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ABSTRACT
Algorithmic systems are known to impact marginalized groups

severely, and more so, if all sources of bias are not considered.

While work in algorithmic fairness to-date has primarily focused

on addressing discrimination due to individually linked attributes,

social science research elucidates how some properties we link to

individuals can be conceptualized as having causes at macro (e.g.

structural) levels, and it may be important to be fair to attributes

at multiple levels. For example, instead of simply considering race

as a causal, protected attribute of an individual, the cause may be

distilled as perceived racial discrimination an individual experi-

ences, which in turn can be affected by neighborhood-level factors.

This multi-level conceptualization is relevant to questions of fair-

ness, as it may not only be important to take into account if the

individual belonged to another demographic group, but also if the

individual received advantaged treatment at the macro-level. In

this paper, we formalize the problem of multi-level fairness using

tools from causal inference in a manner that allows one to assess

and account for effects of sensitive attributes at multiple levels. We

show importance of the problem by illustrating residual unfair-

ness if macro-level sensitive attributes are not accounted for, or

included without accounting for their multi-level nature. Further,

in the context of a real-world task of predicting income based on

macro and individual-level attributes, we demonstrate an approach

for mitigating unfairness, a result of multi-level sensitive attributes.

CCS CONCEPTS
• Applied computing→ Sociology; • Computing methodolo-
gies→Machine learning.
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1 INTRODUCTION
There has been much recent interest in designing algorithms that

make fair predictions [3, 14, 29]. Definitions of algorithmic fair-

ness have been summarized in detail elsewhere [40, 57]; broadly

approaches to algorithmic fairness in machine learning can be di-

vided into two kinds: group fairness, which ensures some form of

statistical parity for members of different protected groups [16, 40]

and individual notions of fairness which aim to ensure that peo-

ple who are ‘similar’ with respect to the classification task receive

similar outcomes [5, 6, 23]. Historically sensitive variables such as

age, gender, race have been thought of as attributes that can lead

to unfairness or discrimination. Recently, the causal framework

[48] has also been used to conceptualize fairness. Kusner et al. [32]

introduced a causal definition of fairness, counterfactual fairness,
which states that a decision is fair toward an individual if it coin-

cides with the one that would have been taken in a counterfactual

world in which the sensitive attribute of the individual had been

different. This approach assumes prior knowledge about how data

is generated and how variables affect each other, represented by

a causal diagram and considers that all paths from the sensitive

attribute to the outcome are unfair. Counterfactual fairness, thus,

postulates that the entire effect of the sensitive attribute on the

decision, along all causal paths from the sensitive attribute to the

outcome is unfair. This approach is restrictive when only certain

causal paths are unfair. For example, the effect of gender on income

levels can be considered unfair but the effect through education

attainment level is fair [9]. Path-specific counterfactual fairness has

then been conceptualized, which attempts to correct the effect of

the sensitive attribute on the outcomes only along unfair causal

pathways instead of entirely removing the effect of the sensitive

attribute [9]. It should be noted that throughout this work, deter-

mination of fair and unfair paths requires domain expertise and

possibly discussions between policymakers, lawyers, and computer

scientists.

Leveraging domain knowledge from sociology highlights that

notwithstanding these clarifications of path-specific fairness, al-

gorithmic fairness efforts in general have been limited to sensi-

tive attributes at only the individual-level, missing important as-

sertions regarding how social aspects can be influenced and cre-

ated more by societal structures and cultural assumptions than

by individual and psychological factors [27]. Critical Theory is

an approach in sociology which motivates the consideration of

macro-structural attributes, often simply called macro-properties

or ‘structural attributes’. These structural attributes correspond to

overall organizations of society that extend beyond the immediate

milieu of individual attributes yet have an impact on an individual,

such as social groups, organizations, institutions, nation-states, and
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their respective properties and relations [19, 35]. Accounting for a

multi-level conceptualization in algorithmic fairness is consistent

with recent literature which have discussed similar concerns with

the conceptualization of race as a fixed, individual-level attribute

[8, 22, 56, 64]. Analytically framing race as an individual-level at-

tribute ignores systemic racism and other factors which are the

mechanisms by which race has consequences [8]. Instead, account-

ing for the macro-level phenomena associated with race, which a

multi-level perspective promotes (e.g. structural racism, childhood

experiences that shape the perception of race) will augment the im-

pact of algorithmic fairness work [22]. Several different terms have

been used as synonyms for macro-structural attributes, including

“group-level” variables in multi-level analysis, “ecological variables”,

“macro-level variables”, “contextual variables”, “group variables”,

and “population variables”, and we refer the reader to a full elabo-

ration on macro-property variables in previous work by Diez-Roux

[15]. In this paper, we refer to all information measured beyond an

individual-level as macro-properties and macro-level attributes.
Without accounting for macro-properties, assessment of how

“fair” an algorithm is may inadvertently be unfair by not accounting

for important variance in attributes that are at the structural level.

Indeed, today’s growing availability of data that captures such ef-

fects means that leveraging the right data can be used to account

for and address unexplained variance when using individual-level

attributes as proxies for structural attributes. This can help work

towards equity versus in-sample fairness (e.g. an algorithm fair

with respect to perceived race will still be unfair to structural differ-

ences that perceived race may be a proxy for, such as neighborhood

socio-economics, and including the structural factors can help to

mitigate unfairness within the perceived race category) [38]. Ac-

counting for structural factors can also clearly identify populations

that input data is not representing. Indeed, many macro-properties

can be considered as sensitive attributes. For example, neighbor-

hood socioeconomic status which is a measure of the inequality

in distribution of macro-level resources of education, work, and

economic resources[52]. It has been shown that patients who reside

in low socioeconomic neighborhoods can have significantly higher

risk for readmission following hospitalization for sepsis in compar-

ison to patients residing in higher socioeconomic neighborhoods

even if all individual-level risk factors are the same, indicating that

low SES is an independent factor of relevance to the outcome [20].

Thus, accounting for relevant macro-level properties while making

decisions, say, about post-hospitalization care, is critical to ensure

that disadvantaged patients, comprehensively accounting for all

relevant sources of unfairness, receive appropriate care.

Towards this goal, we propose a novel definition of fairness

called causal multi-level fairness, which is defined as a decision

being fair towards an individual if it coincides with the one in

the counterfactual world where, contrary to what is observed, the

individual receives advantaged treatment at both the macro and
individual levels, described by macro and individual-level sensitive

attributes, respectively. This work builds upon previous work on

path-specific counterfactual fairness, limited to individual-level

sensitive attributes, to account for both macro and individual-level

discrimination. Multi-level sensitive attributes are a specific case

of multiple sensitive attributes, in which we specifically consider a

sensitive attribute at a macro level that influences one at an indi-

vidual level. This is an important and broad class of settings; such

multi-level interactions are also considered in multi-level modelling

in statistics [21]. Moreover, this work addresses a different problem

than the setting of proxy variables, in which the aim is to elimi-

nate influence of the proxy on outcome prediction [26]. Indeed, for

variables such as race, detailed analyses from epidemiology have

articulated how concepts such as racial inequality can be decom-

posed into the portion that would be eliminated by equalizing adult

socioeconomic status across racial groups, and a portion of the

inequality that would remain even if adult socioeconomic status

across racial groups were equalized (i.e. racism). Thus, if we simply

ascribe the race variable to the individual (as is sometimes done as

a proxy), we will miss the population-level factors that affect it and

any particular outcome [56].

Explicitly accounting for multi-level factors enables us to decom-

pose concepts such as racial inequality and approach questions such

as: what would the outcome be if there was a different treatment

on a population-level attribute such as neighborhood socioeco-

nomic status? This is an important step in auditing not just the

sources of bias that can lead to discriminatory outcomes but also

in identifying and assessing the level of impact of different causal

pathways that contribute to unfairness. Given that in some subject

areas, the most effective interventions are at the macro level (e.g.

in health the largest opportunity for decreasing incidence due to

several diseases lie with the social determinants of health such as

availability of resources versus individual-level attributes [38]), it

is critical to have a framework to assess these multiple sources of

unfairness. Moreover, by including macro-level factors and their

influence on individual ones, we engage themes of inequality and

power by specifying attributes outside of an individual’s control.

In sum, our work is one step towards integrating perspectives that

articulate the multi-dimensionality of sensitive attributes (for exam-

ple race, and other social constructs) into algorithmic approaches.

We do this by bringing focus to social processes which often affect

individual attributes, and developing a framework to account for

multiple casual pathways of unfairness amongst them. Our specific

contributions are:

• We formalize multi-level causal systems, which include po-

tentially fair and unfair path effects at bothmacro and individual-

level sensitive variables. Such a framework enables the algo-

rithmicist to conceptualize systems that include the systemic

factors that shape outcomes.

• Using the above framework, we demonstrate that residual

fairness can result if macro-level attributes are not accounted

for.

• We provide necessary conditions for achieving multi-level

fairness and demonstrate an approach for mitigating multi-

level unfairness while retaining model performance.

2 RELATED WORK
Causal Fairness. Several statistical fairness criteria have been

introduced over the last decade, to ensure models are fair with

respect to group fairness metrics or individual fairness metrics.

However, further discussions have highlighted that several of the

fairness metrics cannot be concurrently satisfied on the same data
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Figure 1: Causal graphs to describe and distinguish different general sensitive attribute settings. Green arrows denote discrim-
inatory causal paths and dashed green-black arrows from any node 𝑅 to 𝑆 denote discrimination only due to the portion of the
effect from a green arrow into 𝑅 and not from 𝑅 itself (fair paths defined via a priori knowledge), red nodes represent sensitive
attributes. a) Individual-level variable 𝐼𝑁 (e.g. name) acts as a proxy for the individual sensitive attribute𝐴𝐼 (e.g. perceived race)
and affects outcome 𝑌 (e.g. health outcomes). 𝐼𝐵 (e.g. a biological factor) is not a proxy but also affects the outcome. b) Multiple
sensitive attributes at the individual level,𝐴𝐺

𝐼 (e.g. gender) and𝐴𝑅
𝐼 (e.g. perceived race) affect individual variables, 𝐼 , and health

outcome, 𝑌 . c) Example of cycles in the causal graph, where individual level attribute 𝐼 , individual income, causes macro-level
sensitive attribute, mean neighborhood income, 𝐴𝑃 , which in turn affects education resources in the neighborhood, 𝑃 , with 𝑌

being the outcome. Since 𝐼 ∈ 𝑝𝑎𝐴𝑃
, this violates the necessary conditions for obtaining a fair predictor with multi-level causal

fairness.

[4, 10, 18, 25, 28, 37]. In light of this, causal approaches to fairness

have been recently developed to provide a more intuitive reasoning

corresponding to domain specifics of the applications [7, 9, 26, 31–

33, 43, 44, 50, 53, 62, 63]. Most of these approaches advocate for fair-

ness by addressing an unfair causal effect of the sensitive attribute

on the decision. Kusner et al. [32] have introduced an individual-

level causal definition of fairness, known as counterfactual fairness.

The intuition is that the decision is fair if it coincides with the one

that would have been taken in a counterfactual world in which the

individual would be identified by a different sensitive attribute. For

example, a hiring decision is counterfactually fair if the individual

identified by the gender male would have also been offered the

job had the individual identified as female. In sum, these efforts

develop concepts of fairness with respect to individual level sen-

sitive attributes, while here we develop fairness accounting for

multi-level sensitive attributes, comprising of both individual and

macro-level sensitive attributes. Inspired from research in social

sciences [6, 22, 56], the work here extends the idea to multi-level

sensitive attributes. In our considered setting, a decision is fair not

only if the individual identified with a different individual-level

sensitive attribute but also if the individual received advantaged

treatment at the macro-level, attributed as the macro-level sensitive

attribute.

Identification of Causal Effects. While majority of the work

in causal inference is on identification and estimation of the total

causal effect [2, 45, 48, 49, 55], studies have also looked at identifying

the causal effect along certain causal pathways [47, 54]. The most

common approach for identifying the causal effect along different

causal pathways is decomposing the total causal effect along direct

and indirect pathways [46, 47, 54]. We leverage the approach devel-

oped by Shpitser [54] on how causal effects of multiple variables

along a single causal pathway can be identified. While we assume

no unmeasured confounding for the analysis in this work, research

in causal estimation in the presence of unmeasured confounding,

[39, 58] can be used to extend our current contribution.

Path-specific causal fairness. Approaches in causal fairness

such as path-specific counterfactual fairness [9, 43, 44], proxy dis-

crimination, and unresolved discrimination [26, 59] have aimed

to understand the effect of sensitive attributes (i.e. variables that

correspond to gender, race, disability, or other protected attributes

of individuals) on outcomes directly as well as indirectly to iden-

tify the causal pathways (represented using a causal diagram) that

result into discriminatory predictions of outcomes based on the

sensitive attribute. Generally such approaches focus on sensitive

attributes at the individual-level and require an understanding of

the discriminatory causal pathways for mitigating causal discrimi-

nation along the specified pathways. Our approach builds on the

work of Chiappa [9] for mitigating unfairness by removing path-

specific effects for fair predictions, doing so while accounting for

both individual and macro-level unfairness.

Intersectional fairness. There is recent focus on identifying

the impact of multiple sensitive attributes (intersectionality) on

model predictions. There are several works that have been devel-

oped for this setting [17, 41, 60], however, these approaches do not

take into account the different causal interactions between sensi-

tive attributes themselves which can be important in identifying

bias due to intersectionality. In particular, this includes intersec-

tional attributes at the individual and macro level, such as race and

socioeconomic status [11, 30].

3 BACKGROUND
We begin by introducing the tools needed to outline multi-level

fairness, namely, (1) causal models, (2) their graphical definition,

(3) causal effects, and (4) counterfactual fairness.
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CausalModels: Following Pearl et al. [48] we define a causal model

as a triple of sets (U,V, 𝐹 ) such that:

• U are a set of latent variables, which are not caused by any

of the observed variables in V.
• 𝐹 is set of functions for each 𝑉𝑖 ∈ V, such that

𝑉𝑖 = 𝑓𝑖

(
pa𝑖 ,𝑈𝑝𝑎𝑖

)
, 𝑝𝑎𝑖 ⊆ V \𝑉𝑖 and 𝑈𝑝𝑎𝑖

⊆ U. Such equa-

tions relating 𝑉𝑖 to 𝑝𝑎𝑖 and 𝑈𝑝𝑎𝑖
are known as structural

equations [13]. When 𝑓𝑖 is strictly linear, this is known as

a linear structural equation model, which is represented as

𝑉𝑖 =
∑ |𝑝𝑎𝑖 |

𝑗=1
𝛼 𝑗 · 𝑝𝑎𝑖 [ 𝑗] +𝑈𝑝𝑎𝑖

, where 𝛼 is the mixing coeffi-

cient and 𝑝𝑎𝑖 [ 𝑗] denotes the 𝑗th parent of variable 𝑉𝑖 .

Here, “𝑝𝑎𝑖 ” refers to the causal parents of 𝑉𝑖 , i.e. the variables that
affect the specific value 𝑉𝑖 obtains. The joint distribution over all

the 𝑛 variables, Pr

(
𝑉
1
,𝑉

2
, · · · ,𝑉𝑛

)
is given by the product of the

conditional distribution of each variable,𝑉𝑖 , given it’s causal parents

𝑝𝑎𝑖 as follows:

Pr (V) =
∏
𝑖

Pr

(
𝑉𝑖 |pa𝑖

)
. (1)

Graphical definition of causal models: While structural equa-

tions define the relations between variables we can graphically

represent the causal relationships between random variables using

Graphical Causal Models (GCMs) [9]. The nodes in a GCM repre-

sent the random variables of interest,𝑉 , and the edges represent the

causal and statistical relationships between them. Here, we restrict

our analysis to Directed Acyclic Graphs (DAGs) where there are no

cycles, i.e., a node cannot have an edge both originating from and

terminating at itself. Furthermore, a node 𝑌 is known as a child of

another node 𝑋 if there is an edge between the two that originates

at 𝑋 and terminates on 𝑌 . Here, 𝑋 is called a direct cause of 𝑌 . If

𝑌 is a descendant of 𝑋 , with some other variable 𝑍 along the path

from𝑋 to 𝑌 ,𝑋 → · · · → 𝑍 → · · ·𝑌 , then 𝑍 is known as amediator
variable and 𝑋 remains as a potential cause of 𝑌 . For example, in

Figure 1b, 𝐴
𝐺
𝐼 , 𝐴

𝑅
𝐼 , 𝐼 , 𝑌 are the random variables of interest. 𝐴

𝐺
𝐼 , 𝐴

𝑅
𝐼

are direct causes of 𝐼 and 𝑌 while 𝐼 is a direct cause of 𝑌 . Here, 𝐼 is

known as a mediating variable for both 𝐴
𝐺
𝐼 and 𝐴

𝑅
𝐼 .

Causal effects: The causal effect of𝑋 on𝑌 is the information prop-

agated by 𝑋 towards 𝑌 via the causal directed paths, 𝑋 → · · · → 𝑌 .

This is equal to the conditional distribution of 𝑌 given𝑋 if there are

no bidirected paths between 𝑋 and 𝑌 . A bidirected path between

𝑋 and 𝑌 , 𝑋 ← · · · → 𝑌 represents confounding; that is some

causal variable known as a confounder, which may be unobserved,

affecting both 𝑋 and 𝑌 . If confounders are present then the causal

effect can be estimated by intervening upon 𝑋 . This means that we

externally set the value of 𝑋 to the desired value 𝑥 and remove any

edges that terminate at 𝑋 , since manually setting 𝑋 to 𝑥 would in-

hibit any causation by 𝑝𝑎𝑥 . After intervening the causal effect of 𝑋

on𝑌 is given by Pr
∗ (𝑌 |𝑋 = 𝑥) = ∑

𝑍 Pr (𝑌 |𝑋 = 𝑥, 𝑍 ) Pr (𝑍 ), where
𝑍 = V \ {𝑋,𝑌 }. The intervention 𝑋 = 𝑥 results into a potential out-

come, 𝑌𝑋=𝑥 (also represented as 𝑌𝑥 ), where the distribution of the

potential outcome variable is defined as Pr

(
𝑌𝑥

)
= Pr

∗ (𝑌 |𝑋 = 𝑥).

Counterfactual fairness: Counterfactual fairness is a causal no-
tion of fairness that restricts the decisions of the algorithm to be

invariant to the value assigned to the sensitive variable. Assuming

𝐴 to be the sensitive attribute obtaining only two values, 𝑎 and

𝑎
′
, 𝑋 as the remaining variables, and 𝑌 as the outcome of interest,

counterfactual fairness is defined as follows:

Definition 3.1. Predictor 𝑌 is counterfactually fair if under
any context 𝑋 and 𝐴 = 𝑎,

Pr(𝑌𝐴→𝑎 (𝑈 ) = 𝑦 |𝑋,𝐴 = 𝑎) = Pr(𝑌𝐴→𝑎
′ (𝑈 ) = 𝑦 |𝑋,𝐴 = 𝑎) (2)

With this background, we next discuss the problem setup.

4 PROBLEM SETUP
Let us denote all the variables associated with the system beingmod-

elled as V := {𝐴𝐼 , 𝐴𝑃 , I,P, 𝑌 }, where 𝐴𝐼 and 𝐴𝑃 are the sensitive

attributes at the individual-level and the macro-level respectively
1

,

I is a non empty set of individual level variables, P is a non empty

set of macro-level variables, and 𝑌 is an outcome of interest. We

assume access to a causal graph, G, consisting of V which accu-

rately represents the data-generating process. Our goal is to obtain

a classifier,𝑌
fair

, which is fair with respect to both𝐴𝑃 and𝐴𝐼 . While

previous approaches in algorithmic fairness have only considered

𝐴𝐼 as a sensitive attribute, we present a novel approach to also

counter any discrimination resulting from 𝐴𝑃 . While macro-level

attributes, P and 𝐴𝑃 , may seem like regular nodes in the causal

graph, the difference is that based on them being macro-properties,

their effects on the outcome may be mediated via the individual

level attributes, I and 𝐴𝐼 , making it nontrivial to mitigate unfair-

ness due to these macro-properties. We highlight that this paper

presents, to our knowledge, the first approach for incorporating

unfairness due to macro-properties into algorithmic fairness. In or-

der to further help guide the reader regarding differences in macro

and individual-level variables, we clarify the types of macro-level

attributes which are considered in our setting. Per the extant litera-

ture [15], macro-level attributes can be categorized into two types:

• Category 1: non-aggregate group properties like nation-

ality, existence of certain types of regulations, population

density, degree of income inequality in a community, po-

litical regime, legal status of women which do not include

individual properties in their computation

• Category 2: aggregate properties such as neighborhood in-

come and median household income, which include individ-

ual properties (here individual income) in their computation

Thus, individual variables influence aggregate macro-properties

(Category 2) but not non-aggregate macro-properties (Category 1).

This categorization of macro-properties helps us to identify the nec-

essary conditions for obtaining a fair classifier with respect to both

individual and macro-level sensitive attributes. In parallel, a main

assumption in causal fairness and causal inference settings is that

we have access to a causal graph and that the graph does not include

any bidirected edges or cycles, [9, 32, 44] which are assumptions we

maintain for the causal multi-level fairness setting. This assumption

also clarifies that we should limit our consideration of macro-level

attributes to Category 1 and not consider aggregate information

1

Variables will be denoted by uppercase letters,𝑉 , values by lowercase letters, 𝑣, and

sets by bold letters, V.
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like mean neighborhood income as macro-level sensitive variables

since individual-level information has a causal influence on mean

neighborhood income, i.e. 𝐼 → 𝐴𝑃 . Certainly, an increase in the

individual income increases mean neighborhood income, which can

result in feedback loops in the causal graph which are disallowed.

Figure 1c represents such a case involving cycles which the current

framework does not support. Further, we assume that the structural

equation model representing the functional form underlying the

causal graph is linear in nature, i.e. a node is a linear combination

of its causal parents. Future work should extend the analysis to

non-linear relationships and non-parametric forms. We also as-

sume that we are aware about the fair and unfair causal paths for

the multi-level sensitive attributes, again consistent with previous

work [9]. Next, we present an example to realize the importance of

macro-level sensitive attributes.

4.1 An Illustrative Example
In prior sections we have motivated the need to consider macro-

level attributes. We now describe multi-level sensitive attributes

and provide an illustrative example of why considering macro-level

sensitive attributes in algorithmic fairness efforts can be important.

Consider neighborhood socioeconomic status (SES) as 𝐴𝑃 . Neigh-

borhood SES can be a cause of population-level factors such as

resources available. Neighborhood SES can also affect individual-

level attributes, 𝐴𝐼 such as perception of race
2

(which is protected),

by shaping the cultural and social experiences of an individual [12]

as well as non-protected attributes, 𝐼 (e.g. body-mass index, given

that neighborhood SES can shape the types of resources available

and norms [36]). Furthermore, research has described how macro

attributes such as neighborhood SES can affect health behaviors

like smoking directly as well as through individual factors such

as perceived racial discrimination. Thus, given that this macro-

attribute shapes the resources and circumstances of an individual

(𝐴𝐼 can be influenced by 𝐴𝑃 ), it could be desirable for algorithms

which are being used to decide fair allocation of health services or

resources to predicted smokers, to account for this macro-property.

Not being fair to this property lacks consideration for variance

within the individual attributes that it influences. In other words,

accounting for only individual-level attributes such as perceived

racial discrimination can still lead to unfairness without consid-

ering that people within the same individual-level category could

have different resources or opportunities available to them.

A general framework formacro/individual attribute relationships

and possible unfair paths in presented in Figure 2. In illustrating

the relationship between 𝐴𝑃 and 𝐴𝐼 (green arrow) we make dis-

tinction between the multi-level fairness setting and literature on

intersectionality in fairness, which has considered multiple sen-

sitive attributes that are independent of each other (Figure 1b)

[17, 41, 60, 61]. While this assumption of independence may hold

for individual-level sensitive attributes like age and gender, it fails

when we consider sensitive attributes at both the individual and

macro level. It is important to understand the relationship between

individual and macro-level attributes in order to delineate the path-

specific effects that may lead to biased predictions of 𝑌 .

2

We note that race is a social construct and henceforth use “perceived racial discrimi-

nation” here consistent with best practice [1].

Next, we describe how these interactions can lead to unfairness,

by introducing multi-level path-specific fairness accounting for

both individual and macro-level sensitive attributes.

5 MULTI-LEVEL PATH-SPECIFIC FAIRNESS
We begin the discussion about multi-level path-specific fairness

by first introducing path-specific effects, discussing the necessary

conditions to identify the effects with multiple sensitive attributes,

and finally describe an approach to obtain fair predictions with

multi-level path specific effects.

𝐴𝐼

I

YP𝐴𝑃

Figure 2: Multi-level sensitive attributes 𝐴𝐼 , 𝐴𝑃 . Macro-level
variables, 𝐴𝑃 (e.g. neighborhood SES), 𝑃 (e.g. other zipcode
level factors), and individual-level ones, 𝐴𝐼 (e.g. perceived
racial discrimination), 𝐼 , affect the outcome 𝑌 (e.g. a health
behavior).

5.1 Path-specific effects
While counterfactual fairness assumes that the entire effect of the

sensitive variables on the outcomes is problematic and constructs

the predictor with only the non-descendants of the sensitive at-

tribute [32], it is a fairly restrictive scenario especially when the

sensitive attributes can affect the outcome along both fair and un-
fair pathways as shown in Figure 2. Thus, disregarding the effect

only along unfair paths can help in preserving the fair individual

information regarding sensitive attributes [9]. Indeed, domain ex-

perts and policymakers can guide these decisions about identifying

fair and unfair pathways. We are interested only in correcting the

effect of the sensitive attribute on the outcome along the unfair

paths. For this we turn to path-specific effects, which isolate the

causal effect of a treatment on an outcome only along a certain

causal pathway [45]. In order to obtain the causal effect only along

a certain pathway, the idea that path-specific effects can be formu-

lated as nested counterfactuals is leveraged [54]. This is done by

considering that along the causal path of interest, say,𝐴𝐼 → 𝐼 → 𝑌 ,

the variable, 𝐴𝐼 , propagates the observed value, for example, 𝑎𝑖 in

Figure 2, and along other pathways, 𝐴𝐼 → 𝑌 , the counterfactual

value, 𝑎
′
𝑖 is propagated, assuming that 𝐴𝐼 = {𝑎𝑖 , 𝑎

′
𝑖 }. In this case,

the effect of any mediator between𝐴𝐼 and 𝑌 is evaluated according

to the corresponding value of 𝐴𝐼 propagated along the specific

causal path, the mediator 𝐼 obtains the value 𝐼 (𝑎𝑖 ). Here, the pri-
mary object of interest is the potential outcome variable, 𝑌 (𝑎𝑖 ),
which represents the outcome if, possibly contrary to fact, 𝐴𝐼 were

externally set to value 𝑎𝑖 . Given the values of 𝑎𝑖 , 𝑎
′
𝑖 , comparison of

𝑌 (𝑎′𝑖 ) and 𝑌 (𝑎𝑖 ) in expectation: E[𝑌 (𝑎𝑖 )] − E[𝑌 (𝑎
′
𝑖 )] would allow

us to quantify the path-specific causal effect, PSE, of 𝐴𝐼 on 𝑌 .
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Using this concept of path-specific effect, we next state path-

specific counterfactual fairness, defined by Chiappa [9].

Definition 5.1. Path-specific counterfactual fairness is defined
as a decision being fair towards an individual if it coincides with the
one that would have been made in a counterfactual world in which
the sensitive attribute along the unfair pathways (denoted by 𝜋 ) was
set to the counterfactual value.

Pr(𝑌𝐴→𝑎𝜋
(𝑈 ) = 𝑦 |𝑋,𝐴 = 𝑎) = Pr(𝑌𝐴→𝑎

′
𝜋
(𝑈 ) = 𝑦 |𝑋,𝐴 = 𝑎) (3)

Chiappa [9] further propose that in order to obtain a fair decision,

the path-specific effect of the sensitive attribute along the discrim-

inatory causal paths is removed from the model predictions, i.e.

𝑌
fair

= 𝑌−PSE. However, a key limitation of the approach presented

by Chiappa [9] is that only the path-specific counterfactual fairness

with respect to the sensitive attributes at the individual level is

considered. The presence of sensitive attributes at the macro-level

that affect properties at the individual level makes it non-trivial

to estimate the path-specific effect consisting of both macro and

individual-level sensitive attributes. Following, we describe the

identifiability conditions for obtaining path-specific counterfactual

fairness with respect to multi-level sensitive attributes by estimat-

ing multi-level path-specific effects.

Identification of multi-level path-specific effects.

Proposition 1. In the absence of any unmeasured confounding
between 𝐴𝑃 and 𝐴𝐼 and {𝐴𝐼 , I} ∉ 𝑝𝑎𝐴𝑃

, the multi-level path-specific
effects of both 𝐴𝑃 and 𝐴𝐼 on 𝑌 are identifiable.

Proposition 1 follows from the possible structural interactions

between 𝐴𝑃 and 𝐴𝐼 , where 𝐴𝑃 is a non-aggregate macro-property

not involving any individual-level computation. Next, we discuss

the interaction between𝐴𝑃 and𝐴𝐼 , where the macro-level sensitive

attribute is a causal parent of the individual-level sensitive attribute,

𝐴𝑃 ∈ {𝑝𝑎𝐴𝐼
}.

Figure 2 presents such an exemplar case of multi-level interac-

tions where macro-level sensitive attributes can cause individual

level variables, with the data generating process as described in

Figure 3a. 𝐴𝑃 and 𝐴𝐼 are binary variables where we assume 𝑎
′
𝑝

and 𝑎
′
𝑖 to represent the baseline values denoting advantaged treat-

ments. The rest of the variables 𝑃, 𝐼 and 𝑌 are continuous and

follow a linear relationship between the parents and the specific

variables. 𝜖𝑝 , 𝜖𝑎𝑖
, 𝜖𝑖 , 𝜖𝑦 are unobserved zero-mean Gaussian terms.

For this specific model we obtain the multi-level path-specific ef-

fects consisting of both 𝐴𝑃 and 𝐴𝐼 . The population level sensitive

attribute, 𝐴𝑃 affects 𝑌 via multiple paths along 1) 𝐴𝑃 → 𝑃 → 𝑌 , 2)

𝐴𝑃 → 𝐼 → 𝑌 , 3) 𝐴𝑃 → 𝐴𝐼 → 𝑌 , and 4) 𝐴𝑃 → 𝐴𝐼 → 𝐼 → 𝑌 ; the

individual level sensitive attribute 𝐴𝐼 affects 𝑌 along two causal

paths, 1) 𝐴𝐼 → 𝐼 → 𝑌 , and 2) 𝐴𝐼 → 𝑌 . With prior assumption

that 𝐴𝐼 → 𝑌 and 𝑃 → 𝑌 are not discriminatory causal paths, we

evaluate the path-specific effect along · · · → 𝐼 → 𝑌 , where · · · → 𝐼

repesents all paths into 𝐼 . Overall the path-specific effect can be

calculated as follows:

PSE
· · ·→𝐼→𝑌
𝐴𝑃←𝑎𝑝 ,𝐴𝐼←𝑎𝑖

= E
[
𝑌

(
𝑎
′
𝑖 , 𝑃

(
𝑎
′
𝑝

)
, 𝐼

(
𝑎𝑖 , 𝑎𝑝

))]
. (4)

The path-specific effect along · · · → 𝐼 → 𝑌 is computed by

comparison of the counterfactual variable 𝑌

(
𝑎
′
𝑖 , 𝑃

(
𝑎
′
𝑝

)
, 𝐼

(
𝑎𝑖 , 𝑎𝑝

))
,

where 𝑎𝑝 , 𝑎𝑖 are set to the baseline value of 1 in the counterfac-

tual and 0 in the original. The counterfactual distribution can be

estimated as follows:

𝑌

(
𝑎
′
𝑖 , 𝑃

(
𝑎
′
𝑝

)
, 𝐼

(
𝑎𝑖 , 𝑎𝑝

))
=

∫
𝑃,𝐼

Pr

(
𝑌 |𝑎′𝑖 , 𝐼 , 𝑃

)
Pr

(
𝐼 |𝑎𝑖 , 𝑎𝑝

)
Pr

(
𝑃 |𝑎′𝑝

)
.

(5)

We obtain the mean of this distribution as follows:

E[𝑌 |𝐼 , 𝑃, 𝑎′𝑖 ]

= 𝜃
𝑦 + 𝜃𝑦

𝑖
𝜃
𝑖 + 𝜃𝑦

𝑝 𝜃
𝑝 + 𝜃𝑦

𝑎𝑖
𝑎
′
𝑖 + 𝜃

𝑦

𝑖
𝜃
𝑖
𝑎𝑖
𝑎𝑖 + 𝜃

𝑦

𝑖
𝜃
𝑖
𝑎𝑝

𝑎𝑝 + 𝜃
𝑦
𝑝 𝜃

𝑝
𝑎𝑝

𝑎
′
𝑝 .

(6)

PSE
· · ·→𝐼→𝑌
𝐴𝑃←𝑎𝑝 ,𝐴𝐼←𝑎𝑖

is then obtained by comparing the observed and

counterfactual value of the mean of the counterfactual distribution,

E[𝑌 |𝑎𝑝 , 𝑎𝑖 ] − E[𝑌 |𝑎′𝑝 , 𝑎′𝑖 ] = 𝜃
𝑦
𝑎𝑖

(
𝑎
′
𝑖 − 𝑎′𝑖

)
+ 𝜃𝑦

𝑖
𝜃
𝑖
𝑎𝑖

(
𝑎𝑖 − 𝑎′𝑖

)
+ 𝜃𝑦

𝑖
𝜃
𝑖
𝑎𝑝

(
𝑎𝑝 − 𝑎′𝑝

)
+ 𝜃𝑦

𝑝 𝜃
𝑝
𝑎𝑝

(
𝑎
′
𝑝 − 𝑎′𝑝

)
= 𝜃

𝑦

𝑖
𝜃
𝑖
𝑎𝑖

(
𝑎𝑖 − 𝑎′𝑖

)
+ 𝜃𝑦

𝑖
𝜃
𝑖
𝑎𝑝

(
𝑎𝑝 − 𝑎′𝑝

)
.

(7)

Substituting 𝑎𝑖 = 1, 𝑎𝑝 = 1, 𝑎
′
𝑖 = 0, 𝑎

′
𝑝 = 0 in Equation 7 we obtain

the path-specific effect as a function of the parameters 𝜃
3

:

PSE
· · ·→𝐼→𝑌
𝐴𝑃←𝑎𝑝 ,𝐴𝐼←𝑎𝑖

= 𝜃
𝑦

𝑖
𝜃
𝑖
𝑎𝑖
+ 𝜃𝑦

𝑖
𝜃
𝑖
𝑎𝑝
. (8)

By the same approach, path-specific effects for individual and

macro-level sensitive attributes as well as the multi-level path spe-

cific effects for all the causal paths in Figure 2, are also evaluated.

Estimating the multi-level path-specific effects helps in construct-

ing a fair predictor which is described in the following section.

Algorithm 1 Causal Multi-level Fairness

Input: Causal Graph G consisting of nodes 𝑉 , data D over 𝑉 ,

discriminatory causal pathways 𝜋 , 𝛽 .

Output: Fair predictor 𝑌
fair

, model parameters 𝜃

for 𝑉𝑖 ∈ V do
Estimate

ˆ𝜃
𝑉𝑖 ← argmin𝜃

∑
𝑘∈D 𝑙

(
𝑉
(𝑘)
𝑖

, 𝑓𝑖

(
𝑝𝑎
(𝑘)
𝑖

))
end for
Calculate path-specific effects, PSE along 𝜋 using 𝜃

V

return 𝑌
fair

= E
[
𝑓𝑌

(
𝜃
𝑌
)]
− 𝛽 ∗ PSE𝜋

5.2 Fair predictions with multi-level
path-specific effects.

Fair outcomes can be estimated by removing the unfair path-specific

effect from the prediction (essentially making a correction on all

the descendants of the sensitive attributes), 𝑌 by simply subtracting

it, i.e. 𝑌
fair

= 𝑌 −PSE. As done in Chiappa [9], removing such unfair

information at test time ensures that the resulting decision coincides

with the one that would have been taken in a counterfactual world

in which the sensitive attribute along the unfair pathways were set

3

Plug-in estimators can be used to compute the parameters needed for estimating PSE.
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𝐴𝑃 ∼ Bernoulli (𝑝 = 0.5) ,

𝑃 = 𝜃
𝑝 + 𝜃𝑝𝑎𝑝𝐴𝑃 + 𝜖𝑝 ,

𝛾 = 𝜃
𝑎𝑖 + 𝜃𝑎𝑖𝑎𝑝𝐴𝑃 + 𝜃

𝑎𝑖
𝑝 𝑃 + 𝜖𝑎𝑖 ,

𝐴𝐼 = Bernoulli(𝜎 (𝛾)),

𝐼 = 𝜃
𝑖 + 𝜃𝑖𝑎𝑝𝐴𝑃 + 𝜃

𝑖
𝑎𝑖
𝐴𝐼 + 𝜖𝑖 ,

𝑌 = 𝜃
𝑦 + 𝜃𝑦𝑝 𝑃 + 𝜃

𝑦

𝑖
𝐼 + 𝜃𝑦𝑎𝑖𝐴𝐼 + 𝜖𝑦

𝜃
𝑝
, 𝜃

𝑎𝑖 , 𝜃
𝑖
, 𝜃

𝑦
= (0.2, 0.2, 0.2, 0.2)

𝜃
𝑝
𝑎𝑝
, 𝜃

𝑎𝑖
𝑎𝑝
, 𝜃

𝑎𝑖
𝑝 , 𝜃

𝑖
𝑎𝑝
, 𝜃

𝑖
𝑎𝑖
∼ 𝑈 (0.2, 0.7)

𝜃
𝑦
𝑝 , 𝜃

𝑦

𝑖
, 𝜃

𝑦
𝑎𝑖
∼ 𝑈 (0.3, 0.95)

𝜖𝑝 , 𝜖𝑎𝑖
, 𝜖𝑖 , 𝜖𝑦 ∼ N (0, 1)

𝜎 = 1/(1 + exp (−𝑥))

(a)

𝑌

𝑃

𝐴𝑃

𝐼

𝐴𝐼

𝐴𝑃 𝜃
𝑦
𝑝 𝜃

𝑝
𝑎𝑝

𝐴𝑃 , 𝐴𝐼 𝜃
𝑦
𝑝 𝜃

𝑝
𝑎𝑝
+ 𝜃𝑦

𝑖
𝜃
𝑖
𝑎𝑖

(b)

0.0 0.2 0.4 0.6 0.8 1.0
β (PSE Control)

0.2

0.4

0.6

0.8

|
̂ Y a

−
̂ Y a
0 |

indi (AI)
indi (AP)
indi (AI,AP)
multi (AI,AP)

(c)

Figure 3: Experimental details regarding multi-level example (Figure 2), a) Data generating process, b) Resulting causal graph
if 𝐴𝑃 is considered as an individual-level sensitive attribute instead of macro-level sensitive attribute as presented in Figure
2, 𝐴𝑃 ∉ 𝑝𝑎𝐴𝐼

, resulting path-specific effects with 𝐴𝑃 as individual-level sensitive attribute, and c) Path-specific unfairness
controlling for discriminatory effects of just𝐴𝐼 (blue),𝐴𝑃 considered as an individual-level sensitive attribute instead ofmacro-
level sensitive attribute (green), both 𝐴𝐼 , 𝐴𝑃 considered as individual-level sensitive attributes (purple), and 𝐴𝐼 , 𝐴𝑃 considered
as multi-level sensitive attributes (orange), over 10 runs.

to the baseline. We leverage this same idea for multi-level causal

fairness by generating fair predictions, 𝑦
fair

, by controlling for the

path-specific effects of multi-level sensitive attributes. For example,

consider the PSE resulting from intervening upon both 𝐴𝑃 and 𝐴𝐼

via the path · · · → 𝐼 → 𝑌 , PSE
· · ·→𝐼→𝑌
𝐴𝑃←𝑎𝑝 ,𝐴𝐼←𝑎𝑖

= 𝜃
𝑦

𝑖

(
𝜃
𝑖
𝑎𝑖
+ 𝜃𝑖𝑎𝑝

)
, we

can control for the discrimination at test time as follows:

𝑦
𝑛
fair

= 𝜃
𝑦 + 𝜃𝑦𝑝 𝑝

𝑛 + 𝜃𝑦
𝑖
𝑖
𝑛 + 𝜃𝑦𝑎 𝑎𝑛𝑖 − 𝛽

(
𝜃
𝑦

𝑖

(
𝜃
𝑖
𝑎𝑖
+ 𝜃𝑖𝑎𝑝

))
(9)

where 𝛽 accounts for the control over the path-specific effect. For

our analysis 𝛽 ranges from 0 to 1, where 0 denotes that we do not

account for any path-specific effect while 1 denotes that we remove

the entire path-specific effect. Intermediate values allow for only

partial removal of the path-specific effect. We study the effect of

the control over different path-specific effects on the performance

metric of the classifier. The steps are outlined in Algorithm 1. We

highlight that an accurate causal graph and a linear functional form

are key assumptions of this approach.

6 EXPERIMENTS
Our experiments in this section serve to empirically assess and

demonstrate residual unfairness when correcting for path-specific

effects of multiple sensitive attributes. We consider a synthetic set-

ting demonstrated in Figure 2 and real-world setting for income

prediction presented in Figure 4a; in both cases the structural causal

model is known a priori as well as the unfair pathways. In each case,

we first learn the parameters of the model (Θ) from the observed

data based on the known underlying causal graph, G as illustrated

in Algorithm 1. We then draw observed and counterfactual samples

from the distribution 𝜃 by sampling from the path-specific counter-

factual distribution, referred to as counterfactual distribution4. We

estimate fair predictors for both the observed and counterfactual

data using Algorithm 1. In case of no resultant unfairness, distribu-

tions of the outcome estimate for both observed and counterfactual

data should coincide. Density plots that do not coincide signifies

residual unfairness.

6.1 Synthetic setting
Here we generate data according to the structural equation model

presented in Figure 3a with linear relationships with the exception

that we consider 𝑌 to be binary, using a sigmoid function
5

. This

represents the data-generating process in accordancewith themulti-

level setting presented in Figure 2. The simulation parameters, 𝜃 , are

non-negative to ensure a positive path-specific effect, i.e. an unfair

effect. Furthermore, the parameters are standardized between 0 and

1 to allow for computational efficiency. The range of the parameters

in the uniform distribution is simulated to ensure a realistic setting

where the counterfactual distribution is diverse, and the differences

between the original and counterfactual distribution is significant

to evaluate multi-level fairness. If there are little differences in the

original and the counterfactual distribution, path-specific effects

become negligible resulting in no significant unfairness issues. In

total, 10 simulations with 𝑁 = 2000 samples in each are performed.

We train a linear regression model for 𝐼 , 𝑃 , and a logistic regression

4

Path-specific counterfactual distribution is obtained by altering the original value to

the counterfactual value only along the unfair paths (described by green in the causal

graph), and retaining the original value along the fair pathways.

5

The analysis of the path-specific effects remains similar to the one discussed in Section

5, where the effects are calculated on the odds ratio scale as Nabi and Shpitser [44].
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model for𝐴𝐼 , 𝑌 to learn the parameters (𝜃 ). We then calculate three

path-specific effects as follows: 1) PSE𝐴𝑃 ,𝐴𝐼
accounting for the effect

of both 𝐴𝑃 and 𝐴𝐼 , 2) PSE𝐴𝐼
accounting for the effect of only 𝐴𝐼 ,

and 3) PSE𝐴𝑃
accounting for the effect of only 𝐴𝑃 . Details about

this calculation are presented in Equation 7.

We observe that controlling for the multi-level path-specific ef-

fects of both𝐴𝑃 and𝐴𝐼 leads to little drop in the model performance

(accuracy). We also assess the counterfactual fairness of the result-

ing model after removing the unfair multi-level path-specific effects.

This is done by training a classifier for obtaining fair predictors,

𝑦𝑎𝑖 ,𝑎𝑝
, on the actual and counterfactual data respectively, where

the counterfactual data is obtained by altering the values of the

sensitive variables, 𝐴𝑃 and 𝐴𝐼 . This is done by first learning the

parameters, 𝜃 from the original data and then altering the values of

the sensitive attributes, 𝐴𝑃 and 𝐴𝐼 and obtaining the values of 𝑃, 𝐼

and 𝑌 from these counterfactual values of 𝐴𝑃 , 𝐴𝐼 and 𝜃 . We assess

the counterfactual fairness of the resulting models while account-

ing for unfairness due to both 𝐴𝑃 , 𝐴𝐼 and either𝐴𝐼 or𝐴𝑃 , in Figure

3c. The Y axis shows the average difference between observed and

counterfactual predictions, |𝑌𝑎 −𝑌𝑎′ | where 𝑎 is the observed value

of the sensitive attribute and 𝑎
′
is the corresponding counterfac-

tual value. This difference is analyzed for varying control of the

path-specific effect (PSE), 𝛽 along the X-axis. In order to assess the

advantage of considering the multi-level nature of the data, we

compare with the model presented in Figure 3b, where we treat

the macro-level sensitive attribute, 𝐴𝑃 as another individual-level

sensitive attribute, 𝐴𝐼 , i.e. 𝐴𝑃 ∉ 𝑝𝑎𝐴𝐼
. The blue line represents

the difference while accounting only for the individual-level path

specific effect 𝐴𝐼 while the orange line represents the multi-level

path-specific effect of both 𝐴𝑃 and 𝐴𝐼 . Similarly, the green line

represents the setting presented in Figure 3b, where 𝐴𝑃 , is treated

as an individual-level sensitive attribute (multi-level nature of its

action removed), and purple line represents the case where both
𝐴𝐼 and 𝐴𝑃 are treated as individual-level sensitive attributes. For

counterfactually fair models we expect the difference to be close to

zero since controlling for the path-specific effects cancels out the

counterfactual change. We observe that this happens only while

accounting for the multi-level path-specific effects. Thus, account-

ing for individual-level path-specific effects solely (blue, green, and

purple lines) does not result in counterfactually fair predictions as

can be seen from the high difference (0.7- 0.9). Moreover, correcting

for the unfair multi-level path-specific effects of both 𝐴𝑃 and 𝐴𝐼

results in counterfactually fair predictions with a slight drop in

accuracy from 94.5% to 91.5%.

6.2 UCI Adult Dataset
We demonstrate real-world evaluation of the proposed approach

on the Adult dataset from the UCI repository [34]. The UCI Adult

dataset is amenable for demonstration of our method, given that

it was used in Chiappa [9] to assess path-specific counterfactual

fairness, and because there are variables oriented in a manner that

create a potential multi-level scenario.We consider this well-studied

setting [9, 44] wherein the goal is to predict whether an individual’s

income is above or below $50,000. The data consist of age, work-

ing class, education level, marital status, occupation, relationship,

race, gender, capital gain and loss, working hours, and nationality

variables for 48842 individuals. The causal graph is represented in

Figure 4a. Consistent with Chiappa [9] and Nabi and Shpitser [44],

we do not include race or capital gain and loss variables. Here, 𝐴

represents the individual-level protected attribute sex, 𝐶 is nation-

ality,𝑀 is marital status, 𝐿 is the level of education, 𝑅 corresponds

to working class, occupation, and hours per week, 𝑌 is the income

class. We make an observation that nationality, 𝐶 , could be con-

sidered as a non-aggregate macro-level sensitive attribute. This is

because it may affect social influences and/or resources available

at the macro-level. For example, nationality affects both education

levels and martial status of individuals. Moreover, we also note

that marital status,𝑀 , can also be considered as an individual-level

sensitive attribute, as we may not want to discriminate individuals

based on their marital status [24, 51]. Thus, 𝐶 , a macro-level sensi-

tive attribute affects𝑀 , an individual-level sensitive attribute and

the relationship between𝐶 and other variables in the graph mimics

that of a multi-level scenario. Moreover, it may be reasonable to

consider a setting in which it is desirable to predict income, while

also being fair to nationality, in order to understand the effect that

nationality may have. We highlight that macro-properties such as

nationality are included in datasets like UCI adult, however, correct-

ing for any unfairness due to macro-level sensitive attributes has

not been considered in previous fairness studies. We also emphasize

that there may be other datasets that better express the need for

macro and individual-level sensitive attributes, however we con-

sider this dataset/setting in order to be consistent with previous

work in causal fairness which has used the same dataset, though

have only analyzed unfairness due to an individual-level sensitive

attribute [9]. Paths in Figure 4a are thus defined based on mapping

the figure from Chiappa [9] to the multi-level framework in Figure

1b with 𝐶 as the macro-level sensitive attribute and 𝐴, 𝑀 as the

individual-level sensitive attributes.

To first evaluate the path-specific effect of a single individual-

level sensitive attribute as done in prior work [9], we evaluate the

effect of only 𝐴 (the individual level sensitive attribute considered

in Chiappa [9]) along 𝐴→ 𝑌 and 𝐴→ 𝑀 → · · · → 𝑌 to be 3.716.

We obtain a fair prediction as follows:

𝑦
fair

= Bernoulli

(
𝜎

(
𝜃
𝑦 + 𝜃𝑦𝑐 𝐶 + 𝜃

𝑦
𝑚

(
𝑀 − 𝜃𝑚𝑎

)
+ 𝜃𝑦

𝑙

(
𝐿 − 𝜃𝑙𝑚𝜃

𝑚
𝑎

)))
by removing the path specific effect of 𝐴 along a priori known

discriminatory paths. The fair accuracy is 78.87%, consistent with

Chiappa [9].

We next evaluate the path-specific effect of both the macro (𝐶)

and individual-level sensitive attributes (𝐴,𝑀)
6

. In the counterfac-

tual world, the individual receives advantaged macro and individual

level treatment. Since, 𝐶 is mostly represented by the value 39, and
𝐴 is represented by 2 levels 0 and 1, worst to best, we consider the

baseline values to be 𝑐 = 39 and 𝑎 = 1. We compute the path-specific

effect of 𝐶 on 𝑌 via 𝐶 → 𝑀 → · · · → 𝑌 , 𝐶 → 𝐿 → · · · → 𝑌 ,

𝐴 → 𝑀 → · · · → 𝑌 , and 𝐴 → 𝑌 in the baseline scenario to be

10.65. As we do not completely remove the effect of 𝐶; only along

certain paths as described above, we still retain important informa-

tion about nationality, 𝐶 , an informative feature. After correcting

for the unfair effect of 𝐶 , 𝐴, and𝑀 , the accuracy is 77.92% (𝛽 = 1),

6

We use pre-processed data from [42].
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Figure 4: a) Causal graph for the UCI Adult dataset [9], 𝐴 and 𝑀 represent the individual-level protected attributes, sex and
marital status, respectively, 𝐶 is age and nationality, 𝐿 is the level of education, 𝑅 corresponds to working class, occupation,
and hours per week, 𝑌 is the income class, unfair paths are represented in green b) Density of 𝑌 , c) path-specific unfairness,
|𝑌𝑎 − 𝑌𝑎′ | controlling for the effects of just 𝐴𝐼 (blue), 𝐴𝑃 (orange) and both 𝐴𝐼 , 𝐴𝑃 (yellow).

in comparison with an accuracy of 78.87% from removing the unfair

effect of 𝐴 alone. Thus, there is not significant drop in the model

performance after correcting for the unfair effects of both 𝐴,𝑀 and

𝐶 .

Next, we study the residual unfairness in a series of counterfac-

tual settings which account for unfairness at individual, macro-level

sensitive attributes and their combination. Results are presented in

Figure 4b. If density of two plots coincide, then they are counterfac-

tually fair, i.e. there is no difference in prediction based on unfair

pathways. The purple plot represents the fair model, 𝑌
fair

, trained

on the original data that corrects for the multi-level path-specific

effects of {𝐴,𝑀,𝐶}. In the process of learning the fair predictions,

we learn the parameters for the model represented in Figure 4a as

illustrated in Algorithm 1 and then generate counterfactual samples

from the observed distribution. We next assess fairness of models

that account for varying fair/unfair pathways and variable types.

First, we generate individual-level counterfactual data by only al-

tering the individual-level sensitive attributes 𝐴 and𝑀 along the

unfair pathways, and train a model on the individual-level counter-

factual data, we call this𝑌
(
𝑎
′
𝑖

)
. The red curve represents the density

plot of 𝑌
(
𝑎
′
𝑖

)
after controlling for the individual-level path-specific

effect at 𝛽 = 1. Similarly, we generate macro-level counterfactual

data by only altering the macro-level sensitive attribute, 𝐶 , along

the unfair paths, 𝐶 → 𝑀 → · · · ,𝐶 → 𝐿 → · · · , and train a model

on this macro-level counterfactual data, which is represented by

𝑌 (𝑎′𝑝 ) (green curve). At last, we generate individual and macro-

level counterfactual data, by altering 𝐴,𝑀 and 𝐶 along all unfair

paths, represented by green in Figure 4a. In this case, the predictor,

𝑌 (𝑎′𝑖 , 𝑎
′
𝑝 ), is represented by the black curve, As can be seen from

the general overlap of the purple and black curves, controlling for

path-specific effects of both individual and macro-level sensitive

attributes generates counterfactually fair models, while only con-

trolling for the individual or macro variables doesn’t provide the

same density estimate as a fair model. Similarly, the residual unfair-

ness is presented in Figure 4c, and controlling for the multi-level

path-specific effects (yellow curve) results in a counterfactual fair

model as the difference, |𝑌𝑎 −𝑌𝑎′ | approaches zero. Thus, correcting

the multi-level path specific effect does not marginally drop the

model performance, while ensuring that predictions are fair with

respect to individual and macro-level attributes.

7 CONCLUSION
Our work extends algorithmic fairness to account for the multi-

level and socially-constructed nature of forces that shape unfairness.

In doing so, we first articulate a new definition of fairness, multi-
level fairness. Multi-level fairness articulates a decision being fair

towards the individual if it coincides with the one in the counter-

factual world where, contrary to what is observed, the individual

identifies with the advantaged sensitive attribute at the individual-

level and also receives advantaged treatment at the macro-level

described by the macro-level sensitive attribute. A framework like

this can be used to assess unfairness at each level, and identify

the places for intervention that would reduce unfairness best (e.g.

via macro-level policies versus individual attributes). As we show

here, leveraging datasets that represent more than individual at-

tributes can improve fairness, as often individual level attributes

have variance with respect to macro-properties, or are proxies for

macro-properties which may be the critical sources of unfairness

[38]. This is becoming possible given the large number of open data

sets representing macro-attributes that are available, relevant to

health, economics, and many other settings. Through our experi-

ments, we illustrate the importance of accounting for macro-level

sensitive attributes by exhibiting residual unfairness if they are

not accounted for. Importantly, we show this residual unfairness

persists even in cases when the same information and variables are

considered, but without accounting for the multi-level nature of

their interaction.

Finally, we demonstrate a method for achieving fair outcomes by

removing unfair path-specific effects with respect to both individual

and macro-level sensitive attributes. While a clear understanding

of the macro-level sensitive attributes is essential for multi-level

fairness, approaches to learning the latent representation of the
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macro-level sensitive attributes in their absence from individual-

level factors could be important future work. As an initial frame-

work, we consider path-specific effects for linear models here; we

also endeavor to extend this to fewer assumptions on the functional

form in the future.
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