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ABSTRACT

Algorithmic systems are known to impact marginalized groups
severely, and more so, if all sources of bias are not considered.
While work in algorithmic fairness to-date has primarily focused
on addressing discrimination due to individually linked attributes,
social science research elucidates how some properties we link to
individuals can be conceptualized as having causes at macro (e.g.
structural) levels, and it may be important to be fair to attributes
at multiple levels. For example, instead of simply considering race
as a causal, protected attribute of an individual, the cause may be
distilled as perceived racial discrimination an individual experi-
ences, which in turn can be affected by neighborhood-level factors.
This multi-level conceptualization is relevant to questions of fair-
ness, as it may not only be important to take into account if the
individual belonged to another demographic group, but also if the
individual received advantaged treatment at the macro-level. In
this paper, we formalize the problem of multi-level fairness using
tools from causal inference in a manner that allows one to assess
and account for effects of sensitive attributes at multiple levels. We
show importance of the problem by illustrating residual unfair-
ness if macro-level sensitive attributes are not accounted for, or
included without accounting for their multi-level nature. Further,
in the context of a real-world task of predicting income based on
macro and individual-level attributes, we demonstrate an approach
for mitigating unfairness, a result of multi-level sensitive attributes.
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1 INTRODUCTION

There has been much recent interest in designing algorithms that
make fair predictions [3, 14, 29]. Definitions of algorithmic fair-
ness have been summarized in detail elsewhere [40, 57]; broadly
approaches to algorithmic fairness in machine learning can be di-
vided into two kinds: group fairness, which ensures some form of
statistical parity for members of different protected groups [16, 40]
and individual notions of fairness which aim to ensure that peo-
ple who are ‘similar’ with respect to the classification task receive
similar outcomes [5, 6, 23]. Historically sensitive variables such as
age, gender, race have been thought of as attributes that can lead
to unfairness or discrimination. Recently, the causal framework
[48] has also been used to conceptualize fairness. Kusner et al. [32]
introduced a causal definition of fairness, counterfactual fairness,
which states that a decision is fair toward an individual if it coin-
cides with the one that would have been taken in a counterfactual
world in which the sensitive attribute of the individual had been
different. This approach assumes prior knowledge about how data
is generated and how variables affect each other, represented by
a causal diagram and considers that all paths from the sensitive
attribute to the outcome are unfair. Counterfactual fairness, thus,
postulates that the entire effect of the sensitive attribute on the
decision, along all causal paths from the sensitive attribute to the
outcome is unfair. This approach is restrictive when only certain
causal paths are unfair. For example, the effect of gender on income
levels can be considered unfair but the effect through education
attainment level is fair [9]. Path-specific counterfactual fairness has
then been conceptualized, which attempts to correct the effect of
the sensitive attribute on the outcomes only along unfair causal
pathways instead of entirely removing the effect of the sensitive
attribute [9]. It should be noted that throughout this work, deter-
mination of fair and unfair paths requires domain expertise and
possibly discussions between policymakers, lawyers, and computer
scientists.

Leveraging domain knowledge from sociology highlights that
notwithstanding these clarifications of path-specific fairness, al-
gorithmic fairness efforts in general have been limited to sensi-
tive attributes at only the individual-level, missing important as-
sertions regarding how social aspects can be influenced and cre-
ated more by societal structures and cultural assumptions than
by individual and psychological factors [27]. Critical Theory is
an approach in sociology which motivates the consideration of
macro-structural attributes, often simply called macro-properties
or ‘structural attributes’. These structural attributes correspond to
overall organizations of society that extend beyond the immediate
milieu of individual attributes yet have an impact on an individual,
such as social groups, organizations, institutions, nation-states, and
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their respective properties and relations [19, 35]. Accounting for a
multi-level conceptualization in algorithmic fairness is consistent
with recent literature which have discussed similar concerns with
the conceptualization of race as a fixed, individual-level attribute
[8, 22, 56, 64]. Analytically framing race as an individual-level at-
tribute ignores systemic racism and other factors which are the
mechanisms by which race has consequences [8]. Instead, account-
ing for the macro-level phenomena associated with race, which a
multi-level perspective promotes (e.g. structural racism, childhood
experiences that shape the perception of race) will augment the im-
pact of algorithmic fairness work [22]. Several different terms have
been used as synonyms for macro-structural attributes, including
“group-level” variables in multi-level analysis, “ecological variables”,
“macro-level variables”, “contextual variables”, “group variables”,
and “population variables”, and we refer the reader to a full elabo-
ration on macro-property variables in previous work by Diez-Roux
[15]. In this paper, we refer to all information measured beyond an
individual-level as macro-properties and macro-level attributes.

Without accounting for macro-properties, assessment of how
“fair” an algorithm is may inadvertently be unfair by not accounting
for important variance in attributes that are at the structural level.
Indeed, today’s growing availability of data that captures such ef-
fects means that leveraging the right data can be used to account
for and address unexplained variance when using individual-level
attributes as proxies for structural attributes. This can help work
towards equity versus in-sample fairness (e.g. an algorithm fair
with respect to perceived race will still be unfair to structural differ-
ences that perceived race may be a proxy for, such as neighborhood
socio-economics, and including the structural factors can help to
mitigate unfairness within the perceived race category) [38]. Ac-
counting for structural factors can also clearly identify populations
that input data is not representing. Indeed, many macro-properties
can be considered as sensitive attributes. For example, neighbor-
hood socioeconomic status which is a measure of the inequality
in distribution of macro-level resources of education, work, and
economic resources[52]. It has been shown that patients who reside
in low socioeconomic neighborhoods can have significantly higher
risk for readmission following hospitalization for sepsis in compar-
ison to patients residing in higher socioeconomic neighborhoods
even if all individual-level risk factors are the same, indicating that
low SES is an independent factor of relevance to the outcome [20].
Thus, accounting for relevant macro-level properties while making
decisions, say, about post-hospitalization care, is critical to ensure
that disadvantaged patients, comprehensively accounting for all
relevant sources of unfairness, receive appropriate care.

Towards this goal, we propose a novel definition of fairness
called causal multi-level fairness, which is defined as a decision
being fair towards an individual if it coincides with the one in
the counterfactual world where, contrary to what is observed, the
individual receives advantaged treatment at both the macro and
individual levels, described by macro and individual-level sensitive
attributes, respectively. This work builds upon previous work on
path-specific counterfactual fairness, limited to individual-level
sensitive attributes, to account for both macro and individual-level
discrimination. Multi-level sensitive attributes are a specific case
of multiple sensitive attributes, in which we specifically consider a
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sensitive attribute at a macro level that influences one at an indi-
vidual level. This is an important and broad class of settings; such
multi-level interactions are also considered in multi-level modelling
in statistics [21]. Moreover, this work addresses a different problem
than the setting of proxy variables, in which the aim is to elimi-
nate influence of the proxy on outcome prediction [26]. Indeed, for
variables such as race, detailed analyses from epidemiology have
articulated how concepts such as racial inequality can be decom-
posed into the portion that would be eliminated by equalizing adult
socioeconomic status across racial groups, and a portion of the
inequality that would remain even if adult socioeconomic status
across racial groups were equalized (i.e. racism). Thus, if we simply
ascribe the race variable to the individual (as is sometimes done as
a proxy), we will miss the population-level factors that affect it and
any particular outcome [56].

Explicitly accounting for multi-level factors enables us to decom-
pose concepts such as racial inequality and approach questions such
as: what would the outcome be if there was a different treatment
on a population-level attribute such as neighborhood socioeco-
nomic status? This is an important step in auditing not just the
sources of bias that can lead to discriminatory outcomes but also
in identifying and assessing the level of impact of different causal
pathways that contribute to unfairness. Given that in some subject
areas, the most effective interventions are at the macro level (e.g.
in health the largest opportunity for decreasing incidence due to
several diseases lie with the social determinants of health such as
availability of resources versus individual-level attributes [38]), it
is critical to have a framework to assess these multiple sources of
unfairness. Moreover, by including macro-level factors and their
influence on individual ones, we engage themes of inequality and
power by specifying attributes outside of an individual’s control.
In sum, our work is one step towards integrating perspectives that
articulate the multi-dimensionality of sensitive attributes (for exam-
ple race, and other social constructs) into algorithmic approaches.
We do this by bringing focus to social processes which often affect
individual attributes, and developing a framework to account for
multiple casual pathways of unfairness amongst them. Our specific
contributions are:

o We formalize multi-level causal systems, which include po-

tentially fair and unfair path effects at both macro and individual-

level sensitive variables. Such a framework enables the algo-
rithmicist to conceptualize systems that include the systemic
factors that shape outcomes.

e Using the above framework, we demonstrate that residual
fairness can result if macro-level attributes are not accounted
for.

e We provide necessary conditions for achieving multi-level
fairness and demonstrate an approach for mitigating multi-
level unfairness while retaining model performance.

2 RELATED WORK

Causal Fairness. Several statistical fairness criteria have been
introduced over the last decade, to ensure models are fair with
respect to group fairness metrics or individual fairness metrics.
However, further discussions have highlighted that several of the
fairness metrics cannot be concurrently satisfied on the same data



Poster Paper Presentation

()
o

(a) Proxy (I N) for sensitive attributes (Aj)

(b) Multiple sensitive attributes AIG, Af
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Figure 1: Causal graphs to describe and distinguish different general sensitive attribute settings. Green arrows denote discrim-
inatory causal paths and dashed green-black arrows from any node R to S denote discrimination only due to the portion of the
effect from a green arrow into R and not from R itself (fair paths defined via a priori knowledge), red nodes represent sensitive

attributes. a) Individual-level variable I N (e.g. name) acts as a proxy for the individual sensitive attribute A; (e.g. perceived race)

and affects outcome Y (e.g. health outcomes). I B (e.g. a biological factor) is not a proxy but also affects the outcome. b) Multiple

sensitive attributes at the individual level, AIG (e.g. gender) and Af (e.g. perceived race) affect individual variables, I, and health
outcome, Y. c) Example of cycles in the causal graph, where individual level attribute I, individual income, causes macro-level
sensitive attribute, mean neighborhood income, Ap, which in turn affects education resources in the neighborhood, P, with Y
being the outcome. Since I € pa, ,, this violates the necessary conditions for obtaining a fair predictor with multi-level causal

fairness.

[4, 10, 18, 25, 28, 37]. In light of this, causal approaches to fairness
have been recently developed to provide a more intuitive reasoning
corresponding to domain specifics of the applications [7, 9, 26, 31—
33, 43, 44, 50, 53, 62, 63]. Most of these approaches advocate for fair-
ness by addressing an unfair causal effect of the sensitive attribute
on the decision. Kusner et al. [32] have introduced an individual-
level causal definition of fairness, known as counterfactual fairness.
The intuition is that the decision is fair if it coincides with the one
that would have been taken in a counterfactual world in which the
individual would be identified by a different sensitive attribute. For
example, a hiring decision is counterfactually fair if the individual
identified by the gender male would have also been offered the
job had the individual identified as female. In sum, these efforts
develop concepts of fairness with respect to individual level sen-
sitive attributes, while here we develop fairness accounting for
multi-level sensitive attributes, comprising of both individual and
macro-level sensitive attributes. Inspired from research in social
sciences [6, 22, 56], the work here extends the idea to multi-level
sensitive attributes. In our considered setting, a decision is fair not
only if the individual identified with a different individual-level
sensitive attribute but also if the individual received advantaged
treatment at the macro-level, attributed as the macro-level sensitive
attribute.

Identification of Causal Effects. While majority of the work
in causal inference is on identification and estimation of the total
causal effect [2, 45, 48, 49, 55], studies have also looked at identifying
the causal effect along certain causal pathways [47, 54]. The most
common approach for identifying the causal effect along different
causal pathways is decomposing the total causal effect along direct
and indirect pathways [46, 47, 54]. We leverage the approach devel-
oped by Shpitser [54] on how causal effects of multiple variables
along a single causal pathway can be identified. While we assume
no unmeasured confounding for the analysis in this work, research
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in causal estimation in the presence of unmeasured confounding,
[39, 58] can be used to extend our current contribution.

Path-specific causal fairness. Approaches in causal fairness
such as path-specific counterfactual fairness [9, 43, 44], proxy dis-
crimination, and unresolved discrimination [26, 59] have aimed
to understand the effect of sensitive attributes (i.e. variables that
correspond to gender, race, disability, or other protected attributes
of individuals) on outcomes directly as well as indirectly to iden-
tify the causal pathways (represented using a causal diagram) that
result into discriminatory predictions of outcomes based on the
sensitive attribute. Generally such approaches focus on sensitive
attributes at the individual-level and require an understanding of
the discriminatory causal pathways for mitigating causal discrimi-
nation along the specified pathways. Our approach builds on the
work of Chiappa [9] for mitigating unfairness by removing path-
specific effects for fair predictions, doing so while accounting for
both individual and macro-level unfairness.

Intersectional fairness. There is recent focus on identifying
the impact of multiple sensitive attributes (intersectionality) on
model predictions. There are several works that have been devel-
oped for this setting [17, 41, 60], however, these approaches do not
take into account the different causal interactions between sensi-
tive attributes themselves which can be important in identifying
bias due to intersectionality. In particular, this includes intersec-
tional attributes at the individual and macro level, such as race and
socioeconomic status [11, 30].

3 BACKGROUND

We begin by introducing the tools needed to outline multi-level
fairness, namely, (1) causal models, (2) their graphical definition,
(3) causal effects, and (4) counterfactual fairness.
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Causal Models: Following Pearl et al. [48] we define a causal model
as a triple of sets (U, V, F) such that:
e U are a set of latent variables, which are not caused by any
of the observed variables in V.
e F is set of functions for each V; € V, such that
Vi=f; (pal-, Upa;)’ pa; € V\V;and Uy, < U. Such equa-
tions relating V; to pa; and U, are known as structural
equations [13]. When f; is strictly linear, this is known as
a linear structural equation model, which is represented as

V=3P 0 payl 1+ Uy,

cient and pa;[j] denotes the jth parent of variable V;.

where « is the mixing coeffi-

Here, “pa;” refers to the causal parents of V;, i.e. the variables that
affect the specific value V; obtains. The joint distribution over all
the n variables, Pr (Vp Vo, - ,Vn) is given by the product of the
conditional distribution of each variable, V;, given it’s causal parents
pa; as follows:

Pr(V) = ]_[ Pr (V;|pa;) . 1)
1

Graphical definition of causal models: While structural equa-
tions define the relations between variables we can graphically
represent the causal relationships between random variables using
Graphical Causal Models (GCMs) [9]. The nodes in a GCM repre-
sent the random variables of interest, V, and the edges represent the
causal and statistical relationships between them. Here, we restrict
our analysis to Directed Acyclic Graphs (DAGs) where there are no
cycles, i.e., a node cannot have an edge both originating from and
terminating at itself. Furthermore, a node Y is known as a child of
another node X if there is an edge between the two that originates
at X and terminates on Y. Here, X is called a direct cause of Y. If
Y is a descendant of X, with some other variable Z along the path
fromXtoY,X — -+ —> Z — ---Y, then Z is known as a mediator
variable and X remains as a potential cause of Y. For example, in
Figure 1b, AIG, A?, 1, Y are the random variables of interest. AIG, A?
are direct causes of I and Y while I is a direct cause of Y. Here, I is
known as a mediating variable for both AIG and A?.

Causal effects: The causal effect of X on Y is the information prop-
agated by X towards Y via the causal directed paths, X — --- — Y.
This is equal to the conditional distribution of Y given X if there are
no bidirected paths between X and Y. A bidirected path between
X and Y, X « .-+ — Y represents confounding; that is some
causal variable known as a confounder, which may be unobserved,
affecting both X and Y. If confounders are present then the causal
effect can be estimated by intervening upon X. This means that we
externally set the value of X to the desired value x and remove any
edges that terminate at X, since manually setting X to x would in-
hibit any causation by pa,,. After intervening the causal effect of X
onY is givenby Pr* (Y|X = x) = 3, Pr (Y|X = x, Z) Pr (Z), where
Z =V \ {X,Y}. The intervention X = x results into a potential out-
come, Yy_, (also represented as Y, ), where the distribution of the
potential outcome variable is defined as Pr (Y,.) = Pr" (Y|X = x).

Counterfactual fairness: Counterfactual fairness is a causal no-
tion of fairness that restricts the decisions of the algorithm to be
invariant to the value assigned to the sensitive variable. Assuming
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A to be the sensitive attribute obtaining only two values, a and
a’, X as the remaining variables, and Y as the outcome of interest,
counterfactual fairness is defined as follows:

DEFINITION 3.1. Predictor Y is counterfactually fair if under
any context X and A = a,

Pr(Yyo,(U) =yIX,A=a) =Pr(YV4 s (U) =y|X,A=0a) (2)

With this background, we next discuss the problem setup.

4 PROBLEM SETUP

Let us denote all the variables associated with the system being mod-
elled as V := {A;, Ap, P, Y}, where A; and Ap are the sensitive
attributes at the individual-level and the macro-level respectivelyl,
I is a non empty set of individual level variables, P is a non empty
set of macro-level variables, and Y is an outcome of interest. We
assume access to a causal graph, G, consisting of V which accu-
rately represents the data-generating process. Our goal is to obtain
a classifier, Yg,;,, which is fair with respect to both Ap and A;. While
previous approaches in algorithmic fairness have only considered
A as a sensitive attribute, we present a novel approach to also
counter any discrimination resulting from Ap. While macro-level
attributes, P and Ap, may seem like regular nodes in the causal
graph, the difference is that based on them being macro-properties,
their effects on the outcome may be mediated via the individual
level attributes, I and Ay, making it nontrivial to mitigate unfair-
ness due to these macro-properties. We highlight that this paper
presents, to our knowledge, the first approach for incorporating
unfairness due to macro-properties into algorithmic fairness. In or-
der to further help guide the reader regarding differences in macro
and individual-level variables, we clarify the types of macro-level
attributes which are considered in our setting. Per the extant litera-
ture [15], macro-level attributes can be categorized into two types:

e Category 1: non-aggregate group properties like nation-
ality, existence of certain types of regulations, population
density, degree of income inequality in a community, po-
litical regime, legal status of women which do not include
individual properties in their computation

e Category 2: aggregate properties such as neighborhood in-
come and median household income, which include individ-
ual properties (here individual income) in their computation

Thus, individual variables influence aggregate macro-properties
(Category 2) but not non-aggregate macro-properties (Category 1).
This categorization of macro-properties helps us to identify the nec-
essary conditions for obtaining a fair classifier with respect to both
individual and macro-level sensitive attributes. In parallel, a main
assumption in causal fairness and causal inference settings is that
we have access to a causal graph and that the graph does not include
any bidirected edges or cycles, [9, 32, 44] which are assumptions we
maintain for the causal multi-level fairness setting. This assumption
also clarifies that we should limit our consideration of macro-level
attributes to Category 1 and not consider aggregate information

!Variables will be denoted by uppercase letters, V, values by lowercase letters, v, and
sets by bold letters, V.
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like mean neighborhood income as macro-level sensitive variables
since individual-level information has a causal influence on mean
neighborhood income, i.e. I — Ap. Certainly, an increase in the
individual income increases mean neighborhood income, which can
result in feedback loops in the causal graph which are disallowed.
Figure 1c represents such a case involving cycles which the current
framework does not support. Further, we assume that the structural
equation model representing the functional form underlying the
causal graph is linear in nature, i.e. a node is a linear combination
of its causal parents. Future work should extend the analysis to
non-linear relationships and non-parametric forms. We also as-
sume that we are aware about the fair and unfair causal paths for
the multi-level sensitive attributes, again consistent with previous
work [9]. Next, we present an example to realize the importance of
macro-level sensitive attributes.

4.1 An Illustrative Example

In prior sections we have motivated the need to consider macro-
level attributes. We now describe multi-level sensitive attributes
and provide an illustrative example of why considering macro-level
sensitive attributes in algorithmic fairness efforts can be important.
Consider neighborhood socioeconomic status (SES) as Ap. Neigh-
borhood SES can be a cause of population-level factors such as
resources available. Neighborhood SES can also affect individual-
level attributes, A; such as perception of race’ (which is protected),
by shaping the cultural and social experiences of an individual [12]
as well as non-protected attributes, I (e.g. body-mass index, given
that neighborhood SES can shape the types of resources available
and norms [36]). Furthermore, research has described how macro
attributes such as neighborhood SES can affect health behaviors
like smoking directly as well as through individual factors such
as perceived racial discrimination. Thus, given that this macro-
attribute shapes the resources and circumstances of an individual
(A can be influenced by Ap), it could be desirable for algorithms
which are being used to decide fair allocation of health services or
resources to predicted smokers, to account for this macro-property.
Not being fair to this property lacks consideration for variance
within the individual attributes that it influences. In other words,
accounting for only individual-level attributes such as perceived
racial discrimination can still lead to unfairness without consid-
ering that people within the same individual-level category could
have different resources or opportunities available to them.

A general framework for macro/individual attribute relationships
and possible unfair paths in presented in Figure 2. In illustrating
the relationship between Ap and A; (green arrow) we make dis-
tinction between the multi-level fairness setting and literature on
intersectionality in fairness, which has considered multiple sen-
sitive attributes that are independent of each other (Figure 1b)
[17, 41, 60, 61]. While this assumption of independence may hold
for individual-level sensitive attributes like age and gender, it fails
when we consider sensitive attributes at both the individual and
macro level. It is important to understand the relationship between
individual and macro-level attributes in order to delineate the path-
specific effects that may lead to biased predictions of Y.

2We note that race is a social construct and henceforth use “perceived racial discrimi-
nation” here consistent with best practice [1].
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Next, we describe how these interactions can lead to unfairness,
by introducing multi-level path-specific fairness accounting for
both individual and macro-level sensitive attributes.

5 MULTI-LEVEL PATH-SPECIFIC FAIRNESS

We begin the discussion about multi-level path-specific fairness
by first introducing path-specific effects, discussing the necessary
conditions to identify the effects with multiple sensitive attributes,
and finally describe an approach to obtain fair predictions with

multi-level path specific effects.
\
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Figure 2: Multi-level sensitive attributes Ay, Ap. Macro-level
variables, Ap (e.g. neighborhood SES), P (e.g. other zipcode
level factors), and individual-level ones, A; (e.g. perceived
racial discrimination), I, affect the outcome Y (e.g. a health
behavior).
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5.1 Path-specific effects

While counterfactual fairness assumes that the entire effect of the
sensitive variables on the outcomes is problematic and constructs
the predictor with only the non-descendants of the sensitive at-
tribute [32], it is a fairly restrictive scenario especially when the
sensitive attributes can affect the outcome along both fair and un-
fair pathways as shown in Figure 2. Thus, disregarding the effect
only along unfair paths can help in preserving the fair individual
information regarding sensitive attributes [9]. Indeed, domain ex-
perts and policymakers can guide these decisions about identifying
fair and unfair pathways. We are interested only in correcting the
effect of the sensitive attribute on the outcome along the unfair
paths. For this we turn to path-specific effects, which isolate the
causal effect of a treatment on an outcome only along a certain
causal pathway [45]. In order to obtain the causal effect only along
a certain pathway, the idea that path-specific effects can be formu-
lated as nested counterfactuals is leveraged [54]. This is done by
considering that along the causal path of interest, say, Ay = I — Y,
the variable, Ay, propagates the observed value, for example, a; in
Figure 2, and along other pathways, A; — Y, the counterfactual
value, a] is propagated, assuming that A; = {a;, a}}. In this case,
the effect of any mediator between A; and Y is evaluated according
to the corresponding value of A; propagated along the specific
causal path, the mediator I obtains the value I(g;). Here, the pri-
mary object of interest is the potential outcome variable, Y(q;),
which represents the outcome if, possibly contrary to fact, A; were
externally set to value ;. Given the values of a;, a;, comparison of
Y(aj) and Y(a;) in expectation: E[Y(a;)] — E[Y(a})] would allow
us to quantify the path-specific causal effect, PSE, of A; on Y.
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Using this concept of path-specific effect, we next state path-
specific counterfactual fairness, defined by Chiappa [9].

DEFINITION 5.1. Path-specific counterfactual fairness is defined
as a decision being fair towards an individual if it coincides with the
one that would have been made in a counterfactual world in which
the sensitive attribute along the unfair pathways (denoted by i) was
set to the counterfactual value.

Pr(Ygoq,(U) = yIX, A= a) =Pr(YVy_y (V) =yIX,A=a) (3)

Chiappa [9] further propose that in order to obtain a fair decision,
the path-specific effect of the sensitive attribute along the discrim-
inatory causal paths is removed from the model predictions, i.e.
?fair = Y —PSE. However, a key limitation of the approach presented
by Chiappa [9] is that only the path-specific counterfactual fairness
with respect to the sensitive attributes at the individual level is
considered. The presence of sensitive attributes at the macro-level
that affect properties at the individual level makes it non-trivial
to estimate the path-specific effect consisting of both macro and
individual-level sensitive attributes. Following, we describe the
identifiability conditions for obtaining path-specific counterfactual
fairness with respect to multi-level sensitive attributes by estimat-
ing multi-level path-specific effects.

Identification of multi-level path-specific effects.

PROPOSITION 1. In the absence of any unmeasured confounding
between Ap and Ap and {Ar, I} ¢ pa, ,, the multi-level path-specific
effects of both Ap and A; on'Y are identifiable.

Proposition 1 follows from the possible structural interactions
between Ap and Ay, where Ap is a non-aggregate macro-property
not involving any individual-level computation. Next, we discuss
the interaction between Ap and A;, where the macro-level sensitive
attribute is a causal parent of the individual-level sensitive attribute,
Ap € {pay,}.

Figure 2 presents such an exemplar case of multi-level interac-
tions where macro-level sensitive attributes can cause individual
level variables, with the data generating process as described in
Figure 3a. Ap and A; are binary variables where we assume a‘;
and a; to represent the baseline values denoting advantaged treat-
ments. The rest of the variables P,I and Y are continuous and
follow a linear relationship between the parents and the specific
variables. €,,, €q,» € €y A€ unobserved zero-mean Gaussian terms.
For this specific model we obtain the multi-level path-specific ef-
fects consisting of both Ap and A;. The population level sensitive
attribute, Ap affects Y via multiple paths along 1) Ap - P — Y, 2)
Ap > I1—>Y,3)Ap > A > Y,and 4) Ap —» A; —» I — Y; the
individual level sensitive attribute A; affects Y along two causal
paths, 1) A; —» I — Y, and 2) A; — Y. With prior assumption
that Ay — Y and P — Y are not discriminatory causal paths, we
evaluate the path-specific effectalong - -+ - I — Y, where --- — I
repesents all paths into I . Overall the path-specific effect can be

calculated as follows:
PSE; 2V -E [Y (a;,P(a;,),l(a,., ap))] .

p<apAr—a;

©
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The path-specific effect along --- — I — Y is computed by
comparison of the counterfactual variable Y (a;, P (a;,) I (ai, ap)),

where a,,a; are set to the baseline value of 1 in the counterfac-

tual and 0 in the original. The counterfactual distribution can be
estimated as follows:

Y (al{,P (a‘;) N (ai, ap))
=/ Pr (Y|al. I, P) Pr(1|a,.,ap)Pr(P|a;,).
P,I

We obtain the mean of this distribution as follows:
E[Y|L, P, d}]

—0Y+0Y%0 +0Y0” +0Y 4.+ 0Y0! Ygi Ypp ot
=07+0;0"+06,0"+0,,a;+60,a;+0, Qapap+9p9apap.

©)

(6)

e [Y
PSEAPHap,AIHa,»

counterfactual value of the mean of the counterfactual distribution,

is then obtained by comparing the observed and

E[Yl|a,, a;] —E[Y|d},a;] = Bgi (a} - aj) +9?€éi (a; — aj)

Ypi Ypp
+06; Glup (ap - a},) +0, Oap (a;, - a},) ()
= 9?0;1_ (a; —aj) + 9?921) (ap - a;,) .

Substituting a; = 1, a, = 1, al{ =0, a;, = 0 in Equation 7 we obtain
the path-specific effect as a function of the parameters 6%

e ]-Y _ nYpi Ypi
PSE 2t ay = 0Y0%, + 010, .

®)
By the same approach, path-specific effects for individual and
macro-level sensitive attributes as well as the multi-level path spe-
cific effects for all the causal paths in Figure 2, are also evaluated.
Estimating the multi-level path-specific effects helps in construct-

ing a fair predictor which is described in the following section.

Algorithm 1 Causal Multi-level Fairness

Input: Causal Graph G consisting of nodes V, data D over V,
discriminatory causal pathways 7, f.

Output: Fair predictor ?fair’ model parameters 6

for V; e Vdo

Estimate "% — argming Ypcqp ! (Vl.(k),fi (palgk)))
end for
Calculate path-specific effects, PSE along 7 using oV

return ?fair =E [fY (QY)] - p*PSE,

5.2 Fair predictions with multi-level
path-specific effects.

Fair outcomes can be estimated by removing the unfair path-specific
effect from the prediction (essentially making a correction on all
the descendants of the sensitive attributes), ¥ by simply subtracting
it, i.e. Vg, = ¥ —PSE. As done in Chiappa [9], removing such unfair
information at test time ensures that the resulting decision coincides
with the one that would have been taken in a counterfactual world
in which the sensitive attribute along the unfair pathways were set

3Plug-in estimators can be used to compute the parameters needed for estimating PSE.
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Ap ~ Bernoulli (p =0.5),
p=06"+ ef;pAp +€p,

v =0%+05: Ap+6,'P + €y,

A; = Bernoulli(o(y)),

=6+ GZZPAP + 951,-“‘1 +€;,
Y=0Y+0,/P+0/T+0;A;+e,
0P,6%,6',0Y = (0.2,0.2,0.2,0.2)
04+ 0t 07, 92,,,951,. ~ U (0.2,0.7)
03,0704 ~ U (03,0.95)
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Figure 3: Experimental details regarding multi-level example (Figure 2), a) Data generating process, b) Resulting causal graph
if Ap is considered as an individual-level sensitive attribute instead of macro-level sensitive attribute as presented in Figure
2, Ap ¢ pay,, resulting path-specific effects with Ap as individual-level sensitive attribute, and c) Path-specific unfairness
controlling for discriminatory effects of just A; (blue), Ap considered as an individual-level sensitive attribute instead of macro-
level sensitive attribute (green), both A}, Ap considered as individual-level sensitive attributes (purple), and A;, Ap considered

as multi-level sensitive attributes (orange), over 10 runs.

to the baseline. We leverage this same idea for multi-level causal
fairness by generating fair predictions, §,;,, by controlling for the
path-specific effects of multi-level sensitive attributes. For example,
consider the PSE resulting from intervening upon both Ap and Ay
via the path--- — I — Y, PSE} = Gl.y (Gzi + Gip), we

can control for the discrimination at test time as follows:

—=I[->Y
P<—ap,AI<—ai

Gy = 07+ 05p" + 0/ + 0Ya? - (0 (0}, + 6} ) ©

where f accounts for the control over the path-specific effect. For
our analysis ff ranges from 0 to 1, where 0 denotes that we do not
account for any path-specific effect while 1 denotes that we remove
the entire path-specific effect. Intermediate values allow for only
partial removal of the path-specific effect. We study the effect of
the control over different path-specific effects on the performance
metric of the classifier. The steps are outlined in Algorithm 1. We
highlight that an accurate causal graph and a linear functional form
are key assumptions of this approach.

6 EXPERIMENTS

Our experiments in this section serve to empirically assess and
demonstrate residual unfairness when correcting for path-specific
effects of multiple sensitive attributes. We consider a synthetic set-
ting demonstrated in Figure 2 and real-world setting for income
prediction presented in Figure 4a; in both cases the structural causal
model is known a priori as well as the unfair pathways. In each case,
we first learn the parameters of the model (®) from the observed
data based on the known underlying causal graph, G as illustrated
in Algorithm 1. We then draw observed and counterfactual samples
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from the distribution 6 by sampling from the path-specific counter-
factual distribution, referred to as counterfactual distribution®. We
estimate fair predictors for both the observed and counterfactual
data using Algorithm 1. In case of no resultant unfairness, distribu-
tions of the outcome estimate for both observed and counterfactual
data should coincide. Density plots that do not coincide signifies
residual unfairness.

6.1 Synthetic setting

Here we generate data according to the structural equation model
presented in Figure 3a with linear relationships with the exception
that we consider Y to be binary, using a sigmoid function > This
represents the data-generating process in accordance with the multi-
level setting presented in Figure 2. The simulation parameters, 0, are
non-negative to ensure a positive path-specific effect, i.e. an unfair
effect. Furthermore, the parameters are standardized between 0 and
1 to allow for computational efficiency. The range of the parameters
in the uniform distribution is simulated to ensure a realistic setting
where the counterfactual distribution is diverse, and the differences
between the original and counterfactual distribution is significant
to evaluate multi-level fairness. If there are little differences in the
original and the counterfactual distribution, path-specific effects
become negligible resulting in no significant unfairness issues. In
total, 10 simulations with N = 2000 samples in each are performed.
We train a linear regression model for I, P, and a logistic regression

4Pathfspeciﬁc counterfactual distribution is obtained by altering the original value to
the counterfactual value only along the unfair paths (described by green in the causal
graph), and retaining the original value along the fair pathways.

The analysis of the path-specific effects remains similar to the one discussed in Section
5, where the effects are calculated on the odds ratio scale as Nabi and Shpitser [44].
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model for A, Y to learn the parameters (6). We then calculate three
path-specific effects as follows: 1) PSE 4 , 4, accounting for the effect
of both Ap and Ay, 2) PSE 4, accounting for the effect of only Ay,
and 3) PSE, , accounting for the effect of only Ap. Details about
this calculation are presented in Equation 7.

We observe that controlling for the multi-level path-specific ef-
fects of both Ap and Aj leads to little drop in the model performance
(accuracy). We also assess the counterfactual fairness of the result-
ing model after removing the unfair multi-level path-specific effects.
This is done by training a classifier for obtaining fair predictors,
gai,ap’ on the actual and counterfactual data respectively, where

the counterfactual data is obtained by altering the values of the
sensitive variables, Ap and A;. This is done by first learning the
parameters, § from the original data and then altering the values of
the sensitive attributes, Ap and A; and obtaining the values of P, I
and Y from these counterfactual values of Ap, A; and 6. We assess
the counterfactual fairness of the resulting models while account-
ing for unfairness due to both Ap, A and either A; or Ap, in Figure
3c. The Y axis shows the average difference between observed and
counterfactual predictions, |§A/a - f/a'l where a is the observed value
of the sensitive attribute and a” is the corresponding counterfac-
tual value. This difference is analyzed for varying control of the
path-specific effect (PSE), § along the X-axis. In order to assess the
advantage of considering the multi-level nature of the data, we
compare with the model presented in Figure 3b, where we treat
the macro-level sensitive attribute, Ap as another individual-level
sensitive attribute, Ay, i.e. Ap ¢ pay . The blue line represents
the difference while accounting only for the individual-level path
specific effect A; while the orange line represents the multi-level
path-specific effect of both Ap and A;. Similarly, the green line
represents the setting presented in Figure 3b, where Ap, is treated
as an individual-level sensitive attribute (multi-level nature of its
action removed), and purple line represents the case where both
A and Ap are treated as individual-level sensitive attributes. For
counterfactually fair models we expect the difference to be close to
zero since controlling for the path-specific effects cancels out the
counterfactual change. We observe that this happens only while
accounting for the multi-level path-specific effects. Thus, account-
ing for individual-level path-specific effects solely (blue, green, and
purple lines) does not result in counterfactually fair predictions as
can be seen from the high difference (0.7- 0.9). Moreover, correcting
for the unfair multi-level path-specific effects of both Ap and A;
results in counterfactually fair predictions with a slight drop in
accuracy from 94.5% to 91.5%.

6.2 UCI Adult Dataset

We demonstrate real-world evaluation of the proposed approach
on the Adult dataset from the UCI repository [34]. The UCI Adult
dataset is amenable for demonstration of our method, given that
it was used in Chiappa [9] to assess path-specific counterfactual
fairness, and because there are variables oriented in a manner that
create a potential multi-level scenario. We consider this well-studied
setting [9, 44] wherein the goal is to predict whether an individual’s
income is above or below $50,000. The data consist of age, work-
ing class, education level, marital status, occupation, relationship,
race, gender, capital gain and loss, working hours, and nationality
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variables for 48842 individuals. The causal graph is represented in
Figure 4a. Consistent with Chiappa [9] and Nabi and Shpitser [44],
we do not include race or capital gain and loss variables. Here, A
represents the individual-level protected attribute sex, C is nation-
ality, M is marital status, L is the level of education, R corresponds
to working class, occupation, and hours per week, Y is the income
class. We make an observation that nationality, C, could be con-
sidered as a non-aggregate macro-level sensitive attribute. This is
because it may affect social influences and/or resources available
at the macro-level. For example, nationality affects both education
levels and martial status of individuals. Moreover, we also note
that marital status, M, can also be considered as an individual-level
sensitive attribute, as we may not want to discriminate individuals
based on their marital status [24, 51]. Thus, C, a macro-level sensi-
tive attribute affects M, an individual-level sensitive attribute and
the relationship between C and other variables in the graph mimics
that of a multi-level scenario. Moreover, it may be reasonable to
consider a setting in which it is desirable to predict income, while
also being fair to nationality, in order to understand the effect that
nationality may have. We highlight that macro-properties such as
nationality are included in datasets like UCI adult, however, correct-
ing for any unfairness due to macro-level sensitive attributes has
not been considered in previous fairness studies. We also emphasize
that there may be other datasets that better express the need for
macro and individual-level sensitive attributes, however we con-
sider this dataset/setting in order to be consistent with previous
work in causal fairness which has used the same dataset, though
have only analyzed unfairness due to an individual-level sensitive
attribute [9]. Paths in Figure 4a are thus defined based on mapping
the figure from Chiappa [9] to the multi-level framework in Figure
1b with C as the macro-level sensitive attribute and A, M as the
individual-level sensitive attributes.

To first evaluate the path-specific effect of a single individual-
level sensitive attribute as done in prior work [9], we evaluate the
effect of only A (the individual level sensitive attribute considered
in Chiappa [9]) along A —» Yand A > M — --- — Y to be 3.716.
We obtain a fair prediction as follows:

iir = Bernoulli (o (6Y +0/C+ 65 (M - 0) + 0/ (L - 01,67 )))

by removing the path specific effect of A along a priori known
discriminatory paths. The fair accuracy is 78.87%, consistent with

Chiappa [9].

We next evaluate the path-specific effect of both the macro (C)
and individual-level sensitive attributes (A, M)6. In the counterfac-
tual world, the individual receives advantaged macro and individual
level treatment. Since, C is mostly represented by the value 39, and
A is represented by 2 levels 0 and 1, worst to best, we consider the
baseline values to be ¢ = 39 and a = 1. We compute the path-specific
effectof ConYviaC - M —» --- Y, C—>L—> -+ >Y,
A— M — --- = Y, and A — Y in the baseline scenario to be
10.65. As we do not completely remove the effect of C; only along
certain paths as described above, we still retain important informa-
tion about nationality, C, an informative feature. After correcting
for the unfair effect of C, A, and M, the accuracy is 77.92% (f = 1),

*We use pre-processed data from [42].
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Figure 4: a) Causal graph for the UCI Adult dataset [9], A and M represent the individual-level protected attributes, sex and
marital status, respectively, C is age and nationality, L is the level of education, R corresponds to working class, occupation,
and hours per week, Y is the income class, unfair paths are represented in green b) Density of ¥, ¢) path-specific unfairness,
Y, - f/a'| controlling for the effects of just A; (blue), Ap (orange) and both A}, Ap (yellow).

in comparison with an accuracy of 78.87% from removing the unfair
effect of A alone. Thus, there is not significant drop in the model
performance after correcting for the unfair effects of both A, M and
C.

Next, we study the residual unfairness in a series of counterfac-
tual settings which account for unfairness at individual, macro-level
sensitive attributes and their combination. Results are presented in
Figure 4b. If density of two plots coincide, then they are counterfac-
tually fair, i.e. there is no difference in prediction based on unfair
pathways. The purple plot represents the fair model, Y]fair’ trained
on the original data that corrects for the multi-level path-specific
effects of {A, M, C}. In the process of learning the fair predictions,
we learn the parameters for the model represented in Figure 4a as
illustrated in Algorithm 1 and then generate counterfactual samples
from the observed distribution. We next assess fairness of models
that account for varying fair/unfair pathways and variable types.
First, we generate individual-level counterfactual data by only al-
tering the individual-level sensitive attributes A and M along the
unfair pathways, and train a model on the individual-level counter-
factual data, we call this ¥ (a;). The red curve represents the density
plot of ¥ (a}) after controlling for the individual-level path-specific
effect at § = 1. Similarly, we generate macro-level counterfactual
data by only altering the macro-level sensitive attribute, C, along
the unfair paths, C > M — --- ,C —» L — - - -, and train a model
on this macro-level counterfactual data, which is represented by
f/(a;,) (green curve). At last, we generate individual and macro-
level counterfactual data, by altering A, M and C along all unfair
paths, represented by green in Figure 4a. In this case, the predictor,
f/(a;, a;J), is represented by the black curve, As can be seen from
the general overlap of the purple and black curves, controlling for
path-specific effects of both individual and macro-level sensitive
attributes generates counterfactually fair models, while only con-
trolling for the individual or macro variables doesn’t provide the
same density estimate as a fair model. Similarly, the residual unfair-
ness is presented in Figure 4c, and controlling for the multi-level
path-specific effects (yellow curve) results in a counterfactual fair
model as the difference, |1A/a - f/ar| approaches zero. Thus, correcting
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the multi-level path specific effect does not marginally drop the
model performance, while ensuring that predictions are fair with
respect to individual and macro-level attributes.

7 CONCLUSION

Our work extends algorithmic fairness to account for the multi-
level and socially-constructed nature of forces that shape unfairness.
In doing so, we first articulate a new definition of fairness, multi-
level fairness. Multi-level fairness articulates a decision being fair
towards the individual if it coincides with the one in the counter-
factual world where, contrary to what is observed, the individual
identifies with the advantaged sensitive attribute at the individual-
level and also receives advantaged treatment at the macro-level
described by the macro-level sensitive attribute. A framework like
this can be used to assess unfairness at each level, and identify
the places for intervention that would reduce unfairness best (e.g.
via macro-level policies versus individual attributes). As we show
here, leveraging datasets that represent more than individual at-
tributes can improve fairness, as often individual level attributes
have variance with respect to macro-properties, or are proxies for
macro-properties which may be the critical sources of unfairness
[38]. This is becoming possible given the large number of open data
sets representing macro-attributes that are available, relevant to
health, economics, and many other settings. Through our experi-
ments, we illustrate the importance of accounting for macro-level
sensitive attributes by exhibiting residual unfairness if they are
not accounted for. Importantly, we show this residual unfairness
persists even in cases when the same information and variables are
considered, but without accounting for the multi-level nature of
their interaction.

Finally, we demonstrate a method for achieving fair outcomes by
removing unfair path-specific effects with respect to both individual
and macro-level sensitive attributes. While a clear understanding
of the macro-level sensitive attributes is essential for multi-level
fairness, approaches to learning the latent representation of the
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macro-level sensitive attributes in their absence from individual-
level factors could be important future work. As an initial frame-
work, we consider path-specific effects for linear models here; we
also endeavor to extend this to fewer assumptions on the functional
form in the future.
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