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Introduction: Cardiovascular disease is the leading cause of death worldwide, and cardiovascular dis-
ease burden is increasing in low-resource settings and for lower socioeconomic groups. Machine learning
algorithms are being developed rapidly and incorporated into clinical practice for cardiovascular disease
prediction and treatment decisions. Significant opportunities for reducing death and disability from car-
diovascular disease worldwide lie with accounting for the social determinants of cardiovascular outcomes.
This study reviews how social determinants of health are being included in machine learning algorithms
to inform best practices for the development of algorithms that account for social determinants.

Methods: A systematic review using 5 databases was conducted in 2020. English language articles
from any location published from inception to April 10, 2020, which reported on the use of
machine learning for cardiovascular disease prediction that incorporated social determinants of
health, were included.

Results: Most studies that compared machine learning algorithms and regression showed
increased performance of machine learning, and most studies that compared performance with or
without social determinants of health showed increased performance with them. The most fre-
quently included social determinants of health variables were gender, race/ethnicity, marital status,
occupation, and income. Studies were largely from North America, Europe, and China, limiting the
diversity of the included populations and variance in social determinants of health.

Discussion: Given their flexibility, machine learning approaches may provide an opportunity to
incorporate the complex nature of social determinants of health. The limited variety of sources and
data in the reviewed studies emphasize that there is an opportunity to include more social determi-
nants of health variables, especially environmental ones, that are known to impact cardiovascular
disease risk and that recording such data in electronic databases will enable their use.
Am J Prev Med 2021;61(4):596−605. © 2021 American Journal of Preventive Medicine. Published by Elsevier
Inc. All rights reserved.
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An estimated 17.9 million people die each year
from cardiovascular disease (CVD), which rep-
resents 31% of all deaths worldwide.1 Low-

income and middle-income countries carry 75% of the
burden of CVD deaths worldwide, and in high-income
countries, lower socioeconomic groups have a higher
incidence of disease and higher mortality.1,2 In high-
income countries such as the U.S., the prevalence of
CVD is expected to rise by 10% between 2010 and
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2030,3 attributed not only to an aging population but
also to shifts in societal and environmental conditions
distributed unequally among groups. These shifts have
led to changes in diet and physical activity resulting in a
dramatic rise in conditions such as obesity, hyperten-
sion, diabetes mellitus, and physical inactivity. In the
absence of large genetic changes (biologically infeasible
over only a decade or 2), CVD risk has increased in
China owing to an increase in cholesterol, blood pres-
sure, smoking, and physical inactivity.4 Other research
shows increases in deaths due to CVD in immigrants to
the U.S.,5 Indians living in the United Kingdom,6 and
migrant twins,7 illuminating the critical contribution of
social and environmental factors in CVD risk. In sum-
mary, findings show that the most significant opportuni-
ties for reducing death and disability from CVD lie in
addressing the social determinants of cardiovascular
outcomes.8,9

The WHO defines social determinants of health (SDH)
as “the conditions in which people are born, grow, live,
work and age,”10 which are shaped by the distribution of
resources at global, national, and local levels. Figure 1
(adapted from Lund et al.) shows that the theoretic
framework of SDH from different domains can work
multidimensionally on health outcomes. In addition to
limiting access to CVD care and treatment, substantial
recent literature has also shown how social factors also
Figure 1. Conceptual framework of SDH, based on a socioecologic f
shape health outcomes.
SDH, social determinants of health.

Source: Figure adapted from Lund et al.59
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exert independent influence over cardiovascular
health.11 Multinational, prospective cohort studies as
well as ecologic analyses have shown that SDH contrib-
ute to >35% of the population-attributable risk of vari-
ous CVDs,12,13 among which education, income, and
occupation are particularly influential.11 Given the foun-
dation of research undergirding the critical importance
of SDH as a driver of differential disease risk, it is clear
that modeling methods that incorporate such factors,
including capturing the interaction and relative influ-
ence of such factors in relation to other physiologic
CVD risk factors, are needed.14

Artificial intelligence and machine learning (an appli-
cation of artificial intelligence for detecting patterns
from data)15 tools are seeing rapid adoption in clinical
research, particularly given the proliferation of electronic
health records and advanced computing strategies.
These approaches have been shown to improve the pre-
diction of CVD risk, incidence, and outcomes16−18 over
traditional risk scores such as those from the American
College of Cardiology or the American Heart Associa-
tion.19 As a data-driven approach, machine learning
may make fewer assumptions and provide more flexibil-
ity.20 This is particularly advantageous when considering
SDH, given the feedback mechanisms, complex media-
tion, and interactions involved in these variables and
their action on CVD. However, machine learning
ramework approach to outline the multidimensional factors that
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models deployed in clinical settings have not typically
accounted for SDH. Thus, although the increased flexi-
bility and precision of machine learning models are
appealing, given the rapid rise of machine learning
approaches and the few studies that do incorporate SDH
in machine learning models, a better understanding of
how they should be incorporated into algorithms is
needed to improve early prediction of CVD and reduce
their significant disease burden.21,22

Given the direct relevance of SDH in CVD and the
significant promise of machine learning for better CVD
risk prediction, a systematic review to understand the
machine learning methods by which SDH have been
incorporated in CVD prediction models, which machine
learning algorithms are being used in model develop-
ment, and for which populations was performed. This
review serves to inform the best practices for the design
of machine learning approaches and to identify spaces
for methodologic innovation in incorporating all rele-
vant SDH into machine learning models for CVD.
METHODS

Search Strategy and Selection Criteria
With the help of an expert librarian, YZ performed a comprehen-
sive search of 5 databases: PubMed, Embase, Web of Science,
IEEE Xplore, and ACM Digital Library on April 10, 2020 to iden-
tify all relevant articles on machine learning integrating SDH in
CVD prediction models published in English from inception to
the search date. IEEE Xplore and ACM Digital Library were
included to comprehensively capture computer science articles
related to this review. Only peer-reviewed articles published in
journals or accepted in conferences were included, and nonpeer-
reviewed gray literature or arXiv/medRxiv papers were excluded.

Terms representing SDH were derived using the broader defi-
nition from the WHO and Centers for Disease Control and Pre-
vention Healthy People 2020 initiative, which delineates SDH in 5
areas: economic stability, education, social and community con-
text, health and health care, and neighborhood and built environ-
ment. For each area, keywords were identified by referencing
previous review papers on SDH and CVD11,23 and related studies
of different SDH23−27 or by consulting experts. Full search strate-
gies are described in the Appendix (available online).

For search terms related to machine learning, all commonly
used supervised machine learning methods were included. Super-
vised machine learning algorithms are those that perform reason-
ing (i.e., prediction) from observations of the features based on
externally supplied examples that include the features linked to
outcome labels (e.g., CVD outcomes). Thus, supervised machine
learning was a focus because the types of tasks considered usually
utilized labeled outcomes of CVD.28 Commonly used unsuper-
vised machine learning algorithms captured in the search were
also included in the abstract and full-text screening to ensure that
all types of possible studies were included. Search terms to capture
Deep Learning and Ensemble methods, as they are widely used in
current clinical research, were added.29 For prediction outcomes,
out of ischemic, cerebrovascular, carditis, and rheumatic CVD
outcomes, the focus was narrowed to cardiovascular ischemic out-
comes, coronary heart disease, and cerebrovascular disease, which
are caused by atherosclerotic CVD, defined as plaque buildup in
arterial walls, because these are the highest causes of mortality
and because estimated years of lives lost attributed to these have
increased recently.30

All study designs and populations were included if the article uti-
lized any SDH as features in the machine learning models (in addi-
tion to age or gender, which are commonly included as standard
practice and not specifically to represent their contribution as SDH)
and if the outcomes were CVD related, including incidence, sur-
vival, mortality, and hospital admission and readmission. Time of
publication was not restricted. Studies were excluded if they did not
use any machine learning algorithm; if they were developed for
nonhumans; if outcomes were biomarkers, mediators, surgery or
medication of CVD, rehabilitation or mental health outcomes after
CVD, or cost-effectiveness analysis of CVD; or if the manuscript
was non-English or was a review or meta-analysis. Articles pre-
sented at conferences as abstracts and for which the full text was
not obtainable were excluded. This review, conducted in 2020, was
registered with the International Prospective Register of Systematic
Reviews (CRD42020175466), and the PRISMA method was fol-
lowed. To supplement the bibliographic database searches, Google
Scholar was used to scrutinize all keywords regarding their relevance
in articles as well as examine potential article eligibility. Duplicates
were removed in the process.

A total of 3 investigators (YZ, NM, and EPW) screened the title
and abstract; each retrieved article was independently assessed by
2 reviewers to determine whether it was an eligible full-text article.
Conflicts were resolved by discussion and validation from a third
reviewer. After initial appraisal, full texts and information of eligi-
ble articles were retrieved.

Data Analysis
Data were extracted from individual articles independently by 2
reviewers (among YZ, NM, and EPW) and checked by the third
reviewer according to the standardized extraction form. All data
extraction was cross-checked, and disagreements were resolved by
discussion or referral to the third reviewer. Extracted information
included the year of publication, country, population, SDH,
machine learning algorithms, CVD outcomes, data source, and per-
formance of the algorithms. Several criteria to assess the quality of
the study based on best practices in machine learning31 were
defined, including (1) whether machine learning model perfor-
mance was evaluated, (2) whether a hyperparameter (parameters to
control the learning process; for example, number of hidden layers
in a Deep Neural Network) tuning process was described, (3)
whether data-driven variable selection was performed, and (4)
whether model results were interpreted. Each item was scored as no
(not present), unclear, or yes (present), and all items were summa-
rized in a quality score. Bias was investigated for each study by
assessing whether an external validity evaluation was performed.
Use of the Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis checklist was assessed.

RESULTS

Database search identified 1,655 distinct articles; after a
full-text review of 178 articles, 48 were included in the
review (Figure 2). All included studies used data
www.ajpmonline.org



Figure 2. Flowchart of the study review process that included 48 studies from 1,887 articles in the initial database search (April
2020). Each abstract and full-text article was screened by 2 reviewers independently, and when consensus could not be reached, a
third reviewer assessed these articles and decided whether they should be included or excluded.
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collected in an observational manner instead of data
from an experiment in which treatments or interven-
tions were randomized. The most frequent study design
was cohort (20 studies), followed by data extracted from
electronic medical records (17 studies), cross-sectional
studies, or surveys (11 studies). Most data used were
structured, although 9 studies included unstructured
data (e.g., electrocardiogram, image, and heart sound).
The earliest year of publication was 1995 (artificial neu-
ral network algorithm) (Appendix Figure 1, available
online). Almost half (23 studies) of the articles were pub-
lished by authors from the U.S., with others mostly from
Europe (11 studies) and China (5 studies) (Figure 3A).
The 10 most common algorithms were Bayesian Net-

work; Decision Tree; AdaBoost; Gradient Boosting and
other Ensemble methods; Naive Bayes; Neural Net,
including Artificial Neural Networks; Convolutional
Neural Networks; Recurrent Neural Networks and Deep
Learning; Ridge/Lasso/Elastic Net Regularization;
October 2021
Random Forest; and Support Vector Machine. A total of
3 studies used unsupervised machine learning algo-
rithms such as clustering to group CVD risk levels or
principal component analysis to extract features before
supervised machine learning classification.14,32,33

Median sample size was 2,510; more than two thirds of
the studies had sample size >1,000, and 13 of those had
>10,000. There was a sample size <100 in 5 studies,
which mostly used a Bayesian Network method. Neural
Net, Random Forest, and Decision Tree studies often
have larger sample sizes than Support Vector Machine
and Naive Bayes studies (Table 1). The overall study
characteristics are summarized in Table 1 and
Appendix Figure 1 (available online) and discussed fur-
ther in the following paragraph.
Most studies included demographic variables from

routine clinical practice or survey questions, whereas 10
specifically studied the association of SDH with CVD
outcomes or CVD risk factors as potential intervention



Figure 3. Descriptive summaries of included papers. (A) Countries of corresponding authors, (B) journal types of the publications
reported in systematic review papers (EVS) with respect to the percentage of included papers they appear in, (C) most frequently
reported cardiovascular outcomes (HF), and (D) the top 10 social determinants of health. Area-level socioeconomics is typically
defined by an index to represent SES in a certain area, for example, ZIP code level or census tract level, and built environment refers
to measures of human-made surroundings, such as parks or green space.
Biomed. Eng, biomedical engineering; CompSci, computer sciences; CVD, cardiovascular disease; EVS, environmental sciences; HF, heart failure;
Multidiscip, multidisciplinary.

Table 1. Summary of Machine Learning Algorithms, Best Performing Algorithms and Sample Sizes Used in the Studies

Algorithm Number of papersa (%)

Number as best
algorithm when multiple
algorithms are used

Sample size

<100 100‒1,000 1,000‒10,000 >10,000

Neural Net 14 (29.2) 3 1 2 9 2

Random Forest 14 (29.2) 6 0 0 8 6

Support Vector Machine 12 (25.0) 4 1 1 7 3

Decision tree 8 (18.8) 1 1 3 3 1

Ensemble 8 (18.8) 2 0 1 3 4

Regularizationb 7 (14.6) 1 0 1 4 2

Bayesian Network 5 (10.4) 1 1 2 1 1

Naive Bayes 5 (10.4) 0 2 0 2 1

Other 14 (29.2) 2 1 2 7 4
aNote that each paper could include multiple versions or multiple algorithms.
bRegularization included Lasso, Ridge, and Elastic Net.
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targets. More than half of the studies used data from
CVD-related patient visits (25 studies), and around a
third used information from general populations (14
studies); the rest used information from hospital visits
unrelated to CVD issues (9 studies). Studies were pub-
lished on a diverse range of journal types, including
medicine, computer science, environmental science, and
public health journals (Figure 3B). Studies described out-
comes, including hospitalization (16 studies), stroke (7
studies), CVD-related mortality (6 studies), heart failure
(5 studies), as well as others (e.g., transient ischemic
attack) (Figure 3C).
Studies included diverse SDH variables such as gen-

der; race/ethnicity; education; marital status; occupa-
tion/employment; individual or household income;
medical insurance; area of residence (e.g., urban versus
rural or eastern versus western U.S.); and other commu-
nity-level factors of deprivation, income, and education
and environmental pollutants. Figure 3D illustrates the
top 10 SDH considered in the extracted papers and their
frequency. In most studies, demographic information
such as gender and race were included as standard varia-
bles collected in a survey or electronic health record, and
the terms gender and sex were used interchangeably,
therefore inhibiting the capturing of the biological and
social aspects of sex and gender and their interaction
with other SDH separately. More than half of the studies
reported feature importance of SDH (25 studies), in
which gender, ethnicity, and environmental pollutants
were most frequently reported to contribute significantly
to CVD outcome prediction (Figure 3D). Other fre-
quently reported determinants were social isolation and
health insurance. A total of 3 studies compared model
performance with and without social determinants, all
of which showed that SDH significantly improved pre-
diction. A total of 2 studies showed improved prediction
by adding gender and race.34,35 The study that showed
decreased performance aimed to forecast the pattern of
the demand for hemorrhagic stroke healthcare services
on the basis of air quality; it is possible that the relation-
ship between the specific variable tested and the out-
come has little direct relationship.36

In terms of algorithm development, of the 14 studies
using Neural Networks (the most common algorithm), 8
used multiple hidden layers, including most commonly
3-layer perceptron, Convolutional Neural Network, and
Recurrent Neural Network. The authors refer to these
studies collectively as Deep Learning/Neural Networks.37

The publication of machine learning algorithms for
CVD prediction has been increasing quickly since 2015,
with the wide application of Neural Networks and Ran-
dom Forest (Appendix Figure 1, available online), likely
owing to the availability of software for ease of
October 2021
implementation and the availability of computing power
resources for these algorithms that may otherwise take
long compute times. Of the 21 studies including multiple
algorithms, Random Forest (6 studies) and Support Vec-
tor Machine (4 studies) were most frequently reported as
the best performing algorithms. Of the 16 studies that
compared machine learning algorithms with standard
linear regression, logistic regression, or survival analysis,
15 showed improved performance with machine learn-
ing (Appendix Figure 2, available online). Only 13 varia-
bles were considered in the 1 study that showed that
Deep Learning/Neural Networks had similar perfor-
mance to logistic regression in predicting acute coronary
syndrome.38

Most studies evaluated the performance of machine
learning algorithm(s) developed. Area under the receiver
operating characteristic curve was the most common
evaluation metric (23 studies), followed by sensitivity
(20 studies), specificity (15 studies), and accuracy (13
studies). At least 3 of the 4 metrics were used in 15 stud-
ies. Other evaluation metrics used included accuracy,
positive predictive value, negative predictive value, and
F1-score (the harmonic mean of precision and recall,
commonly used to evaluate machine learning methods
through a balance of these metrics). External evaluation,
in which the machine learning models developed in 1
hospital was tested on another hospital or population,
was performed in 5 studies.
Among those reported, most areas under the receiver

operating characteristic curve were >0.70. Because most
studies were published in biomedical and clinical jour-
nals, most studies explicitly interpreted the findings and
their relevance to clinical applications. The mean score
of included studies in the quality assessment scale (based
on evaluation of machine learning, data-driven selection
of features, hyperparameter tuning description, and
interpretation of the model) was 3.4. One of the articles
reported using the Transparent Reporting of a multivari-
able prediction model for Individual Prognosis Or Diag-
nosis checklist.39 Half of the studies (26) had full scores,
and 14 studies missed 1 of the 4 items. The commonly
missed items were data-driven feature selection and
details of hyperparameter tuning (cross-validation or
grid search strategies were utilized in 35 studies to tune
hyperparameters; other studies did not give details about
the hyperparameter tuning process). Half of all the stud-
ies utilized a data-driven selection method to identify
features before fitting machine learning models (defined
as extracting a subset of useful variables among the origi-
nal variables or transforming data from a high- to a low-
dimensional space).40 Because Deep Learning learns to
extract features while training, those studies sometimes
do not provide feature selection details.
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DISCUSSION

This systematic review provides unique insight into the
use of SDH in machine learning CVD prediction mod-
els. The flexibility of machine learning models has
proved useful in CVD prediction models, with their
improved performance being over that of regression
approaches. To date, models largely have not been con-
structed to explicitly and broadly examine and include
SDH. Instead, studies have most frequently examined
the contribution of a specific set of SDH variables, com-
monly those available in the electronic health record.
These most frequently examined variables were individ-
ual-level instead of neighborhood- or community-level
attributes (Figure 3D). Acknowledging this limited
diversity of evaluated SDH, in a wide array of CVD out-
comes (e.g., rehospitalization, stroke, mortality, heart
failure), SDH were largely found to improve model per-
formance. In terms of algorithms, several types of
machine learning algorithms were evaluated. When mul-
tiple algorithms were compared within studies, the most
flexible models such as Neural Networks and Random
Forest models were the best performing. Neural Net-
works also most commonly outperformed regression
models. This is understood because Neural Networks
include hidden layers that can take into account more
complex relations in the data.41,42

Although this is the first review that gives findings
related to the growing opportunity of machine learning
and SDH for CVD prediction, there are individual studies
that support the components of the findings of this study.
First, machine learning, in general, has shown promise
with respect to CVD prediction.43−45 Previous work has
shown that machine learning algorithms (Random Forest,
Logistic Regression, Gradient Boosting Machines, and
Neural Networks) were better at identifying individuals
who will develop CVD and those who will not, and espe-
cially for those in minority groups, than the established
American College of Cardiology/American Heart Associ-
ation risk calculator to predict the incidence and progno-
sis of atherosclerotic CVD.19 These studies have
attributed this to the fact that standard CVD risk assess-
ment models make an implicit assumption that each risk
factor is related in a linear fashion to CVD outcomes and
that such models may thus oversimplify complex relation-
ships that include large numbers of risk factors with non-
linear interactions. This review finds that prediction
models that consider social variables also benefit from
flexible modeling approaches.
Very flexible models also bring concerns regarding

interpretability and potential overfitting to data.46 The
authors found that few included papers had an in-depth
discussion on this issue. First, most models selected
variables on the basis of previous clinical significance;
thus, prediction performance would be based on such
factors that are known to be relevant to CVD even if the
specific importance of each variable was not measured.
Second, papers did use methods such as automatic rele-
vance determination41 to examine the importance of
variables in Neural Networks.
The role of SDH in CVD (not specifically machine

learning related) has been examined by several studies
and systematic reviews. Although full summaries of this
work have been performed elsewhere,11 the authors note
that there have been several studies of various proximal
and distal SDH and CVD (Figure 1). In general, studies
indicate that the changing burden of disease due to soci-
etal and environmental conditions as well as the increas-
ing advances in treatment and prevention have not been
shared equally across economic, racial, and ethnic
groups, imploring the need for considering a broad
range of SDH in CVD prediction.11,23 Of the studies
considered in this review, the one that included the wid-
est array of SDH (using data from the UK Biobank)
showed that the most predictive SDH were gender, race/
ethnicity, income, Townsend index (a measure of mate-
rial deprivation of a population), and parents’ ages at
death.16 In this systematic review, the most common
SDH considered in machine learning models for CVD
prediction, besides gender, were race/ethnicity and mari-
tal status. The mechanisms of action of SDH have been
well studied; societal and environmental conditions
affect diet and physical activity, which in turn have con-
sequences for obesity (commonly quantified through
body measures such as BMI). These environments can
also influence behaviors such as smoking, which along
with obesity are known to increase the risk of CVD
through hemodynamics caused by blood clotting
induced through cigarette smoke or body composition
changes.47,48 A recent review on environmental determi-
nants of CVD studied built and social environmental
factors, concluding with the need to not only systemati-
cally unweave the strands of environmental influences
but also integrate the effects of the various components
of the environment into a comprehensive model.24 In
this study, it is noted that the considered community-
level attributes were very few and even then were not
very precisely localized (e.g., hospital region). Only 5
papers considered environmental factors from the built
environment such as walkability and recreation and the
availability of health-promoting resources (e.g., some
grocery stores and playgrounds). This is likely due to the
added difficulties in capturing these data to be linked
with existing large databases used in studies included in
this review. Fortunately, there is a growing emphasis in
recent years on using electronic health records to collect
www.ajpmonline.org
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SDH data and several screening tools that have been
developed to capture this information in appropriate
constructs. Numerous screening tools have been devel-
oped to capture individual-level SDH such as employ-
ment, education, food, and social support in a routine
process.49,50 This development also provides an opportu-
nity to make more diverse SDH information available
and integrated into risk prediction models.
Simultaneously, the nature of these variables and their

association with disease may also be better understood
through models that account for both traditional and
social risk factors. Because machine learning is advanta-
geous when considering higher numbers of predictors
and the complex mediation and interactions involved in
SDH variables and their action on CVD, with appropri-
ate efforts for interpreting the effect of variables, it can
also be used for prioritizing SDH in electronic health
records. For instance, no studies included in this review
accounted for the social processes associated with the
continuity of socioeconomic conditions across the life
course (e.g., conditions during childhood versus those
later in life). These are relevant because SDH can have a
cumulative impact over time on the development of
major CVD risk factors (dyslipidemia, hypertension,
and smoking), which are likely to be important in the
development of CVD.51 Finally, models that incorpo-
rated SDH and machine learning for CVD prediction
also reflect limitations of many machine learning algo-
rithms that have been highlighted recently, namely being
developed on homogenous populations. For example, in
the Biobank study,16 the cohort was 94% White. The
lack of diversity in studies in this review is evident when
examining the locations of the corresponding authors of
papers that fulfilled all inclusion criteria and were
included in the review. Although the investigators did
not restrict the paper selection by geographic focus,
authors are located most frequently in just a few loca-
tions, with low-income countries and locations not rep-
resented at all. This is particularly striking given the
high and increasing CVD burden and the changing soci-
oenvironmental circumstances in low-income countries
and regions; furthermore, the variance of SDH will be
decreased with less diversity.52

Limitations
This review was limited in several aspects. First, included
studies evaluated different types of cardiovascular out-
comes; therefore, the heterogeneity of the outcome met-
rics makes it difficult to compare the machine learning
performance across different studies. The populations in
the included studies also represent samples from differ-
ent data sources, hospitals, and countries, which illus-
trates the wide range of studies and further directions
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for specific studies. For example, the types of SDH rele-
vant to populations in one geography may not be as
prominent in other locations. A purposefully broad
approach behind the selection of papers to identify inno-
vative ideas and provide an overview of the state-of-art
machine learning application in population health was
adopted. Third, most studies did not evaluate external
validity, making it inconclusive about applying the algo-
rithms in other populations or healthcare settings.
Fourth, the review was also limited to studies published
in English, which might have created some bias in the
articles that were ultimately retained for the analysis.
In general, this review shows that there is room to

more systematically and comprehensively incorporate
SDH into CVD risk prediction. This could be due to a
lack of SDH data: even when collected, the measures are
not comprehensive or standardized. For example, if race
is conceptualized as a proxy for variables, such as SES or
cultural factors, better ways to measure these social/cul-
tural factors should be investigated. Clear identification
of potential mediating and moderating factors in the rel-
evant pathways (for example, sense of personal control
or social support) will further inform model and public
health intervention design. Improved constructs will
also help in the incorporation of variables to represent
the built and social environments that were not well rep-
resented in current studies. Inclusion of such informa-
tion in the electronic health record would make it easily
accessible for machine learning studies and increase
sample size to reduce overfitting of models. This will
also improve the performance of risk prediction because
current risk scores overestimate risk, particularly for low
SES and vulnerable groups.19,53
CONCLUSIONS

Alongside the recent growth of work on algorithmic fair-
ness, which is broadly concerned with the statistical par-
ity of algorithms for different groups,54 including
individual- and community-level SDH can help to better
understand and disentangle where disparities are rooted,
for example, if there are differences in outcomes between
men and women on the basis of prediction and alloca-
tion of treatments/resources or on the basis of unequal
SDH. The use of a prediction model that includes SDH
should be closely linked to clinical practices. Ideally,
accounting for SDH can activate risk mitigation beyond
primary care by improving healthcare teams’ ability to
understand upstream factors impacting patients’ health
and the ability to act on care recommendations, by iden-
tifying patients in need of referral to community resour-
ces, and by informing the provision and funding of
community resources.19,55−57 Including SDH also
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provides an opportunity to consider how structural data
may also be considered, beyond individual-level attrib-
utes, in algorithmic fairness.58 Finally, results emphasize
the need for studies that include more diverse popula-
tions to improve CVD prediction in diverse settings,52 in
particular those where disease risk is increasing.
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