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ABSTRACT

We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Legacy Survey images
of galaxies within the SDSS DRS footprint. Deeper DECaLS images (r = 23.6 versus r = 22.2 from SDSS) reveal spiral arms,
weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images,
volunteers select from a new set of answers designed to improve our sensitivity to mergers and bars. Galaxy Zoo volunteers
provide 7.5 million individual classifications over 314 000 galaxies. 140 000 galaxies receive at least 30 classifications, sufficient
to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used
to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors
for the detailed morphology of all 314 000 galaxies. We use active learning to focus our volunteer effort on the galaxies which,
if labelled, would be most informative for training our ensemble. When measured against confident volunteer classifications,
the trained networks are approximately 99 per cent accurate on every question. Morphology is a fundamental feature of every
galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve.

Key words: methods: data analysis — galaxies: bar — galaxies: general —galaxies: interactions.

bulges, and discs, allowing past mergers to be identified (Hopkins

1 INTRODUCTION etal. 2010; Fontanot et al. 2011; Kaviraj 2014; Brooks & Christensen

Morphology is a key driver and tracer of galaxy evolution. For
example, bars are thought to move gas inwards (Sakamoto et al.
1999) driving and/or shutting down star formation (Sheth et al.
2004; Jogee, Scoville & Kenney 2005), and bulges are linked to
global quenching (Masters et al. 2011; Fang et al. 2013; Bluck et al.
2014) and inside-out quenching (Spindler et al. 2017; Lin et al.
2019). Morphology also traces other key drivers, such as the merger
history of a galaxy. Mergers support galaxy assembly (Wang et al.
2011; Martin et al. 2018), though their relative contribution is an
open question (Casteels et al. 2014), and may create tidal features,

* E-mail: michael.walmsley @manchester.ac.uk

2015).

Unpicking the complex interplay between morphology and galaxy
evolution requires measurements of detailed morphology in large
samples. While modern surveys reveal exquisite morphological
detail, they image far more galaxies than scientists can visually
classity. Galaxy Zoo solves this problem by asking members of the
public to volunteer as ‘citizen scientists’ and provide classifications
through a web interface. Galaxy Zoo has provided morphology
measurements for surveys including SDSS (Lintott et al. 2008;
Willett et al. 2013) and large HST programs (Simmons et al. 2017b;
Willett et al. 2017).

Knowing the morphology of homogeneous samples of hundreds
of thousands of galaxies supports science only possible at scale.

© 2021 The Author(s).
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The catalogues produced by the collective effort of Galaxy Zoo
volunteers have been used as the foundation of a large number of
studies of galaxy morphology (see Masters 2019 for a review), with
the method’s ability to provide estimates of confidence alongside
classification especially valuable. Galaxy Zoo measures subtle ef-
fects in large populations (Masters etal. 2010; Willettet al. 2015; Hart
et al. 2017); identifies unusual populations that challenge standard
astrophysics (Simmons et al. 2013; Tojeiro et al. 2013; Kruk et al.
2017); and finds unexpected and interesting objects that provide
unique data on broader galaxy evolution questions (Cardamone et al.
2009; Lintott et al. 2009; Keel et al. 2015).

Here, we present the first volunteer classifications of galaxy images
collected by the Dark Energy Camera Legacy Survey (DECaLS; Dey
et al. 2019). This work represents the first systematic engagement
of volunteers with low-redshift images as deep as those provided
by DECaLS, and thus represents a more reliable catalogue of
detailed morphology than has hitherto been available. These detailed
classifications include the presence and strength of bars and bulges,
the count and winding of spiral arms, and the indications of recent
or ongoing mergers. Our volunteer classifications were sourced over
three separate Galaxy Zoo DECaLS (GZD) classification campaigns,
GZD-1, GZD-2, and GZD-5, which classified galaxies first released
in DECaLS Data Releases 1, 2, and 5, respectively. The key practical
differences are that GZD-5 uses an improved decision tree aimed
at better identification of mergers and weak bars, and includes
galaxies with just 5 total votes as well as galaxies with 40 or
more. Across all campaigns, we collect 7496 325 responses from
Galaxy Zoo volunteers, recording 30 or more classifications in at
least one campaign for 139 919 galaxies and fewer (approximately 5
classifications) for an additional 173 870 galaxies, totalling 313 789
classified galaxies.

For the first time in a Galaxy Zoo data release, we also pro-
vide automated classifications made using Bayesian deep learning
(Walmsley et al. 2020). By using our volunteer classifications to
train a deep learning algorithm, we can make detailed classifications
for all 313789 galaxies in our target sample, providing morphol-
ogy measurements faster than would be possible than relying on
volunteers alone. Bayesian deep learning allows us to learn from
uncertain volunteer responses and to estimate the uncertainty of our
predictions. It also allows us to identify which galaxies, if labelled,
would be most informative for training our classifier (active learning).
We chose to partially focus our volunteers on such informative
galaxies, requesting 40 classifications per informative galaxy and
only 5 for the remainder. Our classifier predicts posteriors for how
volunteers would have answered all decision tree questions,' with an
accuracy comparable to asking 5 to 15 volunteers, depending on the
question, and achieving approximately 99 per cent accuracy on every
question for galaxies where the volunteers are confident (volunteer
vote fractions below 0.2 or above 0.8).

In Section 2, we describe the observations used and the creation
of RGB images suitable for classification. In Section 3, we give
an overview of the volunteer classification process and detail the
new decision trees used. In Section 4, we investigate the effects of
improved imaging and improved decision trees, and we compare our
results to other morphological measurements. Then, in Section 5, we
describe the design and performance of our automated classifier —
an ensemble of Bayesian convolutional neural networks. Finally, in
Section 6, we provide guidance (and example code) for effective use
of the classifications.

!Excluding the final ‘Is there anything odd?’ question as it is multiple-choice.
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2 IMAGING

2.1 Observations

Our galaxy images are created from data collected by the DECalLS
survey (Dey et al. 2019). DECaLS uses the Dark Energy Camera
(DECam; Flaugher et al. 2015) at the 4m Blanco telescope at Cerro
Tololo Inter-American Observatory, near La Serena, Chile. DECam
has a roughly hexagonal 3.2 deg” field of view with a pixel scale of
0.262 arcsec per pixel. The median point spread function full-width
at half-maximum (FWHM) is 1729, 1718, and 1”11 for g, r, and z,
respectively.

The DECaLS survey contributes targeting images for the up-
coming Dark Energy Spectroscopic Instrument (DESI). DECalLS
is responsible for the DESI footprint in the Southern Galactic Cap
(SGC) and the 6 < 34 region of the Northern Galactic Cap (NGC),
totalling 10480 deg?.> 1130 deg? of the SGC DESI footprint are
already being imaged by DECam through the Dark Energy Survey
(DES; The Dark Energy Survey Collaboration 2005) so DECalLS
does not repeat this part of the DESI footprint. DECaLS implements a
3-pass strategy to tile the sky. Each pass is slightly offset (approx. 0.1—
0.6 deg). The choice of pass and exposure time for each observation
is optimized in real-time based on the observing conditions recorded
for the previous targets, as well as the interstellar dust reddening, sky
position, and estimated observing conditions of possible next targets.
This allows a near-uniform depth across the survey. In DECaL.S DR1,
DR2, and DRS, from which our images are drawn, the median 5o
point source depths for areas with 3 observations was approximately
(AB) g = 24.65, r = 23.61, and 7z = 22.84.> The DECaLS survey
completed observations in 2019 March.

2.2 Selection

We identify galaxies in the DECaLS imaging using the NASA—
Sloan Atlas v1.0.0 (NSA). As the NSA was derived from SDSS
DRS8 imaging (Aihara et al. 2011), this data release only includes
galaxies that are within both the DECaLS and SDSS DRS footprint.
In effect, we are using deeper DECaLS imaging of the galaxies
previously imaged in SDSS DRS. This ensures our morphological
measurements have a wealth of ancillary information derived from
SDSS and related surveys, and allows us to measure any shift in
classifications versus Galaxy Zoo 2 using the subset of SDSS DR8
galaxies classified both in this work and in Galaxy Zoo 2 (Section 4).
Fig. 1 shows the resulting GZ DECaLS sky coverage. NSA v1.0.0
was not published but the values of the columns used here are
identical to those in NSA v1.0.1, released in SDSS DR13 (Albareti
et al. 2017); only the column naming conventions are different.
Selecting galaxies with the NSA introduces two implicit cuts.
First, the NSA primarily includes galaxies brighter than m, = 17.77,
the SDSS spectroscopic target selection limit. Galaxies fainter than
m, = 17.77 are included only if they are in deeper survey areas (e.g.
Stripe82) or were measured using ‘spare’ fibres after all brighter
galaxies in a given field were covered; we suggest researchers enforce
their own magnitude cut according to their science case. Secondly,
the NSA only covers redshifts of z = 0.15 or below. To these implicit
cuts, we add an explicit cut requiring Petrosian radius (the NSA

2The remaining DESI footprint is being imaged by DECaLS’ companion
surveys, MzLS and BASS (Dey et al. 2019).
3See https://www.legacysurvey.org/dr5/description/ and related pages.
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Figure 1. Sky coverage of GZ DECaLS (equatorial coordinates), resulting
from the imaging overlap of DECaLS DRS5 and SDSS DRS, shown in red.
Darker areas indicate more galaxies. Sky coverage of Galaxy Zoo 2, which
used images sourced from SDSS DR7, shown in light blue. The NSA includes
galaxies imaged by SDSS DRS, including galaxies newly imaged at the
Southern Galactic Cap (approx. 2500 deg?).

v1.0.0 PETROTHETA? column) of at least 3 arcsec, to ensure the
galaxy is sufficiently extended for meaningful classification.

For each galaxy, if the coordinates had been imaged in the g, r, and
z bands, and the galaxy passed the selection cuts above, we acquired
a combined FITS cutout of the grz bands from the DECaLS cutout
service (www.legacysurvey.org).

Galaxy Zoo presents volunteers with 424 x 424 pixel square
galaxy images. GZD-1 and GZD-2 acquired 424 x 424 pixel square
FITS cutouts directly from the cutout service. To ensure that galaxies
typically fit well within a 424 pixel image, cutouts were downloaded
with an interpolated pixel scale s of

s = max(min(0.04 pso, 0.02pog), 0.1), )

where psg is the Petrosian 50 per cent-light radius and pgy is the
Petrosian 90 per cent-light radius. Approximately 1 per cent of
galaxies have incorrectly large radii reported in the NSA (typically
as a result of foreground stars or other interloping sources) and this
causes the field to be incorrectly large and hence the target galaxy to
appear incorrectly small. To allow researchers to mitigate this issue,
we flag images for which there are more source pixels away from the
centre than near the centre; specifically, for which the mean distance
of all likely source pixels® exceeds 161 (approximately the expected
value for all pixels). We find by eye that this simple procedure
identifies the worst-affected galaxies. We report the mean source
pixel distance and distance flags as wrong_size_statisticand
wrong._size_warning, respectively.

For GZD-5, to avoid banding artefacts caused by the interpolation
method of the DECaLS cutout service, each FITS image was
downloaded at the fixed native telescope resolution of 0.262 arcsec?
per pixel,’ with enough pixels to cover the same area as 424 pixels
at the interpolated pixel scale s. These individually sized FITS
were then resized locally up to the interpolated pixel scale s by
Lanczos interpolation (Lanczos 1938). Image processing is otherwise
identical between campaigns. Galaxies with incomplete imaging,
defined as more than 20 per cent missing pixels in any band, were

4 Azimuthally averaged SDSS-style Petrosian radius, derived from the r band.
See Albareti et al. (2017) and the NSA v1.0.1 data model.

3 Arbitrarily defined as pixels with double the 20th percentile band-averaged
value after the scaling in Section 2.3.

®Up to a maximum of 512 pixels per side. Highly extended galaxies were
downloaded at reduced resolution such that the FITS had exactly 512 pixels
per side.
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discarded. For GZD-1/2, 92960 of 101252 galaxies had complete
imaging (91.8 per cent). For GZD-5, 216 106 of 247 746 galaxies not
in DECaLS DR1/2 had complete imaging (87.2 per cent).”

2.3 RGB image construction

We convert the measured grz fluxes into RGB images following the
methodology of Lupton et al. (2004). To use the grz bands as RGB
colours, we multiply the flux values in each band by 125.0, 71.43,
and 52.63, respectively. These numbers are chosen by eye® such that
typical subjects show an appropriate range of colour once mapped to
RGB channels.

For background pixels with very low flux, and therefore high
variance in the proportion of flux per band, naively colouring by the
measured flux creates a speckled effect (Willett et al. 2017). As an
extreme example, a pixel with 1 photon in the g band and no photons
in r or z would be rendered entirely red. To remove these colourful
speckles, we desaturate pixels with very low flux. We first estimate
the total per-pixel photon count N assuming an exposure time of 90
seconds per band and a mean photon frequency of 600 nm. Poisson
statistics imply the standard deviation on the total mean flux in that
pixel is proportional to /N. For pixels with a standard deviation
below 100, we scale the per-band deviation from the mean per-pixel
flux by a factor of 1 per cent of the standard deviation. The effect is to
reduce the saturation of low-flux pixels in proportion to the standard
deviation of the total flux. Mathematically, we set

lejc:X,-/-—{—ot(X,-jC—Xi,-j) where ot:min(0.0l\/Xi,-/-T/)», 1), )

where Xj;. and X o are the flux at pixel ij in channel ¢ before and

after desaturation, X;; is the mean flux across bands at pixel ij, T
is the mean exposure time (here, 90s) and X is the mean photon
wavelength (here, 600 nm).

Pixel values were scaled by arcsinh(x) to compensate for the high
dynamic range typically found in galaxy flux, creating images which
can show both bright cores and faint outer features. To remove the
very brightest and darkest pixels, we linearly rescale the pixel values
to lie on the (—0.5,300) interval and then clip the pixel values to O
and 255, respectively. We use these final values to create an RGB
image using pillow (Kemenade et al. 2020).

The images are available on Zenodo at https://doi.org/10.5281/
zen0do.4573248. The code used to download the FITS cutouts and
convert them to RGB images is available on GitHub for GZD-1,
GZD-2, and GZD-5.

3 VOLUNTEER CLASSIFICATIONS

Volunteer classifications for GZ DECaLS were collected during three
campaigns. GZD-1 and GZD-2 classified all 99 109 galaxies passing
the criteria above from DECALS DR1 and DR2, respectively. GZD-
1 ran from 2015 September to 2016 February, and GZD-2 from
2016 April to 2017 February. GZD-5 classified 262 000 DECALS
DRS5-only galaxies passing the criteria above. GZD-5 ran from 2017
March to 2020 October. GZD-5 used more complex retirement
criteria aimed at improving our automated classification (3.1) and
an improved decision tree aimed at better identification of weak bars
and minor mergers (4.2).

"Note that these numbers do not sum to the total number of galaxies classified
across both campaigns because some galaxies are shared between campaigns.
8By Dustin Lang, who we gratefully acknowledge.
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Figure 2. GZD-1, GZD-2, and GZD-5 classification counts, excluding
implausible classifications (Section 4.3.1). GZD-1 has approximately 40—
60 classifications, GZD-2 has approximately 40, and GZD-5 has either
approximately 5 or approximately 30-40. 5.9 per cent of GZD-5 galaxies
received more than 40 classifications due to mistaken duplicate uploads.

This iteration of the Galaxy Zoo project used the infrastructure
made available by the Zooniverse platform; in particular, the open
source Panoptes platform (The Zooniverse Team 2020). The platform
allows for the rapid creation of citizen science projects, and presents
participating volunteers with one of a subject set of images chosen
either randomly, or through criteria described in Section 3.1.

3.1 Selecting total classifications

How many volunteer classifications should each galaxy receive?
Ideally, all galaxies would receive enough classifications to be
confident in the average response (i.e. the vote fraction) while still
classifying all the target galaxies within a reasonable timeframe.
However, the size of modern surveys make this increasingly imprac-
tical. Collecting 40 volunteer classifications for all 314 000 galaxies
in this data release would have taken around eight years without
further promotion efforts. The larger data sets of future surveys will
only be more challenging. In anticipation of future classification
demands, we have therefore implemented a variable retirement rate
here (motivated and described further in Walmsley et al. 2020).
Unlike previous data releases, GZ DECaLS galaxies each received
different numbers of classifications (Fig. 2). Beginning part-way
through GZD-5, we prioritize classifications for the galaxies expected
to most improve our machine learning models, and rely more heavily
on those models for classifying the remainder.

For GZD-1 and GZD-2, all galaxies received at least 40
classifications’ (as with previous data releases). GZD-1 galaxies have
between 40 and 60 classifications, selected at random, while GZD-2
galaxies all have approximately 40. For GZD-5, galaxies classified
until 2019 June also received approximately 40 classifications. From
2019 June, we introduced an active learning system. Using active
learning, galaxies expected to be the most informative for training our
deep learning model received 40 classifications, and the remaining
galaxies received at least 5 classifications.

By ‘most informative’, we mean the galaxies which, if classified,
would most improve the performance of our model. We describe our

Note that because classifications from volunteers who respond ‘artefact’ at
implausibly high rates are discounted, the total classifications in Fig. 2 and
the published catalogue are slightly lower — see Section 4.3.1.

Galaxy Zoo DECalS data release 3969

method for estimating which galaxies would be most informative
in full in Walmsley et al. (2020). Briefly, we use a convolutional
neural network to make repeated predictions for the probability
that k of N total volunteers select ‘Featured’ to the ‘Smooth or
Featured’ question.!® For each prediction, we randomly permute
the network with MC Dropout (Gal 2016), approximating (roughly)
training many networks to make predictions on the same data set. It
can be shown that, under some assumptions, the most informative
galaxies will be the galaxies with confidently different predictions
under each MC Dropout permutation; that is, where the permuted
networks confidently disagree (Houlsby 2014). Formally, we acquire
(label with volunteers) the galaxies with the highest estimated mutual
information, given by:

N

Ik, w] = =Y (Bin(k| f"(x), N)) log[(Bin(k| f*(x), N))]

k=0

N
+ <Z Bin(k| f*(x), N)log[Bin(k| f*(x). N)]> )

k=0

where f”(x) is the output of the neural network trained to predict
the typical volunteer response following Walmsley et al. (2020) and
Bin(k|f*(x), N) is the probability for k of N volunteers to answer
‘Featured’ to ‘Smooth or Featured” given that network-estimated
typical response. Angled brackets indicate the expectation over the
distribution of weights, approximated as the expectation over MC
Dropout permutations. In short, the negative term gives the entropy
of the volunteer vote distribution given the mean model predictions,
and the positive term gives the mean entropy from the predictions of
each permuted model. The difference between these terms measures
the degree of confident disagreement between permuted models. See
Walmsley et al. (2020) for more.

We used the same architecture and loss function as in Walmsley
et al. (2020) while concurrently developing the more sophisticated
classifier introduced in this Section. The initial training set was all
GZD-5 galaxies fully classified (N > 36) by the time of activation.
Each active learning cycle proceeded as follows. The model was
retrained with all galaxies fully classified by the cycle start date. Next,
unlabelled galaxies were ranked by mutual information (equation 3)
and the most informative 1000 of a random 32 768'! galaxies were
uploaded. Once those galaxies were fully classified by volunteers
(typically in 1-4 weeks) the cycle was repeated. 6939 total galaxies
were uploaded in total.'”

We chose to select from a subset of galaxies not yet classified for
two reasons. The first was for computational efficiency: calculating
the acquisition function requires making 5 predictions per galaxy.
The second was that ad hoc experiments showed that galaxies
with the very highest acquisition function values were often highly
unusual and might be too unusual to learn from effectively. We also
added a retirement rule to retire galaxies receiving 5 classifications
of ‘artefact’, to help avoid volunteers being presented with these
prioritized artefacts.

We emphasize that the number of classifications each galaxy
received under active learning is not random. Fig. 3 shows how

10Artifact” answers are sufficiently rare that we chose to ignore votes for this
answer when calculating which galaxies to label.

"o allow for out-of-memory shuffling, binary-encoded galaxy images were
stored in ‘shards’ of 4096 galaxies each. 32 768 corresponds to 8 such shards.
2Technical errors with duplicate uploads led to some active-learning-
prioritized galaxies receiving more than 40 classifications; the median number
of classifications is 44.
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Figure 3. ‘Featured’ vote fraction and Petrosian radius (as measured by the
NSA PETROTHETA column) for galaxies selected either at random (prior to
enabling active learning) or prioritized as informative. Prioritized galaxies are
dramatically more featured and slightly more extended than the previously
classified random galaxies.

active-learning-prioritized galaxies are dramatically more featured
and slightly more extended than the previously classified random
galaxies, matching our intuition that small ‘smooth’ elliptical galax-
ies are easier to classify and hence less informative than extended
‘featured’ galaxies. For details on handling this and other selection
effects, see Section 6.

3.2 Decision trees

The questions and answers we ask our volunteers define the mea-
surements we can publish. It is therefore critical that the Galaxy Zoo
decision tree matches the science goals of the research community.

The questions in a given Galaxy Zoo workflow are designed to
be answerable even by a classifier with little or no astrophysical
background. This motivates a focus primarily on the appearance of
the galaxy, rather than incorporating physical interpretations which
would require prior knowledge of galaxies. As an example, the
initial question in all decision trees from Galaxy Zoo 2 onwards
has asked the viewer to distinguish primarily between ‘smooth’ and
‘featured’ galaxies, rather than ‘elliptical’ and ‘disc’ galaxies. This
distinction between descriptive and interpretive classification is not
always perfectly enforced. For example, the ‘features’ response to the
initial question is worded as ‘features or disc’, and a later question
asks whether the galaxy is ‘merging or disturbed’, which requires
some interpretation.'3 To aid classifiers, all iterations of Galaxy
Zoo have therefore included illustrative icons in the classification
interface. Additional help is also available; in the current project, the
interface includes a brief tutorial, a detailed field guide with multiple
examples of each type of galaxy, and specific help text available for
each individual classification task.

The largest workflow change between Galaxy Zoo versions was
between the original Galaxy Zoo (GZ1) and Galaxy Zoo 2 (GZ2).
GZ1 presented classifiers with a single task per galaxy, a choice
between smooth/elliptical, multiple versions of featured/disc (in-
cluding edge-on, face-on, and directionality of spiral structure), and
merger. GZ2 re-classified the brightest quarter of the GZ1 sample
in much greater detail, including a branched, multi-task decision
tree. Subsequent changes to the decision tree for different versions
of Galaxy Zoo have been mostly iterative in nature, driven in part
by the data itself and in part by experience-based reflection which
revealed minor adjustments that could help classifiers provide more
accurate information. As an example of the former, a new branch was

13The step from visual description to interpretation may explain why a model
trained by Fischer, Dominguez Sdnchez & Bernardi (2019) on expert T-Type
labels makes more confident predictions than volunteers on whether a subset
of low-mass GZ2 galaxies show spiral structure; see Peterken et al. (2021).
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added for GZ-Hubble and GZ-CANDELS to capture information on
star-forming clumps in classifications of higher redshift galaxies.
As an example of the latter, the final 2 tasks of GZ2 have been
adjusted over multiple versions to facilitate reliable identification of
rare features. Such adjustments have generally been minimized to
avoid complicating comparisons with previous campaigns.

The decision tree used for GZD-1 and GZD-2 has three modifica-
tions versus the Galaxy Zoo 2 decision tree (Willett et al. 2013).
The ‘Can’t Tell’ answer to ‘How many spiral arms are there?’
was removed, the number of answers to ‘How prominent is the
central bulge?” was reduced from four to three, and ‘Is the galaxy
currently merging, or is there any sign of tidal debris?’ was added as
a standalone question.

For GZD-5, we made three further changes. Several Galaxy Zoo
studies (e.g. Masters et al. 2012; Skibba et al. 2012; Willett et al.
2013; Kruk et al. 2018) found that galaxies selected with 0.2 < py,,
< 0.5 in GZ2 correspond to ‘weak bars’ when compared with expert
classification such as those in Nair & Abraham (2010). Therefore,
to increase the detection of bars, we changed the possible answers
to the ‘Does this galaxy have a bar?” question from ‘Yes’ or ‘No’
to ‘Strong’, ‘Weak’ or ‘No’. We define a strong bar as one that is
clearly visible and extending across a large fraction of the size of the
galaxy. A weak bar is smaller and fainter relative to the galaxy, and
can appear more oval than the strong bar, while still being longer in
one direction than the other. Our definition of strong versus weak bar
is similar that of Nair & Abraham (2010), with the exception that
they also have an ‘intermediate’ classification. We added examples
of galaxies with ‘weak bars’ to the Field Guide and provided a new
icon for this classification option, as shown in Fig. 4.

Secondly, to allow for more fine-grained measurements of bulge
size, we increased the number of ‘How prominent is the central
bulge?’ answers from three (‘No’, ‘Obvious’, ‘Dominant’) to five
(‘No Bulge’, ‘Small’, ‘Moderate’, ‘Large’, ‘Dominant’). We also
re-included the ‘Can’t Tell’ answer.

Thirdly, we modified the ‘Merging’ question from ‘Merging’,
‘Tidal’, ‘Both’, or ‘None’, to the more phenomenological ‘Merging’,
‘Major Disturbance’, ‘Minor Disturbance’, or ‘No’. Our goal was to
present more direct answers to our volunteers and to better distinguish
major and minor mergers, to support recent scientific interest in the
role of major and minor mergers on mass assembly (LOpez-Sanjuan
etal. 2010; Kaviraj 2013), black hole accretion (Alexander & Hickox
2012; Simmons, Smethurst & Lintott 2017a), and morphology
(Hopkins et al. 2009; Lotz et al. 2011; Lofthouse et al. 2017). We
made this final ‘merger’ change two months after launching GZD-5;
6722 GZD-5 galaxies (2.7 per cent) were fully classified before that
date and so do not have responses from volunteers to this question.

We also make several improvements to the illustrative icons shown
for each answer. These icons are the most visible guide for volunteers
as to what each answer means (complementing the tutorial, help text,
field guide, and ‘Talk’ forum). Fig. 4 shows the GZD-5 decision tree
with new icons as shown to volunteers. The decision tree used in
GZD-1 and GZD-2 is shown in Fig. Al.

For the ‘Smooth or Featured?” question, we changed the ‘Smooth’
icon to include three example galaxies at various ellipticities, and
the ‘Featured’ icon to include an edge-on disc rather than a ring
galaxy. For ‘Edge On?’, we replaced the previous tick icon with a
new descriptive icon, and the previous cross icon with the ‘Featured’
icon above. We also modified the text to no longer specify ‘exactly’
edge on, and renamed the answers from ‘Yes’ and ‘No’ to ‘Yes -
Edge On Disc’ and ‘No — Something Else’. For ‘Bulge?’, we created
new icons to match the change from four to five answers. For ‘Bar’,
we replaced the previous tick and cross icons with new descriptive
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Figure 4. Classification decision tree for GZD-5, with new icons as shown
to volunteers. Questions shaded with the same colours are at the same level
of branching in the tree; grey have zero-dependent questions, green one, blue
two, and purple three.

icons for ‘Strong Bar’, ‘Weak Bar’, and ‘No Bar’. For ‘Merger?’, we
added new descriptive icons to match the updated answers.

Changes to the decision tree complicate comparisons other Galaxy
Zoo projects. As we show in the following sections, the available
answers will affect the sensitivity of volunteers to certain morpholog-
ical features, and so morphology measurements made with different
decision trees may not be directly comparable. This difficulty in com-
parison has historically required us to be conservative in our changes
to the decision tree. However, the advent of effective automated
classifications allows us to retrospectively make classifications using
any preferred decision tree. Specifically, in this work, we train our
automated classifier to predict what volunteers would have said using
the GZD-5 decision tree, for galaxies which were originally classified
by volunteers using the GZD-1/2 decision tree (Section 5.1).

4 VOLUNTEER ANALYSIS

4.1 Improved feature detection from DECaLS imagery

The images used in GZ DECaLS are deeper and higher resolution
than were available for GZ2. The GZ2 primary sample (Willett et al.
2013) uses images from SDSS DR7 (Abazajian et al. 2009), which
are 95 per cent complete to r = 22.2 with a median seeing of 174
and a plate scale of 07396 per pixel (York et al. 2000). In contrast,
GZ DECaLS uses images from DECaL.S DR2 to DRS, which have
a median 5o point source depth of r = 23.6, a seeing better than 173

Galaxy Zoo DECalLS data release 3971
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Figure 5. Comparison of ‘Featured’ fraction for galaxies classified in both
GZ2 and GZ DECaLS. Ambiguous galaxies are consistently reported as more
featured in GZ DECaLS, which we attribute to the significantly improved
imaging depth of DECaLS.

for at least one observation, and a plate scale of 07262 per pixel (Dey
etal. 2019).'

We expect the improved imaging to reveal morphology not
previously visible, particularly for features which are faint (e.g.
tidal features, low surface brightness spiral arms) or intricate (e.g.
weak bars, flocculent spiral arms). Our changes to the decision
tree (Section 3.2) were partly made to better exploit this improved
imaging.

To investigate the consequences of improved imaging, we compare
galaxies classified in both GZ2 and GZ DECalS. Galaxies will
typically be classified by both projects if they are inside both the
SDSS DR7 Legacy catalogue (i.e. the source GZ2 catalogue) and
DECaLS DRS footprints (broadly, North Galactic Cap galaxies with
—35 < § < 0) and match the selection criteria of each project (see
Willett et al. 2013 and Section 2.2). GZ2’s r < 17.0 cut, with no
corresponding GZ DECaLS magnitude cut, means that the odds of
any given GZ2 galaxy being in GZ DECaLS is close to random (for
an isotropic sky) but only the brighter half of suitably located GZ
DECaLS galaxies are in GZ2. To exclude the effect of modifying the
decision tree in GZD-5 (addressed separately in Section 4.2), we use
only GZ DECaLS classifications from GZD-1 and GZD-2. 33 124
galaxies were classified in both GZ2 and GZD-1 or GZD-2.

We find that volunteers successfully recognize newly visible mor-
phology features. Fig. 5 compares the distribution of vote fractions
to ‘Is this galaxy smooth or featured?’” for GZ2 and GZ DECaLS.
Ambiguous galaxies, with ‘featured’ fractions (before debiasing)
between approx. 0.25 and 0.75, are consistently reported as more
featured (median absolute increase of 0.13, median percentage
increase of 22 per cent) with the deeper GZ DECaLS images.

The shift towards featured galaxies is an accurate response to the
new images, rather than systematics from (for example) a changing
population of volunteers. Fig. 6 compares the GZ2 and GZ DECaLS

14See also http://www.legacysurvey.org/dr5/description/.

MNRAS 509, 3966-3988 (2022)
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Figure 6. GZ2 and GZ DECaLS images for 6 galaxies drawn randomly
from the 1000 galaxies classified in both projects with the largest increase
in ‘featured’ vote fraction (reported fractions shown in red). The increased
fraction accurately reflects the increased visibility of detailed morphology
from improved imaging.

MNRAS 509, 3966-3988 (2022)

images of a random sample of galaxies drawn from the 1000 cross-
classified galaxies with the largest increase in ‘featured’ fraction. In
all of these galaxies (and for a clear majority of galaxies in similar
samples), volunteers are correctly recognizing newly visible detailed
features.

We observe a similar pattern in the vote fractions of spiral arms
and bars for featured galaxies. For galaxies consistently considered
featured (i.e. where both projects reported a ‘featured’ vote fraction
of at least 0.5), the median vote fraction for spiral arms increased
from 0.84 to 0.9, and for bars from 0.21 to 0.24. This suggests that
even for galaxies where some details were already visible (and hence
were considered featured), improved imaging makes our volunteers
more likely to identify specific features.

We argue the improved depth of DECaLS (r = 23.6 versus r =
22.2 for SDSS) is revealing low surface brightness features that were
previously ambiguous. There may also be contributions from the
modified image processing approach and from the shift between
using gri bands (SDSS) to grz bands (DECaLS), which might make
older stars more prominent.

Comparing classifications made using the same possible answers
on the same galaxies shows how improved DECaLS imaging leads to
ambiguous galaxies being correctly reported as more featured, and to
spiral arms and bars being reported with more confidence. However,
volunteers are also sensitive to which questions are asked and how
those questions are asked. We measure the impact of our changes to
the decision tree ‘Bar’ question for GZD-5 in the next section.

4.2 Improved weak bar detection from GZD-5 decision tree

To measure the effect of the new decision tree on bar sensitivity,
we compare the classifications made using each tree against expert
classifications. Nair & Abraham (2010; hereafter NA10) classified
all 14034 SDSS DR4 galaxies at 0.01 < z < 0.05 with g < 16.
Of those, 1497 were imaged by DECaLS DR1/2 and classified by
volunteers during GZD-1/2. We re-classified these galaxies during
GZD-5 to measure the effect of the new bar answers, as compared
to the expert classifications of NA10. Note that because NA10 used
shallower SDSS images, NA10’s classifications are best used as
positive evidence; while NA10 finding a bar in SDSS images implies
a visible bar in DECaLS images, NA10 not finding a bar may not
always exclude a visible bar in DECaLS. To exclude smooth galaxies,
which are unbarred by definition in our schema, we require freaured
> 0.25 (as measured by GZD-5), selecting a featured sample of 807
galaxies classified by NA10, GZD-1/2, and GZD-5.

Fig. 7 compares volunteer classifications for expert-labelled
calibration galaxies made using each tree. We find that barred
and unbarred galaxies are significantly better separated with the
Strong/Weak/None answers than with Yes/No answers. Of 220 Nair-
identified bars (of any type), 184 (84 per cent) receive a majority
vote for being barred by volunteers using the new tree, up from 120
(55 per cent) with the previous tree.

NA10 classified barred galaxies into five subtypes: Strong, Inter-
mediate, Weak, Nuclear, Ansae, and Peanut (plus None, implicitly).
We can use the first three subtypes as a measurement of expert-
classified bar strength, and therefore evaluate how our volunteers
respond to bars of different strengths. Following the approach to
defining summary metrics of Masters et al. (2019), we summarize
the bar vote fractions into a single volunteer estimate of bar strength,
Byol = firong + 0.5fweak, and compare the distribution of B for each
expert-classified bar strength (Fig. 8). We find that the volunteer
bar strength estimates increase smoothly with expert-classified bar
strength, though individual galaxies vary substantially. This suggests
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‘No’). Volunteers are substantially better at identifying barred galaxies using
the GZD-5 three-answer question.

Nair: Strong

Norm. Count

0 | | INTNIl

mmm Nair: Interm.

z&

mmm Nair: Weak

R ST —

mm Nair: None

Norm. Count

Norm. Count

Norm. Count

bl L ILIL LI 1 11

0.0 0.2 0.4 0.6 0.8 1.0
Bar "Strong" fraction + 0.5 "Weak" fraction

Figure 8. Distributions of volunteer bar strength estimates, Byol = fsirong +
0.5fweak, split by expert-classified (NA10) bar strength. Individual galaxies are
shown with rug plots (15 Strong, 110 Intermediate, 87 Weak, and 377 None).
Volunteer bar strength estimates increase smoothly with expert-classified bar
strength, though individual galaxies vary substantially.

that typical bar strength in galaxy samples can be successfully
inferred from volunteer votes.

The addition of the ‘weak bar’ answer in GZD-5 significantly
improves sensitivity to bars compared with previous versions of
the decision tree. Additionally, volunteer votes across the three
answers may be used to infer bar strength. We hope that the detailed
bar classifications in our catalogue will help researchers better
understand the properties of strong and weak bars and their influence
on host galaxies.

4.3 Classification modifications

Galaxy Zoo data releases have previously included two post-hoc
modifications to the volunteer classifications; volunteer weighting,
to reduce the influence of strongly atypical volunteers, and redshift
debiasing, to estimate the vote fractions a galaxy might have received

Galaxy Zoo DECalS data release 3973
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Figure 9. Distribution of reported ‘artefact’ rates by volunteer (i.e. how often
each volunteer answered ‘artefact’ over all the galaxies they classified). The
vast majority report artefact rates consistent with those of the authors (below
0.1), but a very small subset report implausibly high artefact rates (> 0.5)
and consequently have their classifications discarded. Only volunteers with at
least 150 classifications are shown; the distribution for volunteers with fewer
classifications is not bimodal.

had it been observed at a specific redshift. We describe each
modification below.

4.3.1 Volunteer weighting

Volunteer weighting, as introduced in Galaxy Zoo 2 (Willett et al.
2013), assigns each volunteer an aggregation weight of (initially)
one, and iteratively reduces that weight for volunteers who typically
disagree with the consensus. This method affects relatively few
volunteers and therefore causes only a small shift in vote fractions - in
Galaxy Zoo 2, for example, approximately 95 per cent of volunteers
had a weighting of one (i.e. unaffected), 94.8 per cent of galaxies had
a change in vote fraction of no more than 0.1 for any question, and
the mean change in vote fraction across all questions and galaxies
was 0.0032.

The most significant change in final vote fractions is caused by
downweighting rare (approx. 1 per cent) volunteers who repeatedly
disagree with consensus by answering ‘artefact’ at implausibly high
rates (including 100 per cent) for many galaxies. Answering artefact
ends the classification and shows the next galaxy, and so we hy-
pothesize that these rare volunteers are primarily interested in seeing
many galaxies rather than contributing meaningful classifications.
There are very few such volunteers, but because answering artefact
allows classifications to be submitted very quickly, they have an
outsize effect on the aggregate vote fractions.

Fig. 9 shows the distribution of reported artefact rates for volun-
teers with at least 150 total classifications. We expect the true fraction
of artefacts to be less than 0.1, and the vast majority of volunteers
report artefact rates consistent with this. However, the distribution
is bimodal, with a small second peak around 1.0 (i.e. volunteers
reporting every galaxy as an artefact). To remove the implausible
mode, we discard the classifications of volunteers with at least 150
total classifications and reported artefact rates greater than 0.5. In
GZD-1/2, 1.1 per cent (643) of volunteers are excluded, discarding
11 per cent (483081) of classifications. In GZD-5, 0.03 per cent

MNRAS 509, 3966-3988 (2022)
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(543) volunteers are excluded, discarding 5.3 per cent (249 592) of
classifications.

We investigated the possibility of other groups of atypical vol-
unteers giving similar answers across questions by analysing the
per-user vote fractions with either a 2D visualization using UMAP
(Mclnnes, Healy & Melville 2018) or with clustering using HDB-
SCAN (Mclnnes, Healy & Astels 2017). We find no strong evidence
that such clusters exist.

4.3.2 Redshift debiasing

Galaxies at higher redshifts appear fainter and smaller on the sky,
making it harder to detect detailed morphological features than if
the galaxy were closer. This creates a bias in visual classifications
(whether human or automated) where galaxies of the same intrinsic
morphology are less likely to be classified as having detailed features
as redshift increases (Bamford et al. 2009). Redshift debiasing is an
attempt to mitigate this bias by estimating how a galaxy would appear
if it were at a fixed low redshift (here, z = 0.02).

We use the method described in Hart et al. (2016) to remove the
redshift bias, which we briefly summarize here and refer the reader
to their Section 3 for full details. We assume the morphological
properties of galaxies (as probed by our decision tree) over the
redshift window covered by Galaxy Zoo DECalLS (0.02 < z <
0.15, approximately 1.5 Gyr) do not evolve significantly for galaxies
of similar intrinsic brightness and physical size, and so, for a
luminosity-limited sample, any change we observe to the vote
fraction distribution as a function of redshift is purely a consequence
of imaging. If so, we can estimate the vote fractions which would be
observed if each galaxy were at low redshift by modifying the vote
fractions of higher redshift galaxies such that they have the same
overall distribution as their low-redshift counterparts in brightness
and size.

We base the debiasing on a luminosity-limited sample, selected
between 0.02 < z < 0.15 and —21.5 > M, > —23. We consider
the galaxies with at least 30 votes for the first question (‘Smooth or
Featured’) after volunteer weighting (above), for a total of 87617
galaxies in GZD-1/2 and 58916 galaxies in GZD-5. For each
question, separately, we define a subset of galaxies to which we
apply the debiasing procedure.

Each subset is defined using a cut of f > 0.5 for the chain of
preceding questions (for example, for the bar question, we require
Sieat X footedge-on > 0.5). A further cut of N > 5 (where N is the
number of classifications) is also imposed to ensure that each galaxy
has been classified by a significant number of people. We bin the
subset of galaxies by M,, log(Rsp) and z for each answer in turn.
We use the voronoi_2d binning package from Cappellari &
Copin (2003) to ensure the bins will have an approximately equal
number of galaxies (with a minimum of 50). We then match vote
fraction distributions on a bin-by-bin basis, such that the cumulative
distribution of vote fractions at each redshift is shifted to be similar
to that of the lowest redshift sample (0.02 < z < 0.03). This method
aims to keep the fraction of galaxies above a given threshold constant
with redshift.

The effect of redshift bias and redshift debiasing question is shown
in Fig. 10. To illustrate, consider the ‘Smooth or Featured’ question
(top left-hand panel). In a luminosity-limited sample, there should be
the same fraction of galaxies with features (selected with fi., > 0.5)
at all redshifts. However, we observe that the fraction of ‘featured’
galaxies decreases, and the fraction of ‘smooth’ galaxies increases
(solid lines). We attribute this to redshift bias; some galaxies that
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Figure 10. Number of GZD-5 galaxies with f > 0.5 for each of the questions
debiased using the method described in Section 4.3.2. The solid lines indicate
the original vote fractions and the dashed lines indicate the debiased vote
fractions. The total sample here is composed of galaxies in the luminosity-
limited sample with > 0.5, 58 916 galaxies. For most questions and answers,
debiasing successfully flattens the redshift trends. For ‘Smooth or Featured’
and ‘Bulge Prominence’, redshift debiasing overcorrects.

would be considered featured if imaged at low redshift appear as
‘fuzzy blobs’ at high redshift and are instead classified as smooth.
After applying redshift debiasing, the debiased fractions (dashed
lines) change more gradually with redshift. For most questions and
answers, the redshift trend is successfully flattened (recall that for
every size and luminosity bin, we enforce no change in the vote
fraction distribution with redshift). For ‘Smooth or Featured’ and
‘Bulge Prominence’, the debiasing procedure overcorrects and hence
reverses the redshift trend.

For statistical studies, it is important to test for the presence of a
classification bias with redshift and correct it where necessary. Such a
correction has proven essential in studies of the morphology density
relation (Bamford et al. 2009) and when characterizing populations
with different spiral arm properties (Hart et al. 2016). However,
while debiasing can be extremely useful, there are caveats to its
usage. It is sometimes helpful to think of the original classifications
as a lower limit to the probability of features of a given type existing
in a galaxy. Debiasing predicts what the classifications would be if
the same galaxy were imaged at lower redshift, which is typically
more featured than the original classifications. There is substantial
uncertainty in this prediction, however, and this is currently not
captured by the debiased vote fractions, which are reported without
error bars.

In some investigations, it may be helpful to consider that the true
classification for a given galaxy is likely to be in between the original
classification and the debiased classification. At the same time,
the debiased classifications are not strictly upper limits. They are
based on the lowest redshift classifications within the data set itself,

1202 Jaquieoaq zz Uo 1senb Aq 6828.£9/996€/€/60S/210IHE/SEIUW/WOD" dNO"OIWSPEDE//:SANY WO POPEOIUMOQ


art/stab2093_f10.eps

which themselves are at a non-zero redshift, and so there are likely
differences in the debiased classifications and the ‘true’ debiased
classification that would be assigned if we could image the galaxy at
arbitrarily low redshift. As these corrections are applied uniformly,
however, they are useful when considering overall populations of
galaxies within a given data set and over the redshift ranges where
the correction is relevant. In particular, when comparing different
morphological types, some of the systematic errors in the debiasing
may cancel out. Uncertainties in the debiasing will also decrease as
the sample size increases.

For these reasons, we strongly suggest that users of the debiased
classifications only use them to consider populations of galaxies
rather than individual or small samples, and to consider that there
may still be some residual trends and uncertainties that are hard to
model with current methods.

5 AUTOMATED CLASSIFICATIONS

Combining citizen science with automated classification allows us
to do better science than with either alone. The clearest benefit is
that automated classification scales well with sample size. For GZ
DECaLS, classifying all 311488 suitable galaxies using volunteers
alone is infeasible; collecting 40 classifications per galaxy, the
standard from previous Galaxy Zoo projects, would take around
eight years without further promotion efforts — by which time we
expect new surveys to start. Automated classification also evolves
— as the quality of our models improves, so too will the quality
of our classifications. And automated classification is replicable
from scratch without requiring a crowd — other researchers may
run our open-source code and recover our classifications (within
stochasticity), or create equivalent classifications for newly imaged
galaxies.

Finally, and of particular relevance to researchers using this data
release, automated classification allows us to retroactively update the
decision tree. Because our classifier learns to make predictions from
GZD-5 classifications, using the improved tree with better detection
of mergers and weak bars, we can then predict what our volunteers
would have said for the GZD-1 and GZD-2 galaxies had we been
using the improved tree at that time.

Our specific automated classification approach offers several
qualitative benefits over previous work. First, through careful con-
sideration of uncertainty, we can both learn from uncertain volunteer
responses and predict posteriors (rather than point estimates) for
new galaxies. Secondly, by predicting the answers to every question
with a single model (similarly to Dieleman, Willett & Dambre 2015,
and unlike more recent work e.g. Sanchez et al. 2018; Khan et al.
2019; Walmsley et al. 2020), we improve performance by sharing
representations between tasks (Caruana 1997) — intuitively, knowing
how to recognize spiral arms can also help you count them. Learning
from every galaxy to predict every answer uses our valuable volunteer
effort as efficiently as possible. This is particularly effective because
we aim to predict detailed morphology, and hence learn to create a
detailed representation of each galaxy.

5.1 Bayesian deep learning classifier
We require a model which can:

(i) Learn efficiently from volunteer responses of varying (i.e.
heteroskedastic) uncertainty.

(ii) Predict posteriors for those responses on new galaxies, for
every question.

Galaxy Zoo DECalLS data release ~ 3975

In previous work (Walmsley et al. 2020), we modelled volunteer
responses as being binomially distributed and trained our model to
make maximum-likelihood estimates using the loss function

L =klog f"(x) + (N — k)log(l — f*(x)), “

where for some target question, k is the number of responses
(successes) of some target answer, N is the total number of responses
(trials) to all answers, and f"(x) = p is the predicted probability of
a volunteer giving that answer.

This Binomial assumption, while broadly successful, broke down
for galaxies with vote fractions % close to 0 or 1, where the Binomial
likelihood is extremely sensitive to f*(x), and for galaxies where the
question asked was not appropriate (e.g. predict if a featureless galaxy
has a bar). Instead, in this work, the model predicts a distribution
p(plf*(x)) and p is then drawn from that distribution.

For binary questions, one could parametrize p(p|f*(x)) with the
Beta distribution (being flexible and defined on the unit interval),
and predict the Beta distribution parameters f*(x)= (&, ﬁ) by
minimizing

L= /Bin(k|,o, N)Beta(pla, B)dadf, (&)

where the Binomial and Beta distributions are conjugate and hence
this integral can be evaluated analytically.

In practice, we would like to predict the responses to questions
with more than two answers, and hence we replace each distribution
with its multivariate counterpart; Beta(p|c, 8) with Dirichlet(s|a),
and Binomial(k|p, N) with Multinomial(lglﬁ ,N).

L, = / Multi(k|p, N)Dirichlet(p|e)der, 6)

where I_é 0, and @ are now all vectors with one element per answer.

The Dirichlet-Multinomial distribution is much more flexible than
the Binomial, allowing our model to express uncertainty through
wider posteriors and confidence through narrower posteriors. We
believe this is a novel approach.

For the base architecture, we use the EfficientNet BO model (Tan &
Le 2019). The EfficientNet family of models includes several archi-
tectural advances over the standard convolutional neural network ar-
chitectures commonly used within astrophysics (e.g. Dieleman et al.
2015; Huertas-Company et al. 2015; Khan et al. 2019; Cheng et al.
2020; Ferreira et al. 2020), including auto-ML-derived structure (He,
Zhao & Chu 2019; Tan et al. 2019), depthwise convolutions (Howard
etal. 2017), bottleneck layers (Iandola et al. 2017), and squeeze-and-
excitation optimization (Hu, Shen & Sun 2018). The EfficientNet
B0 model was identified using multi-objective neural architecture
search (Tan et al. 2019), optimizing for both accuracy and FLOPS
(i.e. computational cost of prediction). This balancing of accuracy
and FLOPS is particularly useful for astrophysics researchers with
limited access to GPU resources, leading to a model capable of
making reliable predictions on hundreds of millions of galaxies. In
short, the architecture is similar to traditional convolutional neural
networks, being composed of a series of convolutional blocks of
decreasing resolution and increasing channels. Each convolutional
block uses mobile inverted bottleneck convolutions following Mo-
bileNetV2 (Sandler et al. 2018), which combine computationally
efficient depthwise convolutions with residual connections between
bottlenecks (as opposed to residual connections between blocks with
many channels, as in e.g. ResNet; He et al. 2016). EfficientNet BO
has 5.3 million parameters.

We modify the final EfficientNet BO layer output units to give
predictions smoothly between 1 and 100 (using softmax activation),
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which is appropriate for Dirichlet parameters &. a elements below
1 can lead to bimodal ‘horseshoe’ posteriors, and & elements above
approximately 100 can lead to extremely confident predictions in
extreme p, both of which are implausible for galaxy morphol-
ogy posteriors. These constraints may cause the most extreme
galaxies to have predicted vote fractions which are slightly less
extreme than volunteers would record, but we do not anticipate
this to affect practical use; whether a galaxy is extremely likely
to have a bar or merely highly likely is rarely of scientific
consequence.

We would like our single model to predict the answer to every
question in the Galaxy Zoo tree. To do this, our architecture uses one
output unit per answer (i.e. for 13 questions with a total of 20 answers,
we use 20 output units). We calculate the (negative log) likelihood
per question (equation 6), and then, treating the errors in the model’s
answers to each question as independent events, calculate the total
loss as

log £=" L, (ky. Ny £). )
q

where for question g, N, is the total answers, k; is the observed
votes for each answer, and f;w is the values of the output units
corresponding to those answers (which we interpret as the Dirichlet
« parameters in equation 6).

We train our model using the GZD-5 volunteer classifications. Be-
cause the training set includes both active-learning-selected galaxies
receiving at least 40 classifications and the remaining GZD-5 galaxies
with around 5 classifications, it is crucial that the model is able to
learn efficiently from labels of varying uncertainty. Unlike Walmsley
et al. (2020), which trained one model per question and needed to
filter galaxies where that question asked may not be appropriate,
we can predict answers to all questions and learn from all labelled
galaxies.

We train or evaluate our models using the 249 581 (98.5 per cent)
GZD-5 galaxies with at least three volunteer classifications. Learning
from galaxies with even fewer (one or two) classifications should
be possible in principle, but we do not attempt it here as we do
not expect galaxies with so few classifications to be significantly
informative. The Dirichlet concentrations (distribution parameters)
used to calculate our metrics are predicted by three identically
trained models, each making 5 forward passes with random dropout
configurations and augmentations. We ensemble all 15 forward
passes by simply taking the mean posterior given the total votes
recorded, which may be interpreted as the posterior of an equally-
weighted mixture of Dirichlet-Multinomial distributions. This mean
posterior can then be used to calculate credible intervals (error bars)
and in standard statistical analyses. We develop our approach using
a conventional 80/20 train-test split, and make a new split before
calculating the final metrics reported here.

For the published automated classifications, where we aim simply
to make the best predictions possible rather than to test performance,
we train on all 249 581 galaxies with at least 3 votes (98.5 per cent).
‘We also train five rather then three models to maximize performance.
Training each model on an NVIDIA V100 GPU takes around 24 h.
We then make predictions (using the updated GZD-5 schema) on all
313789 galaxies in all campaigns. Each prediction (forward pass)
takes approx. 6 ms, equating to approx. 160 ms for each published
posterior.

Starting from the galaxy images shown to volunteers (Section 2.3),
we take an average over channels to remove colour information and
avoid biasing our morphology predictions (Walmsley et al. 2020),
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then resize and save the images as 300x300x 1 matrices. We then
apply random augmentations when loading each image into memory,
creating a unique randomly modified image to be used as input to
the network. We first apply random horizontal and vertical flips,
followed by an aliased rotation by a random angle in the range (0,
), with missing pixels being filled by reflection on the boundaries.
Finally, we crop the image about a random centroid to 224 x224
pixels, effectively zooming in slightly towards a random off-centre
point. We also apply these augmentations at test time to marginalize
our posteriors over any unlearned variance. We train using the Adam
(Kingma & Ba 2015) optimizer and a batch size of 128. We end
training once the model loss fails to improve for 10 consecutive
epochs.

Code for our deep learning classifier, including extensive doc-
umentation and several worked examples, is available at https:
//github.com/mwalmsley/zoobot.

5.2 Results

Our model successfully predicts posteriors for volunteer votes to
each question. We show example posteriors for a question with two
answers, ‘Does this galaxy have spiral arms’ (Yes/No), in Fig. 11,
and a question with three answers, ‘Does this galaxy have a bar’
(Strong/Weak/None), in Fig. 12. In Appendix A, we provide a gallery
of the galaxies with the highest expected vote fractions for a selection
of answers, to visually demonstrate the quality of the most confident
machine classifications.

To aid intuition for the typical performance, we reduce both the
vote fraction labels and the posteriors down to discrete classifications
by rounding the vote fractions and mean posteriors to 0 or 1, and
calculate classification metrics (Table 1) and confusion matrices
(Fig. 13). Here and throughout this section, we calculate performance
on the 11346 galaxies in the (random) test set with at least 343
classifications (such that the typical volunteer answer is well-
measured). To remove galaxies for which the question is not relevant,
we only count galaxies where at least half the volunteers were asked
that question. We report two sets of classification metrics; metrics
for all (relevant) galaxies, and only for galaxies where the volunteers
are confident (defined as having a vote fraction for one answer above
0.8, following Dominguez Sénchez et al. 2019).

The performance on confident galaxies is useful to mea-
sure because such galaxies have a clear correct label. For such
galaxies, performance is near-perfect; we achieve better than
99 per cent accuracy for most questions, with the lowest accu-
racy (for spiral arm count) being 98.6 per cent. The confusion
matrices reflect this, showing little notable confusion for any
question.

Reported performance on all galaxies will be lower than on confi-
dent galaxies as the correct labels are uncertain. Our measured vote
fractions are approximations of the theoretical ‘true’ vote fractions
(as we cannot ask infinitely many volunteers), and many galaxies
are genuinely ambiguous and do not have a meaningful ‘correct’
answer. No classifier should achieve perfect accuracy on galaxies
where the volunteers themselves are not confident. None the less,
performance is more than sufficient for scientific use; accuracy ranges
from 77.4 per cent (spiral arm count) to 98.7 per cent (disc edge
on). We observe some moderate confusion between similar answers,
particularly between No or Weak bar, Moderate or Large bulges, and

15Corresponding to the typical ‘full’ retirement limit of approximately 40
classifications before discarding implausible classifications, see Section 4.3.1.
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Figure 11. Posteriors for ‘Does this galaxy have spiral arms?’, split by
ensemble model (bold colours) and, within each model, dropout forward
passes (faded colours). The number of volunteers answering ‘Yes’ (not known
to classifier) is shown with a black dashed line. Galaxies are selected at
random from the test set, provided the spiral question is relevant (defined as a
vote fraction of 0.5 or more to the preceding answer, ‘Featured’). The image
presented to volunteers is shown to the right. The model input is a cropped,
downsized, greyscale version (Section 5.1). The Dirichlet-Multinomial pos-
teriors are strictly only defined at integer votes; for visualization only, we
show the I"-generalized posteriors between integer votes.

Two or Three spiral arms, which matches our intuition for the answers
that volunteers might confuse and so likely reflects ambiguity in the
training data. More surprisingly, there is also confusion between
Two spiral arms and Can’t Tell. Fig. 14 shows random examples
of spirals where the most common volunteer answer was Two, but
the classifier predicted Can’t Tell, and vice versa. In both cases,
the galaxies generally have diffuse or otherwise subtle spiral arms
embedded in a bright disc, confusing both human and machine.
This highlights the difficulty in using classification metrics to assess
performance on ambiguous galaxies.

We can mitigate the ambiguity in classifications of galaxies by
measuring regression metrics on the vote fractions, without rounding
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Figure 12. Posteriors for ‘Does this galaxy have a bar?’, for the same random
galaxies selected in Fig. 11. Each point is coloured by the predicted probability
of volunteers giving that many ‘Strong’, ‘Weak’, and (implicitly, as the total
answers is fixed) ‘None’ votes. The volunteer answer (not known to classifier)
is circled. For clarity, only the mean posterior across all models and dropout
forward passes is shown.

to discrete classifications. Fig. 15 shows the mean deviations between
the model predictions (mean posteriors) and the observed vote
fractions, by question, for test set galaxies with approximately
40 volunteer responses. Performance is again excellent, with the
predictions typically well within 10 per cent of the observed vote
fractions. Predicting spiral arm count is relatively challenging, as
noted above. Predicting answers to the ‘Merger’ question of ‘None’
(i.e. not a merger) is also challenging, perhaps because of the rarity
of counter-examples.

The volunteer vote fractions against which we compare our predic-
tions are themselves uncertain for most galaxies. We aim to predict
the true vote fraction, i.e. the vote fraction from limy _, , volunteers,
but we only know the vote fraction from N volunteers. However,
387 pre-active-learning galaxies were erroneously uploaded twice
or more, and so received more than 75 classifications each. The
vote fractions for these N > 75 galaxies will be very similar to the
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Table 1. Classification metrics on all galaxies (above) or on galaxies where
volunteers are confident for that question (i.e. where one answer has a vote
fraction above 0.8). Multiclass precision, recall, and F1 scores are weighted
by the number of true galaxies for each answer. Classifications on confident
galaxies are near-perfect.

Question Count  Accuracy Precision Recall F1

(a) Classification metrics for all galaxies
Smooth or featured 11346 09352  0.9363 0.9352 0.9356

Disc edge on 3803 0.9871 0.9871 0.9871 0.9871
Has spiral arms 2859 0.9349 09364 0.9349 0.9356
Bar 2859 0.8185  0.8095 0.8185 0.8110
Bulge size 2859 0.8419  0.8405 0.8419 0.8409
How rounded 6805 09314 09313 09314 0.9313
Edge on bulge 506 09111 09134 09111 0.8996
Spiral winding 1997 0.7832  0.8041 0.7832 0.7874
Spiral arm count 1997 0.7742  0.7555 0.7742 0.7560
Merging 11346 0.8798  0.8672 0.8798 0.8511
(b) Classification metrics for galaxies where volunteers are confident
Smooth or featured 3495 0.9997  0.9997 0.9997 0.9997
Disc edge on 3480 0.9980  0.9980 0.9980 0.9980
Has spiral arms 2024 0.9921  0.9933 0.9921 0.9924
Bar 543 0.9945  0.9964 0.9945 0.9951
Bulge size 237 1.0000  1.0000  1.0000 1.0000
How rounded 3774 0.9968  0.9968 0.9968 0.9968
Edge on bulge 258 0.9961  0.9961 0.9961 0.9961
Spiral winding 213 0.9906  1.0000 0.9906 0.9953
Spiral arm count 659 0.9863  0.9891 0.9863 0.9871
Merging 3108 0.9987  0.9987 0.9987 0.9987

limy _,  true vote fraction limit, allowing us to accurately measure
the mean vote fraction error of our machine learning predictions.
We can also calculate the mean vote fraction error (versus the
N > 75 vote fractions) from asking fewer (N << 75) volunteers
by artificially truncating the number of votes collected, and ask
— how many volunteer responses to that question would we need
to have errors similar to that of our model? Note that the actual
number of volunteers needed to be shown that galaxy to achieve an
equivalent mean-squared error will be higher for questions only asked
given certain previous answers (i.e. all but ‘Smooth or Featured?’
and ‘Merger?’), as some will give different answers to preceding
questions and so not be asked that question. Fig. 16 shows the model
and volunteer mean errors for a representative selection of questions;
the model predictions are as accurate as asking that question to around
10 volunteers.'®

We can also measure if our posteriors correctly estimate this
uncertainty. As a qualitative test, Fig. 17 shows a random selection
of galaxies binned by ‘Smooth or Featured’ vote fraction prediction
entropy, measuring the model’s uncertainty. Prediction entropy is
calculated as the (discrete) Shannon entropy Y ,p(w)log (p(w)) over
all possible combinations of votes w, assuming 10 total votes for
this question (our results are robust to other choices of total votes).
Unusual, inclined or poorly scaled galaxies have highly uncertain
(high entropy) votes, while smooth and especially clearly featured
galaxies have confident (low entropy) votes. The most uncertain
galaxies (not shown) are so poorly scaled (due to incorrect estimation
of the Petrosian radius in the NASA-Sloan Atlas) that they are barely
visible. These results match our intuition and demonstrate that our
posteriors provide meaningful uncertainties.

16The model is, in this strict sense, slightly superhuman.
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Figure 13. Confusion matrices for each question, made on the test set
of 49700 randomly selected galaxies with at least three volunteer votes.
Discrete classifications are made by rounding the vote fraction (label) and
mean posterior (prediction) to the nearest integer. The matrices then show
the counts of rounded predictions (x-axis) against rounded labels (y axis).
‘We report confusion matrices for all 49 700 galaxies (left-hand panel) or only
for galaxies where the volunteers are confident in that question, defined as
having the vote fraction for one answer above 0.8 (right-hand panel). Such
confident galaxies are expected to have a clearly correct label, making correct
and incorrect predictions straightforward to measure but also making the
classification task easier. Continued below.

1202 Jaquieoaq zz Uo 1senb Aq 6828.£9/996€/€/60S/210IHE/SEIUW/WOD" dNO"OIWSPEDE//:SANY WO POPEOIUMOQ


art/stab2093_f13.eps

Figure 14. Random spiral galaxies where the classifier confuses the most
likely volunteer vote for spiral arm count between ‘2’ and ‘Can’t Tell’.
Above: galaxies where the classifier predicted 2’ but more volunteers
answered ‘Can’t Tell’. Below: vice versa, galaxies where the classifier
predicted ‘Can’t Tell” but more volunteers answered ‘2’. Red text shows the
volunteer (vol.) and machine-learning-predicted (ML) vote fractions for each
answer. Counting the spiral arms is challenging, even for the authors. This
highlights the difficulty in assessing performance by reducing the posteriors
to classifications and then comparing against uncertain true labels.

More quantitatively, Fig. 18 shows the calibration of our posteriors
for the two binary questions in GZD-5 — ‘Edge-on Disc’ and ‘Has
Spiral Arms’. A well-calibrated posterior dominated by data (i.e.
where the prior has minimal effect) will include the measured value
within any bounds as often as the total probability within those
bounds. We calculate calibration by, for each galaxy, iterating through
each symmetric highest posterior density credible interval (i.e.
starting from the posterior peak and moving the bounds outwards)
and recording both the total probability inside the bounds and whether
the recorded volunteer vote is inside the bounds. We then group (bin)
by total probability and record the empirical frequency with which
the votes lie within bounds of that total probability. In short, we
are checking if, for all X, the observed value (vote fraction) falls
within X per cent of the posterior interval X per cent of the time
(Cook, Gelman & Rubin 2006; Levasseur, Hezaveh & Wechsler
2017). We find that calibration on these binary questions is excellent.
Our classifier is correctly uncertain.

The ultimate measure of success is whether our predictions are
useful for science. Masters et al. (2019; hereafter M19) used GZ2
classifications to investigate the relationship between bulge size and
winding angle and found — contrary to a conventional view of the
Hubble sequence — no strong correlation. We repeat this analysis
using our (deeper) DECaLS data, using either volunteer or automated
classification, to check if the automated classifications lead to the
same science results as the volunteers.

Specifically, we select a clean sample of face-on spiral galaxies
using M19’s vote fraction cuts of freae > 0.43, frotedge — on > 0.715,
and fypiral-yes > 0.619. We also make a cut-off fierging — none > 0.3,
analogous to M19’s f,4q4 cut, to remove galaxies with ongoing mergers
or with otherwise disturbed features. For the volunteer vote fractions,
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Figure 15. Mean absolute deviations between the model predictions and
the observed vote fractions, by question, for the test set galaxies with
approximately 40 volunteer responses. The model is typically well within
10 per cent of the observed vote fractions.

we can only use either GZD-1/2 or GZD-5 classifications, since the
former decision tree had three bulge size answers and the latter
had five; we choose GZD-5 to benefit from the added precision
of additional answers. To avoid selection effects (Section 6.2) we
only use galaxies classified prior to active learning being activated.
For the automated classifications, we use a model trained on GZD-
5 to predict GZD-5 decision tree vote fractions (including the
five bulge answers) for every GZ DECaLS galaxy (313,798). This
allows us to expand our sample size from 5378 galaxies using
GZD-5 volunteers only to 43672 galaxies using our automated
classifier.

We calculate bulge size and spiral winding following equations
(1) and (3) in M19, trivially generalizing the bulge size calculation
to allow for five bulge size answers:

Wuvg = 0~5fmcdium + l‘oﬁight (8)

Bavg =0.25 fsmall + O-Sfmoderale + 0.75 flarge + 1-Ofd(Jminanl~ (9)

Both classification methods find no correlation between bulge
size and spiral winding, consistent with M19. Fig. 19 shows the
distribution of bulge size against spiral winding using either volunteer
predictions (fractions) or the deep learning predictions (expected
fractions) for the sample of featured face-on galaxies selected above.
The distributions are indistinguishable, with the automated method
offering a substantially larger (approx. 8X) sample size. We hope
this demonstrates the accuracy and scientific value of our automated
classifier.
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Figure 16. Mean error on the true (N > 75) vote fractions for either a
truncated (N = 0 to N = 20) number of volunteers (solid) or the automated
classifier (dashed). Asking only a few volunteers gives a noisy estimate of
the true vote fraction. Asking more volunteers reduces this noise. For some
number of volunteers, the noise in the vote fraction is similar to the error of
the automated classifier, meaning they have a similar mean error versus the
true vote fraction; this number is where the solid and dashed lines intersect.
We find the automated classifier has a similar mean error to approx. 5 to 15
volunteers, depending on the question.
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Figure 17. Galaxies binned by ‘Smooth or Featured’ vote prediction entropy,
measuring the model’s uncertainty in the votes. Bins (columns) are equally
spaced (boundaries noted above). Five random galaxies are shown per bin.
Unusual, inclined, or poorly scaled galaxies have highly uncertain (high
entropy) votes, while smooth and especially clearly featured galaxies have
confident (low entropy) votes, matching our intuition and demonstrating that
our posteriors provide meaningful uncertainties.

6 USAGE

6.1 Catalogues

We release two volunteer catalogues and two automated catalogues,
available at https://doi.org/10.5281/zenodo.4196266.

gz_decals_volunteers_ab includes the volunteer classifi-
cations for 92960 galaxies from GZD-1 and GZD-2. Classifica-
tions are made using the GZD-1/2 decision tree (Fig. Al). All
galaxies received at least 40 classifications, and consequently have
approximately 30—40 after volunteer weighting (Section 4.3.1). This
catalogue is ideal for researchers needing standard morphology mea-
surements on a reasonably large sample, with minimal complexity.
33124 galaxies in this catalogue were also previously classified
in GZ2; the GZD-1/2 classifications are better able to detect faint
features due to deeper DECaLS imaging, and so should be preferred.

gz_decals_volunteers_c includes the volunteer classifica-
tions from GZD-5. Classifications are made using the improved
GZD-5 decision tree which adds more detail for bars and mergers
(Section 4.2). This catalogue includes 253 286 galaxies, but each
galaxy does not have the same number of classifications. 59 337
galaxies have at least 30 classifications (after denoizing), and the
remainder have far fewer (approximately 5). The selection effects
for how many classifications each galaxy receives are detailed below
in Section 6.2. This catalogue may be useful to researchers who
prefer a larger sample than gz_decals_volunteers_ab at the
cost of more uncertainty and the introduction of selection effects, or
who need detailed bar or merger measurements for a small number
of galaxies. We use gz_decals_volunteers_c to train our deep
learning classifier.
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Figure 18. Calibration curves for the two binary GZ DECaLS questions.
The x-axis shows the credible interval width — for data-dominated posteriors,
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Only credible intervals with at least 100 measurements are shown. Calibration
for both questions is excellent.
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Figure 19. Distribution of bulge size versus spiral winding, using responses
from volunteers (left-hand panel) or our automated predictions (right-hand
panel). We observe no clear correlation between bulge size and spiral winding,
consistent with M19. The distributions are consistent between volunteers and
our automated method. We hope this demonstrates the accuracy and scientific
value of our automated classifier.

The automated classifications are made using our Bayesian
deep learning classifier, trained on gz_decals_volunteers._c
to predict the answers to the GZD-5 decision tree for all
GZ DECaLS galaxies (including those in GZD-1 and GZD-2).
gz_-decals_auto_posteriors contains the predicted posteriors
for each answer — specifically, the Dirichlet concentration parameters
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Figure 20. Confusion matrices, continued from above. To avoid the loss of
information from rounding, we encourage researchers not to treat Galaxy
Zoo classifications as discrete, and instead to use the full vote fractions or
posteriors where possible.

that encode the posteriors. We hope this catalogue will be helpful to
researchers analysing galaxies in Bayesian frameworks.
gz_decals_auto_fractions reduces those posteriors to the
automated equivalent of previous Galaxy Zoo data releases, contain-
ing the expected vote fractions (mean posteriors). Note that not all
vote fractions are relevant for every galaxy; we suggest assessing
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relevance using the estimated fraction of volunteers that would have
been asked each question, which we also include. We hope this
catalogue will be useful to researchers seeking detailed morphology
classifications on the largest possible sample, who might benefit from
error bars but do not need full posteriors.

We also release Jupyter notebooks showing how to use each cata-
logue at https://www.github.com/mwalmsley/zoobot. These demon-
strate how to load and query each catalogue with pandas (McKin-
ney 2010), and how to create callable posteriors from the Dirichlet
concentration parameters.

The automated catalogues may be interactively explored
at https://share.streamlit.io/mwalmsley/galaxy-poster/gz_decals_m
ike_walmsley.py.

6.2 Selection effects for total classifications

The GZD-1/2 catalogue reports at least 40 classifications for all
galaxies imaged by DECaLS DR1/2 and passing the appropriate
selection cuts (Section 2.2). Additional classifications above 40
are assigned independently of the galaxy properties. The selection
function for total classifications in the GZD-5 catalogue is more
complex. In practice, if you require a strictly random sample of
GZD-5 galaxies with more than five volunteer classifications, you
should exclude galaxies where ‘random_selection’ is False. You may
also consider using the posteriors from our deep learning classifier,
which are comparable across all GZ DECaLS galaxies (Section 5).
Below, we describe the GZD-5 total classification selection effects.

Early galaxies were initially uploaded row-by-row from the
NASA-Sloan Atlas, each (eventually) receiving 40 classifications.
‘We also uploaded two additional subsets. For the first, 1355 galaxies
were targeted for classification to support an external research
project. Of these, 1145 would have otherwise received five clas-
sifications. These 1145 galaxies with additional classifications are
identified with the ‘targeted’ group and should be excluded. For the
second, we reclassified the 1497 galaxies classified in both GZD-
1/2 and the Nair & Abraham (2010) expert visual morphology
classification catalogue to measure the effect of our new decision
tree (results are shown in Section 4.2). Both the GZD-1/2 and GZD-
5 classifications are reported in the respective catalogues (Section 6).
Similarly to the targeted galaxies, 651 of these calibration galaxies
would have otherwise received five classifications, are identified with
the ‘calibration’ group, and should be excluded.

We then implemented active learning (Section 3.1), prioritizing
6939 galaxies from the remaining pool of 199 496 galaxies not yet
uploaded. The galaxies are identified with the groups ‘active_priority’
(the galaxies identified as ‘most informative’ and selected for 40
classifications) and ‘active_baseline’ (the remainder). For a strictly
random selection, both groups should be excluded, leaving the
galaxies classified prior to the introduction of active learning.

Finally, we note that 14960 (5.9 per cent) of GZD-5 galaxies
received more than 40 classifications due to being erroneously
uploaded more than once. The images are identical and so we report
the aggregate classifications across all uploads of the same galaxy.

6.3 Suggested usage of vote fractions

The most appropriate usage of the Galaxy Zoo DECaLS vote
fractions depends on the specific science case. Many galaxies have
ambiguous vote fractions (e.g. roughly similar vote fractions for both
disc and elliptical morphologies) because of observational limitations
like image resolution, or because the galaxy morphology is truly in-
between the available answers (perhaps because the galaxy has an
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unusual feature such as polar rings, Moiseev et al. 2011, or because
the galaxy is undergoing a morphological transition). To make best
use of such galaxies, we recommend that, where possible, readers use
the vote fractions as statistical weights in their analysis. For example,
when investigating the differences in the stellar mass distributions
of elliptical and disc galaxies, the disc (elliptical) vote fractions
can be used as weights when plotting the distributions, resulting
in the galaxies with the highest vote fraction for disc (elliptical)
morphology dominating the resulting distribution. This ensures that
each galaxy contributes to the analysis, without excluding galaxies
with ambiguous vote fractions. For examples of using vote fractions
as weights, see Smethurst et al. (2015) and Masters et al. (2019).

Using the vote fractions as weights is not appropriate for all science
cases. For example, if galaxies of a particular morphology need
to be isolated to form a sample for observational follow-up (e.g.
overlapping pairs, see Keel et al. 2013, and ‘bulgeless’ galaxies, see
Simmons et al. 2017a; Smethurst et al. 2019), or if the fraction of
a certain morphological type of galaxy is to be calculated (e.g. bar
fraction, see Simmons et al. 2014). These science cases require a
cut on the appropriate vote fraction to be chosen. However, readers
should be aware that making cuts on the vote fractions is a crude
method to identify galaxies of certain morphologies and will result
in an incomplete sample.

Table 2 shows our suggested cuts for populations of common
interest, based on visual inspection by the authors and chosen for
high specificity (low contamination) at the cost of low sensitivity
(completeness). We urge the reader to adjust these cuts to suit the
sensitivity and specificity of their science case, to add additional
cuts to better select their desired population, and to make their own
visual inspection to verify the selected population is as intended.
For a full analysis, we once again suggest the reader avoid cuts by
appropriately weighting ambiguous galaxies, or take advantage of
the posteriors provided by our automated classifier.

7 DISCUSSION

What does a classification mean? The comparison of GZ2 and GZ
DECaLS images (Fig. 6) highlights that our classifications aim to
characterize the clear features of an image, and not what an expert
might infer from that image. For example, volunteers might see an
image of a galaxy that is broadly smooth, and so answer smooth, even
though our astronomical understanding might suggest that the faint
features around the galaxy core are likely indicative of spiral arms
that would be revealed given deeper images. This situation occurs in
several galaxies in Fig. 6. These ‘raw’ classifications will be most
appropriate for researchers working on computer vision or on par-
ticularly low-redshift, well-resolved galaxies. The redshift-debiased
classifications, which are effectively an estimate of galaxy features
not clearly seen in the image, will be most appropriate for researchers
especially interested in fainter features or studying links between our
estimated intrinsic visual morphologies and other galaxy properties.

We showed in Section 4.2 that changing the answers available to
volunteers significantly improves our ability to identify weak bars.
This highlights that our classifications are only defined in the context
of the answers presented. One cannot straightforwardly compare
classifications made using different decision trees. Our scientific
interests and our understanding of volunteers both evolve, and so our
decision trees must also evolve to match them. However, only the last
few years of volunteer classifications will use the latest decision tree
(based on previous data releases), placing an upper limit on the num-
ber of galaxies with compatible classifications at any one time. Our
automated classifier resolves this here by allowing us to retrospec-
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Table 2. Suggested cuts for rough identification of galaxy populations, based on visual inspection by the authors. Q. votes is the minimum number of total
votes for that question; for example, to identify strong bars, require at least 20 total votes to the question ‘Does this galaxy have a bar?’. This ensures enough
votes to calculate reliable vote fractions. Assumes that all previous questions are filtered with the suggested cuts. For continuous measurements such as bulge
size and spiral winding, we suggest combining all answers into a summary statistic like equation (8).

Population Approx. Cut Q. Votes Notes
Featured disc featured > 0.7 5 -

Disc featured > 0.3 5 Will include featureless SO
Elliptical smooth > 0.7 5 -

Edge-on disc yes > 0.8 5 -

Not edge-on disc yes < 0.3 5 -

Strong bar strong bar > 0.8 20 -

Weak bar weak bar > 0.8 20 -

Any bar strong bar + weak bar > 0.6 20 -

Spiral arms spiral arms > 0.6 20 -

No spiral arms spiral arms < 0.3 20 Primarily ringed or irregular

Spiral count spiral count {n} > 0.75 30 One-armed spirals are often mergers
Round edge-on bulge edge-on bulge rounded > 0.6 10 -

Boxy edge-on bulge edge-on bulge boxy > 0.3 10 Rare - visual inspection required

No edge-on bulge edge-on bulge none > 0.5 10 -

Merger merger > 0.7 10 -

Merger or overlap merger > 0.3 10 To remove overlaps, redshifts or inspection required.
Post-merger major disturb. > 0.6 10 -

Asymmetric or low surface brightness minor disturb. > 04 10 -

tively apply the GZD-5 decision tree (with better weak bar detection,
among other changes) to galaxies only classified by volunteers in
GZD-1 and GZD-2. This flexibility ensures that Galaxy Zoo will
remain able to answer the most pertinent research questions at scale.

We have shown (5.2) that our automated classifier is generally
highly accurate, well-calibrated, and leads to at least one equivalent
science result. However, we cannot exclude the possibility of unex-
pected systematic biases or of adversarial behaviour from particular
images. Avoiding subtle biases and detecting overconfidence on
out-of-distribution data remain open computer science research
questions, often driven by important terrestrial applications (Szegedy
et al. 2014; Hendrycks & Gimpel 2017; Eykholt et al. 2018; Smith
& Gal 2018; Geirhos et al. 2019; Ren et al. 2019; Margalef-Bentabol
etal. 2020; Yang et al. 2020). Volunteers also have biases (e.g. a slight
preference for recognizing left-handed spirals; Land et al. 2008) and
struggle with images of an adversarial nature (e.g. confusing edge-
on discs with cigar-shaped ellipticals), though these can often be
discovered and resolved through discussion with the community and
by adapting the website.

We believe the future of morphology classification is in the
thoughtful combination of volunteers and machine learning. Such
combinations will be more than just faster; they will be replicable,
uniform, error-bounded, and quick to adapt to new tasks. They will
let us ask new questions — draw the spiral arms, select the bar
length, separate the merging galaxies pixelwise — which would be
infeasible with volunteers alone for all but the smallest samples (e.g.
Lingard et al. 2020). And they will find the interesting, unusual, and
unexpected galaxies which challenge our understanding and inspire
new research directions.

The best combination of volunteer and machine is unclear. Our
experiment with active learning is one possible approach, but
(when compared to random selection) suffers from complexity to
implement, an unknown selection function, and no guarantee —
or even clear final measurement of — an improvement in model
performance. Many other approaches are suggested in astrophysics

(Wright et al. 2017; Beck et al. 2018; Dickinson et al. 2019; Wright
et al. 2019; Lochner & Bassett 2020; Martin et al. 2020) and in
citizen science and human—computer interaction more broadly
(Chang, Amershi & Kamar 2017; Bansal et al. 2019; Liu et al. 2020;
Wilder, Horvitz & Kamar 2020). We will continue to search for and
experiment with strategies to create the most effective contribution
to research by volunteers.

8§ CONCLUSION

We have presented Galaxy Zoo DECaLS; detailed galaxy morphol-
ogy classifications for 311 488 galaxies imaged by DECaL.S DRS and
within the SDSS DRI11 footprint. The increased depth of DECaLS
imaging allows us to better resolve faint morphological features than
with previous Galaxy Zoo data releases using SDSS imaging (Fig. 5).
Classifications were collected from volunteers on the Zooniverse
citizen science platform over three campaigns, GZD-1, GZD-2, and
GZD-5. GZD-5 used an improved decision tree (Fig. 4) aimed at
best exploiting the deeper DECaLS images to identify weak bars,
mergers, and tidal features.

All galaxies receive at least five volunteer classifications (Fig. 2).
Galaxies in GZD-1 and GZD-2 receive at least 40. In GZD-5, two
subsets receive 40: a random subset and a subset of galaxies priori-
tized as most likely to be informative for training machine learning
models. These informative galaxies were identified following the
method introduced by Walmsley et al. (2020) as the galaxies with the
highest mutual information between model parameters and volunteer
labels — intuitively, the galaxies on which several machine learning
models confidently disagree.

Volunteer classifications were then used to train deep learning
models to classify all galaxies. Our models are able to both learn
from uncertain volunteer responses and predict full posteriors (rather
than point estimates) for what volunteers would have said. This was
achieved by interpreting the model predictions as the parameters
for Dirichlet-Multinomial distributions and training to maximize
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the corresponding likelihood (equation 6). We also approximate
marginalizing over model weights (i.e. Bayesian deep learning)
by training an ensemble of 5 models where each model makes
predictions with MC Dropout. The resulting ensemble is accurate
(Figs 13, 15, 16, and 20) and well-calibrated (Fig. 18).

We release both volunteer and automated classification catalogues
at data.galaxyzoo.org. The volunteer catalogues include the total and
mean volunteer responses for each question to each galaxy, and are
split into the GZD-1/2 and GZD-5 campaigns (due to the modified
decision tree). The automated catalogue includes predictions for
every galaxy in any campaign. We share the predicted Dirichlet-
Multinomial parameters that encode the full posteriors as well
as the expected vote fractions that those posteriors imply. The
expected vote fractions may used in a similar manner to previous
volunteer-only data releases, while the posteriors support more
complex statistical analyses. We also provide guidance and code
examples.
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code will be a useful resource for researchers looking to train their
own deep learning models.
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APPENDIX A: GZD-1/2 DECISION TREE

Fig. A1 shows the Galaxy Zoo decision tree used for the earlier GZD-
1 and GZD-2 DECaLS campaigns. This tree is based on the tree
used for Galaxy Zoo 2 (Willett et al. 2013) with three modifications;
the ‘Can’t Tell” answer to ‘How many spiral arms are there?’ was
removed, the number of answers to ‘How prominent is the central
bulge?’” was reduced from four to three, and ‘Is the galaxy currently
merging, or is there any sign of tidal debris?” was added as a
standalone question. Please see Section 3.2 for a full discussion.
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Figure Al. Decision tree used for GZD-1 and GZD-2, based on the Galaxy Zoo 2 decision tree. The GZD-5 decision tree is shown in Fig. 4.

APPENDIX B: CATALOGUE SAMPLE ROWS

Tables B1 and B2 present sample rows from the volunteer
and automated morphology catalogues, respectively. The volun-
teer data shown is from GZD-5; the GZD-1/2 catalogue fol-

lows an equivalent schema. For brevity, we show only columns
for a single question (‘Bar’) and a single answer (‘Weak’);
other questions and answers follow an identical pattern. A
full description of all columns is available on data.galaxyzoo.o

rg.
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Table B1. Sample of GZD-5 volunteer classifications, with illustrative subset of columns. Columns: ‘launame’ galaxy identifier from NASA-
Sloan Atlas; RA and Dec, similarly; ‘Bar’ question total votes for all answers; ‘Bar’ question votes for ‘Weak’ answer; fraction of ‘Bar’ question
votes for ‘Weak’ answer; estimated fraction after applying redshift debiasing (Section 4.3.2). Other questions and answers follow the same pattern

(not shown for brevity). Full schema online at this link.

iauname ra dec bar_total-votes bar_weak bar_weak_fraction bar_weak_debiased
J112953.88-000427.4 172.47 —0.07 16 1 0.06 0.15
J104325.294190335.0 160.86 19.06 2 0 0.00 0.00
J104629.544+115415.1 161.62 11.90 4 2 0.50 -
J082950.68+125621.8 127.46 12.94 0 0 - -
J122056.00-015022.0 185.23 —1.84 3 0 0.00 -

Table B2. Sample of automated classifications (GZD-5 schema), with illustrative subset of columns. Columns: ‘iauname’ galaxy identifier from
NASA-Sloan Atlas; RA and Dec, similarly; proportion of volunteers estimated to be asked the ‘Bar’ question (i.e. the product of the preceding
vote fractions) for estimating relevance; Dirichlet concentrations defining the predicted posterior for the ‘Bar’ question and ‘“Weak’ answer (see
Section 5); predicted fraction of ‘Bar’ question votes for the ‘“Weak’ answer derived from those concentrations. Other questions and answers
follow the same pattern (not shown for brevity). Full schema online at this link.

iauname RA Dec bar_proportion_asked bar_weak_concentrations bar_weak_fraction
J112953.88-000427.4 172.47 —0.07 0.14 [6.158, 5.0723, 5.4842,... 0.09
1104325.294-190335.0 160.86 19.06 0.13 [4.3723,4.5933, 4.8582... 0.07
J100927.56+071112.4 152.36 7.19 0.58 [9.3129, 10.3911, 8.4791... 0.40
J143254.454-034938.1 218.23 3.83 0.55 [13.2981, 12.2639, 8.8957... 0.26
J135942.73+010637.3 209.93 1.11 0.77 [15.6247, 15.6893, 14.72.... 0.28

This paper has been typeset from a TeX/IATEX file prepared by the author.
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