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ABSTRACT

The deep neural network (DNN) based Al applications on the edge
require both low-cost computing platforms and high-quality ser-
vices. However, the limited memory, computing resources, and
power budget of the edge devices constrain the effectiveness of
the DNN algorithms. Developing edge-oriented Al algorithms and
implementations (e.g., accelerators) is challenging. In this paper, we
summarize our recent efforts for efficient on-device Al development
from three aspects, including both training and inference. First, we
present on-device training with ultra-low memory usage. We pro-
pose a novel rank-adaptive tensor-based tensorized neural network
model, which offers orders-of-magnitude memory reduction during
training. Second, we introduce an ultra-low bitwidth quantization
method for DNN model compression, achieving the state-of-the-art
accuracy under the same compression ratio. Third, we introduce
an ultra-low latency DNN accelerator design, practicing the soft-
ware/hardware co-design methodology. This paper emphasizes the
importance and efficacy of training, quantization and accelerator
design, and calls for more research breakthroughs in the area for
Al on the edge.
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1 INTRODUCTION

Deep neural networks (DNN§) are becoming attractive solutions for
many edge Al applications and have made remarkable progress in
various areas such as computer vision, natural language processing,
health care, autonomous driving, and surveillance. Meanwhile, with
the increase of the size and complexity of the neural networks,
training and deploying a DNN with a large number of parameters
and complex data transmission on small and power-constrained
edge devices, such as smart phones and wearable devices, becomes
increasingly challenging [12, 14, 41]. In this work, we focus on
three primary challenges: ultra-low memory training, ultra-low
bitwidth quantization, and ultra-low latency acceleration, and
discuss our solutions for each of them.

First, there is an increasing demand for on-device machine learn-
ing model training, to preserve data privacy, enable model person-
alization and lifelong learning, and to improve energy efficiency
to avoid the massive data transmission to the cloud [34, 38]. How-
ever, model training has a much larger memory requirement than
inference, exposing additional challenges for on-device training,
where the edge-devices are usually equipped with limited memory
capacity. Therefore, ultra-low memory training method must be
explored to enable on-device training. To this end, we present an
end-to-end low-precision tensorized neural network training frame-
work with orders-of-magnitude memory reduction [40]. The rank-
adaptive tensorized training method employs a Bayesian method
for automatic tensor rank determination and model compression
in the training process.

Second, to implement DNNs on the memory-constrained edge de-
vices, pruning and quantization are promising to reduce the number
of weights and the data bit-width in DNN models, with an extreme
case that quantizes the weights down to binary/ternary representa-
tions [7, 12, 24]. These methods can dramatically reduce the net-
work size as well as number of the multiplications during the execu-
tion of the model. Given the tight memory and computing resource
budget on the edge, ultra-low bitwidth quantization methods are
especially attractive. However, ultra-low bitwidth quantization can
easily cause significant degradation on the model accuracy, making
such aggressive quantization methods challenging. To address such
challenges, we present a novel ternary weight quantization method
by proposing a vectorized loss function, achieving the state-of-the-art
accuracy under the same compression ratio [10].

Third, for efficient DNN deployment on the edge-devices, FPGAs
are becoming attractive platforms comparing with CPUs, GPUs
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Figure 1: (a): An order-3 tensor. (b) and (c): CP and Tucker
representations, respectively. (d): TT representation, where

the gray lines and squares indicate a slice of the TT core by
fixing its mode index. This figure is reproduced from [15].
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and digital signal processors (DSPs) [26, 33, 42]. FPGAs can pro-
vide the flexibility to be configured as domain specific architecture
that can meet various implementation requirements such as ultra-
low latency on the edge-devices. In addition, modern SoC FPGAs
integrate low power processors and sufficient interfaces that can
support widely used sensors for Internet-of-things (IoT) applica-
tions. We present the first instruction based ternarized low-latency
deep learning accelerator with high performance, low resource uti-
lization, and high flexibility for different DNN models [5].

The remaining of this paper is organized as follows. Section 2 in-
troduces our low-memory rank-adaptive on-device training frame-
work; Section 3 introduces our low-bitwidth DNN quantization
solution; Section 4 introduces our low-latency DNN accelerator de-
sign. In Section 5 we demonstrate the effectiveness of our proposed
methods, followed by the conclusions and future work in Section 6.

2 ULTRA-LOW MEMORY TRAINING

The large amount of model parameters consume massive computing
and memory resources, which prevents direct training of neural
networks on edge devices. A promising technique of reducing model
parameters is low-rank tensor decomposition [20, 30]. This method
has achieved great success in post-training compression and fixed-
rank training [3, 9, 21, 29, 35, 39, 44]. However, several fundamental
issues need to be addressed in on-device one-shot training:
e Firstly, a rank-adaptive training framework is needed to avoid
combinatorial search of tensor ranks and multiple training runs.
e Secondly, hardware-friendly tensor algorithms should be devel-
oped to facilitate their implementation on edge devices.

In this section, we summarize our recent work on the algorithm [15,
16] and hardware [40] levels to address these challenges.

2.1 Bayesian Tensorized Training Models

2.1.1  Low-rank tensor representation. In many cases we can de-
scribe a neural network with much less parameters via low-rank
tensors. Consider a weight matrix W € R/*! for example (and other
parameters such as convolutional filters and embedding tables can
be handled similarly). We can firstly fold W to a high-dimensional
tensor ‘W of size J; X - X Jg X I; X+ X1z, where I = [—[z:1 I, ] =
[—[ff:1 Jn. Then, we can describe the tensor ‘W with some low-rank
tensor factors ®. This can be done with various low-rank tensor
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decomposition formats as shown in Fig. 1 [15]. In various tensor
decompositions, ® denotes the associated tensor factors. For large
fully connected layers and embedding tables, the tensor-train matrix
(TTM) format turns to be highly effective [15]. In the TTM format,
® = {Q(")}‘izl, and each G € RRn-1*nxInXRu ig an order-4
TTM core. The vector R = (Ry, Ry, - - - , Ry) with Ry = R; = 1 is the
tensor ranks that determine the model complexity. With low-rank
tensors, one may reduce the number of model parameters from an
exponential function of d to a linear one.

2.1.2  Bayesian Tensorized End-to-End Training. Despite the high
compression ratio via tensor methods, determining the tensor rank
in advance is very hard [17]. This is further complicated by the
nonlinear forward model in neural networks, which has prevented
tensorized one-shot on-device training in previous works. We have
developed two Bayesian models to address this issue:

e Stein Variational Inference for TTM Format. In [16], we
have considered TTM format. We model each slice of g<k> with
a zero-mean Gaussian prior density. We further control the vari-
ance by two tunable Gamma hyper-priors to enforce low tensor
ranks. The actual tensor rank is decided jointly by the training
data and rank-controlling hyper-parameters. Starting from an
initial rank parameter Ry, we can learn an actual rank Ry < Ry,
leading to further model compression in the training process.
This method uses a Stein variational inference [25] to compute
the posteior density for small- or medium-size neural networks.
Scalable SVI for One-Shot Tensorized Training. In [15], we
have developed a more generic and efficient Bayesian model
for tensorized training. This work can handle CP, Tucker, TT
and TTM formats. It uses Gaussian priors to model low-rank
tensor factors, and uses Half-Cauchy or Log-Uniform hyper-
priors to control tensor ranks. We have improved the stochastic
variational inference (SVI) [18] by two steps. Firstly, we simplify
the posterior density of rank-controlling hyper-parameters to a
Delta function to avoid gradient explosion. Secondly, we use a
hybrid numerical/analytical update rule inside SVI. This highly
scalable method can perform one-shot training of very large-scale
neural networks with billions of model parameters.

2.1.3  Performance Summary.

e Qur first method [16] has been tested on a two-layer fully con-
nected neural network, a 6-layer CNN and a 110-layer residual
neural network. Our work has produced 7.4X to 137X more com-
pact neural networks directly from the training with little or no
accuracy loss.

e Our recent work [15] has been tested on a practical CNN, a
large-scale NLP model [19] and an extremely large deep learning
recommendation model (DLRM) [28] from Facebook. Orders-of-
magnitude parameter reduction has been achieved in the training
process. As shown in Table 1, training the DLRM with a standard
method involves 4.25 X 10° variables. Our proposed method only
trains 2.36 X 10° variables due to low-rank tensorization, and
it further reduce the model parameters to 164K in the training
process due to the automatic rank determination. The overall
parameter reduction ratio in the training process is 2.6 x 10%.
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Table 1: Performance of our tensorized training [15] on the
Facebook DLRM model.

standard | tensorization | rank-adaptive training
# parameters 4.25B 2.36M 164K
compression N/A 1, 800X 26,000%

2.2 One-Shot On-Device Tensorized Training

To demonstrate on-device training, we have developed a low-precision
tensorized training algorithm and its FPGA prototype [40].

2.2.1 Low-Precision Tensorized Training. We consider the maxi-
mum a posteriori probability (MAP) estimate of the Bayesian model
[15]. In this case, the training loss function includes two parts: the
cross-entropy loss of a neural network classifier dependent on TTM
factors {G () }Zzl, and a regularization term caused by the Gauss-
ian priors of TTM factors as well as the Log-Uniform hyper-priors
for rank-controlling parameters A;’s. In the training process, both
TTM factors and rank-controlling parameters will be computed. To
reduce the training cost on hardware, a low-precision tensorized
training algorithm is developed based on the following key ideas:

e We use BinaryConnect [8] to compute low-precision TTM factors.
BinaryConnect keeps the real values of all low-precision param-
eters in a buffer. In each iteration, the gradients are accumulated
in the buffer, and the low-precision parameters are updated by
quantizing the buffer. To handle the non-differentiable quantiza-
tion function in the training process, we use the straight-through
estimator (STE) [2] to approximate its gradient.

o We use different precisions for different variables in the training
process. Specifically, we use 4 bits to represent TT factors, 8 bits
for activations and bias, and 16 bits for the gradients.

2.2.2  On-FPGA Training. To demonstrate our training algorithms
on edge devices, we have implemented an FPGA accelerator as
shown in Fig. 2 for the low-precision tensorized training framework.

o Since our low-rank tensorization can greatly reduce the training
variables, all model parameters may be stored in the on-chip
BRAM. The data samples, activations, and gradients are stored
in the off-chip DRAM during the training process.

o The forward and backward propagations are run on the FPGA
programmable logic. The TTM factors and rank-controlling pa-
rameters are updated on the embedded ARM core.

e Three processing elements (PEs) are designed for the forward and
backward propagation. PE1 and PE2 are shared by the forward
and backward propagations, and they handle tensor contractions.
PE1 is used for a two-index tensor contraction which contains the
last dimension of two tensor variables. In contrast, PE2 performs
a tensor contraction along a single dimension that is not the last.
PE3 computes the outer products in a backward propagation.

3 ULTRA-LOW BITWIDTH QUANTIZATION

Neural network quantization employs low precision (bitwidth) data
for efficient model execution. Especially, ultra-low bitwidth quanti-
zation leads to much less memory usage, lower complexity of the
multiply-accumulate operations, and higher efficiency of model
execution, making it an appealing technology for enabling AT at
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Figure 2: Our FPGA accelerator for the end-to-end ten-
sorized training. Reproduced from [40].

The angle between
two vectors: 6

Figure 3: The quantization angle between v/ and wg.

edge devices. However, aggressively lowering the data bitwidth
(e.g., lower than 4-bit) is very challenging:

e It can easily result in large accuracy degradation [5, 11, 13], re-
quiring a careful balance between the computing efficiency and
the final model accuracy.

e Minimizing the quantization loss, i.e., the L2 distance between
the original and the quantized values, is an appealing method [6,
12, 22-24, 37] but have major drawbacks such as easily falling
into local optima and neglecting the distribution and correlations
of the weights [10].

To address such challenges and achieve high-accuracy ultra-low
bitwidth quantization, we have proposed a quantization method,
namely VecQ [10], with a novel vectorized loss function and an
open-sourced training flow. VecQ can quantize the model weights
into 1-bit to 16-bit and shows exceptional performance especially
under ultra-low bitwidth, e.g., ternary values.

Vectorized Loss Function. We organize the weights within
one DNN layer into a vector w € R! where I is the number of
weights, and denote the original floating point weight vector by
wy and the quantized weight vector by wq. Typically, there is a
scaling factor « such that wg = av, where each element in v is a
low-bitwidth representation. Based on the vector representations,
we define the quantization angle between w s and wgq, denoted by
0. Figure 3 shows an example when [ = 2. The objective is to find
optimal & and v such that wq is as close to w as possible.

We propose the vectorized loss to describe the quantization loss,
denoted by J,, and we minimize J, during the quantization. J, is
defined as the summation of the orientation loss, denoted by J,, and
the modulus loss, denoted by J, as follows:

av~wf

llao|] - gl

Jo=1—cosf, where cosl =
- 2
Jm = ”(Uf - av|;
Jo=Jo+Jm
The orientation loss describes the angle between two vectors, while

the modulus loss describes the squared distance between @ and wg.
Notably, by minimizing J,, we usually achieve lower quantization
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Figure 4: The data quantization flow of VecQ, reproduced
from VecQ [10].

Table 2: The format of the instruction word in T-DLA.

[Byteldk [7 [6 [5 [4 T3 [2 J1 Jo ]
[Load | OP [ FS [ SAM | SAL [ DAM | DAL | XS [ CC |
LOP: operation code 2FS: input feature size
3SAM/SAL: source address most/least significant byte
4DAM/DAL: destination address most/least significant byte
SKS: kernel size °CC: in/out/activation/pooling selection

loss comparing with directly minimizing J,,. More details can be
found in the VecQ paper [10].

Vectorized Loss Minimization. We minimize J, in two steps,
namely steering and driving, as shown in Figure 4. First, the steering
step minimizes the orientation loss J, to find the best v, since J, is
independent of @. Second, the driving step minimizes the modulus
loss Ji, to find the best scaling factor a. For a convolution layer, all
the weights within the same layer share the same scaling factor;
for a depth-wise convolution layer, each kernel has its own scaling
factor for a better representation of the less number of weights
for it. We quantize the activations to fixed point values during the
training to further reduce the memory utilization.

Training Flow Integration. We integrate our VecQ solution
into the Tensorflow and Pytorch DNN training frameworks. For
each layer, in the forward propagation, we first quantize the weights
from w¢ to wg, and then use wg to compute the output activations,
which is also quantized into fixed point. In the backward propaga-
tion, the gradients are also calculated using wg to update w.

4 ULTRA-LOW LATENCY ACCELERATION

The effectiveness of a dedicated FPGA accelerator for DNN models
have been widely demonstrated [4, 33]. However, ultra-low latency
accelerators for edge devices with an extremely limited resource
budget still require careful design considerations.

Benefiting from our quantization solution VecQ for ultra-low
bitwidth, we have proposed T-DLA, a light-weight ternarized accel-
erator overlay under strict resource constraint, to achieve ultra-low
latency on edge devices [5]. The key features of T-DLA include:

e An optimized and expressive single instruction multiple data
(SIMD) instruction set.

o A novel memory sub-system supporting effective data access of
the computation modules.

e An efficient execution pipeline with low-latency computation
modules.

SIMD Instruction Set. To support the task scheduling for vari-
ous DNN models, the instruction set of T-DLA is designed as simple
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Figure 5: The variable-length line buffer. The kernel size and
the depth of the buffers are both configurable.

yet expressive enough for a large variety of DNNs. Each instruction
is a 64-bit word (8 bytes) with the format shown in Table 2. The
payloads of the different bytes are generated according to the layer
configurations.

Memory Sub-system. The memory subsystem contains two
levels of storage to provide low latency data fetching to the com-
putation units: a simple input buffer and a variable-length line
buffer. The simple input buffer is a BRAM buffer for temporary
input feature storage; the variable line buffer serves for the efficient
data streaming into the ternary computation array, as shown in
Figure 5. It is designed to support variable kernel size k and variable
buffer depth d, which are specified by the instruction to reduce the
data transmission latency caused by fixed hardware paths. Once
configured by the instruction, it provides an output of k X k data
each clock cycle to the computation array.

Execution Pipeline and Computation Modules. T-DLA has
four major computation modules: 1) a ternary computation array,
2) a set of adder trees, 3) activation and scaling modules, and 4)
pooling modules.

Ternary computation array. With our ternarized model training
via VecQ, the weights are represented by 2 bits using two’s comple-
ment encoding, so that the multiplication in the convolution layer
is simplified to selection and inversion logic. Benefiting from such
simplified logic, we can achieve parallelism along the input channel,
the output channel, and the kernel dimensions. The computation
array is constructed by T,; X T, X Li computation units, which can
process this number of input data simultaneously. T, and T,,, are
the maximum numbers of the input and output channel that can be
processed by the computation array, and Lk is the pre-defined max-
imum allowable kernel size. The values of T, T, Lk and the length
of the line buffer Lp are all configurable and could be determined
based on the on-chip resource availability.

Adder tree. Since the computation array is built only using LUTs
and FFs, we use DSPs to construct adder trees. We take advantage
of the SIMD mode of the DSPs where the internal carry propaga-
tion between segments is blocked to ensure independent operation.
Therefore, we split the 48-bit input of a DSP into four 12-bit inde-
pendent accumulation channels, so that a single DSP can perform
addition for 8 pieces of input data and provide 4 outputs. Benefiting
from the SIMD mode, the DSPs can provide outputs in every single
clock once the internal register lines are filled up. Furthermore,
the clock frequency of the DSPs are configured to be higher than
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Table 3: The on-device ultra-low memory training method
on the Fashion MNIST dataset.

Training Testing Model Memory  Memory
Method s .
accuracy accuracy parameters in bits reduction
Vanilla 95.75% _ 89.27% _ 4.67 X 10° 1.49 X 10 N/A
Floating, w/o prior | 92.54%  88.03% 1.48x 107 4.74x10°  31.4x
Fixed, w/o prior | 88.31%  86.67% 1.48x10* 6.13x10?  243x
Floating, w/ prior | 90.17%  87.88% 1.08 X 10° 3.46x 10°  43.1x
Fixed, w/ prior | 8545%  84.86% 1.22x10* 511x10*  292x

Table 4: VecQ: top-1 classification accuracy

Dataset MNIST | CIFAR10 | CIFAR10 | ImageNet
Model Lenet-5 | Cifarnet | VGG-like | Resnet-18
Floating 99.41 80.54 93.49 69.60
JCNN'17 [1] | 98.33 B 87.89 B

NIPS’16 [24] 99.35 - 92.56 61.8
Ours 99.5 78.7 92.94 68.23

Table 5: VecQ: model size reduction

Model Lenet-5 | Cifarnet | VGG-like | Resnet-18
Param. Total (M) | 0.43 0.279 5.35 11.69
Param. Conv (M) | 0.025 0.258 1.114 11.177
Floating (MB) 1.644 1.065 20.408 44.594
Ours (MB) 0.393 0.081 4.284 3.154
Mem.Reduc.(%) 76.09 92.39 79.01 92.93

other logic parts with the help of input/output asynchronous FIFOs,
which further reduces the processing latency.

Other modules. The ReLU activation module, the linear scaling
module, and the max pooling module are all designed to process in
a single clock cycle to reduce the depth of the execution pipeline.

5 EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of our methods,
including the ultra-low memory training framework, the ultra-
low bitwidth VecQ quantization, and the ultra-low latency T-DLA
design. Notbly, all these works are open-sourced.

5.1 On-device Training

We implement our low-precision rank-adaptive tensorized training
on an Avnet Ultra96-V2 FPGA board and use it to train a two-
layer neural network for a classification task on the FashionMNIST
dataset. There are 512 neurons in the hidden layer, folded into
4 X4 2 X 16 for the first layer, and 32 X 16 for the second layer. We
use the Pytorch and Tensorly modules to implement our training
algorithm on the embedded processor. For the FPGA we set the clock
rate to 100MHz. We compare the training methods with or without
the low rank TT priors. As shown in Table 3, our method achieves
294x memory reduction for the model parameters compared with
the standard non-tensorized training. This on-FPGA training has
achieved 59x speedup and 123X energy reduction than the training
on an embedded CPU.

5.2 Ultra-low Bitwidth Quantization

We use MNIST, Cifar10 and ImageNet to evaluate the ultra-low
bitwidth quantization, VecQ. The evaluated DNN models include
Lenet-5, Cifarnet, a VGG-like network [32], and Resnet-18.
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Table 6: T-DLA resource and performance

Configuration Parameters

< Ty Ty L, Lp, Doy > < 4,16,5,32,12 >

Resource Utilization(%)

< LUT/FF/BRAM/DSP > 79 / 47.47 / 68.93 / 91.82

Clock Frequency
Logic / Adder (MHz) 125/250
Peak Performance (GOPS) 400
DNN Model Lenet-5 [ Cifarnet [ VGG-like [ Resnet-18
latency(ms) 0016 [ 0063 [ 212 | 4838

Table 7: T-DLA: Comparison with the state-of-the-art imple-
mentations.

Dataset Design | Model Acc(%) | F., W.(bits) | fps platform
MNIST [36] MFC-max | 97.69 1,1 6238000 | ZC706
MNIST [31] Lenet-5 - 8,3 70000 ZC706
MNIST Ours Lenet-5 99.5 8,2 62051.1 Zedboard
CIFAR10 [36] VGG-like 80.1 24,1 21900 ZC706
CIFAR10 27 VGG-like 81.8 1,1 420 Zedboard
CIFAR 10 32 VGG-like 86.71 8,2 27043 VC709
CIFAR 10 43 VGG-like 88.68 1,1 168 Zedboard
CIFAR 10 Ours VGG-like 89.08 8,2 457 Zedboard
ImageNet | [24] Resnet-18 | 65.44 FP32,FP32 1.545 Xeon!
ImageNet | [24] Resnet-18 | 65.44 FP32,FP32 387.597 1080Ti?
ImageNet | Ours Resnet-18 | 68.23 8,2 20.48 Zedboard
!Xeon: Xeon E5-2630 v3; #1080Ti: Nvidia 1080Ti
5.2.1 Classification accuracy. The classification accuracy on dif-

ferent datasets are shown in Table 4. For simplicity, we only show
the top-1 accuracy. Comparing to the floating point models (Float-
ing in the table), the classification accuracy using ternary weights
and quantized scalars and activations shows negligible degrada-
tion. VecQ also achieves superior accuracy comparing to the recent
works [1, 24], in which only the weights are ternarized but not
the scalars and activations. Our proposed method shows better
accuracy for Resnet-18 on ImageNet data set. This result demon-
strates the scalability and stability of VecQ, especially in aggressive
low-bitwidth quantization scenarios.

5.2.2  Model size reduction. VecQ also greatly reduces the memory
footprint (Mem. Reduc.) as shown in Table 5. Ternary weight occu-
pies only 2 bits whereas the original floating point requires 32 bits.
As shown in Table 5, for convolution layers, VecQ compresses the
parameters nearly to the theoretical limit (almost 16X reduction).
We quantize the last FC layer to 12-bit to maintain accuracy, so that
the networks with less or no FC layers have higher compression
ratio, such as Cifarnet and Resnet-18. Specifically, VecQ reduces up
to0 92.93% (14.14X) size of Resnet-18 in floating point.

5.3 Ultra-low Latency Acceleration

We use the models quantized by VecQ to evaluate our T-DLA ac-
celerator design in terms of accuracy and frame per second (fps).
The measurements of the original models are on a server with two
Intel Xeon E5-2630 v3 CPUs and one Nvidia 1080 Ti GPU. T-DLA is
implemented on a Xilinx Zedboard FPGA, which is suitable for edge
applications with very limited logic resources. It has an on-chip
dual-core ARM Cortex A9, and has 53.2K LUTs, 106.4K FFs, 140
BRAM blocks of 36Kb each, and 220 DSPs. Vivado System Design
Suite 2019.2 is used for system implementation.
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5.3.1 Hardware Resource and Processing Latency Evaluation. We
choose an accelerator configuration that fully utilizes the given
resources, shown in Table 6, together with the execution latency
of the different models with this configuration. We only show the
most important configuration parameters including Ty, Try, Lx, Lp,
and the quantized bitwidth of the activations (D,,). As can be seen
in Table 6, T-DLA with customized configuration can almost use all
the resources, especially the DSPs. The targeted FPGA can support
up to 250MHz for the DSPs, which is twice of the frequency of
other logic benefiting from the ternary computation array and
independent clock design of the adder trees.

5.3.2  Performance Comparison. We compare T-DAL in terms of
accuracy and fps with existing designs, either using the same DNN
model or the same dataset. The results are shown in Table 7. For
MNIST dataset, the design in [36] shows higher fps because of
the DNN model they used is simpler and the ZC706 platform has
almost 4X more resources than ours. However, our implementation
on Zedboard has a comparable fps (62051) to a design [31] (70000)
with 3-bit weights on the ZC706 platform. On CIFAR10 dataset, our
design shows dominating accuracy advantage among all the VGG-
like models. On ImageNet dataset, we directly compare our results
with the floating point version. T-DLA shows longer execution
latency than the GPU but outperforms the CPU by 9.2x.

6 CONCLUSIONS

In this paper, we summarized our recent efforts for efficient on-
device Al development including both training and inference. We
mainly focused on three major challenges of edge Al development.
First, we presented on-device training with ultra-low memory us-
age by proposing a novel rank-adaptive tensor-based tensorized
neural network model, which offers orders-of-magnitude memory
reduction during training. Second, we introduced VecQ, a novel
quantization method that supports ultra-low bitwidth quantization
with negligible accuracy degradation. Third, we presented T-DLA,
an ultra-low latency DNN accelerator design for ternarized DNNs
achieving the state-of-the-art performance. On top of the achieve-
ments in this paper, we expect more research breakthroughs to
boost the development and deployment for the edge Al
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