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A B S T R A C T 

We present Galaxy Zoo DECaLS: detailed visual morphological classifications for Dark Energy Camera Le gac y Surv e y images 
of galaxies within the SDSS DR8 footprint. Deeper DECaLS images ( r = 23.6 versus r = 22.2 from SDSS) reveal spiral arms, 
weak bars, and tidal features not previously visible in SDSS imaging. To best exploit the greater depth of DECaLS images, 
volunteers select from a new set of answers designed to impro v e our sensitivity to mergers and bars. Galaxy Zoo volunteers 
provide 7.5 million individual classifications o v er 314 000 galaxies. 140 000 galaxies receive at least 30 classifications, sufficient 
to accurately measure detailed morphology like bars, and the remainder receive approximately 5. All classifications are used 

to train an ensemble of Bayesian convolutional neural networks (a state-of-the-art deep learning method) to predict posteriors 
for the detailed morphology of all 314 000 galaxies. We use active learning to focus our volunteer effort on the galaxies which, 
if labelled, would be most informative for training our ensemble. When measured against confident volunteer classifications, 
the trained networks are approximately 99 per cent accurate on every question. Morphology is a fundamental feature of every 

galaxy; our human and machine classifications are an accurate and detailed resource for understanding how galaxies evolve. 

Key words: methods: data analysis – galaxies: bar – galaxies: general – galaxies: interactions. 
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 I N T RO D U C T I O N  

orphology is a key driver and tracer of galaxy evolution. For
xample, bars are thought to mo v e gas inwards (Sakamoto et al.
999 ) driving and/or shutting down star formation (Sheth et al.
004 ; Jogee, Scoville & Kenney 2005 ), and bulges are linked to
lobal quenching (Masters et al. 2011 ; Fang et al. 2013 ; Bluck et al.
014 ) and inside-out quenching (Spindler et al. 2017 ; Lin et al.
019 ). Morphology also traces other key drivers, such as the merger
istory of a galaxy. Mergers support galaxy assembly (Wang et al.
011 ; Martin et al. 2018 ), though their relative contribution is an
pen question (Casteels et al. 2014 ), and may create tidal features,
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ulges, and discs, allowing past mergers to be identified (Hopkins
t al. 2010 ; Fontanot et al. 2011 ; Kaviraj 2014 ; Brooks & Christensen
015 ). 
Unpicking the complex interplay between morphology and galaxy

volution requires measurements of detailed morphology in large
amples. While modern surv e ys rev eal e xquisite morphological
etail, they image far more galaxies than scientists can visually
lassify. Galaxy Zoo solves this problem by asking members of the
ublic to volunteer as ‘citizen scientists’ and provide classifications
hrough a web interface. Galaxy Zoo has provided morphology
easurements for surv e ys including SDSS (Lintott et al. 2008 ;
illett et al. 2013 ) and large HST programs (Simmons et al. 2017b ;
illett et al. 2017 ). 
Knowing the morphology of homogeneous samples of hundreds

f thousands of galaxies supports science only possible at scale.
© 2021 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

http://orcid.org/0000-0002-6408-4181
http://orcid.org/0000-0001-5578-359X
http://orcid.org/0000-0002-6851-9613
http://orcid.org/0000-0001-8010-8879
http://orcid.org/0000-0001-9395-4759
http://orcid.org/0000-0002-6131-9539
http://orcid.org/0000-0003-0846-9578
http://orcid.org/0000-0001-6417-7196
mailto:michael.walmsley@manchester.ac.uk
http://creativecommons.org/licenses/by/4.0/


Galaxy Zoo DECaLS data release 3967 

T
v  

s  

t
c
f  

e
a  

2
u
2

c  

e
o
b
d
c
t  

o
t
G
i  

d  

a
g  

m  

G
l
c
c

 

v
(
t
f
o
v
u
p
w
W
g
o
v
a
q
q
v

o
a  

n  

i  

r
d
a
S  

o

1

2

2

O  

s  

(  

T
h  

0
a  

r
 

c
i  

(  

t  

a  

(  

d  

3
0  

i
f  

p
T  

D
p
(  

c

2

W
S  

D  

g  

I  

p
m
S  

c  

g  

F  

w  

i  

e

F  

t
m  

S
g
t
t  

c  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3966/6378289 by guest on 22 D
ecem

ber 2021
he catalogues produced by the collective effort of Galaxy Zoo 
 olunteers ha ve been used as the foundation of a large number of
tudies of galaxy morphology (see Masters 2019 for a re vie w), with
he method’s ability to provide estimates of confidence alongside 
lassification especially valuable. Galaxy Zoo measures subtle ef- 
ects in large populations (Masters et al. 2010 ; Willett et al. 2015 ; Hart
t al. 2017 ); identifies unusual populations that challenge standard 
strophysics (Simmons et al. 2013 ; Tojeiro et al. 2013 ; Kruk et al.
017 ); and finds unexpected and interesting objects that provide 
nique data on broader galaxy evolution questions (Cardamone et al. 
009 ; Lintott et al. 2009 ; Keel et al. 2015 ). 
Here, we present the first volunteer classifications of galaxy images 

ollected by the Dark Energy Camera Le gac y Surv e y (DECaLS; De y
t al. 2019 ). This work represents the first systematic engagement 
f volunteers with low-redshift images as deep as those provided 
y DECaLS, and thus represents a more reliable catalogue of 
etailed morphology than has hitherto been available. These detailed 
lassifications include the presence and strength of bars and bulges, 
he count and winding of spiral arms, and the indications of recent
r ongoing mergers. Our volunteer classifications were sourced o v er 
hree separate Galaxy Zoo DECaLS (GZD) classification campaigns, 
ZD-1, GZD-2, and GZD-5, which classified galaxies first released 

n DECaLS Data Releases 1, 2, and 5, respectively. The key practical
ifferences are that GZD-5 uses an impro v ed decision tree aimed
t better identification of mergers and weak bars, and includes 
alaxies with just 5 total votes as well as galaxies with 40 or
ore. Across all campaigns, we collect 7 496 325 responses from
alaxy Zoo volunteers, recording 30 or more classifications in at 

east one campaign for 139 919 galaxies and fewer (approximately 5 
lassifications) for an additional 173 870 galaxies, totalling 313 789 
lassified galaxies. 

For the first time in a Galaxy Zoo data release, we also pro-
ide automated classifications made using Bayesian deep learning 
Walmsley et al. 2020 ). By using our volunteer classifications to 
rain a deep learning algorithm, we can make detailed classifications 
or all 313 789 galaxies in our target sample, providing morphol- 
gy measurements faster than would be possible than relying on 
olunteers alone. Bayesian deep learning allows us to learn from 

ncertain volunteer responses and to estimate the uncertainty of our 
redictions. It also allows us to identify which galaxies, if labelled, 
ould be most informative for training our classifier (active learning). 
e chose to partially focus our volunteers on such informative 

alaxies, requesting 40 classifications per informative galaxy and 
nly 5 for the remainder. Our classifier predicts posteriors for how 

olunteers would have answered all decision tree questions, 1 with an 
ccuracy comparable to asking 5 to 15 volunteers, depending on the 
uestion, and achieving approximately 99 per cent accuracy on every 
uestion for galaxies where the volunteers are confident (volunteer 
ote fractions below 0.2 or abo v e 0.8). 

In Section 2, we describe the observations used and the creation 
f RGB images suitable for classification. In Section 3, we give 
n o v erview of the volunteer classification process and detail the
ew decision trees used. In Section 4, we investigate the effects of
mpro v ed imaging and impro v ed decision trees, and we compare our
esults to other morphological measurements. Then, in Section 5, we 
escribe the design and performance of our automated classifier –
n ensemble of Bayesian convolutional neural networks. Finally, in 
ection 6, we provide guidance (and example code) for ef fecti ve use
f the classifications. 
 Excluding the final ‘Is there anything odd?’ question as it is multiple-choice. 
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s
3

 I MAG I NG  

.1 Obser v ations 

ur galaxy images are created from data collected by the DECaLS
urv e y (De y et al. 2019 ). DECaLS uses the Dark Energy Camera
DECam; Flaugher et al. 2015 ) at the 4m Blanco telescope at Cerro
ololo Inter-American Observatory, near La Serena, Chile. DECam 

as a roughly he xagonal 3.2 de g 2 field of view with a pixel scale of
.262 arcsec per pixel. The median point spread function full-width 
t half-maximum (FWHM) is 1 . ′′ 29, 1 . ′′ 18, and 1 . ′′ 11 for g , r , and z,
espectively. 

The DECaLS surv e y contributes targeting images for the up-
oming Dark Energy Spectroscopic Instrument (DESI). DECaLS 

s responsible for the DESI footprint in the Southern Galactic Cap
SGC) and the δ ≤ 34 region of the Northern Galactic Cap (NGC),
otalling 10 480 de g 2 . 2 1130 de g 2 of the SGC DESI footprint are
lready being imaged by DECam through the Dark Energy Surv e y
DES; The Dark Energy Surv e y Collaboration 2005 ) so DECaLS
oes not repeat this part of the DESI footprint. DECaLS implements a
-pass strategy to tile the sky. Each pass is slightly offset (approx. 0.1–
.6 deg ). The choice of pass and exposure time for each observation
s optimized in real-time based on the observing conditions recorded 
or the previous targets, as well as the interstellar dust reddening, sky
osition, and estimated observing conditions of possible next targets. 
his allows a near-uniform depth across the surv e y. In DECaLS DR1,
R2, and DR5, from which our images are drawn, the median 5 σ
oint source depths for areas with 3 observations was approximately 
AB) g = 24.65, r = 23.61, and z = 22.84. 3 The DECaLS surv e y
ompleted observations in 2019 March. 

.2 Selection 

e identify galaxies in the DECaLS imaging using the NASA–
loan Atlas v1.0.0 (NSA). As the NSA was derived from SDSS
R8 imaging (Aihara et al. 2011 ), this data release only includes
alaxies that are within both the DECaLS and SDSS DR8 footprint.
n effect, we are using deeper DECaLS imaging of the galaxies
reviously imaged in SDSS DR8. This ensures our morphological 
easurements have a wealth of ancillary information derived from 

DSS and related surv e ys, and allows us to measure any shift in
lassifications versus Galaxy Zoo 2 using the subset of SDSS DR8
alaxies classified both in this work and in Galaxy Zoo 2 (Section 4).
ig. 1 shows the resulting GZ DECaLS sk y co v erage. NSA v1.0.0
as not published but the values of the columns used here are

dentical to those in NSA v1.0.1, released in SDSS DR13 (Albareti
t al. 2017 ); only the column naming conventions are different. 

Selecting galaxies with the NSA introduces two implicit cuts. 
irst, the NSA primarily includes galaxies brighter than m r = 17.77,

he SDSS spectroscopic target selection limit. Galaxies fainter than 
 r = 17.77 are included only if they are in deeper survey areas (e.g.
tripe82) or were measured using ‘spare’ fibres after all brighter 
alaxies in a given field were covered; we suggest researchers enforce 
heir own magnitude cut according to their science case. Secondly, 
he NSA only co v ers redshifts of z = 0.15 or below. To these implicit
uts, we add an explicit cut requiring Petrosian radius (the NSA
 The remaining DESI footprint is being imaged by DECaLS’ companion 
urv e ys, MzLS and BASS (Dey et al. 2019 ). 
 See https://www.legac ysurve y.org/dr5/description/ and related pages. 
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3968 M. Walmsley et al. 

Figure 1. Sk y co v erage of GZ DECaLS (equatorial coordinates), resulting 
from the imaging o v erlap of DECaLS DR5 and SDSS DR8, shown in red. 
Darker areas indicate more galaxies. Sky coverage of Galaxy Zoo 2, which 
used images sourced from SDSS DR7, shown in light blue. The NSA includes 
galaxies imaged by SDSS DR8, including galaxies newly imaged at the 
Southern Galactic Cap (approx. 2500 deg 2 ). 
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1.0.0 PETROTHETA 4 column) of at least 3 arcsec, to ensure the
alaxy is sufficiently extended for meaningful classification. 

For each galaxy, if the coordinates had been imaged in the g , r , and
 bands, and the galaxy passed the selection cuts abo v e, we acquired
 combined FITS cutout of the grz bands from the DECaLS cutout
ervice ( www.legac ysurve y.org ). 

Galaxy Zoo presents volunteers with 424 × 424 pixel square
alaxy images. GZD-1 and GZD-2 acquired 424 × 424 pixel square
ITS cutouts directly from the cutout service. To ensure that galaxies

ypically fit well within a 424 pixel image, cutouts were downloaded
ith an interpolated pixel scale s of 

 = max ( min (0 . 04 p 50 , 0 . 02 p 90 ) , 0 . 1) , (1) 

here p 50 is the Petrosian 50 per cent-light radius and p 90 is the
etrosian 90 per cent-light radius. Approximately 1 per cent of
alaxies have incorrectly large radii reported in the NSA (typically
s a result of foreground stars or other interloping sources) and this
auses the field to be incorrectly large and hence the target galaxy to
ppear incorrectly small. To allow researchers to mitigate this issue,
e flag images for which there are more source pixels away from the

entre than near the centre; specifically, for which the mean distance
f all likely source pix els 5 e xceeds 161 (approximately the expected
alue for all pixels). We find by eye that this simple procedure
dentifies the worst-affected galaxies. We report the mean source
ixel distance and distance flags as wrong size statistic and
rong size warning , respectively. 
For GZD-5, to a v oid banding artefacts caused by the interpolation
ethod of the DECaLS cutout service, each FITS image was

ownloaded at the fixed native telescope resolution of 0.262 arcsec 2 

er pixel, 6 with enough pixels to cover the same area as 424 pixels
t the interpolated pixel scale s . These individually sized FITS
ere then resized locally up to the interpolated pixel scale s by
anczos interpolation (Lanczos 1938 ). Image processing is otherwise

dentical between campaigns. Galaxies with incomplete imaging,
efined as more than 20 per cent missing pixels in any band, were
 Azimuthally averaged SDSS-style Petrosian radius, derived from the r band. 
ee Albareti et al. ( 2017 ) and the NSA v1.0.1 data model. 
 Arbitrarily defined as pixels with double the 20th percentile band-averaged 
alue after the scaling in Section 2.3. 
 Up to a maximum of 512 pixels per side. Highly extended galaxies were 
ownloaded at reduced resolution such that the FITS had exactly 512 pixels 
er side. 
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iscarded. For GZD-1/2, 92 960 of 101 252 galaxies had complete
maging (91.8 per cent). For GZD-5, 216 106 of 247 746 galaxies not
n DECaLS DR1/2 had complete imaging (87.2 per cent). 7 

.3 RGB image construction 

e convert the measured grz fluxes into RGB images following the
ethodology of Lupton et al. ( 2004 ). To use the grz bands as RGB

olours, we multiply the flux values in each band by 125.0, 71.43,
nd 52.63, respectively. These numbers are chosen by eye 8 such that
ypical subjects show an appropriate range of colour once mapped to
GB channels. 
For background pixels with very low flux, and therefore high

ariance in the proportion of flux per band, naively colouring by the
easured flux creates a speckled effect (Willett et al. 2017 ). As an
 xtreme e xample, a pix el with 1 photon in the g band and no photons
n r or z would be rendered entirely red. To remo v e these colourful
peckles, we desaturate pixels with very low flux. We first estimate
he total per-pixel photon count N assuming an exposure time of 90
econds per band and a mean photon frequency of 600 nm. Poisson
tatistics imply the standard deviation on the total mean flux in that
ixel is proportional to 

√ 

N . For pixels with a standard deviation
elow 100, we scale the per-band deviation from the mean per-pixel
ux by a factor of 1 per cent of the standard deviation. The effect is to
educe the saturation of low-flux pixels in proportion to the standard
eviation of the total flux. Mathematically, we set 

 

′ 
ijc = X ij + α( X ijc −X ij ) where α= min (0 . 01 

√ 

X ij T /λ, 1) , (2) 

here X ijc and X 

′ 
ijc are the flux at pixel ij in channel c before and

fter desaturation, X ij is the mean flux across bands at pixel ij , T
s the mean exposure time (here, 90 s) and λ is the mean photon
avelength (here, 600 nm). 
Pixel values were scaled by arcsinh( x ) to compensate for the high

ynamic range typically found in galaxy flux, creating images which
an show both bright cores and faint outer features. To remo v e the
ery brightest and darkest pixels, we linearly rescale the pixel values
o lie on the ( −0.5, 300) interval and then clip the pixel values to 0
nd 255, respectively. We use these final values to create an RGB
mage using pillow (Kemenade et al. 2020 ). 

The images are available on Zenodo at https:// doi.org/ 10.5281/
enodo.4573248 . The code used to download the FITS cutouts and
onvert them to RGB images is available on GitHub for GZD-1,
ZD-2, and GZD-5. 

 VO LUNTEER  CLASSI FI CATI ONS  

olunteer classifications for GZ DECaLS were collected during three
ampaigns. GZD-1 and GZD-2 classified all 99 109 galaxies passing
he criteria abo v e from DECALS DR1 and DR2, respectively. GZD-
 ran from 2015 September to 2016 February, and GZD-2 from
016 April to 2017 February. GZD-5 classified 262 000 DECALS
R5-only galaxies passing the criteria abo v e. GZD-5 ran from 2017
arch to 2020 October. GZD-5 used more complex retirement

riteria aimed at improving our automated classification (3.1) and
n impro v ed decision tree aimed at better identification of weak bars
nd minor mergers (4.2). 
 Note that these numbers do not sum to the total number of galaxies classified 
cross both campaigns because some galaxies are shared between campaigns. 
 By Dustin Lang, who we gratefully acknowledge. 

art/stab2093_f1.eps
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Figure 2. GZD-1, GZD-2, and GZD-5 classification counts, excluding 
implausible classifications (Section 4.3.1). GZD-1 has approximately 40–
60 classifications, GZD-2 has approximately 40, and GZD-5 has either 
approximately 5 or approximately 30–40. 5.9 per cent of GZD-5 galaxies 
received more than 40 classifications due to mistaken duplicate uploads. 
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10 ‘Artifact’ answers are sufficiently rare that we chose to ignore votes for this 
answer when calculating which galaxies to label. 
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This iteration of the Galaxy Zoo project used the infrastructure 
ade available by the Zooniverse platform; in particular, the open 

ource Panoptes platform (The Zooniverse Team 2020 ). The platform 

llows for the rapid creation of citizen science projects, and presents
articipating volunteers with one of a subject set of images chosen 
ither randomly, or through criteria described in Section 3.1. 

.1 Selecting total classifications 

ow many volunteer classifications should each galaxy receive? 
deally, all galaxies would receive enough classifications to be 
onfident in the average response (i.e. the vote fraction) while still
lassifying all the target galaxies within a reasonable timeframe. 
o we ver, the size of modern surveys make this increasingly imprac-

ical. Collecting 40 volunteer classifications for all 314 000 galaxies 
n this data release would have taken around eight years without 
urther promotion efforts. The larger data sets of future surv e ys will
nly be more challenging. In anticipation of future classification 
emands, we have therefore implemented a variable retirement rate 
ere (moti v ated and described further in Walmsley et al. 2020 ).
nlike previous data releases, GZ DECaLS galaxies each received 
ifferent numbers of classifications (Fig. 2 ). Beginning part-way 
hrough GZD-5, we prioritize classifications for the galaxies expected 
o most impro v e our machine learning models, and rely more heavily
n those models for classifying the remainder. 
For GZD-1 and GZD-2, all galaxies received at least 40 

lassifications 9 (as with previous data releases). GZD-1 galaxies have 
etween 40 and 60 classifications, selected at random, while GZD-2 
alaxies all have approximately 40. For GZD-5, galaxies classified 
ntil 2019 June also received approximately 40 classifications. From 

019 June, we introduced an active learning system. Using active 
earning, galaxies expected to be the most informative for training our 
eep learning model received 40 classifications, and the remaining 
alaxies received at least 5 classifications. 

By ‘most informative’, we mean the galaxies which, if classified, 
ould most impro v e the performance of our model. We describe our
 Note that because classifications from volunteers who respond ‘artefact’ at 
mplausibly high rates are discounted, the total classifications in Fig. 2 and 
he published catalogue are slightly lower – see Section 4.3.1. 

1

s
1

p
o

ethod for estimating which galaxies would be most informative 
n full in Walmsley et al. ( 2020 ). Briefly, we use a convolutional
eural network to make repeated predictions for the probability 
hat k of N total volunteers select ‘Featured’ to the ‘Smooth or
eatured’ question. 10 For each prediction, we randomly permute 

he network with MC Dropout (Gal 2016 ), approximating (roughly) 
raining many networks to make predictions on the same data set. It
an be shown that, under some assumptions, the most informative 
alaxies will be the galaxies with confidently different predictions 
nder each MC Dropout permutation; that is, where the permuted 
etworks confidently disagree (Houlsby 2014 ). Formally, we acquire 
label with volunteers) the galaxies with the highest estimated mutual 
nformation, given by: 

 [ k, w] = −
N ∑ 

k= 0 

〈 Bin ( k| f w ( x) , N ) 〉 log [ 〈 Bin ( k| f w ( x) , N ) 〉 ] 

+ 

〈 

N ∑ 

k= 0 

Bin ( k| f w ( x) , N ) log [ Bin ( k| f w ( x) , N )] 

〉 

, (3) 

here f w ( x ) is the output of the neural network trained to predict
he typical volunteer response following Walmsley et al. ( 2020 ) and
in( k | f w ( x ), N ) is the probability for k of N volunteers to answer

Featured’ to ‘Smooth or Featured’ given that network-estimated 
ypical response. Angled brackets indicate the e xpectation o v er the
istribution of weights, approximated as the e xpectation o v er MC
ropout permutations. In short, the ne gativ e term giv es the entropy
f the volunteer vote distribution given the mean model predictions, 
nd the positive term gives the mean entropy from the predictions of
ach permuted model. The difference between these terms measures 
he degree of confident disagreement between permuted models. See 

almsley et al. ( 2020 ) for more. 
We used the same architecture and loss function as in Walmsley

t al. ( 2020 ) while concurrently developing the more sophisticated
lassifier introduced in this Section. The initial training set was all
ZD-5 galaxies fully classified ( N > 36) by the time of acti v ation.
ach active learning cycle proceeded as follows. The model was 

etrained with all galaxies fully classified by the cycle start date. Next,
nlabelled galaxies were ranked by mutual information (equation 3) 
nd the most informative 1000 of a random 32 768 11 galaxies were
ploaded. Once those galaxies were fully classified by volunteers 
typically in 1–4 weeks) the cycle was repeated. 6939 total galaxies
ere uploaded in total. 12 

We chose to select from a subset of galaxies not yet classified for
wo reasons. The first was for computational efficiency: calculating 
he acquisition function requires making 5 predictions per galaxy. 
he second was that ad hoc experiments showed that galaxies 
ith the very highest acquisition function values were often highly 
nusual and might be too unusual to learn from ef fecti vely. We also
dded a retirement rule to retire galaxies receiving 5 classifications 
f ‘artefact’, to help a v oid v olunteers being presented with these
rioritized artefacts. 
We emphasize that the number of classifications each galaxy 

eceived under active learning is not random. Fig. 3 shows how
1 To allow for out-of-memory shuffling, binary-encoded galaxy images were 
tored in ‘shards’ of 4096 galaxies each. 32 768 corresponds to 8 such shards. 
2 Technical errors with duplicate uploads led to some active-learning- 
rioritized galaxies receiving more than 40 classifications; the median number 
f classifications is 44. 

MNRAS 509, 3966–3988 (2022) 
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Figure 3. ‘Featured’ vote fraction and Petrosian radius (as measured by the 
NSA PETROTHETA column) for galaxies selected either at random (prior to 
enabling active learning) or prioritized as informative. Prioritized galaxies are 
dramatically more featured and slightly more extended than the previously 
classified random galaxies. 
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ctive-learning-prioritized galaxies are dramatically more featured
nd slightly more extended than the previously classified random
alaxies, matching our intuition that small ‘smooth’ elliptical galax-
es are easier to classify and hence less informative than extended
featured’ galaxies. For details on handling this and other selection
ffects, see Section 6. 

.2 Decision trees 

he questions and answers we ask our volunteers define the mea-
urements we can publish. It is therefore critical that the Galaxy Zoo
ecision tree matches the science goals of the research community. 
The questions in a given Galaxy Zoo workflow are designed to

e answerable even by a classifier with little or no astrophysical
ackground. This moti v ates a focus primarily on the appearance of
he galaxy, rather than incorporating physical interpretations which
ould require prior knowledge of galaxies. As an example, the

nitial question in all decision trees from Galaxy Zoo 2 onwards
as asked the viewer to distinguish primarily between ‘smooth’ and
featured’ galaxies, rather than ‘elliptical’ and ‘disc’ galaxies. This
istinction between descriptive and interpretive classification is not
l w ays perfectly enforced. For example, the ‘features’ response to the
nitial question is worded as ‘features or disc’, and a later question
sks whether the galaxy is ‘merging or disturbed’, which requires
ome interpretation. 13 To aid classifiers, all iterations of Galaxy
oo have therefore included illustrative icons in the classification

nterface. Additional help is also available; in the current project, the
nterface includes a brief tutorial, a detailed field guide with multiple
xamples of each type of galaxy, and specific help text available for
ach individual classification task. 

The largest workflow change between Galaxy Zoo versions was
etween the original Galaxy Zoo (GZ1) and Galaxy Zoo 2 (GZ2).
Z1 presented classifiers with a single task per galaxy, a choice
etween smooth/elliptical, multiple versions of featured/disc (in-
luding edge-on, face-on, and directionality of spiral structure), and
erger. GZ2 re-classified the brightest quarter of the GZ1 sample

n much greater detail, including a branched, multi-task decision
ree. Subsequent changes to the decision tree for different versions
f Galaxy Zoo have been mostly iterative in nature, driven in part
y the data itself and in part by experience-based reflection which
evealed minor adjustments that could help classifiers provide more
ccurate information. As an example of the former, a new branch was
3 The step from visual description to interpretation may explain why a model 
rained by Fischer, Dom ́ınguez S ́anchez & Bernardi ( 2019 ) on expert T-Type 
abels makes more confident predictions than volunteers on whether a subset 
f low-mass GZ2 galaxies show spiral structure; see Peterken et al. ( 2021 ). 
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dded for GZ-Hubble and GZ-CANDELS to capture information on
tar-forming clumps in classifications of higher redshift galaxies.
s an example of the latter, the final 2 tasks of GZ2 have been

djusted o v er multiple v ersions to facilitate reliable identification of
are features. Such adjustments have generally been minimized to
 v oid complicating comparisons with previous campaigns. 

The decision tree used for GZD-1 and GZD-2 has three modifica-
ions versus the Galaxy Zoo 2 decision tree (Willett et al. 2013 ).
he ‘Can’t Tell’ answer to ‘How many spiral arms are there?’
as remo v ed, the number of answers to ‘How prominent is the

entral bulge?’ was reduced from four to three, and ‘Is the galaxy
urrently merging, or is there any sign of tidal debris?’ was added as
 standalone question. 

For GZD-5, we made three further changes. Several Galaxy Zoo
tudies (e.g. Masters et al. 2012 ; Skibba et al. 2012 ; Willett et al.
013 ; Kruk et al. 2018 ) found that galaxies selected with 0.2 < p bar 

 0.5 in GZ2 correspond to ‘weak bars’ when compared with expert
lassification such as those in Nair & Abraham ( 2010 ). Therefore,
o increase the detection of bars, we changed the possible answers
o the ‘Does this galaxy have a bar?’ question from ‘Yes’ or ‘No’
o ‘Strong’, ‘Weak’ or ‘No’. We define a strong bar as one that is
learly visible and extending across a large fraction of the size of the
alaxy. A weak bar is smaller and fainter relative to the galaxy, and
an appear more oval than the strong bar, while still being longer in
ne direction than the other. Our definition of strong versus weak bar
s similar that of Nair & Abraham ( 2010 ), with the exception that
he y also hav e an ‘intermediate’ classification. We added examples
f galaxies with ‘weak bars’ to the Field Guide and provided a new
con for this classification option, as shown in Fig. 4 . 

Secondly, to allow for more fine-grained measurements of bulge
ize, we increased the number of ‘How prominent is the central
ulge?’ answers from three (‘No’, ‘Obvious’, ‘Dominant’) to five
‘No Bulge’, ‘Small’, ‘Moderate’, ‘Large’, ‘Dominant’). We also
e-included the ‘Can’t Tell’ answer. 

Thirdly, we modified the ‘Merging’ question from ‘Merging’,
Tidal’, ‘Both’, or ‘None’, to the more phenomenological ‘Merging’,
Major Disturbance’, ‘Minor Disturbance’, or ‘No’. Our goal was to
resent more direct answers to our volunteers and to better distinguish
ajor and minor mergers, to support recent scientific interest in the

ole of major and minor mergers on mass assembly (L ́opez-Sanjuan
t al. 2010 ; Kaviraj 2013 ), black hole accretion (Alexander & Hickox
012 ; Simmons, Smethurst & Lintott 2017a ), and morphology
Hopkins et al. 2009 ; Lotz et al. 2011 ; Lofthouse et al. 2017 ). We
ade this final ‘merger’ change two months after launching GZD-5;

722 GZD-5 galaxies (2.7 per cent) were fully classified before that
ate and so do not have responses from volunteers to this question. 
We also make several improvements to the illustrative icons shown

or each answer. These icons are the most visible guide for volunteers
s to what each answer means (complementing the tutorial, help text,
eld guide, and ‘Talk’ forum). Fig. 4 shows the GZD-5 decision tree
ith new icons as shown to volunteers. The decision tree used in
ZD-1 and GZD-2 is shown in Fig. A1 . 
For the ‘Smooth or Featured?’ question, we changed the ‘Smooth’

con to include three example galaxies at various ellipticities, and
he ‘Featured’ icon to include an edge-on disc rather than a ring
alaxy. For ‘Edge On?’, we replaced the previous tick icon with a
e w descripti ve icon, and the previous cross icon with the ‘Featured’
con abo v e. We also modified the te xt to no longer specify ‘e xactly’
dge on, and renamed the answers from ‘Yes’ and ‘No’ to ‘Yes -
dge On Disc’ and ‘No – Something Else’. For ‘Bulge?’, we created
ew icons to match the change from four to fiv e answers. F or ‘Bar’,
e replaced the previous tick and cross icons with ne w descripti ve
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Figure 4. Classification decision tree for GZD-5, with new icons as shown 
to volunteers. Questions shaded with the same colours are at the same level 
of branching in the tree; grey have zero-dependent questions, green one, blue 
two, and purple three. 
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cons for ‘Strong Bar’, ‘Weak Bar’, and ‘No Bar’. For ‘Merger?’, we
dded new descriptive icons to match the updated answers. 

Changes to the decision tree complicate comparisons other Galaxy 
oo projects. As we show in the following sections, the available 
nswers will affect the sensitivity of volunteers to certain morpholog- 
cal features, and so morphology measurements made with different 
ecision trees may not be directly comparable. This difficulty in com- 
arison has historically required us to be conserv ati ve in our changes
o the decision tree. Ho we v er, the adv ent of ef fecti ve automated
lassifications allows us to retrospectively make classifications using 
ny preferred decision tree. Specifically, in this work, we train our 
utomated classifier to predict what volunteers would have said using 
he GZD-5 decision tree, for galaxies which were originally classified 
y volunteers using the GZD-1/2 decision tree (Section 5.1). 

 VO LUNTEER  ANALYSIS  

.1 Impro v ed feature detection from DECaLS imagery 

he images used in GZ DECaLS are deeper and higher resolution 
han were available for GZ2. The GZ2 primary sample (Willett et al.
013 ) uses images from SDSS DR7 (Abazajian et al. 2009 ), which
re 95 per cent complete to r = 22.2 with a median seeing of 1 . ′′ 4
nd a plate scale of 0 . ′′ 396 per pixel (York et al. 2000 ). In contrast,
Z DECaLS uses images from DECaLS DR2 to DR5, which have 
 median 5 σ point source depth of r = 23.6, a seeing better than 1 . ′′ 3
or at least one observation, and a plate scale of 0 . ′′ 262 per pixel (Dey
t al. 2019 ). 14 

We expect the improved imaging to reveal morphology not 
reviously visible, particularly for features which are faint (e.g. 
idal features, low surface brightness spiral arms) or intricate (e.g. 
eak bars, flocculent spiral arms). Our changes to the decision 

ree (Section 3.2) were partly made to better exploit this improved
maging. 

To investigate the consequences of improved imaging, we compare 
alaxies classified in both GZ2 and GZ DECalS. Galaxies will 
ypically be classified by both projects if they are inside both the
DSS DR7 Le gac y catalogue (i.e. the source GZ2 catalogue) and
ECaLS DR5 footprints (broadly, North Galactic Cap galaxies with 
35 < δ < 0) and match the selection criteria of each project (see
illett et al. 2013 and Section 2.2). GZ2’s r < 17.0 cut, with no

orresponding GZ DECaLS magnitude cut, means that the odds of 
n y giv en GZ2 galaxy being in GZ DECaLS is close to random (for
n isotropic sky) but only the brighter half of suitably located GZ
ECaLS galaxies are in GZ2. To exclude the effect of modifying the
ecision tree in GZD-5 (addressed separately in Section 4.2), we use
nly GZ DECaLS classifications from GZD-1 and GZD-2. 33 124 
alaxies were classified in both GZ2 and GZD-1 or GZD-2. 

We find that volunteers successfully recognize newly visible mor- 
hology features. Fig. 5 compares the distribution of vote fractions 
o ‘Is this galaxy smooth or featured?’ for GZ2 and GZ DECaLS.
mbiguous galaxies, with ‘featured’ fractions (before debiasing) 
etween approx. 0.25 and 0.75, are consistently reported as more 
eatured (median absolute increase of 0.13, median percentage 
ncrease of 22 per cent) with the deeper GZ DECaLS images. 

The shift towards featured galaxies is an accurate response to the
ew images, rather than systematics from (for example) a changing 
opulation of volunteers. Fig. 6 compares the GZ2 and GZ DECaLS
MNRAS 509, 3966–3988 (2022) 
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Figure 6. GZ2 and GZ DECaLS images for 6 galaxies drawn randomly 
from the 1000 galaxies classified in both projects with the largest increase 
in ‘featured’ vote fraction (reported fractions shown in red). The increased 
fraction accurately reflects the increased visibility of detailed morphology 
from impro v ed imaging. 
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mages of a random sample of galaxies drawn from the 1000 cross-
lassified galaxies with the largest increase in ‘featured’ fraction. In
ll of these galaxies (and for a clear majority of galaxies in similar
amples), volunteers are correctly recognizing newly visible detailed
eatures. 

We observe a similar pattern in the vote fractions of spiral arms
nd bars for featured galaxies. For galaxies consistently considered
eatured (i.e. where both projects reported a ‘featured’ vote fraction
f at least 0.5), the median vote fraction for spiral arms increased
rom 0.84 to 0.9, and for bars from 0.21 to 0.24. This suggests that
ven for galaxies where some details were already visible (and hence
ere considered featured), impro v ed imaging makes our volunteers
ore likely to identify specific features. 
We argue the impro v ed depth of DECaLS ( r = 23.6 versus r =

2.2 for SDSS) is revealing low surface brightness features that were
reviously ambiguous. There may also be contributions from the
odified image processing approach and from the shift between

sing gri bands (SDSS) to grz bands (DECaLS), which might make
lder stars more prominent. 
Comparing classifications made using the same possible answers

n the same galaxies shows how impro v ed DECaLS imaging leads to
mbiguous galaxies being correctly reported as more featured, and to
piral arms and bars being reported with more confidence. Ho we ver,
olunteers are also sensitive to which questions are asked and how
hose questions are asked. We measure the impact of our changes to
he decision tree ‘Bar’ question for GZD-5 in the next section. 

.2 Impro v ed weak bar detection from GZD-5 decision tree 

o measure the effect of the new decision tree on bar sensitivity,
e compare the classifications made using each tree against expert

lassifications. Nair & Abraham ( 2010 ; hereafter NA10 ) classified
ll 14 034 SDSS DR4 galaxies at 0.01 < z < 0.05 with g < 16.
f those, 1497 were imaged by DECaLS DR1/2 and classified by
olunteers during GZD-1/2. We re-classified these galaxies during
ZD-5 to measure the effect of the new bar answers, as compared

o the expert classifications of NA10 . Note that because NA10 used
hallower SDSS images, NA10 ’s classifications are best used as
ositi ve e vidence; while NA10 finding a bar in SDSS images implies
 visible bar in DECaLS images, NA10 not finding a bar may not
l w ays exclude a visible bar in DECaLS. To exclude smooth galaxies,
hich are unbarred by definition in our schema, we require f featured 

 0.25 (as measured by GZD-5), selecting a featured sample of 807
alaxies classified by NA10 , GZD-1/2, and GZD-5. 

Fig. 7 compares volunteer classifications for expert-labelled
alibration galaxies made using each tree. We find that barred
nd unbarred galaxies are significantly better separated with the
trong/Weak/None answers than with Yes/No answers. Of 220 Nair-

dentified bars (of any type), 184 (84 per cent) receive a majority
ote for being barred by volunteers using the new tree, up from 120
55 per cent) with the previous tree. 

NA10 classified barred galaxies into five subtypes: Strong, Inter-
ediate, Weak, Nuclear, Ansae, and Peanut (plus None, implicitly).
e can use the first three subtypes as a measurement of expert-

lassified bar strength, and therefore e v aluate ho w our volunteers
espond to bars of different strengths. Following the approach to
efining summary metrics of Masters et al. ( 2019 ), we summarize
he bar vote fractions into a single volunteer estimate of bar strength,
 vol = f strong + 0.5 f weak , and compare the distribution of B for each
xpert-classified bar strength (Fig. 8 ). We find that the volunteer
ar strength estimates increase smoothly with expert-classified bar
trength, though individual galaxies vary substantially. This suggests
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Figure 7. Left-hand panel: Distribution of fraction of GZD-1/2 volunteers 
answering ‘Yes’ (not ‘No’ to ‘Does this galaxy have a bar?’, split by expert 
classification from NA10 of barred (blue) or unbarred (orange). Right-hand 
panel: as left, but for GZD-5 volunteers answering ‘Strong’ or ‘Weak’ (not 
‘No’). Volunteers are substantially better at identifying barred galaxies using 
the GZD-5 three-answer question. 

Figure 8. Distributions of volunteer bar strength estimates, B vol = f strong + 

0.5 f weak , split by expert-classified ( NA10 ) bar strength. Individual galaxies are 
shown with rug plots (15 Strong, 110 Intermediate, 87 Weak, and 377 None). 
Volunteer bar strength estimates increase smoothly with expert-classified bar 
strength, though individual galaxies vary substantially. 
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each volunteer answered ‘artefact’ o v er all the galaxies they classified). The 
vast majority report artefact rates consistent with those of the authors (below 

0.1), but a very small subset report implausibly high artefact rates ( > 0.5) 
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least 150 classifications are shown; the distribution for volunteers with fewer 
classifications is not bimodal. 
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hat typical bar strength in galaxy samples can be successfully 
nferred from volunteer votes. 

The addition of the ‘weak bar’ answer in GZD-5 significantly 
mpro v es sensitivity to bars compared with previous versions of
he decision tree. Additionally, volunteer votes across the three 
nswers may be used to infer bar strength. We hope that the detailed
ar classifications in our catalogue will help researchers better 
nderstand the properties of strong and weak bars and their influence 
n host galaxies. 

.3 Classification modifications 

alaxy Zoo data releases have previously included two post-hoc 
odifications to the volunteer classifications; volunteer weighting, 

o reduce the influence of strongly atypical volunteers, and redshift 
ebiasing, to estimate the vote fractions a galaxy might hav e receiv ed
ad it been observed at a specific redshift. We describe each
odification below. 

.3.1 Volunteer weighting 

olunteer weighting, as introduced in Galaxy Zoo 2 (Willett et al.
013 ), assigns each volunteer an aggregation weight of (initially) 
ne, and iteratively reduces that weight for volunteers who typically 
isagree with the consensus. This method af fects relati vely fe w
olunteers and therefore causes only a small shift in vote fractions - in
alaxy Zoo 2, for example, approximately 95 per cent of volunteers
ad a weighting of one (i.e. unaffected), 94.8 per cent of galaxies had
 change in vote fraction of no more than 0.1 for any question, and
he mean change in vote fraction across all questions and galaxies
as 0.0032. 
The most significant change in final vote fractions is caused by

ownweighting rare (approx. 1 per cent) volunteers who repeatedly 
isagree with consensus by answering ‘artefact’ at implausibly high 
ates (including 100 per cent) for many galaxies. Answering artefact 
nds the classification and shows the next galaxy, and so we hy-
othesize that these rare volunteers are primarily interested in seeing 
any galaxies rather than contributing meaningful classifications. 
here are very few such v olunteers, b ut because answering artefact
llows classifications to be submitted very quickly, they have an 
utsize effect on the aggregate vote fractions. 
Fig. 9 shows the distribution of reported artefact rates for volun-

eers with at least 150 total classifications. We expect the true fraction
f artefacts to be less than 0.1, and the vast majority of volunteers
eport artefact rates consistent with this. Ho we ver, the distribution
s bimodal, with a small second peak around 1.0 (i.e. volunteers
eporting every galaxy as an artefact). To remo v e the implausible
ode, we discard the classifications of volunteers with at least 150

otal classifications and reported artefact rates greater than 0.5. In 
ZD-1/2, 1.1 per cent (643) of volunteers are excluded, discarding 
1 per cent (483 081) of classifications. In GZD-5, 0.03 per cent
MNRAS 509, 3966–3988 (2022) 
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Figure 10. Number of GZD-5 galaxies with f > 0.5 for each of the questions 
debiased using the method described in Section 4.3.2. The solid lines indicate 
the original vote fractions and the dashed lines indicate the debiased vote 
fractions. The total sample here is composed of galaxies in the luminosity- 
limited sample with f > 0.5, 58 916 galaxies. For most questions and answers, 
debiasing successfully flattens the redshift trends. For ‘Smooth or Featured’ 
and ‘Bulge Prominence’, redshift debiasing o v ercorrects. 
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543) volunteers are excluded, discarding 5.3 per cent (249 592) of
lassifications. 

We investigated the possibility of other groups of atypical vol-
nteers giving similar answers across questions by analysing the
er -user v ote fractions with either a 2D visualization using UMAP
McInnes, Healy & Melville 2018 ) or with clustering using HDB-
CAN (McInnes, Healy & Astels 2017 ). We find no strong evidence

hat such clusters exist. 

.3.2 Redshift debiasing 

alaxies at higher redshifts appear fainter and smaller on the sky,
aking it harder to detect detailed morphological features than if

he galaxy were closer. This creates a bias in visual classifications
whether human or automated) where galaxies of the same intrinsic
orphology are less likely to be classified as having detailed features

s redshift increases (Bamford et al. 2009 ). Redshift debiasing is an
ttempt to mitigate this bias by estimating how a galaxy would appear
f it were at a fixed low redshift (here, z = 0.02). 

We use the method described in Hart et al. ( 2016 ) to remo v e the
edshift bias, which we briefly summarize here and refer the reader
o their Section 3 for full details. We assume the morphological
roperties of galaxies (as probed by our decision tree) o v er the
edshift window co v ered by Galaxy Zoo DECaLS (0.02 < z <

.15, approximately 1.5 Gyr) do not evolve significantly for galaxies
f similar intrinsic brightness and physical size, and so, for a
uminosity-limited sample, any change we observe to the vote
raction distribution as a function of redshift is purely a consequence
f imaging. If so, we can estimate the vote fractions which would be
bserved if each galaxy were at low redshift by modifying the vote
ractions of higher redshift galaxies such that they have the same
 v erall distribution as their low-redshift counterparts in brightness
nd size. 

We base the debiasing on a luminosity-limited sample, selected
etween 0.02 < z < 0.15 and −21.5 > M r > −23. We consider
he galaxies with at least 30 votes for the first question (‘Smooth or
eatured’) after volunteer weighting (abo v e), for a total of 87 617
alaxies in GZD-1/2 and 58 916 galaxies in GZD-5. For each
uestion, separately, we define a subset of galaxies to which we
pply the debiasing procedure. 

Each subset is defined using a cut of f > 0.5 for the chain of
receding questions (for example, for the bar question, we require
 feat × f notedge-on > 0.5). A further cut of N > 5 (where N is the
umber of classifications) is also imposed to ensure that each galaxy
as been classified by a significant number of people. We bin the
ubset of galaxies by M r , log ( R 50 ) and z for each answer in turn.
e use the voronoi 2d binning package from Cappellari &
opin ( 2003 ) to ensure the bins will have an approximately equal
umber of galaxies (with a minimum of 50). We then match vote
raction distributions on a bin-by-bin basis, such that the cumulative
istrib ution of v ote fractions at each redshift is shifted to be similar
o that of the lowest redshift sample (0.02 < z < 0.03). This method
ims to keep the fraction of galaxies abo v e a given threshold constant
ith redshift. 
The effect of redshift bias and redshift debiasing question is shown

n Fig. 10 . To illustrate, consider the ‘Smooth or Featured’ question
top left-hand panel). In a luminosity-limited sample, there should be
he same fraction of galaxies with features (selected with f feat > 0.5)
t all redshifts. Ho we v er, we observ e that the fraction of ‘featured’
alaxies decreases, and the fraction of ‘smooth’ galaxies increases
solid lines). We attribute this to redshift bias; some galaxies that
NRAS 509, 3966–3988 (2022) 
ould be considered featured if imaged at low redshift appear as
fuzzy blobs’ at high redshift and are instead classified as smooth.
fter applying redshift debiasing, the debiased fractions (dashed

ines) change more gradually with redshift. For most questions and
nswers, the redshift trend is successfully flattened (recall that for
very size and luminosity bin, we enforce no change in the vote
raction distribution with redshift). For ‘Smooth or Featured’ and
Bulge Prominence’, the debiasing procedure o v ercorrects and hence
everses the redshift trend. 

For statistical studies, it is important to test for the presence of a
lassification bias with redshift and correct it where necessary. Such a
orrection has pro v en essential in studies of the morphology density
elation (Bamford et al. 2009 ) and when characterizing populations
ith different spiral arm properties (Hart et al. 2016 ). Ho we ver,
hile debiasing can be extremely useful, there are caveats to its
sage. It is sometimes helpful to think of the original classifications
s a lower limit to the probability of features of a given type existing
n a galaxy. Debiasing predicts what the classifications would be if
he same galaxy were imaged at lower redshift, which is typically

ore featured than the original classifications. There is substantial
ncertainty in this prediction, ho we ver, and this is currently not
aptured by the debiased vote fractions, which are reported without
rror bars. 

In some investigations, it may be helpful to consider that the true
lassification for a given galaxy is likely to be in between the original
lassification and the debiased classification. At the same time,
he debiased classifications are not strictly upper limits. They are
ased on the lowest redshift classifications within the data set itself,

art/stab2093_f10.eps
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hich themselves are at a non-zero redshift, and so there are likely
ifferences in the debiased classifications and the ‘true’ debiased 
lassification that would be assigned if we could image the galaxy at
rbitrarily low redshift. As these corrections are applied uniformly, 
o we v er, the y are useful when considering o v erall populations of
alaxies within a given data set and o v er the redshift ranges where
he correction is rele v ant. In particular, when comparing different 

orphological types, some of the systematic errors in the debiasing 
ay cancel out. Uncertainties in the debiasing will also decrease as

he sample size increases. 
For these reasons, we strongly suggest that users of the debiased 

lassifications only use them to consider populations of galaxies 
ather than individual or small samples, and to consider that there 
ay still be some residual trends and uncertainties that are hard to
odel with current methods. 

 AU TO M A  TED  CLASSIFICA  T I O N S  

ombining citizen science with automated classification allows us 
o do better science than with either alone. The clearest benefit is
hat automated classification scales well with sample size. For GZ 

ECaLS, classifying all 311 488 suitable galaxies using volunteers 
lone is infeasible; collecting 40 classifications per galaxy, the 
tandard from previous Galaxy Zoo projects, would take around 
ight years without further promotion efforts – by which time we 
xpect new surveys to start. Automated classification also evolves 
as the quality of our models impro v es, so too will the quality

f our classifications. And automated classification is replicable 
rom scratch without requiring a crowd – other researchers may 
un our open-source code and reco v er our classifications (within 
tochasticity), or create equi v alent classifications for ne wly imaged 
alaxies. 

Finally, and of particular rele v ance to researchers using this data
elease, automated classification allows us to retroactively update the 
ecision tree. Because our classifier learns to make predictions from 

ZD-5 classifications, using the impro v ed tree with better detection 
f mergers and weak bars, we can then predict what our volunteers
ould have said for the GZD-1 and GZD-2 galaxies had we been
sing the impro v ed tree at that time. 
Our specific automated classification approach offers several 

ualitativ e benefits o v er previous work. First, through careful con-
ideration of uncertainty, we can both learn from uncertain volunteer 
esponses and predict posteriors (rather than point estimates) for 
ew galaxies. Secondly, by predicting the answers to every question 
ith a single model (similarly to Dieleman, Willett & Dambre 2015 ,

nd unlike more recent work e.g. S ́anchez et al. 2018 ; Khan et al.
019 ; Walmsley et al. 2020 ), we improve performance by sharing
epresentations between tasks (Caruana 1997 ) – intuiti vely, kno wing 
ow to recognize spiral arms can also help you count them. Learning
rom every galaxy to predict every answer uses our valuable volunteer 
f fort as ef ficiently as possible. This is particularly ef fecti ve because
e aim to predict detailed morphology, and hence learn to create a
etailed representation of each galaxy. 

.1 Bayesian deep learning classifier 

e require a model which can: 

(i) Learn efficiently from volunteer responses of varying (i.e. 
eteroskedastic) uncertainty. 
(ii) Predict posteriors for those responses on new galaxies, for 

very question. 
In previous work (Walmsley et al. 2020 ), we modelled volunteer
esponses as being binomially distributed and trained our model to 
ak e maximum-lik elihood estimates using the loss function 

 = k log f w ( x) + ( N − k) log (1 − f w ( x)) , (4) 

here for some target question, k is the number of responses
successes) of some target answer, N is the total number of responses
trials) to all answers, and f w ( x) = ˆ ρ is the predicted probability of
 volunteer giving that answer. 

This Binomial assumption, while broadly successful, broke down 
or galaxies with vote fractions k 

N 
close to 0 or 1, where the Binomial

ikelihood is extremely sensitive to f w ( x ), and for galaxies where the
uestion asked was not appropriate (e.g. predict if a featureless galaxy
as a bar). Instead, in this work, the model predicts a distribution
 ( ρ| f w ( x )) and ρ is then drawn from that distribution. 
For binary questions, one could parametrize p ( ρ| f w ( x )) with the

eta distribution (being flexible and defined on the unit interval), 
nd predict the Beta distribution parameters f w ( x) = ( ̂  α, ˆ β) by
inimizing 

 = 

∫ 

Bin ( k| ρ, N ) Beta ( ρ| α, β)d αd β, (5) 

here the Binomial and Beta distributions are conjugate and hence 
his integral can be e v aluated analytically. 

In practice, we would like to predict the responses to questions
ith more than two answers, and hence we replace each distribution
ith its multi v ariate counterpart; Beta( ρ| α, β) with Dirichlet( � ρ| � α),

nd Binomial( k | ρ, N ) with Multinomial( � k | � ρ, N ). 

 q = 

∫ 

Multi ( k | ρ, N ) Dirichlet ( ρ| α)d α, (6) 

here � k , � ρ, and � α are now all vectors with one element per answer. 
The Dirichlet-Multinomial distribution is much more flexible than 

he Binomial, allowing our model to express uncertainty through 
ider posteriors and confidence through narrower posteriors. We 
elieve this is a novel approach. 
For the base architecture, we use the EfficientNet B0 model (Tan &

e 2019 ). The EfficientNet family of models includes several archi-
ectural advances o v er the standard convolutional neural network ar-
hitectures commonly used within astrophysics (e.g. Dieleman et al. 
015 ; Huertas-Company et al. 2015 ; Khan et al. 2019 ; Cheng et al.
020 ; Ferreira et al. 2020 ), including auto-ML-derived structure (He,
hao & Chu 2019 ; Tan et al. 2019 ), depthwise convolutions (Howard
t al. 2017 ), bottleneck layers (Iandola et al. 2017 ), and squeeze-and-
xcitation optimization (Hu, Shen & Sun 2018 ). The EfficientNet 
0 model was identified using multi-objective neural architecture 

earch (Tan et al. 2019 ), optimizing for both accuracy and FLOPS
i.e. computational cost of prediction). This balancing of accuracy 
nd FLOPS is particularly useful for astrophysics researchers with 
imited access to GPU resources, leading to a model capable of

aking reliable predictions on hundreds of millions of galaxies. In 
hort, the architecture is similar to traditional convolutional neural 
etworks, being composed of a series of convolutional blocks of 
ecreasing resolution and increasing channels. Each convolutional 
lock uses mobile inverted bottleneck convolutions following Mo- 
ileNetV2 (Sandler et al. 2018 ), which combine computationally 
fficient depthwise convolutions with residual connections between 
ottlenecks (as opposed to residual connections between blocks with 
any channels, as in e.g. ResNet; He et al. 2016 ). EfficientNet B0

as 5.3 million parameters. 
We modify the final EfficientNet B0 layer output units to give

redictions smoothly between 1 and 100 (using softmax acti v ation),
MNRAS 509, 3966–3988 (2022) 
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15 Corresponding to the typical ‘full’ retirement limit of approximately 40 
classifications before discarding implausible classifications, see Section 4.3.1. 

M

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3966/6378289 by guest on 22 D
ecem

ber 2021
hich is appropriate for Dirichlet parameters � α. � α elements below
 can lead to bimodal ‘horseshoe’ posteriors, and � α elements abo v e
pproximately 100 can lead to extremely confident predictions in
xtreme ρ, both of which are implausible for galaxy morphol-
gy posteriors. These constraints may cause the most extreme
alaxies to have predicted vote fractions which are slightly less
xtreme than volunteers would record, but we do not anticipate
his to affect practical use; whether a galaxy is extremely likely
o have a bar or merely highly likely is rarely of scientific
onsequence. 

We w ould lik e our single model to predict the answer to every
uestion in the Galaxy Zoo tree. To do this, our architecture uses one
utput unit per answer (i.e. for 13 questions with a total of 20 answers,
e use 20 output units). We calculate the (ne gativ e log) likelihood
er question (equation 6), and then, treating the errors in the model’s
nswers to each question as independent events, calculate the total
oss as 

log L = 

∑ 

q 

L q 

(
k q , N q , f w q 

)
, (7) 

here for question q , N q is the total answers, � k q is the observed
otes for each answer, and � f w q is the values of the output units
orresponding to those answers (which we interpret as the Dirichlet

� parameters in equation 6). 
We train our model using the GZD-5 volunteer classifications. Be-

ause the training set includes both active-learning-selected galaxies
eceiving at least 40 classifications and the remaining GZD-5 galaxies
ith around 5 classifications, it is crucial that the model is able to

earn efficiently from labels of varying uncertainty. Unlike Walmsley
t al. ( 2020 ), which trained one model per question and needed to
lter galaxies where that question asked may not be appropriate,
e can predict answers to all questions and learn from all labelled
alaxies. 

We train or e v aluate our models using the 249 581 (98.5 per cent)
ZD-5 galaxies with at least three volunteer classifications. Learning

rom galaxies with even fewer (one or two) classifications should
e possible in principle, but we do not attempt it here as we do
ot expect galaxies with so few classifications to be significantly
nformative. The Dirichlet concentrations (distribution parameters)
sed to calculate our metrics are predicted by three identically
rained models, each making 5 forward passes with random dropout
onfigurations and augmentations. We ensemble all 15 forward
asses by simply taking the mean posterior given the total votes
ecorded, which may be interpreted as the posterior of an equally-
eighted mixture of Dirichlet-Multinomial distributions. This mean
osterior can then be used to calculate credible intervals (error bars)
nd in standard statistical analyses. We develop our approach using
 conventional 80/20 train-test split, and make a new split before
alculating the final metrics reported here. 

For the published automated classifications, where we aim simply
o make the best predictions possible rather than to test performance,
e train on all 249 581 galaxies with at least 3 votes (98.5 per cent).
e also train five rather then three models to maximize performance.

raining each model on an NVIDIA V100 GPU takes around 24 h.
e then make predictions (using the updated GZD-5 schema) on all

13 789 galaxies in all campaigns. Each prediction (forward pass)
akes approx. 6 ms, equating to approx. 160 ms for each published
osterior. 
Starting from the galaxy images shown to volunteers (Section 2.3),

e take an average over channels to remove colour information and
 v oid biasing our morphology predictions (Walmsley et al. 2020 ),
NRAS 509, 3966–3988 (2022) 
hen resize and save the images as 300 ×300 ×1 matrices. We then
pply random augmentations when loading each image into memory,
reating a unique randomly modified image to be used as input to
he network. We first apply random horizontal and vertical flips,
ollowed by an aliased rotation by a random angle in the range (0,
), with missing pixels being filled by reflection on the boundaries.
inally, we crop the image about a random centroid to 224 ×224
ixels, ef fecti vely zooming in slightly towards a random off-centre
oint. We also apply these augmentations at test time to marginalize
ur posteriors o v er an y unlearned variance. We train using the Adam
Kingma & Ba 2015 ) optimizer and a batch size of 128. We end
raining once the model loss fails to impro v e for 10 consecutive
pochs. 

Code for our deep learning classifier, including e xtensiv e doc-
mentation and several w ork ed examples, is available at https:
/github.com/mwalmsley/zoobot. 

.2 Results 

ur model successfully predicts posteriors for v olunteer v otes to
ach question. We show example posteriors for a question with two
nswers, ‘Does this galaxy have spiral arms’ (Yes/No), in Fig. 11 ,
nd a question with three answers, ‘Does this galaxy have a bar’
Strong/Weak/None), in Fig. 12 . In Appendix A, we provide a gallery
f the galaxies with the highest expected vote fractions for a selection
f answers, to visually demonstrate the quality of the most confident
achine classifications. 
To aid intuition for the typical performance, we reduce both the

ote fraction labels and the posteriors down to discrete classifications
y rounding the vote fractions and mean posteriors to 0 or 1, and
alculate classification metrics (Table 1 ) and confusion matrices
Fig. 13 ). Here and throughout this section, we calculate performance
n the 11 346 galaxies in the (random) test set with at least 34 15 

lassifications (such that the typical volunteer answer is well-
easured). To remo v e galaxies for which the question is not rele v ant,
e only count galaxies where at least half the volunteers were asked

hat question. We report two sets of classification metrics; metrics
or all (rele v ant) g alaxies, and only for g alaxies where the volunteers
re confident (defined as having a vote fraction for one answer abo v e
.8, following Dom ́ınguez S ́anchez et al. 2019 ). 
The performance on confident galaxies is useful to mea-

ure because such galaxies have a clear correct label. For such
alaxies, performance is near-perfect; we achieve better than
9 per cent accuracy for most questions, with the lowest accu-
acy (for spiral arm count) being 98.6 per cent. The confusion
atrices reflect this, showing little notable confusion for any

uestion. 
Reported performance on all galaxies will be lower than on confi-

ent galaxies as the correct labels are uncertain. Our measured vote
ractions are approximations of the theoretical ‘true’ vote fractions
as we cannot ask infinitely many volunteers), and many galaxies
re genuinely ambiguous and do not have a meaningful ‘correct’
nswer. No classifier should achieve perfect accuracy on galaxies
here the volunteers themselves are not confident. None the less,
erformance is more than sufficient for scientific use; accuracy ranges
rom 77.4 per cent (spiral arm count) to 98.7 per cent (disc edge
n). We observe some moderate confusion between similar answers,
articularly between No or Weak bar, Moderate or Large bulges, and

https://github.com/mwalmsley/zoobot
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Figure 11. Posteriors for ‘Does this galaxy have spiral arms?’, split by 
ensemble model (bold colours) and, within each model, dropout forward 
passes (faded colours). The number of volunteers answering ‘Yes’ (not known 
to classifier) is shown with a black dashed line. Galaxies are selected at 
random from the test set, provided the spiral question is rele v ant (defined as a 
vote fraction of 0.5 or more to the preceding answer, ‘Featured’). The image 
presented to volunteers is shown to the right. The model input is a cropped, 
downsized, gre yscale v ersion (Section 5.1). The Dirichlet-Multinomial pos- 
teriors are strictly only defined at integer votes; for visualization only, we 
show the 
-generalized posteriors between integer votes. 
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Figure 12. Posteriors for ‘Does this galaxy have a bar?’, for the same random 

galaxies selected in Fig. 11 . Each point is coloured by the predicted probability 
of volunteers giving that many ‘Strong’, ‘Weak’, and (implicitly, as the total 
answers is fixed) ‘None’ votes. The volunteer answer (not known to classifier) 
is circled. For clarity, only the mean posterior across all models and dropout 
forward passes is shown. 
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wo or Three spiral arms, which matches our intuition for the answers
hat volunteers might confuse and so likely reflects ambiguity in the 
raining data. More surprisingly, there is also confusion between 
wo spiral arms and Can’t Tell. Fig. 14 shows random examples 
f spirals where the most common volunteer answer was Two, but 
he classifier predicted Can’t Tell, and vice versa. In both cases, 
he galaxies generally have diffuse or otherwise subtle spiral arms 
mbedded in a bright disc, confusing both human and machine. 
his highlights the difficulty in using classification metrics to assess 
erformance on ambiguous galaxies. 
We can mitigate the ambiguity in classifications of galaxies by 
easuring regression metrics on the vote fractions, without rounding 
o discrete classifications. Fig. 15 shows the mean deviations between 
he model predictions (mean posteriors) and the observed vote 
ractions, by question, for test set galaxies with approximately 
0 volunteer responses. Performance is again excellent, with the 
redictions typically well within 10 per cent of the observed vote
ractions. Predicting spiral arm count is relatively challenging, as 
oted abo v e. Predicting answers to the ‘Merger’ question of ‘None’
i.e. not a merger) is also challenging, perhaps because of the rarity
f counter-examples. 
The v olunteer v ote fractions against which we compare our predic-

ions are themselves uncertain for most galaxies. We aim to predict
he true vote fraction, i.e. the vote fraction from lim N → ∞ 

volunteers,
ut we only know the vote fraction from N volunteers. Ho we ver,
87 pre-active-learning galaxies were erroneously uploaded twice 
r more, and so received more than 75 classifications each. The
ote fractions for these N > 75 galaxies will be very similar to the
MNRAS 509, 3966–3988 (2022) 
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Table 1. Classification metrics on all galaxies (abo v e) or on galaxies where 
volunteers are confident for that question (i.e. where one answer has a vote 
fraction abo v e 0.8). Multiclass precision, recall, and F1 scores are weighted 
by the number of true galaxies for each answer. Classifications on confident 
galaxies are near-perfect. 

Question Count Accuracy Precision Recall F1 

(a) Classification metrics for all galaxies 
Smooth or featured 11346 0 .9352 0 .9363 0 .9352 0 .9356 
Disc edge on 3803 0 .9871 0 .9871 0 .9871 0 .9871 
Has spiral arms 2859 0 .9349 0 .9364 0 .9349 0 .9356 
Bar 2859 0 .8185 0 .8095 0 .8185 0 .8110 
Bulge size 2859 0 .8419 0 .8405 0 .8419 0 .8409 
How rounded 6805 0 .9314 0 .9313 0 .9314 0 .9313 
Edge on bulge 506 0 .9111 0 .9134 0 .9111 0 .8996 
Spiral winding 1997 0 .7832 0 .8041 0 .7832 0 .7874 
Spiral arm count 1997 0 .7742 0 .7555 0 .7742 0 .7560 
Merging 11346 0 .8798 0 .8672 0 .8798 0 .8511 

(b) Classification metrics for galaxies where volunteers are confident 
Smooth or featured 3495 0 .9997 0 .9997 0 .9997 0 .9997 
Disc edge on 3480 0 .9980 0 .9980 0 .9980 0 .9980 
Has spiral arms 2024 0 .9921 0 .9933 0 .9921 0 .9924 
Bar 543 0 .9945 0 .9964 0 .9945 0 .9951 
Bulge size 237 1 .0000 1 .0000 1 .0000 1 .0000 
How rounded 3774 0 .9968 0 .9968 0 .9968 0 .9968 
Edge on bulge 258 0 .9961 0 .9961 0 .9961 0 .9961 
Spiral winding 213 0 .9906 1 .0000 0 .9906 0 .9953 
Spiral arm count 659 0 .9863 0 .9891 0 .9863 0 .9871 
Merging 3108 0 .9987 0 .9987 0 .9987 0 .9987 
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Figure 13. Confusion matrices for each question, made on the test set 
of 49 700 randomly selected galaxies with at least three volunteer votes. 
Discrete classifications are made by rounding the vote fraction (label) and 
mean posterior (prediction) to the nearest integer. The matrices then show 

the counts of rounded predictions ( x -axis) against rounded labels (y axis). 
We report confusion matrices for all 49 700 galaxies (left-hand panel) or only 
for galaxies where the volunteers are confident in that question, defined as 
having the vote fraction for one answer abo v e 0.8 (right-hand panel). Such 
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im N → ∞ 

true vote fraction limit, allowing us to accurately measure
he mean vote fraction error of our machine learning predictions.

e can also calculate the mean vote fraction error (versus the
 > 75 vote fractions) from asking fewer ( N << 75) volunteers
y artificially truncating the number of votes collected, and ask
how many volunteer responses to that question would we need

o have errors similar to that of our model? Note that the actual
umber of volunteers needed to be shown that galaxy to achieve an
qui v alent mean-squared error will be higher for questions only asked
iven certain previous answers (i.e. all but ‘Smooth or Featured?’
nd ‘Merger?’), as some will give different answers to preceding
uestions and so not be asked that question. Fig. 16 shows the model
nd volunteer mean errors for a representative selection of questions;
he model predictions are as accurate as asking that question to around
0 volunteers. 16 

We can also measure if our posteriors correctly estimate this
ncertainty. As a qualitative test, Fig. 17 shows a random selection
f galaxies binned by ‘Smooth or Featured’ vote fraction prediction
ntropy, measuring the model’s uncertainty. Prediction entropy is
alculated as the (discrete) Shannon entropy 

∑ 

ω p ( ω )log ( p ( ω )) o v er
ll possible combinations of votes ω, assuming 10 total votes for
his question (our results are robust to other choices of total votes).
nusual, inclined or poorly scaled galaxies have highly uncertain

high entropy) votes, while smooth and especially clearly featured
alaxies have confident (low entropy) votes. The most uncertain
alaxies (not shown) are so poorly scaled (due to incorrect estimation
f the Petrosian radius in the NASA-Sloan Atlas) that they are barely
isible. These results match our intuition and demonstrate that our
osteriors provide meaningful uncertainties. 
6 The model is, in this strict sense, slightly superhuman. 

confident galaxies are expected to have a clearly correct label, making correct 
and incorrect predictions straightforward to measure but also making the 
classification task easier. Continued below. 

NRAS 509, 3966–3988 (2022) 
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Figure 14. Random spiral galaxies where the classifier confuses the most 
likely volunteer vote for spiral arm count between ‘2’ and ‘Can’t Tell’. 
Abo v e: galaxies where the classifier predicted ‘2’ but more volunteers 
answered ‘Can’t Tell’. Below: vice versa, galaxies where the classifier 
predicted ‘Can’t Tell’ but more volunteers answered ‘2’. Red text shows the 
v olunteer (v ol.) and machine-learning-predicted (ML) v ote fractions for each 
answer. Counting the spiral arms is challenging, even for the authors. This 
highlights the difficulty in assessing performance by reducing the posteriors 
to classifications and then comparing against uncertain true labels. 
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Figure 15. Mean absolute deviations between the model predictions and 
the observed vote fractions, by question, for the test set galaxies with 
approximately 40 volunteer responses. The model is typically well within 
10 per cent of the observed vote fractions. 
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More quantitatively, Fig. 18 shows the calibration of our posteriors 
or the two binary questions in GZD-5 – ‘Edge-on Disc’ and ‘Has
piral Arms’. A well-calibrated posterior dominated by data (i.e. 
here the prior has minimal effect) will include the measured value 
ithin any bounds as often as the total probability within those 
ounds. We calculate calibration by, for each galaxy, iterating through 
ach symmetric highest posterior density credible interval (i.e. 
tarting from the posterior peak and moving the bounds outwards) 
nd recording both the total probability inside the bounds and whether 
he recorded volunteer vote is inside the bounds. We then group (bin)
y total probability and record the empirical frequency with which 
he votes lie within bounds of that total probability. In short, we
re checking if, for all X, the observed value (vote fraction) falls
ithin X per cent of the posterior interval X per cent of the time

Cook, Gelman & Rubin 2006 ; Le v asseur, Hezaveh & Wechsler
017 ). We find that calibration on these binary questions is excellent.
ur classifier is correctly uncertain. 
The ultimate measure of success is whether our predictions are 

seful for science. Masters et al. ( 2019 ; hereafter M19 ) used GZ2
lassifications to investigate the relationship between bulge size and 
inding angle and found – contrary to a conventional view of the 
ubble sequence – no strong correlation. We repeat this analysis 
sing our (deeper) DECaLS data, using either volunteer or automated 
lassification, to check if the automated classifications lead to the 
ame science results as the volunteers. 

Specifically, we select a clean sample of face-on spiral galaxies 
sing M19 ’s vote fraction cuts of f feat > 0.43, f not-edge − on > 0.715,
nd f spiral-yes > 0.619. We also make a cut-off f merging = none > 0.5,
nalogous to M19 ’s f odd cut, to remo v e galaxies with ongoing mergers
r with otherwise disturbed features. For the volunteer vote fractions, 
e can only use either GZD-1/2 or GZD-5 classifications, since the
ormer decision tree had three bulge size answers and the latter
ad five; we choose GZD-5 to benefit from the added precision
f additional answers. To a v oid selection effects (Section 6.2) we
nly use galaxies classified prior to active learning being activated. 
or the automated classifications, we use a model trained on GZD-
 to predict GZD-5 decision tree vote fractions (including the 
ve bulge answers) for every GZ DECaLS galaxy (313,798). This 
llows us to expand our sample size from 5378 galaxies using
ZD-5 volunteers only to 43 672 galaxies using our automated 

lassifier. 
We calculate bulge size and spiral winding following equations 

1) and (3) in M19 , trivially generalizing the bulge size calculation
o allow for five bulge size answers: 

 avg = 0 . 5 f medium 

+ 1 . 0 f tight (8) 

 avg = 0 . 25 f small + 0 . 5 f moderate + 0 . 75 f large + 1 . 0 f dominant . (9) 

Both classification methods find no correlation between bulge 
ize and spiral winding, consistent with M19 . Fig. 19 shows the
istrib ution of b ulge size against spiral winding using either volunteer
redictions (fractions) or the deep learning predictions (expected 
ractions) for the sample of featured face-on galaxies selected abo v e.
he distributions are indistinguishable, with the automated method 
ffering a substantially larger (approx. 8X) sample size. We hope 
his demonstrates the accuracy and scientific value of our automated 
lassifier. 
MNRAS 509, 3966–3988 (2022) 
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Figure 16. Mean error on the true ( N > 75) vote fractions for either a 
truncated ( N = 0 to N = 20) number of volunteers (solid) or the automated 
classifier (dashed). Asking only a few volunteers gives a noisy estimate of 
the true vote fraction. Asking more volunteers reduces this noise. For some 
number of volunteers, the noise in the vote fraction is similar to the error of 
the automated classifier, meaning the y hav e a similar mean error versus the 
true vote fraction; this number is where the solid and dashed lines intersect. 
We find the automated classifier has a similar mean error to approx. 5 to 15 
volunteers, depending on the question. 

Figure 17. Galaxies binned by ‘Smooth or Featured’ vote prediction entropy, 
measuring the model’s uncertainty in the votes. Bins (columns) are equally 
spaced (boundaries noted abo v e). Fiv e random galaxies are shown per bin. 
Unusual, inclined, or poorly scaled galaxies have highly uncertain (high 
entropy) votes, while smooth and especially clearly featured galaxies have 
confident (low entropy) votes, matching our intuition and demonstrating that 
our posteriors provide meaningful uncertainties. 
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 USAG E  

.1 Catalogues 

e release two volunteer catalogues and two automated catalogues,
vailable at https:// doi.org/ 10.5281/ zenodo.4196266 . 
gz decals volunteers ab includes the volunteer classifi-

ations for 92 960 galaxies from GZD-1 and GZD-2. Classifica-
ions are made using the GZD-1/2 decision tree (Fig. A1 ). All
alaxies received at least 40 classifications, and consequently have
pproximately 30–40 after volunteer weighting (Section 4.3.1). This
atalogue is ideal for researchers needing standard morphology mea-
urements on a reasonably large sample, with minimal complexity.
3 124 galaxies in this catalogue were also previously classified
n GZ2; the GZD-1/2 classifications are better able to detect faint
eatures due to deeper DECaLS imaging, and so should be preferred.
gz decals volunteers c includes the volunteer classifica-

ions from GZD-5. Classifications are made using the impro v ed
ZD-5 decision tree which adds more detail for bars and mergers

Section 4.2). This catalogue includes 253 286 galaxies, but each
alaxy does not have the same number of classifications. 59 337
alaxies have at least 30 classifications (after denoizing), and the
emainder have far fewer (approximately 5). The selection effects
or how many classifications each galaxy receives are detailed below
n Section 6.2. This catalogue may be useful to researchers who
refer a larger sample than gz decals volunteers ab at the
ost of more uncertainty and the introduction of selection effects, or
ho need detailed bar or merger measurements for a small number
f galaxies. We use gz decals volunteers c to train our deep
earning classifier. 

art/stab2093_f16.eps
art/stab2093_f17.eps
https://doi.org/10.5281/zenodo.4196266
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Figure 18. Calibration curves for the two binary GZ DECaLS questions. 
The x -axis shows the credible interval width – for data-dominated posteriors, 
roughly (e.g.) 30 per cent of galaxies should have vote fractions within their 
30 per cent credible interval. The y -axis shows what percentage actually do 
fall within each interval width. We split calibration by galaxies with few votes 
(and hence typically wider posteriors) and more votes (narrower posteriors). 
Only credible intervals with at least 100 measurements are shown. Calibration 
for both questions is excellent. 

Figure 19. Distribution of bulge size versus spiral winding, using responses 
from volunteers (left-hand panel) or our automated predictions (right-hand 
panel). We observe no clear correlation between bulge size and spiral winding, 
consistent with M19 . The distributions are consistent between volunteers and 
our automated method. We hope this demonstrates the accuracy and scientific 
value of our automated classifier. 

d
t
G
g
f

Figure 20. Confusion matrices, continued from abo v e. To a v oid the loss of 
information from rounding, we encourage researchers not to treat Galaxy 
Zoo classifications as discrete, and instead to use the full vote fractions or 
posteriors where possible. 
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The automated classifications are made using our Bayesian 
eep learning classifier, trained on gz decals volunteers c 
o predict the answers to the GZD-5 decision tree for all 
Z DECaLS galaxies (including those in GZD-1 and GZD-2). 
z decals auto posteriors contains the predicted posteriors 

or each answer – specifically, the Dirichlet concentration parameters 
hat encode the posteriors. We hope this catalogue will be helpful to
esearchers analysing galaxies in Bayesian frameworks. 
gz decals auto fractions reduces those posteriors to the 

utomated equi v alent of pre vious Galaxy Zoo data releases, contain-
ng the expected vote fractions (mean posteriors). Note that not all
ote fractions are rele v ant for e very galaxy; we suggest assessing
MNRAS 509, 3966–3988 (2022) 
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ele v ance using the estimated fraction of volunteers that would have
een asked each question, which we also include. We hope this
atalogue will be useful to researchers seeking detailed morphology
lassifications on the largest possible sample, who might benefit from
rror bars but do not need full posteriors. 

We also release Jupyter notebooks sho wing ho w to use each cata-
ogue at ht tps://www.github.com/mwalmsley/zoobot . These demon-
trate how to load and query each catalogue with pandas (McKin-
ey 2010 ), and how to create callable posteriors from the Dirichlet
oncentration parameters. 

The automated catalogues may be interactiv ely e xplored
t ht tps://share.st reamlit.io/mwalmsley/galaxy-post er/gz decals m
ke walmsley.py . 

.2 Selection effects for total classifications 

he GZD-1/2 catalogue reports at least 40 classifications for all
alaxies imaged by DECaLS DR1/2 and passing the appropriate
election cuts (Section 2.2). Additional classifications abo v e 40
re assigned independently of the galaxy properties. The selection
unction for total classifications in the GZD-5 catalogue is more
omplex. In practice, if you require a strictly random sample of
ZD-5 galaxies with more than five volunteer classifications, you

hould exclude galaxies where ‘random selection’ is False. You may
lso consider using the posteriors from our deep learning classifier,
hich are comparable across all GZ DECaLS galaxies (Section 5).
elow, we describe the GZD-5 total classification selection effects. 
Early galaxies were initially uploaded ro w-by-ro w from the

ASA-Sloan Atlas, each (eventually) receiving 40 classifications.
e also uploaded two additional subsets. For the first, 1355 galaxies
ere targeted for classification to support an external research
roject. Of these, 1145 would have otherwise received five clas-
ifications. These 1145 galaxies with additional classifications are
dentified with the ‘targeted’ group and should be e xcluded. F or the
econd, we reclassified the 1497 galaxies classified in both GZD-
/2 and the Nair & Abraham ( 2010 ) expert visual morphology
lassification catalogue to measure the effect of our new decision
ree (results are shown in Section 4.2). Both the GZD-1/2 and GZD-
 classifications are reported in the respective catalogues (Section 6).
imilarly to the targeted galaxies, 651 of these calibration galaxies
ould have otherwise received five classifications, are identified with

he ‘calibration’ group, and should be excluded. 
We then implemented active learning (Section 3.1), prioritizing

939 galaxies from the remaining pool of 199 496 galaxies not yet
ploaded. The galaxies are identified with the groups ‘active priority’
the galaxies identified as ‘most informative’ and selected for 40
lassifications) and ‘active baseline’ (the remainder). For a strictly
andom selection, both groups should be excluded, leaving the
alaxies classified prior to the introduction of active learning. 

Finally, we note that 14 960 (5.9 per cent) of GZD-5 galaxies
eceived more than 40 classifications due to being erroneously
ploaded more than once. The images are identical and so we report
he aggregate classifications across all uploads of the same galaxy. 

.3 Suggested usage of vote fractions 

he most appropriate usage of the Galaxy Zoo DECaLS vote
ractions depends on the specific science case. Many galaxies have
mbiguous vote fractions (e.g. roughly similar vote fractions for both
isc and elliptical morphologies) because of observational limitations
ike image resolution, or because the galaxy morphology is truly in-
etween the available answers (perhaps because the galaxy has an
NRAS 509, 3966–3988 (2022) 
nusual feature such as polar rings, Moiseev et al. 2011 , or because
he galaxy is undergoing a morphological transition). To make best
se of such galaxies, we recommend that, where possible, readers use
he vote fractions as statistical weights in their analysis. For example,
hen investigating the differences in the stellar mass distributions
f elliptical and disc galaxies, the disc (elliptical) vote fractions
an be used as weights when plotting the distributions, resulting
n the galaxies with the highest vote fraction for disc (elliptical)
orphology dominating the resulting distribution. This ensures that

ach galaxy contributes to the analysis, without excluding galaxies
ith ambiguous vote fractions. For examples of using vote fractions

s weights, see Smethurst et al. ( 2015 ) and Masters et al. ( 2019 ). 
Using the vote fractions as weights is not appropriate for all science

ases. F or e xample, if galaxies of a particular morphology need
o be isolated to form a sample for observ ational follo w-up (e.g.
 v erlapping pairs, see Keel et al. 2013 , and ‘bulgeless’ galaxies, see
immons et al. 2017a ; Smethurst et al. 2019 ), or if the fraction of
 certain morphological type of galaxy is to be calculated (e.g. bar
raction, see Simmons et al. 2014 ). These science cases require a
ut on the appropriate vote fraction to be chosen. Ho we ver, readers
hould be aware that making cuts on the vote fractions is a crude
ethod to identify galaxies of certain morphologies and will result

n an incomplete sample. 
Table 2 shows our suggested cuts for populations of common

nterest, based on visual inspection by the authors and chosen for
igh specificity (low contamination) at the cost of low sensitivity
completeness). We urge the reader to adjust these cuts to suit the
ensitivity and specificity of their science case, to add additional
uts to better select their desired population, and to make their own
isual inspection to verify the selected population is as intended.
or a full analysis, we once again suggest the reader a v oid cuts by
ppropriately weighting ambiguous galaxies, or take advantage of
he posteriors provided by our automated classifier. 

 DI SCUSSI ON  

hat does a classification mean? The comparison of GZ2 and GZ
ECaLS images (Fig. 6 ) highlights that our classifications aim to

haracterize the clear features of an image, and not what an expert
ight infer from that image. For example, volunteers might see an

mage of a galaxy that is broadly smooth, and so answer smooth, even
hough our astronomical understanding might suggest that the faint
eatures around the galaxy core are likely indicative of spiral arms
hat would be revealed given deeper images. This situation occurs in
everal galaxies in Fig. 6 . These ‘raw’ classifications will be most
ppropriate for researchers working on computer vision or on par-
icularly low-redshift, well-resolved galaxies. The redshift-debiased
lassifications, which are ef fecti vely an estimate of galaxy features
ot clearly seen in the image, will be most appropriate for researchers
specially interested in fainter features or studying links between our
stimated intrinsic visual morphologies and other galaxy properties.

We showed in Section 4.2 that changing the answers available to
olunteers significantly impro v es our ability to identify weak bars.
his highlights that our classifications are only defined in the context
f the answers presented. One cannot straightforwardly compare
lassifications made using different decision trees. Our scientific
nterests and our understanding of volunteers both evolve, and so our
ecision trees must also evolve to match them. However, only the last
ew years of volunteer classifications will use the latest decision tree
based on previous data releases), placing an upper limit on the num-
er of galaxies with compatible classifications at any one time. Our
utomated classifier resolves this here by allowing us to retrospec-

file:www.github.com
https://share.streamlit.io/mwalmsley/galaxy-poster/gz_decals_mike_walmsley.py
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Table 2. Suggested cuts for rough identification of galaxy populations, based on visual inspection by the authors. Q. votes is the minimum number of total 
votes for that question; for example, to identify strong bars, require at least 20 total votes to the question ‘Does this galaxy have a bar?’. This ensures enough 
votes to calculate reliable vote fractions. Assumes that all previous questions are filtered with the suggested cuts. For continuous measurements such as bulge 
size and spiral winding, we suggest combining all answers into a summary statistic like equation (8). 

Population Approx. Cut Q. Votes Notes 

Featured disc featured > 0 . 7 5 –
Disc featured > 0 . 3 5 Will include featureless S0 
Elliptical smooth > 0 . 7 5 –

Edge-on disc yes > 0 . 8 5 –
Not edge-on disc yes < 0 . 3 5 –

Strong bar strong bar > 0 . 8 20 –
Weak bar weak bar > 0 . 8 20 –
Any bar strong bar + weak bar > 0 . 6 20 –

Spiral arms spiral arms > 0 . 6 20 –
No spiral arms spiral arms < 0 . 3 20 Primarily ringed or irregular 

Spiral count spiral count { n } > 0 . 75 30 One-armed spirals are often mergers 

Round edge-on bulge edge-on bulge rounded > 0 . 6 10 –
Boxy edge-on bulge edge-on bulge boxy > 0 . 3 10 Rare - visual inspection required 
No edge-on bulge edge-on bulge none > 0 . 5 10 –

Merger merger > 0 . 7 10 –
Merger or o v erlap merger > 0 . 3 10 To remo v e o v erlaps, redshifts or inspection required. 
Post-merger major disturb. > 0 . 6 10 –
Asymmetric or low surface brightness minor disturb. > 0 . 4 10 –
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ively apply the GZD-5 decision tree (with better weak bar detection, 
mong other changes) to galaxies only classified by volunteers in 
ZD-1 and GZD-2. This flexibility ensures that Galaxy Zoo will 

emain able to answer the most pertinent research questions at scale. 
We have shown (5.2) that our automated classifier is generally 

ighly accurate, well-calibrated, and leads to at least one equi v alent
cience result. Ho we v er, we cannot e xclude the possibility of unex-
ected systematic biases or of adversarial behaviour from particular 
mages. Avoiding subtle biases and detecting o v erconfidence on 
ut-of-distribution data remain open computer science research 
uestions, often driven by important terrestrial applications (Szegedy 
t al. 2014 ; Hendrycks & Gimpel 2017 ; Eykholt et al. 2018 ; Smith
 Gal 2018 ; Geirhos et al. 2019 ; Ren et al. 2019 ; Margalef-Bentabol

t al. 2020 ; Yang et al. 2020 ). Volunteers also have biases (e.g. a slight
reference for recognizing left-handed spirals; Land et al. 2008 ) and 
truggle with images of an adversarial nature (e.g. confusing edge- 
n discs with cigar-shaped ellipticals), though these can often be 
isco v ered and resolv ed through discussion with the community and
y adapting the website. 
We believe the future of morphology classification is in the 

houghtful combination of volunteers and machine learning. Such 
ombinations will be more than just faster; they will be replicable, 
niform, error-bounded, and quick to adapt to new tasks. They will 
et us ask new questions – draw the spiral arms, select the bar
ength, separate the merging galaxies pixelwise – which would be 
nfeasible with volunteers alone for all but the smallest samples (e.g. 
ingard et al. 2020 ). And they will find the interesting, unusual, and
nexpected galaxies which challenge our understanding and inspire 
ew research directions. 
The best combination of volunteer and machine is unclear. Our 

 xperiment with activ e learning is one possible approach, but 
when compared to random selection) suffers from complexity to 
mplement, an unknown selection function, and no guarantee –
r even clear final measurement of – an impro v ement in model
erformance. Many other approaches are suggested in astrophysics 
Wright et al. 2017 ; Beck et al. 2018 ; Dickinson et al. 2019 ; Wright
t al. 2019 ; Lochner & Bassett 2020 ; Martin et al. 2020 ) and in
itizen science and human–computer interaction more broadly 
Chang, Amershi & Kamar 2017 ; Bansal et al. 2019 ; Liu et al. 2020 ;
 ilder , Horvitz & Kamar 2020 ). We will continue to search for and

xperiment with strategies to create the most ef fecti ve contribution
o research by volunteers. 

 C O N C L U S I O N  

e have presented Galaxy Zoo DECaLS; detailed galaxy morphol- 
gy classifications for 311 488 galaxies imaged by DECaLS DR5 and
ithin the SDSS DR11 footprint. The increased depth of DECaLS 

maging allows us to better resolve faint morphological features than 
ith previous Galaxy Zoo data releases using SDSS imaging (Fig. 5 ).
lassifications were collected from volunteers on the Zooniverse 
itizen science platform o v er three campaigns, GZD-1, GZD-2, and
ZD-5. GZD-5 used an impro v ed decision tree (Fig. 4 ) aimed at
est exploiting the deeper DECaLS images to identify weak bars, 
ergers, and tidal features. 
All galaxies receive at least five volunteer classifications (Fig. 2 ).

alaxies in GZD-1 and GZD-2 receive at least 40. In GZD-5, two
ubsets receive 40: a random subset and a subset of galaxies priori-
ized as most likely to be informative for training machine learning

odels. These informative galaxies were identified following the 
ethod introduced by Walmsley et al. ( 2020 ) as the galaxies with the

ighest mutual information between model parameters and volunteer 
abels – intuitively, the galaxies on which several machine learning 

odels confidently disagree. 
Volunteer classifications were then used to train deep learning 
odels to classify all galaxies. Our models are able to both learn

rom uncertain volunteer responses and predict full posteriors (rather 
han point estimates) for what volunteers would have said. This was
chieved by interpreting the model predictions as the parameters 
or Dirichlet-Multinomial distributions and training to maximize 
MNRAS 509, 3966–3988 (2022) 
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he corresponding likelihood (equation 6). We also approximate
arginalizing o v er model weights (i.e. Bayesian deep learning)

y training an ensemble of 5 models where each model makes
redictions with MC Dropout. The resulting ensemble is accurate
Figs 13 , 15 , 16 , and 20 ) and well-calibrated (Fig. 18 ). 

We release both volunteer and automated classification catalogues
t data.galaxyzoo.org . The volunteer catalogues include the total and
ean volunteer responses for each question to each galaxy, and are

plit into the GZD-1/2 and GZD-5 campaigns (due to the modified
ecision tree). The automated catalogue includes predictions for
very galaxy in any campaign. We share the predicted Dirichlet-
ultinomial parameters that encode the full posteriors as well

s the expected vote fractions that those posteriors imply. The
xpected vote fractions may used in a similar manner to previous
 olunteer -only data releases, while the posteriors support more
omplex statistical analyses. We also provide guidance and code
xamples. 
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Figure A1. Decision tree used for GZD-1 and GZD-2, based on the Galaxy Zoo 2 decision tree. The GZD-5 decision tree is shown in Fig. 4 . 
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PPEN D IX  B:  C ATA L O G U E  SAMPLE  ROW S  

ables B1 and B2 present sample rows from the volunteer 
nd automated morphology catalogues, respectively. The volun- 
eer data shown is from GZD-5; the GZD-1/2 catalogue fol- 
o ws an equi v alent schema. For bre vity, we sho w only columns
or a single question (‘Bar’) and a single answer (‘Weak’); 
ther questions and answers follow an identical pattern. A 

ull description of all columns is available on data.galaxyzoo.o 
g . 
MNRAS 509, 3966–3988 (2022) 

art/stab2093_fA1.eps
http://data.galaxyzoo.org


3988 M. Walmsley et al. 

Table B1. Sample of GZD-5 volunteer classifications, with illustrative subset of columns. Columns: ‘iauname’ galaxy identifier from NASA- 
Sloan Atlas; RA and Dec, similarly; ‘Bar’ question total votes for all answers; ‘Bar’ question votes for ‘Weak’ answer; fraction of ‘Bar’ question 
votes for ‘Weak’ answer; estimated fraction after applying redshift debiasing (Section 4.3.2). Other questions and answers follow the same pattern 
(not shown for brevity). Full schema online at this link. 

iauname ra dec bar total-votes bar weak bar weak fraction bar weak debiased 

J112953.88-000427.4 172 .47 − 0 .07 16 1 0 .06 0 .15 
J104325.29 + 190335.0 160 .86 19 .06 2 0 0 .00 0 .00 
J104629.54 + 115415.1 161 .62 11 .90 4 2 0 .50 –
J082950.68 + 125621.8 127 .46 12 .94 0 0 – –
J122056.00-015022.0 185 .23 − 1 .84 3 0 0 .00 –

Table B2. Sample of automated classifications (GZD-5 schema), with illustrative subset of columns. Columns: ‘iauname’ galaxy identifier from 

NASA-Sloan Atlas; RA and Dec, similarly; proportion of volunteers estimated to be asked the ‘Bar’ question (i.e. the product of the preceding 
vote fractions) for estimating rele v ance; Dirichlet concentrations defining the predicted posterior for the ‘Bar’ question and ‘Weak’ answer (see 
Section 5); predicted fraction of ‘Bar’ question votes for the ‘Weak’ answer derived from those concentrations. Other questions and answers 
follow the same pattern (not shown for brevity). Full schema online at this link. 

iauname RA Dec bar proportion asked bar weak concentrations bar weak fraction 

J112953.88-000427.4 172 .47 − 0 .07 0 .14 [6.158, 5.0723, 5.4842,... 0 .09 
J104325.29 + 190335.0 160 .86 19 .06 0 .13 [4.3723, 4.5933, 4.8582... 0 .07 
J100927.56 + 071112.4 152 .36 7 .19 0 .58 [9.3129, 10.3911, 8.4791... 0 .40 
J143254.45 + 034938.1 218 .23 3 .83 0 .55 [13.2981, 12.2639, 8.8957... 0 .26 
J135942.73 + 010637.3 209 .93 1 .11 0 .77 [15.6247, 15.6893, 14.72.... 0 .28 
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