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Cordova is a town of approximately 2,000 people
located on the southern coast of Alaska. A power grid
for a town this size, with a large seasonal fishing
economy, is considered a moderate to large sized
microgrid in terms of power produced. Understanding
the vulnerabilities and risks of failures in such a grid is
important for planning and operations. Investigating
these characteristics in the context of complex system
dynamics is a novel approach. The analysis of
Cordova’s microgrid is a case study relevant to a large
class of microgrid communities. We analyze the outage
data based on size, cause characteristics, and load
demand on the system and find long time correlations
and power laws in the failure size distributions. Finally
we apply a risk metric to give a single numerical value
to the risk of an outage occurring during certain time
periods and under certain conditions.

1. Introduction

In order to create a more reliable power grid, it is
important to examine the outage causes and patterns that
exist on the current grid. This has been done in depth on
large power grids [1]-[17], but less so in microgrids. A
system that can be used to analyze microgrids is the
Cordova grid. Cordova has an average load of about 2
MW in winter and up to 8 MW during summer fish
processing season. Cordova is electrically islanded from
the state and national grids and is powered by about 70%
hydroelectric and 30% diesel generation. The diesel
generation occurs at the Orca Power Plant, and there are
two hydro generation plants, Power Creek and
Humpback Creek. All of these connect to the Eyak
Substation, from which five main feeders send power to
the town and the fish processing facilities. To do this
sort of analysis for the town of Cordova, data on all
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the town was provided to us by the Cordova Electric
Cooperative. The data provided covers outages for a
span of 15 years (from 2003-2017) and the hourly load
demand for a span of 13 years (from 2005-2017). We
analyze the outage data by itself first to look at the
characteristics of the system and then we correlate this
outage data with a variety of external factors that may
influence outages, such as severe weather events or
fluctuating customer demand. In the end, we use these
analyses in order to create a risk metric for the system,
similar to what was done in [17]-[18].

We start in the first analysis sub-section using the
outage size information to analyze characteristics and
behaviors of the microgrid in this town, namely
investigating the system from the complex system
dynamics point of view. Many of the larger grids
analyzed prior to this have shown power laws when
looking at the distribution of the outage sizes [1]-[17]
and long time correlations between failures. The fact
that these power laws and long time correlations exist in
the Cordova data can tell us things about the underlying
dynamical evolution of the system. When these
characteristics exist, it is suggestive that the grid may be
behaving as a complex system. In power systems, the
complex systems dynamics often come from an
interplay between the engineered part of the system (the
generation and distribution) and the human components
which include the operations, regulation, and demand.
Regardless of the dynamics, a shallower slope in the
power law means that the large events are occurring
more frequently than we would expect and thus will play
a more dominant role in the blackout risk. While certain
topologies can lead to power law PDFs (Probability
Distribution Function) in outage size the long time
correlations are more difficult to explain without the
system dynamics.
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After investigating the characteristics of the
microgrid’s overall outage data by itself, we look deeper
into the causes of the outages. We look at individual
causes of these outages in order to see if there is a
particular cause or type of cause that is leading to a
disproportionate number of outages. We then break
down the outages further and look at the size distribution
of outages from some of the major causes to see if there
is a cause that is associated with more large or small
outages compared to normal.

Because the Cordova grid is for a single town, we
can obtain weather history for this town and compare
weather events to the outages. These weather events
include blizzards, floods, and high wind storms. We also
look at daily weather data such as precipitation,
snowfall, and average temperature and correlate these
events with the outages to look for any trends or
periodicities.

Finally, we compare the outages with the hourly load
demand. We see both daily and annual fluctuations in
the load and analyze how this affects outages. We look
deeper into outage size to determine if there are certain
times in the load demand cycles that cause more large
or small outages than average.

2. The Cordova Data

The first Cordova data we looked at was a summary
of the outages that occurred within the power grid from
the years 2003-2017. This information included the time
of each outage, the duration, the specific feeder it
occurred on, how many customer meters were affected
by the outage, and the cause of the outage (if known).
Except for when we are specifically analyzing the
different feeders, it is assumed that outages that occur at
the same time, for the same duration, and with the same
cause, but on different feeders, are the same outage and
are combined into one in the analysis. It is worth noting
that we can analyze the planned outages and unplanned
outages separately which can be important for
understanding the risk.

As with most distribution grids, the Cordova grid has
a mainly tree-like topology rather than the more mesh-
like topology characteristic of transmission grids.
Because of this, cascading failures are less likely.
Consistent with this, in the outage data we noticed a few
outages that appeared to be cascading failures. We
counted the failure as cascading if a second (or more)
failure occurred on another feeder before the first was
fixed and if the cause of the outage was unplanned.
There were a total of 18 cascading failures from
unplanned outages out of a total of 522 unplanned
outages for the 15 years. This means 3.4% of the
unplanned outages appear to be cascading. A majority

of the cascading failures were attributed to the causes
“Power Supplier — Hydro” and “Distribution — Primary
Cable.”

While looking at the outage data, we correlated the
outages with historical weather data in Cordova. This
weather history included daily precipitation values,
daily snowfall, daily current snow depth, floods,
blizzards, and high wind events [21]-[22]. We looked at
any correlations between these stronger weather events
and when outages occurred.

Following this, the load demand of the system was
analyzed. We were given hourly load demand for each
feeder for the years 2005-2017. This data consisted of
an average of every second of the load demand over that
hour in order to get a value for the specific hour. We
were also given second by second data on the power
generated in the system, divided into hydro power and
diesel power, which can simply be combined to give
total power generated. This second by second data was
course grained into hourly data both to match that given
by the load demand data and to make it more
manageable.

3. Analysis

3.1 Time series

First, the outages are analyzed in terms of size. There
are four different measures for size: the duration of the
outage in minutes, the number of customer meters (a
proxy for customers which will be referred to as
“customers”) affected by the outage, the duration
multiplied by the number of customers affected, and an
estimate of the amount of energy that was unserved due
to an outage. An example time series for the third
measure is shown below in figure 1. Unless there is
something of interest in the first two measures that
differs greatly from the third, most of the analysis looks
at the third measure — duration times customers affected
— and the fourth measure - amount of average power
unserved during the outage times the duration of the
outage. These measures give a more complete picture of
the size and impact of the outages.

Figure 1 shows a plot of outages as measured by
customers times duration. The outages vary greatly in
size, and the larger outages seem to be distributed over
the time series. Looking at duration alone does not give
full information on the magnitude of the outages in
terms of how many customers are affected. A shorter
duration outage that takes out hundreds of customers
may have a larger impact than a longer duration outage
that only affects a few customers. For example, the
largest outage in terms of duration occurs in early 2005.
However in the customers times duration plot above, the
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event does not have a large impact because it only
affected one customer.

Series of Outages
Duration in Minutes * Meters Effected

nnnnnn

o

Figure 1. Time Series of Outages Measured
by Number of Customers unserved x Duration
in Minutes

The outages measured by the number of customers
affected show certain distinct levels because different
feeders get maxed out at specific values. These distinct
levels seen are the total number of customers on each
feeder, which gives a maximum value to how many
customers can be affected by an outage on a particular
feeder. The numbers of customers, again as defined by
meters, on each feeder are: Auxiliary — 104, 13 Mile —
226, Main Town — 317, Lake Avenue — 430, New Town
—-517.

The duration of the outages and the number of
customers down in each outage are straightforward
measures and come directly from the outage data. The
energy unserved measure comes from the outage data in
combination with the load demand data. To get the
estimate of the size of an outage in terms of energy
unserved, we used the information from the load
demand at a given time on the feeder that the outage
occurred. Since there is no individual customer data, we
assumed (though this is clearly wrong) that all of the
customers on a particular feeder used an equal amount
of the total load on that feeder. The energy not served
was calculated by:

Energy Unserved=customersxloadxduration (1)
with

customers = number of meters out on a feeder
load = load per meter on that feeder

duration = duration of the outage in minutes

Since the load demand value sometimes goes down
while there is an outage we used the load value from the
hour before the outage began plus the load value from
the hour after the outage ended and divided by 2. Since
this is feeder-dependent the energy unserved was
calculated for each outage first and then the outages that
occurred at the same time and for the same duration
were combined. In Figure 2 the time series for outages

on the Lake Ave, New Town, Main Town, 13 Mile, and
Auxiliary feeders in terms of energy unserved are
shown.
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Figure 2. Time Series of Outages Measured
by Energy Unserved

Even with the multiple assumptions made to
calculate the estimate of the energy unserved, we still
believe this is the best measure for the size of an outage.
This measure takes into account the duration of the
outage, an estimate of how many customers the outage
affected, and amount of power that is usually being
consumed that is lost. This causes two outages that may
have a similar duration and number of customers
unserved to be sized differently depending on when
during a load demand cycle they occur. This also means
an outage during a peak demand time will hold more
weight and be considered a larger outage. This
discrepancy between two similar outages is beneficial
because an outage that occurs during peak demand time
will have the largest negative impact on customers.

When looking at the distribution of the differently
sized outages on the (energy unserved) and (customers
times duration time series), we observe there is a wide
variety of outage sizes, with small outages (and no
outage) being by far the most common. While small
outages are more common, we do see large outages
occurring every one to two years and intermediate
outages occurring at a rate somewhere in between the
rate of small and large outages. This indicates that our
system is showing size effects characteristic of complex
systems. Because of this, we look deeper into the
analyses done on complex systems, in particular,
looking for power law behavior in a probability
distribution function (PDF) of the outages.

3.2 PDFs and long time correlations in the
Time Series

Using the four different measures of outage size we
construct size histograms of the outages and plot the
probability distribution function (PDF) to determine the
probability of having an outage of a particular size. In
particular, we want to see if a power law occurs when
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these outages are sorted and grouped by size and then
graphed on a log-log plot. To sort and group elements
we put similar sized events together in the same bin and
then each bin is plotted with the average event size on
the x-axis and the frequency that an event fell in that
particular category on the y-axis. We choose a minimum
number of events in a bin (n) to minimize statistical
fluctuations in the counts, for most of the work shown
here we use n=10. Once all outages are sorted and
grouped in bins where every bin has a bin value and a
frequency, we plot bin value vs frequency on a log-log
plot. This plot is the PDF. If the plotted outages appear
linear on this plot of the PDF, the data over that region
can be described by a power law. A power law in this
case indicates that large events occur more frequently
than one would expect if outages were happening
randomly, which would be shown in a plot by an
exponential drop off. In this case, larger events can have
a greater impact on the outages than the more frequent
smaller events. Power laws can have varying slopes, and
the slope of this power law region is also important. A
shallower, less negative slope indicates that the larger
events occur more frequently relative to the small event
than with a steeper, more negative slope.

Looking at the PDF below in Figure 3 for all of the
outages in terms of duration in minutes times customers
unserved, for a certain range of data points, there is a
power law. It occurs for events in the size range 25-
26,000 (in meters times duration).

Probability Density Function
(Variable bin size, n=10)
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Figure 3: PDF of Outages Measured by
Customers x Duration in Minutes

We also look at the PDFs using the other two measures
of size — duration in minutes and number of customers
affected by the outage. Looking at these two PDFs as
well can give us information like the relative importance
that long or short outages have. The duration plot is
shown below in Figure 4 with the number of customer
unserved giving similar results.
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Figure 4: PDFs of Outages Measured by
Duration in Minutes

Because there is a power law in both plots, we can see
that larger events again play a bigger role in the outages
than one would expect from random sizes.

Looking at the PDF of the outages in terms of the
energy unserved (Figure 5), there is also a power law.
This power law has a nearly identical slope as the plot
shown in Figure 8 using the measure of duration in
minutes times customers unserved. From this we can see
consistency in our two main measures of the outage size.
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Figure 5: PDF of Outages Measured by
Energy Unserved

Because of the large difference in load demand in the
summer versus the winter (see load demand subsection
below), it is useful to analyze outages in terms of these
seasons. Separating outages into summer vs winter and
estimating energy not served in the same manner as
before, we calculated the PDFs for both summer (June
15 — Sept 15) and winter (the rest of the year). The slope
for summer was -0.704 and winter has a slope of -0.923.
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This means there is a greater number of larger outages
in the summer when the load demand is higher.

We find power laws in our data in every different
measure we use to quantify the sizes of our outages. This
suggests this grid could be behaving like a complex
system.

Because we see a characteristic of complex systems in
our PDF analysis, we now want to see if there is a long-
time correlation in the system’s outage events. We use
Mandelbrot’s R/S (range/standard deviation) analysis to
determine the scales of any long-time correlation of the
outages [17]. The time correlations in complex systems
between certain sized events can be measured using the
resulting Hurst exponent [17], [19]-[20]. The slope of
this plot is called the Hurst exponent. A Hurst exponent
larger than 0.5 means there is a positive correlation,
meaning a blackout at one time may have an effect on a
blackout that occurs on a later day. In contrast, a Hurst
exponent below 0.5 means a negative correlation, and a
Hurst exponent equal to 0.5 shows no correlation.
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Figure 6: R/S Analysis of Outages Measured
by Duration in Minutes x Customers unserved
(time lag in days)

In Figure 6, we see a Hurst exponent of about 0.78 in
the R/S plot, which indicates a long time correlation.
This medium time correlation tells us that events
happening today are affected by events that happened in
the past, and similarly, events today will affect future
events. From the plot we see that this correlation lasts
between about 10 days to 3 years and perhaps longer but
because of the way the R/S analysis is done, that is
where the data points start to lose their statistical
significance. Extending this region would require a
longer time series.

The power laws from the above section and the longer
time correlation found here suggest that the microgrid
behaves like a complex system. Because of this, we dig

deeper into possible underlying causes for our outages
in the form of looking at the cause codes associated with
each outage, followed by looking for correlations with
the weather.

3.3 Causes

The outage data assigns each outage a three-digit
cause code in which the first digit gives information on
the broad category of the cause, and the next two digits
give more detailed information in the form of
subcategories. We will give some brief highlights here;
a more detailed analysis of the causes will be given
elsewhere. As one would expect, there are some outages
that are much more common than others. This difference
in outages for each cause is taken into account when
choosing the bin size of the PDFs. For instance, if a
cause has fewer than ten events, a bin size of two or
three will be chosen rather than the usual bin size of ten
events per bin. Another thing to be aware of is fewer
than ten events is a very small sample size, and it can be
hard to get a reliable trend from that amount of data.

The top causes of outages are ‘“Power Supplier —
Diesel” 148 outages, “Distribution — Primary Cable”
105 outages, “Planned Outage — Repairs” 91 outages,
“Power Supplier — Hydro” 82 outages, and “Planned
Outage — Replacement” 68 outages. Because these 5
types of outages make up 72% of all outages, we will
focus on those causes to see if any of the trends deviate
a significant amount from the total trend. This will also
help show us if there is a certain cause that relates to
more of the smaller or larger events than usual.

The plots below, figure 7, are PDFs of the top two
unplanned outage causes compared with the total
outages. The plots include the slopes of both in ranges
where they appeared similar. The same comparisons
were done for the remaining top five outage causes for
the power law regions. Of the top five causes of outages,
the only one whose slope deviates significantly from the
trend of the total outages is cause 302 — Planned Outage:
Replacement. This cause forms a shallower slope of the
power law in this PDF, so it accounts for a higher than
average percentage of the outages that occur in the
duration range of 150-400 minutes. Both cause 302, a
planned outage and cause 301 - Planned Outage:
Repairs, another planned outage cause have the largest
power law slope deviation. Because of this, we next plot
the unplanned and the planned outage PDF, figure 8.
From this plot it is noticeable that in the middle range
(5-300 minutes) the planned outages have a shallower
slope. In this range it is the planned outages that account
for a higher percentage of longer outages. However
since the unplanned outages PDF extends further out it
is these outages that account for all outages that last
longer than 600 minutes.
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Probability Dist. Function with Most Common Cause Codes
(Variable bin size)
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Figure 7: PDFs of Outages Associated with
Cause Codes a.) 101 (Diesel Generator) and b.)
203 (Primary cable)
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Figure 8: PDF of Planned vs Unplanned
Outages

A very important piece of historical data for this
system is the fact that all power lines were buried in
2011. We looked at different outage cause time series
with this in mind. As one might expect, this didn’t have

a noticeable effect on the outage causes as a whole
except for the weather-related causes. There is a cause
code category titled “Storm.” In the time series of
outages there are no outages due to these cause codes
after the year 2011. Even though we now know that
burying the lines protects the system from outages
directly due to storms, we still look at correlations of the
outages with weather next to look for indirect
correlations with storms or severe weather that relates to
outages. For example, extreme high or low temperatures
may change normal demands, or large amounts of snow
may make access to components difficult for repairs.
These things would not be labelled as storm-related
even though weather or storms will still have an effect.

Weather and Seasonal Correlations

The weather factors we looked at include high winds,
floods, blizzards, daily precipitation, daily snowfall, and
daily temperatures. For each of these factors we looked
at the time series of the outages along with the weather
category or categories that we are analyzing. Each case
was analyzed for coincidence between the outages using
duration of events in minutes times the number of
customers unserved and the weather event. The analysis
was done from Jan 1, 2003-Dec 31, 2016. Since there
are many events and there is no way to know the precise
cause of each, we look at statistics in each of the time
series. Using probabilities we compare the chances of
having an outage during certain weather events to the
probability of randomly having an outage on any given
day. There are 682 outage events in 5,114 days; this
means that on any given day there is abouta 13% chance
of having an outage event. Wind (particularly after the
line burial), and snowfall (including blizzards) show no
significant correlations with the outages. Precipitation
(particularly large events) and temperature show at most
a weak correlation with outages. However, floods do
seem to have a correlation. Of the 4 floods, 3 of them
coincide with an outage event, one being a very large
outage event which also coincides with a large
precipitation event. Even though the sample size is
small, we think this may indicate that floods are likely
to have an effect on outages. The result of the floods is
an interesting one, because this seems to be the only
storm-related event that may still affect the grid even
though the lines are buried.

Correlation of Outages with Load Demand

The most significant metric we have used is
comparing the outages with the load demand. We have
the hourly load usage data (in MW) for the years 2005-
2017 and the outage data for the years 2003-2017 for the
5 main feeders: Auxiliary, New Town, Main Town,
Lake Avenue, and 13 Mile. We analyzed this data as
with the weather data by plotting a time series of the
load data and the outage data on each feeder to compare
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the two and were able to both estimate an average trend
in the load data as well as zoom in on each outage to
determine whether the outage happened during a peak
demand time or not.

When plotting each feeder’s load demand
individually, we observe that there are noticeable cycles
in the load demand that differ. It is also found in these
plots that there was a major reconfiguration of the lines
in 2013 that caused some of the cycles to change. The
most immediately noticeable cycle is that the Auxiliary
feeder has a large peak demand in the summer, and this
is likely due to the fact that this feeder goes to the fish
processing locations. This cycle is also very noticeable
in the Main Town feeder after the line reconfiguration
in 2013. When zooming into the plots closer, the 13
Mile, Lake Avenue, Main Town, and New Town feeders
all have a daily cycle that peaks during the day, highest
in the morning near 8am-noon and evening near 5-8pm
and is at a low during the night near 10pm-6am. All
feeders have slight peaks during the summer, but not as
much as the Auxiliary and Main Town feeders.

Figure 9, shows the time series for the loads (in MW)
on all feeders combined for 2014. Below the average
yearly cycle (top) is an average daily cycle (bottom).
The amplitude of the daily cycles are more than a factor

of 6 smaller than the annual cycle.
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Figure 9: a.) Annual and b.) Average Daily
Load Demand Cycles

When counting the outages that occurred during the
day, we assumed the daytime peak was from 8am-10pm.
When counting the outages during the summer time
peak load demand we assumed that fell between mid-
June until mid-September. We used these times and
dates to analyze the outages, specifically the percentage
of outages that took place during a daily peak, a nightly
lull, and a summertime peak compared with the
percentage of outages that would happen in those times
if outages were happening randomly. Along with total
outages we also looked at the amount of different sized
outages (small, medium, large) during each period in
terms of “number of customers effected,” “duration of
outages in minutes,” and “duration * number of
customers affected.”

From the “customers affected * duration in minutes”
plot, we chose values to be cutoff values for the ranges
of small, medium, and large outages. They are defined
as:

o Small: less than 5,000
e Medium: between 5,000 and 15,000
e Large: greater than 15,000

The number of small, medium, large, and total outages
during each part of the load demand cycle are examined.

Daytime | Nighttime | Summer Not
Peak Lull Peak Summer
Actual 66.8% | 33.9% 39.3% | 61.3%
Percentage
Rand
andom | g 30, | 41.7% 25.0% | 75.0%
Percentage

Table 1: Summary of Probabilities of Outages
During Different Points in Load Demand Cycle
Measured by Customers unserved * Duration in
Minutes

In this table, when looking at total outages, we can see
a clearly higher percentage of outages that happen
during the summer than we would expect if outages
were just happening randomly. There is also a slightly
higher number of outages that occur in the daytime than
we would expect from them being randomly timed, but
the percentage is not much higher so this could be
statistically insignificant; the low number of events
makes it impossible to determine. Because the yearly
variations in load demand are much larger, this suggests
a correlation with more outages during higher load
demand times which is expected.

This same process is repeated twice more (tables 2
and 3) except this time we are measuring the outages in
terms of duration in minutes and then energy unserved.
Here we chose the following values to represent small,
medium, and large outages:
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e Small: Less than 30 minutes
e Medium: Between 30 minutes and 120 minutes
e Large: Greater than 120 minutes (2 hours)

We chose these values based on the outages in the plot
along with our own opinions on what we would consider
to be a large, medium, or small outage.

Daytime | Nighttime | Summer

Peak Lull Peak

Acual oo s | 3a6% | 40.8%
Percentage

Random | oo 300 | a1.7% | 25.0%
Percentage

Table 2: Summary of Probabilities of Outages
During Different Points in Load Demand Cycle
Measured by Duration in Minutes

For energy unserved we chose the following values
for small, medium, and large outages based on the
distribution of sizes in the time series.

e Small: less than 5 MW*min.
e Medium: 5-30 MW*min.
e Large: greater than 30 MW *min.

Daytime | Nighttime | Summer Not

Peak Lull Peak | Summer
Actual 65.1% 34.9% 36.4% 64.1%
Percentage
Random 62.5% 37.5% 25.0% 75.0%
Percentage

Table 3: Summary of Probabilities of Outages
During Different Points in Load Demand Cycle
Measured by Energy Unserved

One interesting thing that is seen here when loads are
split up by size is that there are fewer large outages
during the day and more during the night. Since the
planned outages are filtered out already, this could
possibly be due to a faster response time and/or more
people working on the issue during the day. There is also
a very large percentage of small outages that happen
during the daytime peak in load demand. When
comparing the tables wusing the two different
measurements of outage, we can see that the outages
that happen during the nighttime lull tend to be much
longer in duration.

Since the summer peak here is defined by mid-June to
mid-September, the probability of randomly having
outages that fall in this time frame would be 3/12 or
25%. The actual percentage of outages that fall in this
range is just over 40%. Since we have 13 years of data
this is enough to say that there are significantly more
outages in the summer time. There are some years, such
as 2016, which we know to be a low fish processing year
(i.e. lower summertime demand) that can be seen to
have a lower percentage of outages in the summer. This

helps reinforce our presumed relationship that the higher
demand in the summer, even if it is only on one or two
feeders, leads to more outages overall during this time.

For most days the daytime peak in the daily cycle falls
within the 7am-10pm time range. The probability of an
outage randomly falling in this time frame would be
15/24 or 62.5%. The actual percentage of outages that
fall during this time frame is 65%. While this is slightly
higher than random, it is not a lot higher. Since there are
13 years of data, the slight increase may be statistically
meaningful, but is not as significant as the summertime
peak in load demand.

Between the large increase in the number of outages
in the summer and the slightly increased number of
outages in the day time, plus a mechanism based on the
increased stress on the system, we conclude that higher
demand leads to a higher chance of an outage. With this
knowledge we look into the difference in outage size
distribution at different times during the annual and
daily cycles using slopes from PDFs. A summary of the
results from the PDFs in terms of energy unserved are
shown in table 4 below.

Plot Measure Slope

Total -0.880
Summer -0.704
Winter -0.923
Day -0.951
Night -0.601
Before Lines Buried -0.892
After Lines Buried -0.888

Table 4: Summary of Slopes of PDFs of
Outages Measured by Energy Unserved During
Different Points in Load Demand Cycle

These results are consistent with what was found in
tables 1-3 above. There are more large outages
occurring at night and during the summer. Because the
change in load demand in summer vs winter is much
larger than the difference between day vs night, we take
the summer vs winter result to be more significant in
terms of the effect of load demand on outages.

4. Risk

The reason for doing much of the above analysis on
the system is to get a better idea behind what threatens
the system in terms of outages, especially large outages,
on the power grid. By becoming more aware of the
factors surrounding a higher or lower than average
amount of outages occurring, one can have a better idea
of where and how to make the grid more resilient. To
quantify this, we have come up with a risk metric that
measures the risk to the grid during a certain time period
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compared to a different time period with different
characteristics.

First we compare the risk in the summer when there
is a peak in the power demand vs the risk in the winter
when there is no peak in the power demand (See figure
9, the top plot of average yearly cycle at the beginning
of the previous subsection). Risk is calculated using
probability of a given event happening, P, and the
estimated cost of that event [18]. The estimated cost is
the approximated energy unserved in the outage. These
points are plotted on a log-log plot and then a single risk
value, R, is found by integrating this plot and taking this
value times the frequency of an event occurring. The
value for R gives a single numerical metric of risk meant
to allow a simple comparison to understand the
difference in risk between two different periods in time.
A higher value for R represents a larger risk for the time
period in question. Following [18], the equations to
obtain R are as follows:

[# of events in bin i)(width of bin)

Risk (i) = - — .
(average size of events in bin)(total # of events)

R = (frequency) * Z Risk(1)

(fraction of events that occur in this time period)

frequency = - — -
(fraction of days in this time period)

Where the “width of the bin” is the cost described above.
Comparing winter and summer, the results for the risk
index were what we expected; the summer had a much
larger value for risk index than winter as shown in table
5 below.

R Values
Summer 1.608
Winter 0.705

Table 5: Risk Index Values for Summer vs
Winter

We then calculated and plotted risk for before and
after all lines were buried (this occurred in 2011) to
determine whether or not this had an effect on the risk
of an outage occurring. We see in table 6 below that the
lines being buried results in a much lower risk.

R Values
Before Burying 1.139
After Burying 0.203

Table 6: Risk Index Values for Before vs After
all the Lines were Buried Underground

We then combined the above two comparisons and
looked at risk in the summer vs winter for both before

and after the lines were buried. These risk values are
listed in table 7 below.

R Values

Summer |Winter
Before Burying 2.305 0.747
After Burying 1.171 0.679

Table 7: Risk Index Values for Combined
Summer vs Winter and Before vs After Line
Burial

Our results were consistent with above, risk was highest
in the summer before the lines were buried and lowest
in the winter after the lines were buried. From this we
see that the system did indeed benefit from burying the
lines and also that the system is less at risk of an outage
when the load demand is lower. Calculating the risk
metric from various causes and on individual feeders is
a goal but for most causes the data is too sparse. The
risk metric on the individual feeder will be presented in
another publication.

5. Conclusions

In this preliminary overview, the power law
behavior of outage size and the time correlations over
several years in the Cordova microgrid are reminiscent
of similar behaviors at longer space and time scales in
bulk power transmission system blackouts. These
patterns in series of transmission system blackouts can
be explained by complex system dynamics acting over
time so that the engineering responses to blackouts
shape the blackout risk, yielding the power laws and
time correlations. Therefore, the similar results we
observe in the Cordova microgrid open the door to
possible complex system explanations of the Cordova
results. However, some caution is needed since the
microgrid system has some different characteristics
from a transmission system.

In contrast to the meshed transmission system, the
microgrid is a mostly radial network, and the outages
show only a small amount of cascading. Indeed,
distribution outages in the microgrid disconnect the
downstream feeder(s) only. The position of the breakers,
switches, and fuses in the system determine the
customers disconnected in both the scheduled and
forced distribution outages. The engineering that shapes
the design of the distribution system incorporates both
prior general knowledge that is accumulated over years
as well as responses to the particular features and
operational experience and previous outages of the
microgrid. Moreover, while transmission systems in
developed countries are generally designed with many
possible generator sources with a substantial surplus of
power potentially available, the microgrid has only two
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synchronous sources of power and is more vulnerable to
outage of these sources or their connection to the
microgrid. Therefore we expect that the form of any
complex dynamics or other forces that drive the form of
the microgrid reliability could differ from the complex
dynamics of series transmission system blackouts.
Details of this comparison will be explored in a future
longer publication.

This system has a higher energy demand in the
summer than the winter, which is due to the fish
processing that occurs during these months. Due to the
high energy demand in the summer we find a higher risk
in the system in the summer compared to the winter
months when load demand is lower. We also find that
the overall risk dropped significantly after the year
2011, when all of the power lines were buried
underground; this burial of the cables also resulted in a
near elimination of weather-related outages (there were
still some flood related outages). This analysis points to
the need for non-normal risk analysis even for micro-
grids and presents tools both for approaching risk
analysis and for investigation of where investments
might have the highest impact on reducing risk and
improving reliability. Finally, these same tools are
being applied to model other results for the Cordova
grid, which when validated against these results allow
for “what if” scenario exploration again for how to
improve the reliability and reduce risk.
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