is a viable tool for a given application.

Through these use cases, we demonstrate that Mapper Interactive
is essential in providing fast and easy ways to prototype and exper-
iment with user-specified datasets, thus helping accelerate TDA
workflows for fast insight generation.

5.1 Discovering the Divergence of COVID-19 Trends

Our first use case is to analyze and compare COVID-19 trends in
the United States. The key point is that Mapper Interactive enables
fast insight generation on a new dataset.

[T
low high

Figure 10: The mapper graph of the full COVID-19 dataset. The
graph nodes are colored by the composition of the states (a) and the
number of confirmed cases (b), respectively. For DBSCAN, we chose
£ =0.1, minPts = 5. For mapper graph, we set n =35 and p = 50%.
Each dimension is normalized by a min-max scale. The size of nodes
indicates the average number of recorded days.

The dataset contains the daily records of COVID-19 cases in all
50 states from April 12, 2020 to September 18, 20203. It contains
9240 data points (rows), each of which corresponds to a daily record
for a given state. For each state, it contains 7 statistical measures
(columns): number of confirmed cases, death cases, active cases,

3https://github.com/CSSEGISandData/COVID-19/
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people tested, as well as the testing rate, mortality rate, and incidence
rate (i.e., the number of cases per 100K persons).

We first compute an initial mapper graph using all data points. We
include all 7 dimensions (columns) to compute the pairwise distance
matrix, and use the number of recorded days (since April 12, 2020)
as the filter function. The number of recorded days indicates how
many days have passed from the record starting date (April 12, 2020)
to the date associated with each row of data.

The result is shown in Fig. 10. Certain states are shown to be sep-
arated from other states and form their own connected components,
such as New York (NY) and Massachusetts (MA), which implies
that their statistics (and thus “epidemic trends”) may be quite differ-
ent from others. To further investigate why and how these states are
separated from one another, we select nine states (AZ, CA, FL, GA,
IL, NC, NJ, NY, TX) with the largest number of confirmed cases
and compute a second mapper graph.

® @ 4°
@ e
®
@ @

@
@
@ ®@ o ® o ® ® ® ¢
(T} c}
@ € .00 00 ®
®® ® ®
@ @7 @ @®® @ o @
®@ ©@ 009 ® (= ®
®0 o @ @ Qe o
®© ® ¢ © g @
we ©e @
- - e®®
© © ¢ @
AZ ® iL NY
GA @ TX
NC
800000 ‘Arizona
700000 { — g\i‘v‘::la g
g 6000001 — B -~
£ 500000 | — e /
TE-) | New York
% 400000 / FL and TX start
© 300000 4 4/to separate
200000 4 /
100000 A AZ and GA start
ol to separate

6 2‘0 4‘0 6‘0 8‘0 160 1éO 1£I10 léO
Recorded days
Figure 11: (a) The mapper graph for the selected states. (b) The
line graph of the daily confirmed cases; the x-axis represents the
number of recorded days, and the y-axis represents the confirmed
cases. For DBSCAN, &€ = 0.15, minPts = 5. For the mapper graph:
n =20, p=>50%. Each dimension is normalized by a min-max scale.

As shown in Fig. 11a, the states become separated from each other
after certain branching points. The size of each node is encoded by
the average number of recorded days. By comparing the line graph
of the confirmed cases (Fig. 11b), we can see that the order by which
each state is separated is related to how different its curve is from
that of other states.

For example, as shown in the line graph in Fig. 11b, the curve
of New York (NY) deviated the most from other states, so in the
mapper graph (Fig. 11a) it is not connected with any other state, thus
forming its own connected component. New Jersey (NJ) shows the
second highest deviation besides New York in the line graph, so it
splits from the main branch at node 4 in the mapper graph.

Arizona (AZ) and Georgia (GA), as well as Florida (FL) and
Texas (TX), are two pairs with similar trends in Fig. 11b, so their
nodes are the last ones to be separated from the main branch
in Fig. 11a. In particular, the average number of days at node
47 is 100, which reflects exactly where Arizona and Georgia start to

separate in the line graph. The average number of days at node 42
is 92, which reflects when Florida and Texas start to separate in the
line graph.

Therefore, through the resulting mapper graph, we are able to
distinguish states with different epidemic trends and to determine
how different their trends are. We can also discover when their trends
start to diverge by looking at the nodes at the branching points.

5.2 Visualizing Class Separation via Neuron Activations

Our second use case is to visualize neuron activations collected
at the last layer of an image classifier to study the degree to
which classes are separated during training. The key point is that
Mapper Interactive helps to highlight class separation with a cate-
gorical dataset, and it can be extended to perform in-depth analysis
of the data.

The Cifar dataset is created by passing input images from CIFAR-
10 [12] to ResNet-18 neural network, and collecting activation vec-
tors (that is, combinations of neuron firings) from the last layer
(referred to as “4.1.bn2”) of the network. We then treat these acti-
vation vectors as a dataset containing high-dimensional points and
apply Mapper Interactive to it. We use 50K images from 10 image
classes, namely ship, truck, automobile, horse, deer, bird, dog, cat,
fog, and airplane. Each image corresponds to an activation vector
with 512 dimensions.
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Figure 12: The mapper graph of the activation vectors. For DBSCAN,
e =28.71, minPts = 5. For mapper graphs, n =40, p =0.2.

We compute the pairwise distance matrix using all 512 dimen-
sions, and use Ly-norm as the filter function. As shown in Fig. 12,
the resulting mapper graph highlights the separation of image classes
at the last layer of a trained neural network (ResNet-18) with high
classification accuracy. By drawing a pie chart on top of each node,
the proportions of categories within each node are clear. The size of
each node reflects the number of points within the node (cluster).

The resulting mapper graph not only clusters images from each
class into a separate branch, but also highlights the relationship
among the different classes. For example, Mapper Interactive high-
lights the observation from [18]. A branch of nodes containing
the deer and horse images first emerged from the branching node
18, which contains images from several classes. Then, the two
classes are separated into two branches at node 32. The branching
order indicates that the deer and horse images are more similar than
images from other class categories. Similarly for the automobile
and truck images, a branch containing images from both categories
first emerged from branching node 20, and then the two categories



were separated from each other at branching node 37, indicating the
automobile and truck images are more similar than other images.

Using Mapper Interactive, we can easily perform additional anal-
ysis to further advance our understanding of the dataset. We can
extend the tool by adding a PCA analysis module and a module for
visualizing the distribution of nearest neighbor distances. Fig. 13a
applies PCA to the activation vectors. The colors correspond to
the 10 class categories used in the mapper graph. Compared to the
mapper graph, the PCA projection of the activation vectors does
not separate the classes well, and the relationship between different
classes is not well depicted.

In addition, for such a large dataset, parameter tuning can be
difficult and time consuming. We demonstrate how to add a new
module for tuning the € parameter in DBSCAN by creating a module
in the expert mode. We use the Python library PyNNDescent to
approximate a nearest neighbor search for the point cloud data, sort
the distances of the k-th nearest neighbor, and plot the distance
distribution to figure out the most appropriate € value.
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Figure 13: Adding two additional analysis modules. (a) The result
of a PCA module. (b) Computing the distance distribution of the fifth
nearest neighbors for all points.

Our objective is to have, with the right € value, a maximum
number of points with at least k neighbors, with the maximum
distance not too large to include too many neighbors. For the CIFAR-
10 dataset, we chose k = 5, and the distance distribution of the fifth
nearest neighbors is shown in Fig. 13b. The line plot shows that
an € value around 8 is most appropriate. In DBSCAN clustering,
the parameter € is the maximum distance between two points for
them to be considered as neighbors. If € is too small, the number of
neighbors for most points will be less than the minimum number of
points to be clustered together, and most points will be considered
as noise, resulting in a suboptimal clustering. If € is too large, then
all the points will be considered as neighbors of each other, and
thus be assigned to the same cluster, which will also be suboptimal.
The nearest neighbor module in Fig. 13b, therefore, helps the users
choose the optimal parameter for DBSCAN.

5.3 Exploring Breast Cancer Data

Our third use case is to provide alternative ways to explore the results
from a breast cancer study [13]. Lum et al. [13] utilized the mapper
algorithm to identify subgroups in breast cancer patients. Using
Mapper Interactive, the key point is that we can consider alternative
configurations of the mapper algorithm to explore these breast cancer
datasets and obtain similar insights. Due to the extendability of the
tool, we can further provide in-depth regression analysis to identify
possible factors that are highly correlated with patient survival.

Insight discovery. We first discuss insight discovery with alternative
configurations of the mapper algorithm. We use the two breast
cancer datasets studied by Lum et al. [13], referred to as the NKI
dataset [25], and the GSE2034 dataset [26].

The NKI dataset contains information from 272 breast cancer pa-
tients (rows). For each patient, two types of variables (columns) are

® @
NKI ®®®® . @@@C;a: R

®®g®®@®@“ @mzoe :i(jg@ .2. r»o:e@
000 @ & @Z; “% ¢ @(; %
€O ee? ®o0 ‘:0 o3 ® o9
@ o0
* &@@@@ ®8® (34 %’..@O:.
i B 7
oe ® %e . zs ol .0
@ GSD ® (XS 2= d @ ’ © ; @Q e=°
&89 o e e:.
- Zlivel:h T
el 45 05 o5
GSE2034 @@(9 I °°0 0 o
©%s 00 ©0. 0% ¢0
o 6@ O o® 0.0
@ ®@ o °°
CSROI0)] e _00
® e/ @
e® s ) 00 < se @)
@0 oo 0 @0”° 00 o ° 0 0
@, o _o0g %° o o0g
®e = G %o
@ @ &® e 0 & ®
(©) e 00 v @3‘@ 000 *
®®® O @..
mm  norelapse it 1]

relapsed
-1.0 0.0 1.0

Figure 14: (a-b) NKI mapper graphs. For DBSCAN, € = 15, minPts = 2.
For mapper graph: f; = Le-norm, n; =78, p; = 65%; f> = event_death,
ny = 10, py = 68%. (c-d) GSE2034 mapper graphs. For DBSCAN, ¢ =
0.45, minPts = 2. For mapper graph: f| = L.-norm, n; =37, p; = 72%;
f>» =relapse, np =5, p» = 50%. Each dimension is normalized by a
min-max scale.

recorded: the first type of variables contains 1554 gene expression
levels, and the second type of variables consists of other medi-
cal records or physiological measures. The physiological measure
columns include event _death (whether a patient survived or not),
survival time, recurrence_time, chemo (whether a patient received
a chemotherapy), hormonal (whether a patient received hormonal
therapy), amputation (whether forequarter amputation has been
used), hist_type (histological type), diam (diameter of the tumor),
posnodes (number of nodes), grade (cancel level), angio_inv (to
what degree the cancer invaded blood vessels and lymph vessels),
and lymph_infil (level of lymphocytic infiltration).

To compute the mapper graph of the NKI dataset, we inherit some
parameter configurations from [13], with the exception that we use
DBSCAN as our clustering algorithm instead of the single-linkage
clustering employed by Lum ez al. in [13]. Subsequently, we use
slightly different parameters for the number of intervals n and the
amount of overlap p that is adaptive to DBSCAN. We take the 1500
mostly varying genes to form a point cloud in 1500 dimensions, com-
pute their Euclidean pairwise distance matrix, and construct a 2D
mapper graph using L..-norm and the response variable event_death
as its filter functions.

The GSE2034 dataset, on the other hand, consists of gene expres-
sion levels of 22283 genes from 286 patients. Instead of recording
the survival data, this dataset provides a variable relapse to indicate
whether the patient suffered a relapse. We take the top 10 most vary-
ing genes to compute the pairwise distance matrix, and construct
a 2D mapper graph using L..-norm and the relapse variable as its
filter functions.

Lim et al. [13] used mapper graphs to study subgroups of breast
cancer patients. In most cases, the expression level of the estrogen
receptor gene (ESR1) is positively correlated with the prognosis.
Patients with high ESR1 levels usually have a better prognosis and
are more likely to survive than patients with low ESR1 levels. How-



ever, among all the patients with high ESR1 levels are subgroups
having poor clinical outcomes. Patients who had low ESR1 levels
but survived were also identified over the years. Researchers have
studied such subgroups using certain experimental data [16,20,22].
However, the challenge is to identify subgroups under more general
settings, such as data from different sets of patients that are collected
at different times.

We therefore apply Mapper Interactive to both NKI and GSE2034
datasets using slightly different parameter configurations in com-
parison to [13]. The resulting mapper graphs are shown in Fig. 14.
It is interesting to observe that the two resulting mapper graphs
consist of similar structure for the survivor/non-relapse patients; and
they share similar (but not identical) structures in comparison to
the results from [13]. In each graph, the blue connected component
on the bottom contains a branch of nodes with low average ESR1
expression levels, thus defining a subgroup of survivor/nonrelapse
patients. The result shows that we are able to visually identify sim-
ilar subgroup structures under two datasets generated from totally
different experimental settings.

In-depth exploration. Furthermore, we can easily extend
Mapper Interactive to perform in-depth analysis of the breast cancer
datasets (not discussed in [13]).

Since the NKI dataset contains medical records and physiolog-
ical measures information about the patients, we can make use of
the analysis modules to explore interesting subsets of the mapper
graph. As illustrated in Fig. 15a, we first consider the clusters of
the largest connected component among the survivors (the green
selected clusters). Since there is a subgroup of low ESR1 patients
in these clusters, we can easily apply the existing linear regression
module to these clusters. Specifically, we are interested in under-
standing what variables have statistically significant effects on the
expression levels of ESR1 without affecting the patient survival.

The result is shown in Fig. 15b. Under the significant level (p-
value) of 0.05, the variables amputation, grade, and lymph_infil
are significantly correlated with the expression levels of ESR1. Re-
call that the amputation variable indicates whether the patient has
received the forequarter amputation treatment, the grade variable
indicates the stage of the cancer, and the /ymph_infil variable indi-
cates the level of lymphocytic infiltration.

We explore which genes affect the survival of patients with low
levels of ESR1. Since event_death is a binary variable, we add a
new module to perform logistic regression. We include the top 10
genes that are selected using a recursive feature elimination. The
result is shown in Fig. 15d. Under the p-value of 0.1, AL049963 is
the only gene that is significantly correlated with the event_death
variable. Further analysis based on these regression results would
be an interesting avenue to explore in a follow-up study.

A subset of results for these use cases cannot be easily reproduced
using other frameworks. Mapper Interactive supports the applica-
tion of ML techniques to a subset of nodes interactively. Therefore,
in the breast cancer example, we can easily apply regression to the
identified subgroups using path-based and/or component-based node
selection. giotto-tda or KeplerMapper will require more coding ef-
fort to achieve the same result. Neither giotto-tda nor KeplerMapper
support pie charts on top of the nodes for discrete variables; there-
fore, it is hard to identify the branching points in both COVID-19
and the neuron activation examples. Overall, Mapper Interactive
provides more interactivity and flexibility, and is less time intensive
for nonspecialists exploring high-dimensional data with TDA.

6 CONCLUSION AND DISCUSSION

In this paper, we present Mapper Interactive, an interactive, ex-
tendable, and scalable toolbox for the visual exploration of high-
dimensional data using the mapper graph. It supports computation
and interactive exploration of mapper graphs. It is easily extendable,
where both novice and expert users can add machine learning and
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are selected to perform logistic regression on event_death. (d) Logistic
regression result.

visualization modules with a few changes to a json file or with a
few lines of codes. Since it provides low-code development envi-
ronment, it also enables a quick way to check if TDA is a viable
tool for a given application. Its command line API can compute a
mapper graph of 1 million points in 256 dimension in less than 3
minutes, which is roughly 4 times faster than the state-of-the-art
single processor vanilla implementation. Its GPU implementation
of the mapper graph computation provides an additional 2-fold ac-
celeration in comparison to its CPU counterpart. We have shown
in Table 1 that Mapper Interactive provides a large number of unique
features compared with the state-of-art. We have demonstrated the
usefulness of such features via three use cases. We discuss a few
possible extensions of Mapper Interactive together with challenges
and opportunities.

Pushing the scalability boundary. The scalability boundary of
mapper graph computation can be pushed even further, especially
for larger datasets with more than 10 million points. Assuming
sufficient storage and memory, one of the limiting factors is the
clustering step during the mapper construction. In this paper, we are
able to speed up the clustering process by parallelizing the distance
computation on a single (multicore) CPU, as well as a single GPU.
One obvious avenue is to distribute the distance computation across
multiple GPUs. This task is nontrivial since extensive testing is
needed to balance the trade-off between moving data from the CPU
to multiple GPUs and merging the results across GPUs.

GPU memory will also become a bottleneck. As the data size
increases, the distance matrix grows quadratically. The support for
large amounts of memory, on the order of hundreds of gigabytes, is
limited on GPUs. We also notice in our implementation, with a large
number of intervals, the overhead from moving matrices from CPU
to GPU and back increases since this operation is done per interval.
When the amount of input data is small, initializing the necessary
CUDA kernels is also a severe overhead. As more GPUs are added,
this overhead will become more pronounced.

Although DBSCAN is the primary clustering algorithm used in
Mapper Interactive, an algorithm built for high-performance com-



puting, such as DBSCAN++ [9], could provide additional runtime
benefits. Another promising area is using an approximate nearest
neighbor library such as PyNNDescent [5] instead of computing
a the full distance matrix. Finally, datasets of different sizes and
dimensionality warrant employing different sets of optimizations.
Future work on the tool would entail automatic inference of the opti-
mization strategies based on the input data and system configuration.

Improving extendability for novice and expert users. One of the
strengths of Mapper Interactive is that it allows users to extend the
current analysis and visualization capabilities by adding modules
that interface with scikit-learn, which also leaves plenty of room
for improvement. Many common data analysis libraries follow the
well-established API guidelines set forth by scikit-learn. Because of
this standardization, implementing new libraries is straightforward
pragmatically, especially under the expert user setting. Making such
extensions accessible for novice users through configuration files is
nontrivial and is left for future work.

Parameter selection for the mapper algorithm. Parameter se-
lection for mapper algorithm is a challenging open problem. We
use a “best practice” for parameter selection for the mapper algo-
rithm commonly employed by the practitioners. That is, finding
a range of parameters where the graph produces stable structures
which is enabled by the ability to change parameters on-the-fly in
Mapper Interactive and immediately visualize and explore the re-
sulting structures. Carriére et al. [3] provided theoretical results
for automatic parameter tuning. However, their theoretical results
require the data to adhere to certain statistical assumptions that are
often not applicable to real world datasets. Automatic parameter
tuning in practice for the mapper algorithm remains an open problem
to be tackled by the TDA community.
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Dataset MI GT | KM | GT* | KM* | MI/KM | GT*/GT | KM*/KM
ImageNet | 3.64 | 1.82 | 2.35 | 6.67 | 2.62 1.55% 3.66 % 1.11x
Cifar 123 | 0.57 | 0.74 | 1.90 1.16 1.66x 3.33x% 1.57x
Random 0.51 | 034 | 037 | 1.35 | 0.71 1.38x 3.97x 1.92x

Table 2: Peak memory usage (in Gigabytes) on three datasets, each with 100K points.

#Pts [ Int [ MI [ GT [ KM [ GT* [ KM* [ KM/MI | GT/GT*| KM/KMj
ImageNet dataset
1x10% [ 5 0.01 0.27 0.21 0.1 0.21 21.0 x 2.7 x 1.0 x

1x10° | 10 0.05 0.79 0.65 0.11 0.65 13.0 x 7.18 x 1.0 x

1x10% | 20 0.99 4.83 5.52 0.69 242 5.58 x 7.0 x 2.28 x
1x10° | 100 22.08 135.29 | 143.04 | 13.82 22.26 6.48 x 9.79 x 6.43 x
3% 10° | 200 99.74 562.19 | 578.84 | 60.99 88.03 5.8 % 9.22 x 6.58 x

Cifar dataset
1x10%2 |5 0.01 0.18 0.31 0.1 0.31 31.0 x 1.8 x 1.0 x
1x10° | 10 0.05 0.45 0.94 0.11 0.96 18.8 x 4.09 x 0.98 x
1x10% | 20 0.82 3.0 3.78 0.46 2.07 4.61 x 6.52 x 1.83 x

1x10° | 100 12.73 43.9 57.51 7.45 15.71 4.52 x 5.89 x 3.66 x
1x10° | 500 265.86 | 93277 | 1182.85| 171.97 | 21424 | 4.45 x 5.42 x 5.52 %
3x10° [ 1500 | 931.73 | 3392.51| 3740.08 | 1025.79| 802.77 | 4.01 x 3.31 % 4.66 x
Random dataset

I1x10° |5 0.01 0.1 0.51 0.1 0.52 51.0 x 1.0 x 0.98 x
1x10° | 10 0.02 0.43 0.73 0.12 0.74 36.5 x 3.58 x 0.99 x
1x10% | 20 0.62 1.64 247 0.5 2.15 3.98 x 3.28 x 1.15 x

1x10° | 100 9.42 22.17 32.6 5.56 13.25 3.46 x 3.99 x 2.46 x
1x10% | 500 185.2 289.11 | 389.7 113.16 | 154.86 | 2.10 x 2.55 x 2.52 x
1107 | 10000 | 1738.57| OOM 4556.77| OOM 1963.23| 2.62 x OOM 232 x

Table 3: Runtime comparison (in seconds) of our implementation vs KeplerMapper (KM) and giotto-tda (GT) on the ImageNet, Cifar, and Random
datasets, respectively. Int: intervals. OOM: out of memory. N/A: not available. KM/MI, GT/GT*, KM/KM*: speed up factors.

Data Size | Intervals [ CPU Version [ GPU Version | CPU/GPU
ImageNet dataset
1x 102 5 0.12 0.05 2.40x
1x 103 10 0.67 0.06 11.17x
1 x 107 20 2.54 0.80 3.18x%
1x10° 100 2232 12.93 1.73%
3% 10° 500 69.88 36.22 1.93x
Cifar dataset
1x 102 5 0.042 3.95 0.01x
1x 103 10 0.59 0.08 7.38x%
1x10% 20 2.17 0.53 4.09%
1x10° 100 20.20 9.18 2.20%
1x10° 500 331.58 202.87 1.63%
3% 100 1500 1142.82 753.37 1.52x
Random dataset (128-dimension)
1x 102 5 0.05 3.97 0.01x
1x10° 10 0.71 0.03 23.67 %
1x10% 20 221 0.36 6.14x
1x10° 100 15.07 5.09 2.96%
1x10° 500 256.36 122.64 2.09x
1x 107 1500 5234.30 4269.83 1.23x

Table 4: Runtime comparison (in seconds) of our implementation on CPU vs GPU using three testing datasets. CPU/GPU: speed up factors.
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