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a b s t r a c t

Tensor decomposition is an effective approach to compress over-parameterized neural networks and to

enable their deployment on resource-constrained hardware platforms. However, directly applying tensor

compression in the training process is a challenging task due to the difficulty of choosing a proper tensor

rank. In order to address this challenge, this paper proposes a low-rank Bayesian tensorized neural net-

work. Our Bayesian method performs automatic model compression via an adaptive tensor rank determi-

nation. We also present approaches for posterior density calculation and maximum a posteriori (MAP)

estimation for the end-to-end training of our tensorized neural network. We provide experimental vali-

dation on a two-layer fully connected neural network, a 6-layer CNN and a 110-layer residual neural net-

work where our work produces 7:4� to 137� more compact neural networks directly from the training

while achieving high prediction accuracy.

� 2021 Elsevier B.V. All rights reserved.

1. Introduction

Despite their success in many engineering applications, deep

neural networks are often over-parameterized, requiring extensive

computing resources in their training and inference. In order to

deploy neural networks on resource-constrained platforms such

as IoT devices and smart phones, numerous techniques have been

developed to build compact neural network models [1–4].

As a high-order generalization of matrix factorization, tensor

decomposition has outperformed many existing compression algo-

rithms by exploiting hidden low-rank structures in high dimen-

sions. Given an over-parameterized neural network, such

techniques have achieved state-of-the-art performance by ten-

sorizing and compressing the fully connected layers or convolution

kernels [4–7]. Tensorized neural networks achieve both memory

footprint reduction and computational speedup [6], and recent

work by [8] demonstrates their suitability for hardware accelera-

tion. However, the train-then-compress framework cannot avoid

the prohibitive computational costs in the training process.

This paper tries to directly train a low-rank tensorized neural

network. A main challenge is to automatically determine the ten-

sor rank (and thus the model complexity). Exactly determining a

tensor rank is NP-hard [9]. Existing tensor rank surrogates such

as tensor nuclear norms [10,11] are not suitable for regularizing

the training process due to their high computational costs. Mean-

while, the unknown tensors describing weight matrices and convo-

lution kernels are embedded in a nonlinear learning model.

Although [6,12] presented some approaches to train tensorized

neural networks, they assume that the tensor ranks are given,

which is often infeasible in practice. Recently, some methods have

been reported to control the rank of tensor trains in some opti-

mization problems [13,14], but they often cause over-fitting

because the tensor ranks can be arbitrarily increased in order to

minimize the objective functions.

Contributions. Inspired by the recent Bayesian CP and Tucker

tensor completion [15,16], we develop a novel low-rank Bayesian

tensorized neural network. Our contribution is twofold. Firstly,

we present a Bayesian model to compress the model parameters

(e.g., weight matrices and convolution kernels) via tensor train

decomposition [17]. We develop the first method for Bayesian ten-

sor rank determination in nonlinear models such as neural net-

works. Our method employs a proper prior density to

automatically determine the tensor ranks based on the given train-

ing data, which is beyond the capability of existing tensorized neu-

ral networks. Secondly, we develop training algorithms to estimate

the full posterior density and the MAP point. To solve the large-

scale Bayesian inference problem we approximate the posterior

density by Stein variational gradient descent [18]. The proposed

framework can generate much more compact neural networks.

Our method can also provide uncertainty estimation, which is

important for certain applications like decision making in autono-

mous driving [19] and robotics.
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1.1. Related work

Tensor Compression of Neural Networks. CP-format tensor

decomposition [20,21] was first employed to compress the fully

connected (FC) layers of pre-trained models by [4]. Following work

then compressed both FC and convolutional layers by tensor train

decomposition [5] and by Tucker decomposition [7], respectively.

Work in [6,7] demonstrates that tensor-compression can reduce

storage cost, inference and training times, and FLOP count. Further,

tensor compressed layers can reduce the run-time through both

tensor factor operations and hardware acceleration [6,8]. The

results in [5,7] show that the FC layers can be compressed more

significantly than the convolution layers. In order to avoid the

expensive pre-training, [6,12] trained FC layers in low-rank

tensor-train and Tucker formats, respectively, with the tensor

ranks fixed in advance. In practice determining a proper tensor

rank a priori is hard, and a bad rank estimation can result in low

accuracy or high training cost. This challenge is the main motiva-

tion of our work.

Tensor RankDetermination. Twomain approaches are used for

rank determination in tensor completion: low-rank optimization

and Bayesian inference. Optimizationmethodsmainly rely on some

generalization of the matrix nuclear norm [22] to tensors. The most

popular approaches place a low-rank objective on tensor unfoldings

[10,23,24], but the computation is expensive for high-order tensors.

The Frobenius norms of CP factors are used as a regularization for 3-

way tensor completion [25], but this does not generalize to high-

order tensors either. Bayesian methods can directly infer the tensor

rank in CP or Tucker tensor completion through low-rank priors

[15,26,27,25,28]. In the CP and Tucker formats, the ranks of differ-

ent tensor factors do not couple with each other. This is not true

in the tensor-train format (see Section 3.2). Most importantly, in

tensor completion the observed data is a linearmapping of a tensor,

whereas the mapping is nonlinear in neural networks. Therefore,

previouswork usingmean-field variational inference cannot gener-

alize to tensorized neural networks.

Bayesian Neural Networks. Bayesian neural networks were

developed to quantify the model uncertainty [29]. Both [30] and

the work [29] explored sparsity-inducing shrinkage priors for rele-

vance determination and weight removal in neural networks.

Another popular prior for Bayesian neural network compression

is the Minimum Description Length (MDL) framework for quanti-

zation [31]. MDL has seen modern implementations by [32,33],

who also investigated Bayesian pruning. To our best knowledge,

no Bayesian approaches have been reported to train a low-rank

tensorized neural network. A main challenge of training a Bayesian

neural network is the high computational cost caused by sampling-

based posterior density estimations. We will address this issue by

the recently developed Stein Variational Gradient Descent [18].

2. Background: Tensor Train (TT) Decomposition

Notation. We use bold lowercase letters (e.g., a), uppercase let-

ters (e.g., A) and bold calligraphic letters (e.g., A) to represent vec-

tors, matrices and tensors, respectively. A tensor is a generalization

of a matrix, or a multi-way data array [34]. An order-d tensor is a d-

way data arrayA 2 RI1�I2�...�Id , where Ik is the size of mode k. Given

the integer ik 2 1; Ik½ � for each mode k ¼ 1 � � � d, an entry of the ten-

sor A is denoted by A i1; � � � ; idð Þ. A subtensor is obtained by fixing

a subset of the tensor indices. A slice is a two-dimensional section

of a tensor, obtained by fixing all but two indices.

Definition 1. The tensor-train (TT) factorization [17] uses a

compact multilinear format to express a tensor A. Specifically, it

expresses a d-way tensor A as a collection of matrix products:

A i1; i2; . . . ; idð Þ ¼ G1 :; i1; :ð ÞG2 :; i2; :ð Þ . . .Gd :; id; :ð Þ

where Gk 2 RRk�1�Ik�Rk and R0 ¼ Rd ¼ 1. The vector

R ¼ R0;R1;R2; . . . ;Rdð Þ is the TT-rank. Each 3-way tensor Gi is a TT

core.

The TT decomposition can also be applied to compress a matrix

W 2 RM�J . For the following definition we assume that the dimen-

sions M and J can be factored as follows:

M ¼
Yd

k¼1
MkJ ¼

Yd

k¼1
Jk:

Let l; m be the natural bijections from indices m; jð Þ of W to

indices.

l1 mð Þ; m1 jð Þ; . . . ;ld mð Þ; md jð Þ
� �

of an order-2d tensor W. We

identify the entries of W and W as:

W m; jð Þ ¼W l1 mð Þ; m1 jð Þ; . . . ;ld mð Þ; md jð Þ
� �

: ð1Þ

Definition 2. The TT-matrix factorization expresses the matrix W

as a series of matrix products:

W l1 mð Þ; m1 jð Þ; . . . ;ld mð Þ; md jð Þ
� �

¼
Yd

k¼1
Gk :;lk mð Þ; mk jð Þ; :
� �

ð2Þ

where each 4-way tensor Gk 2 RRk�1�Mk�Jk�Rk is a TT core, and

R0 ¼ Rd ¼ 1. The vector R ¼ R0;R1; . . . ;Rdð Þ is again the TT-rank.

For notational convenience we express a TT or TT-matrix

parameterization of W as

W ¼ G1; . . . ;Gd½ �½ �: ð3Þ
The TT-matrix format reduces the total number of parameters

from
Qd

k¼1Mk

Qd
k¼1Jk to

Pd
k¼1Rk�1MkJkRk. This leads to massive

parameter reductions when the TT-rank is low.

3. Proposed Bayesian Model

3.1. Low-Rank Bayesian Tensorized Neural Networks (LR-BTNN)

Let D ¼ xi; yið Þf gNi¼1 be the training data, where yi 2 RS is an out-

put label. We intend to train an L-layer tensorized neural network

y � g xj W lð Þ� �L
l¼1

� �
: ð4Þ

Here W lð Þ is an unknown tensor describing the massive model

parameters in the l-th layer. We consider two kinds of tensorized

layers in this paper:

� TT-FC Layer. In a fully connected (FC) layer, a vector is mapped

to a component-wise nonlinear activation function by a weight

matrix W lð Þ. We tensorize W lð Þ as W lð Þ according to (1).

� TT-Conv Layer. A convolutional filter takes the form

K
lð Þ 2 Rt�t�C�S where t � t is the filter size, C and S are the num-

bers of input and output channels, respectively. The number of

channels C and S are often larger than the filter size t, so we fac-

torize C ¼Qd
i¼1ci; S ¼

Qd
i¼1si, reshape K

lð Þ into a

t2 � c1 � . . .� cd � s1 � . . .� sd tensor, and denote the reshaped

tensor as W lð Þ.

Our goal is to parameterize and compress each unknownW lð Þ in

TT-format in the training process. To simplify notations, we con-

sider a single-layer neural network parametrized by a single tensor

W, but our results can be easily generalized to a general L-layer
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network (see our result section). In order to build a Bayesian

model, we assume the following likelihood function

p Dj Gkf gdk¼1
� �

¼
YN

i¼1
p yi; g xij G1; . . . ;Gd½ �½ �ð Þð Þ: ð5Þ

Here Gk 2 RRk�1�Mk�Jk�Rk is an unknown TT core of W, and the

maximum TT-rank R ¼ 1;R1; . . . ;Rd�1;1ð Þ sets an upper bound

for the TT rank. The actual TT rank will be determined later. In this

paper we focus on classification problems so we assume a multino-

mial likelihood. Let yi;s and gs be the s-th component of yi and g,

respectively, then we have

p yi;g xij G1; . . . ;Gd½ �½ �ð Þð Þ ¼
YS

s¼1
gs xij G1; . . . ;Gd½ �½ �ð Þyi;s ð6Þ

As a result, the negative log-likelihood is the standard cross-

entropy loss

L Gkf gð Þ ¼ �
XN

i¼1

XS

s¼1
yi;s log gs xij G1; . . . ;Gd½ �½ �ð Þ: ð7Þ

In order to infer the unknown TT cores Gkf gdk¼1 and to decide the

actual ranks, we will further introduce some hidden variables

k
kð Þ

n od�1

k¼1
to parameterize the prior density of Gkf gdk¼1 (which will

be explained in Section 3.2). Let h denote all unknown variables

h :¼ Gkf gdk¼1; k
kð Þ

n od�1

k¼1

� 	
ð8Þ

which is described with a prior density p hð Þ. Then we can build a

tensorized neural network by estimating the MAP point or the full

distribution of the following posterior density function:

p hjDð Þ ¼ p Djhð Þp hð Þ
p Dð Þ / p Djhð Þp hð Þ ¼ p D; hð Þ: ð9Þ

There exist two key challenges. Firstly, how shall we choose the

prior density p hð Þ to ensure desired model structures? Secondly,

how can we efficiently solve the resulting large-scale Bayesian

inference?.

3.2. Selection of prior density functions

In order to achieve automatic model compression in the train-

ing, the prior density function in (9) should be chosen such that:

(1) the actual rank of Gk is very small; (2) manual rank tuning

can be avoided.

Prior Density for Gk. We specify the prior density on a TT-

matrix core. The size of Gk is fixed as Rk�1 �Mk � Jk � Rk. In order

to reduce the TT rank, we will enforce some rows and columns

in the slice Gk :;mk; jk; :ð Þ to zero. The main challenge is that the

matrix products are coupled: the rk-th column of

Gk�1 :;mk�1; jk�1; :ð Þ and the rk-th row of Gk :;mk; jk; :ð Þ should simul-

taneously shrink to zero if a rank deficiency happens. Fig. 1 uses

the slices of two adjacent 3-way TT cores to show this coupling

in the TT decomposition.

In order to address the above challenge, we extend the sparsity-

enforcing priors from [15] which were developed for CP and Tucker

tensor completion but are not applicable to TT format. Specifically,

we introduce the non-negative vector parameter

k
kð Þ ¼ k

kð Þ
1 ; . . . ; k

kð Þ
Rk

h i
2 RRk to control the actual rank bRk for each k

with 1 6 k 6 d� 1. For each intermediate TT core Gk, we place a

normal prior on its entries:

p Gk j k k�1ð Þ; k kð Þ
� �

¼
Y

rk�1 ;mk ;jk ;rk

N Gk rk�1;mk; jk; rkð Þ j0; k k�1ð Þ
rk�1
� k kð Þ

rk

� �

ð10Þ

where 2 6 k 6 d� 1;1 6 rk�1 6 Rk�1;1 6 rk 6 Rk;1 6 mk 6 Mk and

1 6 jk 6 Jk.

Because R0 ¼ Rd ¼ 1, the ranks of the first and last TT cores are

controlled by only one vector. We place a similar normal prior on

each:

p G1 jk 1ð Þ� �
¼

Y

m1 ;j1 ;r1

N G1 1;m1; j1; r1ð Þ j0; k 1ð Þ
r1

� �2
 �

p Gd j k d�1ð Þ
� �

¼
Y

rd�1 ;md ;jd

N Gd rd�1;md; jd;1ð Þ j0; k d�1ð Þ
rd�1

� �2
 �
:

ð11Þ

Here we use the squares k 1ð Þ
r1

� �2
and k d�1ð Þ

rd�1

� �2
to ensure that the

order of magnitude of the priors is consistent across all TT cores. To

apply the same prior to the standard tensor train we remove the

third index jk of each TT core.

Prior Density for k
kð Þ. In order to avoid tuning k

kð Þ
n o

and TT-

ranks manually, we set each k
kð Þ as a random vector and impose

a gamma prior on its entries:

p k
kð Þ

� �
¼
YRk

rk¼1
Ga k kð Þ

rk
jak; bk

� �
: ð12Þ

The hyperparameters are set to ak ¼ 1; bk ¼ 5 to encourage

sparsity. We chose the Gamma prior over other sparsity-inducing

priors (i.e. Normal, Laplace, Horseshoe) due to better empirical

compression ratios. We also experimented with shrinkage priors

that were not coupled across adjacent tensor cores and found that

they gave poor empirical compression.

Overall Prior for h. Combining (10), (11) and (12), we have the

overall prior density p hð Þ:

p hð Þ ¼ p G1 j k 1ð Þ� �
p Gd j k d�1ð Þ
� �Yd�1

k¼2
p Gk jk k�1ð Þ; k kð Þ
� �Yd�1

k¼1
p k

kð Þ
� �

: ð13Þ

Rank-Shrinkage Effect.We illustrate the rank-shrinkage of k in

our low-rank tensor prior with a close examination of the condi-

tional prior density of the slices of the first core tensor

p G1 :; :; :; rkð Þjk 1ð Þ
rk

� �
. Other tensor cores are similar. We observe that

Fig. 1. Elements of 3-way Gk and Gkþ1. The elements controlled by the same entry of k kð Þ are marked with the same color. Here the upper bound of TT rank is set as

Rk�1 ¼ 2;Rk ¼ 3;Rkþ1 ¼ 4.
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p G1 :; :; :; rkð Þ j k 1ð Þ
rk

� �
¼
Y

m1 ;j1

N G1 1;m1; j1; rkð Þ j0; k 1ð Þ
rk

� �2
 �

¼
Y

m1 ;j1

1

k
1ð Þ
rk

ffiffiffiffi
2p
p e

�1
2

G1 1;m1 ;j1 ;rkð Þ
k
1ð Þ
rk


 �2

:

¼ 1

k
1ð Þ
rk

ffiffiffiffi
2p
p


 �M1J1

e
�1

2

kG1 :;:;:;rkð Þk2
k
1ð Þ
rk


 �2

:

ð14Þ

We will apply standard results for the Mahalanobis distance

d
2 ¼ kG1 :; :; :; rkð Þk2

k 1ð Þ
rk

 !2

ð15Þ

to demonstrate how shrinkage in krk leads to shrinkage in

G1 :; :; :; rkð Þ. The Mahalanobis d distance follows a v2 distribution so

p d
2
< �

� �
¼ 1

2M1 J1C M1J1=2ð Þ
�M1J1=2�1e�

�
2: ð16Þ

Finally, we manipulate Eq. (16) by plugging in the value of d
2

from Eq. (15) to get

p kG1 :; :; :; rkð Þk2 <
ffiffiffi
�
p

k 1ð Þ
rk

� �
¼ 1

2M1 J1C M1J1=2ð Þ
�M1 J1=2�1e�

�
2: ð17Þ

The right-hand side of Eq. (17) is constant and independent of

k 1ð Þ
rk
. Therefore, as k 1ð Þ

rk
! 0, with high probability the tensor slice

norm kG1 :; :; :; rkð Þk2 ! 0.

3.3. Complete probabilistic model

Now we are ready to obtain the full posterior density by com-

bining (5), (9) and (13):

p hjDð Þ ¼ 1
p Dð Þ

YN

i¼1
p yi;g xij G1; . . . ;Gd½ �½ �ð Þð Þp G1 j k 1ð Þ� �

�

p Gd j k d�1ð Þ
� �Yd�1

k¼2
p Gk j k k�1ð Þ; k kð Þ
� �Yd�1

k¼1
p k

kð Þ
� �

:

ð18Þ

The associated probabilistic graphical model is shown in Fig. 2.

The user-defined parameters ak and bk generate a Gamma distribu-

tion for k
kð Þ which tunes the actual rank of each TT core Gk via a

Gaussian distribution. The total number of parameters to be

inferred for a single-layer tensorized neural network is

Pd
k¼1MkJkRk�1Rk þ

Pd�1
k¼1Rk. The extension to the an L-layer neural

network is straightforward: one just needs to replicate the whole

diagram except the training data by L times.

3.4. Automatic rank determination

The actual TT rank is determined by both the prior and training

data. As shown in (10) and (11), each entry of k kð Þ directly controls

one sub-tensor of Gk and one sub-tensor of Gkþ1. If the entry k
kð Þ
rk

is

large then elements of subtensors Gk :; :; :; rkð Þ and Gkþ1 rk; :; :; :ð Þ can
vary freely based on the training data. In contrast, if k kð Þ

rk
is close to

zero, then the elements of Gk :; :; :; rkð Þ and Gkþ1 rk; :; :; :ð Þ are more

likely to vanish. Let �k kð Þ be the posterior mean of k kð Þ decided by

both the prior and training data. Then the inferred TT-rank

R̂ ¼ 1; bR1; bR2; . . . ; bRd�1;1
h i

is estimated as the number of nonzero

elements in �k kð Þ:

bRk ¼ nnz �k kð Þ� �
for k ¼ 1;2; . . . ;d� 1: ð19Þ

In practice, an element of �k kð Þ is regarded as zero if it is below

the threshold 1e� 2. Such an automatic rank tuning reduces the

actual number of model parameters in a single layer to
Pd

k¼1MkJk
bRk�1bRk.

4. Bayesian and MAP training

Nowwe describe how to train our low-rank Bayesian tensorized

neural networks. We note here that prior work on Bayesian tensor

rank determination [25,15,16,27] is only suitable for linear models,

and cannot generalize to highly nonlinear Bayesian tensorized neu-

ral networks. We demonstrate how to overcome this difficulty.

4.1. Full Bayesian training

Existing Bayesian low-rank tensor methods either rely on

mean-field variational inference or MCMC sampling. Mean-field

approximations require that the tensor model is linear, and MCMC

sampling is prohibitively expensive for large-scale or deep neural

networks. Therefore, we employ the Stein variational gradient des-

cent (SVGD) recently developed by [18] to approximate the poste-

rior density p hjDð Þ. SVGD combines the flexibility of MCMC with

the speed of variational Bayesian inference to avoid both pitfalls.

The goal is to find a set of particles h
i

n on

i¼1
such that

q hð Þ ¼ 1
n

Pn
i¼1k h; hi

� �
approximates the true posterior p hjDð Þ. Here

k �; �ð Þ is a positive definite kernel, and we use the radial basis func-

tion kernel here. The particles can be found by minimizing the

Kullback–Leibler divergence between q hð Þ and p hjDÞð Þ. The optimal

update / �ð Þ is derived in [18] and takes the form

h
k  h

k þ �/ h
k

� �

/ h
k

� �
¼ 1

n

Xn

i¼1
k h

i; hk
� �

r
h
i log p h

ijD
� �

þr
h
ik h

i; hk
� �h i ð20Þ

where � is the step size. The gradient rh log p hjDð Þ is expressed as

rh log p hjDð Þ ¼
XN

i¼1

XS

s¼1
yi;s
rh gs xij G1; . . . ;Gd½ �½ �ð Þ½ �
gs xij G1; . . . ;Gd½ �½ �ð Þ þrh

� log p hð Þ ð21Þ

for classification. The first term is exactly the gradient of a

maximum-likelihood tensorized training, and it is replaced by a

stochastic gradient if N is large. The 2nd term caused by our low-

rank prior is our only overhead over standard tensorized training
Fig. 2. Bayesian graphical model for a low-rank Bayesian tensorized neural network

parametrized by a single low-rank tensor W. There are N training samples.
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[6], and does not require forming the full tensor. Let

Kk ¼ diag k
k�1ð Þ � k

kð Þ
� �

be a diagonal matrix, and vec Gk :;mk; jk; :ð Þð Þ
be the column-major vectorization. The gradients of the log-prior

are provided below:

@ log p hð Þ
@vec Gk :;mk ;jk ;:ð Þð Þ ¼ �K

�1
k vec Gk :;mk; jk; :ð Þð Þ

@ log p hð Þ
@k

kð Þ
l

¼ � 1
2

X

mkþ1 ;jkþ1 ;rkþ1

1

k
kð Þ
l

k
kþ1ð Þ
rkþ1

� Gkþ1 l;mkþ1 ;jkþ1 ;rkþ1ð Þ
k

kð Þ
l

k
kþ1ð Þ
rkþ1


 �2
( )

� 1
2

X

rk�1 ;mk ;jk

1

k
k�1ð Þ
rk�1

k
kð Þ
l

� Gk rk�1 ;mk ;jk ;lð Þ
k

k�1ð Þ
rk�1

k
kð Þ
l


 �2
( )

þ ak�1ð Þ
k

kð Þ
l

� bk:

ð22Þ

4.2. MAP training

To obtain the MAP estimation we run stochastic gradient des-

cent to minimize the negative log-posterior:

� log p hjDð Þ ¼ �
XN

i¼1

XS

s¼1
yi;s log gs xij G1; . . . ;Gd½ �½ �ð Þ

� log p hð Þ þ log p Dð Þ
ð23Þ

The local maximum achieved by MAP training provides a single

non-Bayesian tensorized neural network that has been compressed

by rank determination. This method is useful in order to quickly

produce a single compressed model, but does not enable uncer-

tainty quantification.

4.3. Initialization

Training deep neural networks requires careful initialization

[35]. The same is true for tensorized neural networks [36]. A good

empirically determined initialization distribution for the full ten-

sor weights is N 0;
ffiffiffi
2
Q

q� �
where Q is the total number of parame-

ters in the full tensor. In order to achieve variance
ffiffiffi
2
Q

q
for a low-

rank TT or TT-matrix with ranks R1 ¼ . . . ¼ Rd�1 ¼ R, we initialize

the TT core elements using a N 0;r2
� �

with r2 ¼ 2
Q

� �1=2d
R1=d�1. This

initialization provides a correction to the tensor core initialization

described in [36] which contains an error.

5. Numerical experiments

5.1. Experimental setup

We validate our method using three network structures and

three datasets. We use the Adam optimization algorithm [37] to

initialize the first particle at the MAP point by minimizing Eq.

(23) and then run 5000 iterations of SVGD. For all trainable weights

except the low-rank tensors in our proposed model we apply a

N 0;100ð Þ prior which acts as a weak regularizer. We refer to our

proposed low-rank Bayesian tensorized model as ‘‘LR-BTNN”, a

Bayesian tensorized neural network with a N 0;100ð Þ prior on all

weights and convolution kernels as ‘‘BTNN”, and a Bayesian non-

tensorized neural network with aN 0;100ð Þ prior on all parameters

as ‘‘BNN”. We use the threshold 10�2 on all k
kð Þ
j to truncate a TT-

rank. In all experiments the maximum rank R of the proposed

LR-BTNN model is the same as the rank of the fixed-rank BTNN

model.

� Toy Model (2 FC Layers). First we test on the MNIST and

Fashion-MNIST datasets [38,39] using a network with two

fully-connected layers. A similar tensorized neural network

was studied in [12]. We compare the accuracy and rank deter-

mination ability of our approach as compared to the determin-

istic training approach from [12]. The first layer is size

784� 625 with ReLU activation, and the second layer is size

625� 10 with a softmax activation. Both layers contain a bias

parameter. We convert the first layer into a TT-matrix with

m1;m2;m3;m4ð Þ ¼ 7;4;7;4ð Þ; j1; j2; j3; j4ð Þ ¼ 5;5;5;5ð Þ and the

second layer into a TT-matrix with m1;m2ð Þ ¼ 25;25ð Þ and

j1; j2ð Þ ¼ 5;2ð Þ. Both layers have maximum TT-rank

R1 ¼ . . . ¼ Rd�1 ¼ 20. We initialize by training for 100 epochs

on the log-posterior. We use 50 particles to approximate the

posterior density.

� Baseline Six Layer CNN (4 Conv layers + 2 FC layers). We test

on the CIFAR-10 dataset [40] using a baseline tensorized convo-

lutional model from [6]. This CNN model consists of (Conv-128,

BN,ReLU), (Conv-128,BN,ReLU), max-pool 3� 3, (Conv-256,BN,

ReLU), (Conv-256,BN,ReLU), max-pool 5� 5, fc-512, fc-10. All

convolutions are 3� 3 with stride 1. Following [5] we do not

tensorize the first convolutional layer, which contains less than

1% of the parameters. We set the maximum TT-ranks of all lay-

ers to 30. We extend the original training 100 epoch training

schedule from [5] to 120 epochs to account for the more com-

plex log-posterior loss function. We use 20 particles for the

SVGD fully Bayesian estimation.

� ResNet-110 (109 Conv layers + 1 FC layer). We further test the

baseline Keras ResNetv1 structure [41,42] on the CIFAR-10

datasets. We do not tensorize the convolutions in the first Res-

Block (first 36 layers) or the 1� 1 convolutions. For all other

convolutions we set the maximum TT-rank to 20. We use the

standard 200 epoch training schedule to find the MAP point.

As in the previous CNN experiment, we also use 20 particles

for the SVGD fully Bayesian estimation.

5.2. Results

Table 1 shows the overall performances of our LR-BTNN with

BNN and BTNN on the three examples. We evaluate test accuracy

of the single-particle map estimate (MAP Acc.) and the uncertainty

quality of the fully Bayesian SVGD model (test LL). From the table,

we can compare the following performance metrics:

Model Size. The 3rd and 4th columns of Table 1 show the num-

ber of model parameters in the full posterior density estimations

and in the MAP estimations, respectively. Because of the automatic

tensor rank reduction, our LR-BTNN method generates much more

compact neural networks. The compression ratio is very high when

the networks have FC layers only (137� reduction over BNN on the

MNIST example). The compression ratio becomes smaller when the

network has more convolution layers (e.g., 27:3� on the CNN and

7:4� on ResNet-110). Our method outperforms [5,7] which com-

pressed the convolution layers typically by 2� to 4�.
Prediction Accuracy. The 5th and 6th columns of Table 1

show the prediction accuracy of our fully Bayesian and MAP esti-

mations, respectively. For the MAP estimation, the accuracy loss

of our LR-BTNN model is very small, and our proposed model

even achieves the best performance on the MNIST and

Fashion-MNIST examples. For the fully Bayesian model, we mea-

sure the probabilistic model accuracy by computing the predic-

tive log likelihood on held-out test data (denoted as ‘‘Test LL”

in the table). Our LR-BTNN performs much better than other

two methods on the MNIST and Fashion-MNIST examples, and

all models are comparable on the CIFAR-10 tasks despite the fact

that our model is much smaller.
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Automatic Rank Determination. The main advantage of our

LR-BTNN method is its automatic rank determination and model

compression in the traning process. Fig. 3 shows the rank determi-

nations of some specific layers in all three examples. Fig. 4 shows

the resulting layer-wise parameter reduction due to the automatic

rank determination. The MNIST classification model has two overly

parameterized FC layers, so the actual TT ranks are much lower

than the maximum ranks. In fact, the TT-rank in Layer 1 reduces

from 1;20;20;20;1ð Þ to 1;8;1;5;1ð Þ, and the TT-rank in Layer 2

reduces from 1;20;1ð Þ to 1;13;1ð Þ. This provides 8:5� compression

over the naive TNN and overall 138� compression over the non-

tensorized neural networks. A naive tensorization of the CNN

model gives a compression ratio of 2:3�, and the rank determina-

tion gives a further parameter reduction of 6:9�, leading to an

overall 15:8� compression. Most layers in ResNet-110 are convolu-

tions blocks with small numbers of filters, and there is only one

small dense matrix. These facts make tensor compression less

effective on this ResNet-110 example.

Uncertainty Quantification. Our LR-BTNN method is able to

quantify the model uncertainty, which is critical for decision mak-

Table 1

Results of a standard Bayesian neural network (BNN), a Bayesian tensorized neural network (BTNN) with Gaussian prior, and our low-rank Bayesian tensorized neural network

(LR-BTNN).

Example Model SVGD Param # MAP Param # Test LL MAP Acc.

BNN 24,844,250 496,885 �0.193 97.6%

Toy Model BTNN 1,361,750 27,235 �0.188 97.7%

(2 FC, MNIST) LR-BTNN 181,250 (137�) 3,625 (137�) �0.106 97.8%

BNN 24,844,250 496,885 �0.619 87.1 %

Toy Model BTNN 1,361,750 27,235 �0.847 86.7%

(2 FC, Fashion MNIST) LR-BTNN 642,750 (38.6�) 12,375 (40.1�) �0.410 87.7%

BNN 31,388,360 1,569,418 �0.497 89.0%

Baseline CNN BTNN 13,737,360 686,868 �0.463 88.8%

(4 Conv+2 FC) LR-BTNN 1,987,520 (15.8�) 99,376 (15.8�) -0.471 87.4%

BNN 34,855,240 1,742,762 �0.506 92.6%

ResNet-110 BTNN 12,895,800 644,790 �0.521 91.1%

(109 Conv+1 FC) LR-BTNN 4,733,028 (7.4�) 236,651 (7.4�) -0.515 90.4%

Fig. 3. Inferred TT-ranks at specified layers in the three examples.

Fig. 4. Compression of parameters at different layers due to the automatic rank determination.
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ing in uncertain environments. Specifically, based on the posterior

density obtained from SVGD, we can easily estimate the probabil-

ity density of an predicted output. As an example, Fig. 5 shows an

image that is hard to classify. The predicted density shows that this

image can be recognized as ‘‘3” with the highest probability, but it

can also be recognized as ‘‘5” with a high probability. A possible

pitfall of SVGD is that all particles collapse to the MAP point [43].

This does not occur for our model, as the MAP log-likelihood value

consistently outperforms the SVGD log-likelihood value.

5.3. Cross-validation for rank selection

Cross-validation is a standard strategy for parameter tuning.

However this approach is extremely time-consuming for selecting

the tensor rank parameter because the rank parameter is discrete.

Therefore combinatorial searches are required to select the best

tensor ranks in the standard tensorized neural network training.

In contrast, our model can determine the tensor rank in a single

training run. We illustrate the effect of tuning the tensor rank in

Table 2. We train the standard tensorized neural network (BTNN)

on the MNIST task and vary the fixed tensor rank r of both layers

to observe the parameter sensitivity. We observe that even after

fine-tuning the tensor rank our model presents the most attractive

parameter/accuracy tradeoff. This is because our model can auto-

matically select non-uniform tensor ranks (i.e. (1,7,1,5,1)) without

prohibitively expensive combinatorial search.

5.4. Particle number selection

For the MNIST model we found that existing SVGD approaches

to non-tensorized training use 20� 100 particles for posterior

approximation [18,44] so we selected an intermediate value of

50. In Fig. 6 we plot the particle/test log-likelihood tradeoff for

each model (BNN,BTNN,LR-BTNN) on Fashion-MNIST. We observe

that after approximately 40 particles the approximation quality

is stable. For the larger CIFAR-10 experiments we selected the

number of particles as 20 due to GPU computational constraints.

5.5. Rank determination overhead

To measure the overhead of our rank determination approach

compared with the fixed-rank tensorized neural network training

we measure the per-epoch timing overhead of the rank determina-

tion. The results are presented in Table 3. We observe that our pro-

posed method (LR-BTNN) adds negligible overhead to standard

fixed-rank training (BTNN).

6. Conclusion

We have proposed a low-rank Bayesian tensorized neural net-

works in the tensor train format. Our formulation provides an

automatic rank determination and model compression in the

end-to-end training. A Stein variational inference method has been

employed to perform full Bayesian estimations, and the resulting

model can predict output uncertainties. Our methods have shown

excellent accuracy and model compression ratios on various neural

Fig. 5. Left: a challenging input image with true label 3. Right: the joint marginal density of softmax output 3 (x-axis) and softmax output 5 (y-axis).

Table 2

Rank parameter tuning experiment on the MNIST dataset. BTNN-r is a tensorized

neural network with the same MNIST architecture as before and fixed tensor rank r.

Model Param # Accuracy

BTNN-5 3,160 96.89

BTNN-10 8,435 97.23

BTNN-15 16,460 97.44

BTNN-20 27,235 97.68

BTNN-25 40,760 97.66

BTNN-30 57,035 97.63

LR-BTNN 3,625 97.78

Fig. 6. Test log-likelihood sensitivity vs. number of particles used for the Fashion-

MNIST task.

Table 3

Rank determination training overhead. All results are reported in seconds per epoch

for MAP training. BTNN does not use rank determination. Our proposed LR-BTNN

method uses rank determination.

Task BTNN LR-BTNN

Toy Model (2 FC, MNIST) 9.7 9.8

Baseline CNN (4 Conv+2 FC) 56.1 56.3

Resnet-110 (109 Conv+1 FC) 207.2 207.5
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network structures with both fully connected and convolution lay-

ers for the MNIST, Fashion-MNIST, and CIFAR-10 data sets. Our

method is shown to be more effective on FC layers than on convo-

lution layers.
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