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ABSTRACT

The deep neural network (DNN) based AI applications on the edge

require both low-cost computing platforms and high-quality ser-

vices. However, the limited memory, computing resources, and

power budget of the edge devices constrain the effectiveness of

the DNN algorithms. Developing edge-oriented AI algorithms and

implementations (e.g., accelerators) is challenging. In this paper, we

summarize our recent efforts for efficient on-device AI development

from three aspects, including both training and inference. First, we

present on-device training with ultra-lowmemory usage. We pro-

pose a novel rank-adaptive tensor-based tensorized neural network

model, which offers orders-of-magnitude memory reduction during

training. Second, we introduce anultra-lowbitwidth quantization

method for DNN model compression, achieving the state-of-the-art

accuracy under the same compression ratio. Third, we introduce

an ultra-low latency DNN accelerator design, practicing the soft-

ware/hardware co-design methodology. This paper emphasizes the

importance and efficacy of training, quantization and accelerator

design, and calls for more research breakthroughs in the area for

AI on the edge.

CCS CONCEPTS
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1 INTRODUCTION

Deep neural networks (DNNs) are becoming attractive solutions for

many edge AI applications and have made remarkable progress in

various areas such as computer vision, natural language processing,

health care, autonomous driving, and surveillance. Meanwhile, with

the increase of the size and complexity of the neural networks,

training and deploying a DNN with a large number of parameters

and complex data transmission on small and power-constrained

edge devices, such as smart phones and wearable devices, becomes

increasingly challenging [12, 14, 41]. In this work, we focus on

three primary challenges: ultra-low memory training, ultra-low

bitwidth quantization, and ultra-low latency acceleration, and

discuss our solutions for each of them.

First, there is an increasing demand for on-device machine learn-

ing model training, to preserve data privacy, enable model person-

alization and lifelong learning, and to improve energy efficiency

to avoid the massive data transmission to the cloud [34, 38]. How-

ever, model training has a much larger memory requirement than

inference, exposing additional challenges for on-device training,

where the edge-devices are usually equipped with limited memory

capacity. Therefore, ultra-low memory training method must be

explored to enable on-device training. To this end, we present an

end-to-end low-precision tensorized neural network training frame-

work with orders-of-magnitude memory reduction [40]. The rank-

adaptive tensorized training method employs a Bayesian method

for automatic tensor rank determination and model compression

in the training process.

Second, to implement DNNs on thememory-constrained edge de-

vices, pruning and quantization are promising to reduce the number

of weights and the data bit-width in DNN models, with an extreme

case that quantizes the weights down to binary/ternary representa-

tions [7, 12, 24]. These methods can dramatically reduce the net-

work size as well as number of the multiplications during the execu-

tion of the model. Given the tight memory and computing resource

budget on the edge, ultra-low bitwidth quantization methods are

especially attractive. However, ultra-low bitwidth quantization can

easily cause significant degradation on the model accuracy, making

such aggressive quantization methods challenging. To address such

challenges, we present a novel ternary weight quantization method

by proposing a vectorized loss function, achieving the state-of-the-art

accuracy under the same compression ratio [10].

Third, for efficient DNN deployment on the edge-devices, FPGAs

are becoming attractive platforms comparing with CPUs, GPUs
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Figure 1: (a): An order-3 tensor. (b) and (c): CP and Tucker

representations, respectively. (d): TT representation, where

the gray lines and squares indicate a slice of the TT core by

fixing its mode index. This figure is reproduced from [15].

and digital signal processors (DSPs) [26, 33, 42]. FPGAs can pro-

vide the flexibility to be configured as domain specific architecture

that can meet various implementation requirements such as ultra-

low latency on the edge-devices. In addition, modern SoC FPGAs

integrate low power processors and sufficient interfaces that can

support widely used sensors for Internet-of-things (IoT) applica-

tions. We present the first instruction based ternarized low-latency

deep learning accelerator with high performance, low resource uti-

lization, and high flexibility for different DNN models [5].

The remaining of this paper is organized as follows. Section 2 in-

troduces our low-memory rank-adaptive on-device training frame-

work; Section 3 introduces our low-bitwidth DNN quantization

solution; Section 4 introduces our low-latency DNN accelerator de-

sign. In Section 5 we demonstrate the effectiveness of our proposed

methods, followed by the conclusions and future work in Section 6.

2 ULTRA-LOW MEMORY TRAINING

The large amount of model parameters consumemassive computing

and memory resources, which prevents direct training of neural

networks on edge devices. A promising technique of reducingmodel

parameters is low-rank tensor decomposition [20, 30]. This method

has achieved great success in post-training compression and fixed-

rank training [3, 9, 21, 29, 35, 39, 44]. However, several fundamental

issues need to be addressed in on-device one-shot training:

• Firstly, a rank-adaptive training framework is needed to avoid

combinatorial search of tensor ranks and multiple training runs.

• Secondly, hardware-friendly tensor algorithms should be devel-

oped to facilitate their implementation on edge devices.

In this section, we summarize our recent work on the algorithm [15,

16] and hardware [40] levels to address these challenges.

2.1 Bayesian Tensorized Training Models

2.1.1 Low-rank tensor representation. In many cases we can de-

scribe a neural network with much less parameters via low-rank

tensors. Consider a weight matrixW ∈ R𝐽 ×𝐼 for example (and other

parameters such as convolutional filters and embedding tables can

be handled similarly). We can firstly fold W to a high-dimensional

tensorW of size 𝐽1 × · · · × 𝐽𝑑 × 𝐼1 × · · · × 𝐼𝑑 , where 𝐼 =
∏𝑑
𝑛=1 𝐼𝑛, 𝐽 =∏𝑑

𝑛=1 𝐽𝑛 . Then, we can describe the tensorW with some low-rank

tensor factors 𝚽. This can be done with various low-rank tensor

decomposition formats as shown in Fig. 1 [15]. In various tensor

decompositions, 𝚽 denotes the associated tensor factors. For large

fully connected layers and embedding tables, the tensor-trainmatrix

(TTM) format turns to be highly effective [15]. In the TTM format,

𝚽 = {G (𝑛) }𝑑𝑛=1, and each G (𝑛) ∈ R𝑅𝑛−1×𝐽𝑛×𝐼𝑛×𝑅𝑛 is an order-4

TTM core. The vector R = (𝑅0, 𝑅1, · · · , 𝑅𝑑 ) with 𝑅0 = 𝑅𝑑 = 1 is the

tensor ranks that determine the model complexity. With low-rank

tensors, one may reduce the number of model parameters from an

exponential function of 𝑑 to a linear one.

2.1.2 Bayesian Tensorized End-to-End Training. Despite the high

compression ratio via tensor methods, determining the tensor rank

in advance is very hard [17]. This is further complicated by the

nonlinear forward model in neural networks, which has prevented

tensorized one-shot on-device training in previous works. We have

developed two Bayesian models to address this issue:

• Stein Variational Inference for TTM Format. In [16], we

have considered TTM format. We model each slice of G (𝑘) with

a zero-mean Gaussian prior density. We further control the vari-

ance by two tunable Gamma hyper-priors to enforce low tensor

ranks. The actual tensor rank is decided jointly by the training

data and rank-controlling hyper-parameters. Starting from an

initial rank parameter 𝑅𝑘 , we can learn an actual rank 𝑅𝑘 ≤ 𝑅𝑘 ,

leading to further model compression in the training process.

This method uses a Stein variational inference [25] to compute

the posteior density for small- or medium-size neural networks.

• Scalable SVI for One-Shot Tensorized Training. In [15], we

have developed a more generic and efficient Bayesian model

for tensorized training. This work can handle CP, Tucker, TT

and TTM formats. It uses Gaussian priors to model low-rank

tensor factors, and uses Half-Cauchy or Log-Uniform hyper-

priors to control tensor ranks. We have improved the stochastic

variational inference (SVI) [18] by two steps. Firstly, we simplify

the posterior density of rank-controlling hyper-parameters to a

Delta function to avoid gradient explosion. Secondly, we use a

hybrid numerical/analytical update rule inside SVI. This highly

scalable method can perform one-shot training of very large-scale

neural networks with billions of model parameters.

2.1.3 Performance Summary.

• Our first method [16] has been tested on a two-layer fully con-

nected neural network, a 6-layer CNN and a 110-layer residual

neural network. Our work has produced 7.4× to 137× more com-

pact neural networks directly from the training with little or no

accuracy loss.

• Our recent work [15] has been tested on a practical CNN, a

large-scale NLP model [19] and an extremely large deep learning

recommendation model (DLRM) [28] from Facebook. Orders-of-

magnitude parameter reduction has been achieved in the training

process. As shown in Table 1, training the DLRM with a standard

method involves 4.25× 10
9 variables. Our proposed method only

trains 2.36 × 10
6 variables due to low-rank tensorization, and

it further reduce the model parameters to 164K in the training

process due to the automatic rank determination. The overall

parameter reduction ratio in the training process is 2.6 × 10
4.
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Table 1: Performance of our tensorized training [15] on the

Facebook DLRM model.

standard tensorization rank-adaptive training

# parameters 4.25B 2.36M 164K

compression N/A 1, 800× 26, 000×

2.2 One-Shot On-Device Tensorized Training

To demonstrate on-device training, we have developed a low-precision

tensorized training algorithm and its FPGA prototype [40].

2.2.1 Low-Precision Tensorized Training. We consider the maxi-

mum a posteriori probability (MAP) estimate of the Bayesian model

[15]. In this case, the training loss function includes two parts: the

cross-entropy loss of a neural network classifier dependent on TTM

factors {G (𝑘) }𝑑
𝑘=1

, and a regularization term caused by the Gauss-

ian priors of TTM factors as well as the Log-Uniform hyper-priors

for rank-controlling parameters 𝝀𝑘 ’s. In the training process, both

TTM factors and rank-controlling parameters will be computed. To

reduce the training cost on hardware, a low-precision tensorized

training algorithm is developed based on the following key ideas:

• Weuse BinaryConnect [8] to compute low-precision TTM factors.

BinaryConnect keeps the real values of all low-precision param-

eters in a buffer. In each iteration, the gradients are accumulated

in the buffer, and the low-precision parameters are updated by

quantizing the buffer. To handle the non-differentiable quantiza-

tion function in the training process, we use the straight-through

estimator (STE) [2] to approximate its gradient.

• We use different precisions for different variables in the training

process. Specifically, we use 4 bits to represent TT factors, 8 bits

for activations and bias, and 16 bits for the gradients.

2.2.2 On-FPGA Training. To demonstrate our training algorithms

on edge devices, we have implemented an FPGA accelerator as

shown in Fig. 2 for the low-precision tensorized training framework.

• Since our low-rank tensorization can greatly reduce the training

variables, all model parameters may be stored in the on-chip

BRAM. The data samples, activations, and gradients are stored

in the off-chip DRAM during the training process.

• The forward and backward propagations are run on the FPGA

programmable logic. The TTM factors and rank-controlling pa-

rameters are updated on the embedded ARM core.

• Three processing elements (PEs) are designed for the forward and

backward propagation. PE1 and PE2 are shared by the forward

and backward propagations, and they handle tensor contractions.

PE1 is used for a two-index tensor contraction which contains the

last dimension of two tensor variables. In contrast, PE2 performs

a tensor contraction along a single dimension that is not the last.

PE3 computes the outer products in a backward propagation.

3 ULTRA-LOW BITWIDTH QUANTIZATION

Neural network quantization employs low precision (bitwidth) data

for efficient model execution. Especially, ultra-low bitwidth quanti-

zation leads to much less memory usage, lower complexity of the

multiply-accumulate operations, and higher efficiency of model

execution, making it an appealing technology for enabling AI at

PE 3
(backward)

PE 1
(forward & backward)

PE 2
(forward & backward)

BRAM (fixed point model weights)

ping‐pong buffers ping‐pong buffers

DRAM (training samples, activation, gradients, floating point weights)

host

Figure 2: Our FPGA accelerator for the end-to-end ten-

sorized training. Reproduced from [40].

𝝎𝒇𝝎𝒒
 θ

   

 

 𝝎𝒇𝝎𝒒
The angle between 
two vectors: θ

Figure 3: The quantization angle between 𝜔 𝑓 and 𝜔𝑞 .

edge devices. However, aggressively lowering the data bitwidth

(e.g., lower than 4-bit) is very challenging:

• It can easily result in large accuracy degradation [5, 11, 13], re-

quiring a careful balance between the computing efficiency and

the final model accuracy.

• Minimizing the quantization loss, i.e., the L2 distance between

the original and the quantized values, is an appealing method [6,

12, 22ś24, 37] but have major drawbacks such as easily falling

into local optima and neglecting the distribution and correlations

of the weights [10].

To address such challenges and achieve high-accuracy ultra-low

bitwidth quantization, we have proposed a quantization method,

namely VecQ [10], with a novel vectorized loss function and an

open-sourced training flow. VecQ can quantize the model weights

into 1-bit to 16-bit and shows exceptional performance especially

under ultra-low bitwidth, e.g., ternary values.

Vectorized Loss Function. We organize the weights within

one DNN layer into a vector 𝜔 ∈ R𝑙 where 𝑙 is the number of

weights, and denote the original floating point weight vector by

𝜔 𝑓 and the quantized weight vector by 𝜔𝑞 . Typically, there is a

scaling factor 𝛼 such that 𝜔𝑞 = 𝛼𝒗, where each element in 𝒗 is a

low-bitwidth representation. Based on the vector representations,

we define the quantization angle between 𝜔 𝑓 and 𝜔𝑞 , denoted by

𝜃 . Figure 3 shows an example when 𝑙 = 2. The objective is to find

optimal 𝛼 and 𝒗 such that 𝜔𝑞 is as close to 𝜔 𝑓 as possible.

We propose the vectorized loss to describe the quantization loss,

denoted by 𝐽𝑣 , and we minimize 𝐽𝑣 during the quantization. 𝐽𝑣 is

defined as the summation of the orientation loss, denoted by 𝐽𝑜 , and

the modulus loss, denoted by 𝐽𝑚 as follows:

𝐽𝑜 = 1 − cos𝜃, where cos𝜃 =

𝛼𝒗 · 𝜔 𝑓

| |𝛼𝒗 | | · | |𝜔 𝑓 | |

𝐽𝑚 = | |𝜔 𝑓 − 𝛼𝒗 | |2
2

𝐽𝑣 = 𝐽𝑜 + 𝐽𝑚

(1)

The orientation loss describes the angle between two vectors, while

the modulus loss describes the squared distance between𝜔 𝑓 and𝜔𝑞 .

Notably, by minimizing 𝐽𝑣 , we usually achieve lower quantization
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𝝎𝒇 𝝎𝒒𝒗Steering Driving

①Minimize the 
orientation loss 𝐽଴ ②Minimize the 

modulus loss 𝐽௠

𝒗𝜽 𝒗 𝝎𝒒ൈ 𝜶
Find 𝒗 Find 𝜶𝝎𝒇 𝝎𝒇

Figure 4: The data quantization flow of VecQ, reproduced

from VecQ [10].

Table 2: The format of the instruction word in T-DLA.

Byte Idx 7 6 5 4 3 2 1 0

Load OP FS SAM SAL DAM DAL KS CC
1OP: operation code 2FS: input feature size

3SAM/SAL: source address most/least significant byte
4DAM/DAL: destination address most/least significant byte
5KS: kernel size 6CC: in/out/activation/pooling selection

loss comparing with directly minimizing 𝐽𝑚 . More details can be

found in the VecQ paper [10].

Vectorized Loss Minimization.We minimize 𝐽𝑣 in two steps,

namely steering and driving, as shown in Figure 4. First, the steering

step minimizes the orientation loss 𝐽𝑜 to find the best 𝒗, since 𝐽𝑜 is

independent of 𝛼 . Second, the driving step minimizes the modulus

loss 𝐽𝑚 to find the best scaling factor 𝛼 . For a convolution layer, all

the weights within the same layer share the same scaling factor;

for a depth-wise convolution layer, each kernel has its own scaling

factor for a better representation of the less number of weights

for it. We quantize the activations to fixed point values during the

training to further reduce the memory utilization.

Training Flow Integration. We integrate our VecQ solution

into the Tensorflow and Pytorch DNN training frameworks. For

each layer, in the forward propagation, we first quantize the weights

from 𝜔 𝑓 to 𝜔𝑞 , and then use 𝜔𝑞 to compute the output activations,

which is also quantized into fixed point. In the backward propaga-

tion, the gradients are also calculated using 𝜔𝑞 to update 𝜔 𝑓 .

4 ULTRA-LOW LATENCY ACCELERATION

The effectiveness of a dedicated FPGA accelerator for DNN models

have been widely demonstrated [4, 33]. However, ultra-low latency

accelerators for edge devices with an extremely limited resource

budget still require careful design considerations.

Benefiting from our quantization solution VecQ for ultra-low

bitwidth, we have proposed T-DLA, a light-weight ternarized accel-

erator overlay under strict resource constraint, to achieve ultra-low

latency on edge devices [5]. The key features of T-DLA include:

• An optimized and expressive single instruction multiple data

(SIMD) instruction set.

• A novel memory sub-system supporting effective data access of

the computation modules.

• An efficient execution pipeline with low-latency computation

modules.

SIMD Instruction Set. To support the task scheduling for vari-

ous DNNmodels, the instruction set of T-DLA is designed as simple

… …

… …

… …

… …

Kernel Reg. Depth Reg.

Kernel 
control

Buffer depth control 𝑘 ൈ 𝑘 registers

…
 …

𝑘 ൈ 𝑘 pixels to a 
computation array

Input pixels

Figure 5: The variable-length line buffer. The kernel size and

the depth of the buffers are both configurable.

yet expressive enough for a large variety of DNNs. Each instruction

is a 64-bit word (8 bytes) with the format shown in Table 2. The

payloads of the different bytes are generated according to the layer

configurations.

Memory Sub-system. The memory subsystem contains two

levels of storage to provide low latency data fetching to the com-

putation units: a simple input buffer and a variable-length line

buffer. The simple input buffer is a BRAM buffer for temporary

input feature storage; the variable line buffer serves for the efficient

data streaming into the ternary computation array, as shown in

Figure 5. It is designed to support variable kernel size 𝑘 and variable

buffer depth 𝑑 , which are specified by the instruction to reduce the

data transmission latency caused by fixed hardware paths. Once

configured by the instruction, it provides an output of 𝑘 × 𝑘 data

each clock cycle to the computation array.

Execution Pipeline and Computation Modules. T-DLA has

four major computation modules: 1) a ternary computation array,

2) a set of adder trees, 3) activation and scaling modules, and 4)

pooling modules.

Ternary computation array.With our ternarized model training

via VecQ, the weights are represented by 2 bits using two’s comple-

ment encoding, so that the multiplication in the convolution layer

is simplified to selection and inversion logic. Benefiting from such

simplified logic, we can achieve parallelism along the input channel,

the output channel, and the kernel dimensions. The computation

array is constructed by𝑇𝑛 ×𝑇𝑚 × 𝐿2
𝐾
computation units, which can

process this number of input data simultaneously. 𝑇𝑛 and 𝑇𝑚 are

the maximum numbers of the input and output channel that can be

processed by the computation array, and 𝐿𝐾 is the pre-defined max-

imum allowable kernel size. The values of𝑇𝑛,𝑇𝑚, 𝐿𝐾 and the length

of the line buffer 𝐿𝐷 are all configurable and could be determined

based on the on-chip resource availability.

Adder tree. Since the computation array is built only using LUTs

and FFs, we use DSPs to construct adder trees. We take advantage

of the SIMD mode of the DSPs where the internal carry propaga-

tion between segments is blocked to ensure independent operation.

Therefore, we split the 48-bit input of a DSP into four 12-bit inde-

pendent accumulation channels, so that a single DSP can perform

addition for 8 pieces of input data and provide 4 outputs. Benefiting

from the SIMD mode, the DSPs can provide outputs in every single

clock once the internal register lines are filled up. Furthermore,

the clock frequency of the DSPs are configured to be higher than
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Table 3: The on-device ultra-low memory training method

on the Fashion MNIST dataset.

Method
Training
accuracy

Testing
accuracy

Model
parameters

Memory
in bits

Memory
reduction

Vanilla 95.75% 89.27% 4.67 × 10
5

1.49 × 10
7 N/A

Floating, w/o prior 92.54% 88.03% 1.48 × 10
4

4.74 × 10
5 31.4×

Fixed, w/o prior 88.31% 86.67% 1.48 × 10
4

6.13 × 10
4 243×

Floating, w/ prior 90.17% 87.88% 1.08 × 10
4

3.46 × 10
5

43.1×
Fixed, w/ prior 85.45% 84.86% 1.22 × 10

4
5.11 × 10

4 292×

Table 4: VecQ: top-1 classification accuracy

Dataset MNIST CIFAR10 CIFAR10 ImageNet

Model Lenet-5 Cifarnet VGG-like Resnet-18

Floating 99.41 80.54 93.49 69.60

IJCNN’17 [1] 98.33 - 87.89 -

NIPS’16 [24] 99.35 - 92.56 61.8

Ours 99.5 78.7 92.94 68.23

Table 5: VecQ: model size reduction

Model Lenet-5 Cifarnet VGG-like Resnet-18

Param. Total (M) 0.43 0.279 5.35 11.69

Param. Conv (M) 0.025 0.258 1.114 11.177

Floating (MB) 1.644 1.065 20.408 44.594

Ours (MB) 0.393 0.081 4.284 3.154

Mem.Reduc.(%) 76.09 92.39 79.01 92.93

other logic parts with the help of input/output asynchronous FIFOs,

which further reduces the processing latency.

Other modules. The ReLU activation module, the linear scaling

module, and the max pooling module are all designed to process in

a single clock cycle to reduce the depth of the execution pipeline.

5 EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of our methods,

including the ultra-low memory training framework, the ultra-

low bitwidth VecQ quantization, and the ultra-low latency T-DLA

design. Notbly, all these works are open-sourced.

5.1 On-device Training

We implement our low-precision rank-adaptive tensorized training

on an Avnet Ultra96-V2 FPGA board and use it to train a two-

layer neural network for a classification task on the FashionMNIST

dataset. There are 512 neurons in the hidden layer, folded into

4× 4× 2× 16 for the first layer, and 32× 16 for the second layer. We

use the Pytorch and Tensorly modules to implement our training

algorithm on the embedded processor. For the FPGAwe set the clock

rate to 100MHz. We compare the training methods with or without

the low rank TT priors. As shown in Table 3, our method achieves

294× memory reduction for the model parameters compared with

the standard non-tensorized training. This on-FPGA training has

achieved 59× speedup and 123× energy reduction than the training

on an embedded CPU.

5.2 Ultra-low Bitwidth Quantization

We use MNIST, Cifar10 and ImageNet to evaluate the ultra-low

bitwidth quantization, VecQ. The evaluated DNN models include

Lenet-5, Cifarnet, a VGG-like network [32], and Resnet-18.

Table 6: T-DLA resource and performance

Configuration Parameters
< 𝑇𝑛,𝑇𝑚, 𝐿𝐾 , 𝐿𝐷 , 𝐷𝑤 >

< 4, 16, 5, 32, 12 >

Resource Utilization(%)
< 𝐿𝑈𝑇 /𝐹𝐹/𝐵𝑅𝐴𝑀/𝐷𝑆𝑃 >

79 / 47.47 / 68.93 / 91.82

Clock Frequency
Logic / Adder (MHz)

125 / 250

Peak Performance (GOPS) 400

DNN Model Lenet-5 Cifarnet VGG-like Resnet-18

latency(ms) 0.016 0.063 2.12 48.8

Table 7: T-DLA: Comparison with the state-of-the-art imple-

mentations.

Dataset Design Model Acc.(%) F., W. (bits) fps platform

MNIST [36] MFC-max 97.69 1, 1 6238000 ZC706

MNIST [31] Lenet-5 - 8, 3 70000 ZC706

MNIST Ours Lenet-5 99.5 8, 2 62051.1 Zedboard

CIFAR10 [36] VGG-like 80.1 24, 1 21900 ZC706

CIFAR10 [27] VGG-like 81.8 1, 1 420 Zedboard

CIFAR 10 [32] VGG-like 86.71 8, 2 27043 VC709

CIFAR 10 [43] VGG-like 88.68 1, 1 168 Zedboard

CIFAR 10 Ours VGG-like 89.08 8,2 457 Zedboard

ImageNet [24] Resnet-18 65.44 FP32,FP32 1.545 Xeon1

ImageNet [24] Resnet-18 65.44 FP32,FP32 387.597 1080Ti2

ImageNet Ours Resnet-18 68.23 8, 2 20.48 Zedboard
1Xeon: Xeon E5-2630 v3; 21080Ti: Nvidia 1080Ti

5.2.1 Classification accuracy. The classification accuracy on dif-

ferent datasets are shown in Table 4. For simplicity, we only show

the top-1 accuracy. Comparing to the floating point models (Float-

ing in the table), the classification accuracy using ternary weights

and quantized scalars and activations shows negligible degrada-

tion. VecQ also achieves superior accuracy comparing to the recent

works [1, 24], in which only the weights are ternarized but not

the scalars and activations. Our proposed method shows better

accuracy for Resnet-18 on ImageNet data set. This result demon-

strates the scalability and stability of VecQ, especially in aggressive

low-bitwidth quantization scenarios.

5.2.2 Model size reduction. VecQ also greatly reduces the memory

footprint (Mem. Reduc.) as shown in Table 5. Ternary weight occu-

pies only 2 bits whereas the original floating point requires 32 bits.

As shown in Table 5, for convolution layers, VecQ compresses the

parameters nearly to the theoretical limit (almost 16× reduction).

We quantize the last FC layer to 12-bit to maintain accuracy, so that

the networks with less or no FC layers have higher compression

ratio, such as Cifarnet and Resnet-18. Specifically, VecQ reduces up

to 92.93% (14.14×) size of Resnet-18 in floating point.

5.3 Ultra-low Latency Acceleration

We use the models quantized by VecQ to evaluate our T-DLA ac-

celerator design in terms of accuracy and frame per second (fps).

The measurements of the original models are on a server with two

Intel Xeon E5-2630 v3 CPUs and one Nvidia 1080 Ti GPU. T-DLA is

implemented on a Xilinx Zedboard FPGA, which is suitable for edge

applications with very limited logic resources. It has an on-chip

dual-core ARM Cortex A9, and has 53.2K LUTs, 106.4K FFs, 140

BRAM blocks of 36Kb each, and 220 DSPs. Vivado System Design

Suite 2019.2 is used for system implementation.
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5.3.1 Hardware Resource and Processing Latency Evaluation. We

choose an accelerator configuration that fully utilizes the given

resources, shown in Table 6, together with the execution latency

of the different models with this configuration. We only show the

most important configuration parameters including 𝑇𝑛,𝑇𝑚, 𝐿𝐾 , 𝐿𝐷 ,

and the quantized bitwidth of the activations (𝐷𝑤 ). As can be seen

in Table 6, T-DLA with customized configuration can almost use all

the resources, especially the DSPs. The targeted FPGA can support

up to 250MHz for the DSPs, which is twice of the frequency of

other logic benefiting from the ternary computation array and

independent clock design of the adder trees.

5.3.2 Performance Comparison. We compare T-DAL in terms of

accuracy and fps with existing designs, either using the same DNN

model or the same dataset. The results are shown in Table 7. For

MNIST dataset, the design in [36] shows higher fps because of

the DNN model they used is simpler and the ZC706 platform has

almost 4× more resources than ours. However, our implementation

on Zedboard has a comparable fps (62051) to a design [31] (70000)

with 3-bit weights on the ZC706 platform. On CIFAR10 dataset, our

design shows dominating accuracy advantage among all the VGG-

like models. On ImageNet dataset, we directly compare our results

with the floating point version. T-DLA shows longer execution

latency than the GPU but outperforms the CPU by 9.2×.

6 CONCLUSIONS

In this paper, we summarized our recent efforts for efficient on-

device AI development including both training and inference. We

mainly focused on three major challenges of edge AI development.

First, we presented on-device training with ultra-low memory us-

age by proposing a novel rank-adaptive tensor-based tensorized

neural network model, which offers orders-of-magnitude memory

reduction during training. Second, we introduced VecQ, a novel

quantization method that supports ultra-low bitwidth quantization

with negligible accuracy degradation. Third, we presented T-DLA,

an ultra-low latency DNN accelerator design for ternarized DNNs

achieving the state-of-the-art performance. On top of the achieve-

ments in this paper, we expect more research breakthroughs to

boost the development and deployment for the edge AI.
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