
1864 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Sparse Tucker Tensor Decomposition

on a Hybrid FPGA–CPU Platform
Weiyun Jiang , Kaiqi Zhang, Colin Yu Lin, Feng Xing , and Zheng Zhang , Member, IEEE

Abstract—Recommendation systems, social network analysis,
medical imaging, and data mining often involve processing sparse
high-dimensional data. Such high-dimensional data are naturally
represented as tensors, and they cannot be efficiently processed
by conventional matrix or vector computations. Sparse Tucker
decomposition is an important algorithm for compressing and
analyzing these sparse high-dimensional datasets. When energy
efficiency and data privacy are major concerns, hardware accel-
erators on resource-constraint platforms become crucial for the
deployment of tensor algorithms. In this work, we propose a
hybrid computing framework containing CPU and FPGA to
accelerate sparse Tucker factorization. This algorithm has three
main modules: 1) tensor-times-matrix (TTM); 2) Kronecker
products; and 3) QR decomposition with column pivoting (QRP).
In addition, we accelerate the former two modules on a Xilinx
FPGA and the latter one on a CPU. Our hybrid platform achieves
23.6× ∼ 1091× speedup and over 93.519% ∼ 99.514% energy
savings compared with CPU on the synthetic and real-world
datasets.

Index Terms—Field programmable gate arrays, high level syn-
thesis, high performance computing, neural network hardware.

I. INTRODUCTION

A
S MASSIVE data is collected from social media, wear-

able devices, and Internet of Things, novel algorithms

and platforms are highly desired to handle data-intensive com-

puting tasks. Vector- and matrix-based methods can efficiently

process 1-way data (e.g., a sequence of voice data) or 2-way

data (e.g., a gray-scale image), but they are often inefficient

to handle multiway data. Representative examples includes

3-way (or order-3) E-commerce data (which records cus-

tomers’ preference on massive products over a few months),

4-way (or order-4) cardiac image data (which records the spa-

tial data of 3-D at multiple time points). Processing such

multiway data often suffers from the curse of dimensionality.

Tensors are a high-order generalization of matrices and vec-

tors, and they are a natural tool to represent and process

multiway data [1]. Leveraging various tensor decomposition

or factorization methods [1]–[4], the curse of dimensionality

Manuscript received May 14, 2020; revised August 20, 2020; accepted
September 28, 2020. Date of publication October 20, 2020; date of current
version August 20, 2021. This work was supported by NSF under Award
1817037. This article was recommended by Associate Editor W. Zhang.
(Corresponding author: Weiyun Jiang.)

Weiyun Jiang, Kaiqi Zhang, and Zheng Zhang are with the Department
of Electrical and Computer Engineering, University of California at Santa
Barbara, Santa Barbara, CA 93106 USA (e-mail: weiyunjiang@ucsb.edu;
kzhang70@ucsb.edu; and zhengzhang@ece.ucsb.edu).

Colin Yu Lin and Feng Xing are with the Data Center Group, Xilinx,
Beijing 100101, China (e-mail: yulin1@xilinx.com; fengx@xilinx.com).

Digital Object Identifier 10.1109/TCAD.2020.3032626

of storing and computing multiway data can be avoided or

significantly mitigated in many applications. For instance, the

canonical polyadic (CP) [5], [6] and tensor-train [2] factor-

izations can reduce the storage cost and unknown variables

from an exponential function to a linear one. Tucker factor-

ization [3] can be used for high-order principle component

analysis or facial recognition [7]–[9]. Tensor computation

has achieved tremendous success in data mining [10], com-

puter vision [7]–[9], medical imaging [11], electronic design

automation [12]–[15], and deep learning [16]–[18].

The emerging tensor computation concept brings in massive

research opportunities and challenges on the hardware level.

Due to the fundamental difference between tensor and matrix

computations, we may need to rethink many aspects of tensor

computation (e.g., storage, computing, and data movement)

on specific platforms. Increasing research results have been

reported to improve the tensor data storage and computing on

the cloud and high-performance clusters [19]–[21]. However,

little work has been done on resource-constrained platforms.

This becomes increasingly important as the need of energy-

efficient machine learning and data privacy surges. In order

to address these issues, some efforts have been made toward

tensor-compressed neural networks on mobile devices [22]

and dense tensor operations on FPGA. For instance, some

dense tensor operations, including MTTKRP, tensor-times-

matrix (TTM), and TTMc, were accelerated in [23]; a spectral

analysis of Hankel tensors was reported in [24]. To perform

dense Tucker decomposition on FPGA, Zhang et al. [25]

divided the hardware architectures into three modules: 1)

TTM; 2) singular value decomposition (SVD) via Jacobi iter-

ations; and 3) tensor permutation/reshaping. In addition, a

warm-start algorithm was used to reduce the cost of Jacobi

iterations. The resulting FPGA accelerator demonstrated sig-

nificant speedup compared with both CPU and GPU. However,

the FPGA accelerator [25] cannot exploit data sparsity, and

it becomes energy- and time-inefficient when dealing with

sparse tensors. Srivastava et al. [26] reported some sparse ten-

sor computation kernels. For instance, it demonstrated how

to implement both dense and sparse tensor operations, such

as sparse TTMc via sparse compute pattern SF3. To the best

of our knowledge, there is no FPGA accelerator available for

sparse Tucker decomposition.

In this article, we investigate the hardware acceleration

of Tucker factorization for sparse tensor data. Sparse ten-

sors widely appear in practice due to the missing information

in recommendation systems, medical image, or E-commerce

data. For instance, in magnetic resonance imaging (MRI), one

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA–CPU PLATFORM 1865

(a) (b)

Fig. 1. (a) Matrix is a 2-D data array (e.g., one slice of MRI data). (b) 3-way tensor is a 3-D data array (e.g., multiple slices of images).

can generate a sparse tensor by partial MRI scanning, then

reconstruct the whole image with a low cost [27]. In neuro-

science, researchers use sparse tensors to monitor the brain

variability [28]. In EDA, it is often too expensive to obtain

all simulation or measurement data, thus one uses a partially

sampled sparse tensor for process variation or performance

uncertainty prediction [12], [14], [15]. Although extensive

algorithms have been developed to process sparse tensors, their

hardware/algorithm co-optimization remains a rarely explored

field [25]. This task has become increasingly important as

energy efficiency and privacy cause lots of concerns in the

data science and machine learning community.

A. Article Contributions and Organization

This article proposes to design an energy- and memory-

efficient hybrid FPGA–CPU accelerator for sparse Tucker

decomposition [19]. This algorithm consists of three major

components: 1) TTM [1]; 2) Kronecker product [29]; and

3) QR decomposition with column pivoting (QRP) [30]. Our

specific contributions include the following.

1) On the hardware side, we present a high-level synthesis

(HLS) FPGA implementation for sparse Tucker decom-

position. We describe the design of two modules, TTM

and Kronecker product, by exploiting the data sparsity.

2) On the algorithm side, we replace the conventional

SVD [31] with the QRP [30] to reduce the data storage

cost and to speedup the computation.

3) We implement our FPGA accelerator in a Xilinx FPGA

on Amazon Web service (AWS). Then we compare our

hybrid FPGA–CPU accelerator with CPU and with the

recently developed dense FPGA accelerator [25] on syn-

thetic and real-world sparse tensor benchmarks. Our

hybrid FPGA–CPU accelerator achieves 1.15×∼1091×
speedup and consumes 93.519% ∼ 99.514% less energy.

In addition, our proposed accelerator achieves significant

speedup (23.6×∼ 1091×) when the tensor is very large

and sparse

This article is organized as follows. Section II introduces some

background information about tensor operations. Section III

presents the algorithm and our Vivado HLS FPGA design of

a sparse Tucker decomposition. We compare our FPGA/CPU

hybrid platform with CPU and the dense Tucker FPGA accel-

erator [25] in terms of runtime and energy efficiency in

Section IV. Finally, Section V concludes this article.

II. PRELIMINARIES OF TENSORS

This section presents some background about tensors, which

is necessary for understanding the ideas of this article.

Definition 1: A tensor X ∈ R
I1×I2×···×IN is a high-

dimensional array of order N. Here, the order N (also known

as “way”) is the total number of dimensions. A matrix

X ∈ R
n1×n2 is a second-order (or 2-D) tensor, and its

element indexed by (i1, i2) can be denoted as xi1i2 . For a gen-

eral Nth-order (or N-way) tensor X , its element indexed by

(i1, i2, . . . , iN) is denoted as xi1i2···iN .

Fig. 1 shows a matrix (e.g., one slice of MRI data) and

a 3-way tensor, respectively. In this article, we use boldface

lower-case letters (e.g., x) to denote vectors, boldface upper-

case letters (e.g., X) to denote matrices, and boldface Euler

script letters (e.g., X ) to denote tensors. A scalar is denoted

by a lower-case letter, e.g., x.

Definition 2: The inner product of two tensors with the

same size is defined as

〈X ,Y〉 =
∑

i1i2···iN

xi1i2···iN yi1i2···iN . (1)

Furthermore, the Frobenius norm (also known as F-norm) of

a tensor X is defined as ||X ||F =
√

〈X ,X 〉.
Definition 3: A matricization operation (also known as

unfolding or flattening) reshapes a tensor into a matrix. The

mode-n matricization of a tensor X ∈ R
I1×I2×···×IN is denoted

as X(n) which has In rows and
∏

k �=n Ik columns. Elementwise,

we have each entry of X(n) as

X(n)(in, j) = xi1i2···iN

with j = 1 +
N

∑

k=1,k �=n

(ik − 1)

k−1
∏

m=1,m�=n

Im. (2)

Definition 4: The mode-n tensor matrix product (or TTM),

between a tensor X ∈ R
I1×I2×···×IN and a matrix U ∈ R

J×In

is denoted as

G = X ×n U, where G ∈ R
I1×···×In−1×J×In+1×···×IN . (3)

Elementwise, we can write this operation as

gi1···n−1jin+1...iN =
In

∑

in=1

xi1i2...iN ujin . (4)

We may also obtain a TTM product by using the unfolded

tensors

G = X ×n U ⇔ G(n) = UX(n). (5)

We further introduce a matrix operation that will be used

in our subsequent tensor computation.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



1866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Algorithm 1 Standard HOOI for Tucker Decomposition

1: Initialize {Un}N
k=1 via HOSVD

2: while not converge do

3: for n = 1, 2, . . . , N do

4: Y = X ×1 UT
1 · · · ×n−1 UT

n−1 ×n+1 UT
n+1 · · · ×N UT

N

5: Unfold Y and perform SVD: Y(n) = USVT

6: Un ← the first Rn columns of U.

7: end for

8: end while

9: return {Un}N
n=1.

TABLE I
COORDINATE (COO) FORMAT OF A 5 × 5 × 5 × 5 SPARSE TENSOR. HERE,
(i, j, k, l) DENOTES AN INDEX, AND nnz IS THE VALUE OF AN ASSOCIATED

NONZERO DATA ELEMENT

Definition 5: Given a matrix A ∈ R
m×n and another matrix

B ∈ R
p×q, their Kronecker product A ⊗ B is the following

matrix C ∈ R
mp×nq

C = A ⊗ B =

⎡

⎢

⎣

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

⎤

⎥

⎦
. (6)

III. ACCELERATOR FOR SPARSE TUCKER DECOMPOSITION

Given a tensor X ∈ R
I1×I2×···×IN , the Tucker decompo-

sition [4] approximates it with a small low-rank core tensor

G ∈ R
R1×R2×···×RN and N factor matrices {Un ∈ R

In×Rn}N
n=1

X ≈ G ×1 U1 ×2 U2 · · · ×N UN . (7)

Here (R1, R2, . . . , RN) is a multilinear tensor rank.

The Tucker decomposition can be regarded as a high-order

generalization of SVD, and it is often implemented with the

power iteration method called high-order orthogonal iteration

(HOOI) in [4]. As shown in Algorithm 1, it aims to find

the orthogonal matrices {Un ∈ R
In×Rn}N

n=1 to maximize the

F-norm of

G = X ×1 UT
1 ×2 UT

2 · · · ×N UT
N . (8)

In every iteration, we need to compute the Rn dominant left

singular vectors of unfolded matrix Y(n), where

Y = X ×1 UT
1 · · · ×n−1 UT

n−1 ×n+1 UT
n+1 · · · ×N UT

N . (9)

The orthogonal matrix is obtained by an SVD of the unfolded

matrix Y(n).

The standard HOOI becomes very inefficient for sparse ten-

sors because line 4 of Algorithm 1 does not exploit any data

sparsity and always performs N −1 times of TTM operations.

Algorithm 2 Sparse Tucker Decomposition

Input: A sparse tensor X

R1,. . .,RN : rank of approximation

1: initialize U1, . . . , UN randomly.

2: repeat

3: for n = 1, 2, . . . , N do

4: for xi1,...,iN �= 0 do

5: Y(n)(in, :) += xi1,...,iN [ ⊗t �=n Ut(it, :)]

6: end for

7: Un ← QRP(Y(n), Rn)

8: end for

9: G ← Y ×N UT
N

10: until convergence or maximum number of iterations

reached

Output:

G: a R1×. . .×RN core tensor

U1, . . . , UN: Un is a Rn × In factor matrix

A. Overall Algorithm Flow

In this article, we design an FPGA–CPU hybrid accelera-

tor based on [19] to perform Tucker factorization for sparse

tensors. Two formats can be used to represent sparse tensors.

1) The coordinate format (COO) stores a sparse tensor with

all nonzero elements and their associated coordinate vec-

tors, shown in Table I. The first four columns represent

the coordinate (i, j, k, l) of four nonzero elements, and

the last column represents the corresponding value. The

COO format usually requires storage of O(nnz∗N) index

values and O(nnz) nonzero data values, where nnz is the

number of nonzero elements and N is the mode of the

tensor.

2) Compressed sparse fiber format (CSF) stores a sparse

tensor by compressing the indices of nonzero ele-

ments that share the same coordinates. It is regarded

as high-dimensional version of the compressed sparse

row (CSR) or compressed sparse column (CSC) for-

mats used for matrices in [32]. The CSF format requires

O(2 ∗ (nnz + s + f ) + 2) to store an order-3 tensor with

s slices, f fibers, and nnz nonzero values.

In this article, we use the COO format because of its flex-

ibility and simplicity. Furthermore, the COO format provides

better performance on merging-related TTM [33]. If we do not

assume any special structure of the tensor and the nonzero ele-

ments are uniformly distributed, there will be rarely multiple

nonzero elements in a given fiber. In such a general case, the

CSF format barely has any advantages in storage compression.

The algorithm flow is summarized in Algorithm 2.

Compared with the standard dense Tucker factorization, the

following techniques are used to exploit the data sparsity.

1) Instead of storing the whole tensor, we only store the

nonzero entries by specifying their values and indices.

2) When performing the TTM in (9), we do not perform

N − 1 levels of iterations over all modes except mode

n. Instead, we only consider the nonzero elements of

X and have a one-level iteration over the indices of all

nonzero elements in X .

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA–CPU PLATFORM 1867

Fig. 2. Hybrid FPGA–CPU platform for sparse Tucker factorization.

3) In order to reduce the computational and memory cost

of extracting orthogonal matrix factor Un, we replace

the SVD of Y(n) with a QRP.

The proposed accelerator architecture is shown in Fig. 2.

Because it is difficult to parallelize the QRP operation, we

implement it on CPU. Both (8) and (9) require TTM opera-

tions, but they are handled in different ways. For (8), we only

need to compute

G = Y ×N UN (10)

once for each iteration after obtaining Y (which is often dense)

by (9). Therefore, we design a specialized TTM module on

FPGA in Section III-B. For the power iteration in (9), we

design a Kronecker product module on FPGA to accelerate

the sparse operation, which is detailed in Section III-C.

B. Tensor-Times-Matrix on FPGA

The computation of G in (8) requires N tensor-matrix

products on the original huge-size tensor X . This expensive

computation actually can be simplified.

Assuming that we have already done the power iteration (9)

for n = N and obtained a small-size tensor Y ∈ R
R1×R2×···×IN

and an orthogonal factor matrix UN ∈ R
IN×RN . We only need

to compute the mode-N tensor-matrix product (10) to obtain

the core tensor G (line 9, Algorithm 2). This TTM can be

written in an elementwise manner:

(

Y ×N UT
N

)

r1r2...rN
=

IN
∑

iN=1

yr1r2...iN UN(iN, rN). (11)

Equivalently, we can express this particular TTM with

unfolded tensors as follows:

G = Y ×N UT
N ⇔ G(N) = UT

NY(N). (12)

Here G(N) and Y(N) are the mode-N unfolding of the tensors

G and Y , respectively.

In FPGA design, the 3-D sparse tensor X ∈ R
I1×I2×I3 is

stored with a cost O(nnz), where nnz denotes the number of

nonzero elements. However, the tensor Y ∈ R
R1×R2×I3 in (10)

is dense, and we need to store all of its elements. Although

Y is multidimensional, it is unnecessary to create a new copy

of this tensor. We can just reshape it into a 2-D matrix of size

R1R2 × I3. Meanwhile, it is critical to process the entries of

Y in several batches. The batch size, b, controls the number

Algorithm 3 Vivado HLS Implementation of TTM on 3-Way

Tensors

Require: Y ∈ R
R1R2×I3 , U ∈ R

R3×I3

� = R1R2, b = 32

for (ib = 0; ib < �; iδ += b) do

initialize tmp as zero

for (k = 0; k < R3; k++) do

for (io = 0; io < b; io++) do

for (t = 0; t < I3; t++) do

tmp[io, k] += Y[io + ib, t] ∗ U[k, t]

end for

end for

end for

for (k = 0; k < R3; k++) do

for (io = 0; io < b; io++) do

G[io + ib, k] = tmp[io, k]

end for

end for

end for

Output: G ∈ R
R1R2×R3

of entries in Y , being processed in each iteration. If we set

the batch size as b = R1R2, we will end up with three nested

for-loops because the outermost for-loop is redundant. As a

result, all the entries of Y have to be processed at the same

time, resulting in an extremely large amount of loop unrolling,

which is not practical when R1R2 is larger. To overcome this

issue, we decrease our batch size to 32 and separate this loop

into two parts, resulting in four nested for-loops to compute

the resultant tensor of the TTM. In this way, we could achieve

optimal loop unrolling on memory-constrained FPGAs.

We provide the Vivado HLS implementation pseudocode of

the TTM for a 3-way tensor X in Algorithm 3. Given a 3-

way tensor, X ∈ R
I1×I2×I3 , (10) is a mode-3 TTM between

Y ∈ R
R1×R2×I3 and U ∈ R

I3×R3 , where G ∈ R
R1×R2×R3 is

the result. In the pseudocode, we reshape our tensors Y ∈
R

R1×R2×I3 and G ∈ R
R1×R2×R3 into matrices Y ∈ R

R1R2×I3

and G ∈ R
R1R2×R3 . Basically, we divide our result, G, into

several portions such that we can update one portion of G in

each batch.

1) We initialize the temporary matrix, tmp as zero matrix

of size b×R3, where b is the batch size. This temporary

matrix stores one portion of our result G.

2) We compute TTM by multiplying unfolded tensor Y and

U based on (12) and store the results in tmp.

3) We just update one portion of G with tmp.

In order to optimize the Vivado HLS implementation, we

reshape U in cyclic forms by a factor of 8, and we reshape

Y and tmp in cyclic forms by a factor of 16. Furthermore,

in order to save RAM usage, we assign only one port of

RAM to the variables, Y, U, and tmp. We also assign the

intermediate variable tmp to registers instead of memory to

minimize memory usage.

Fig. 3 shows the dataflow in the TTM computation module

on FPGA. According to the elementwise formula (11), each

entry of the resultant tensor can be recognized as the sum of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



1868 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Fig. 3. TTM dataflow.

product between the entries from the original tensor Y and

the entries from the matrix UN. In Fig. 3, it shows that data

from the tensor interface, yr1r2...iN multiplies with the data from

the matrix interface, UN(iN, rN). After the multiplication, the

results are summed up to obtain the entries in the resultant

tensor, (Y ×N UT
N)r1r2...rN .

A detailed dataflow of the processing element (PE) for TTM

is shown in Fig. 4, which was proposed in [25]. A buffer

temporarily stores the intermediate result after multiplying the

tensor and the matrix. For each batch, the multiplexer selects

and adds the intermediate result to the new product. Once all

batches are processed, the final result is stored the DRAM.

C. Kronecker Products on FPGA

The power iteration (9) requires O(Rd × n) operations, and

it consumes most of the computational power and runtime in

the sparse Tucker decomposition. Although an FPGA design

was presented in [25] to accelerate power iterations, existing

design cannot handle sparse tensor data efficiently. Therefore,

leveraging [19], [29], we design an FPGA module to compute

the power iteration via Kronecker products.

We consider a sparse 3-way tensor X as an example. We

investigate the power iteration of mode 1, which is written

as Y = X ×2 U2
T ×3 U3

T . To exploit the sparsity, we may

choose to compute the Kronecker products and consider only

nonzero elements xijk �= 0 [19]

Y(1)(i, :) = Y(1)(i, :) + xijk

[

U2(j, :) ⊗ U3(k, :)
]

. (13)

The number of Kronecker products depends on the number of

nonzero elements in X , which is often very small for sparse

tensors. Furthermore, a Kronecker product can be reused for

all nonzero elements that share the same indices (j, k) for the

second and third modes. Therefore, replacing TTM of (9) with

some Kronecker products can largely reduce the computational

complexity. Additionally, directly computing TTM is memory-

inefficient when the size and order of X are large, causing a

high cost of RAM and registers on FPGA.

In the Vivado HLS implementation, we utilize nested for-

loops to implement the Kronecker product (Algorithm 4).

1) In order to parallelize the Kronecker product on FPGA,

we pipeline the first for-loop and unroll the second

for-loop. The rank of approximation, R1, R2, and R3,

Fig. 4. TTM PE [25].

Algorithm 4 Vivado HLS Implementation of a Kronecker

Product

1: Input: a ∈ R
1×R2 , b ∈ R

1×R3

2: for (i = 0; i < R2; i + +) do

3: for (j = 0; j < R3; j + +) do

4: c[R3 × i + j] = a[i] × b[j]

5: end for

6: end for

7: Output: c ∈ R
1×R2R3

Fig. 5. Dataflow of a Kronecker product.

are usually very small compared with the mode sizes.

Therefore, the available memory, lookup tables (LUTs)

and registers are often sufficient for parallelization.

2) To update the corresponding rows of unfolded data Y(n)

in the power iteration, we simply multiply the Kronecker

product result in the LUTs with the corresponding

nonzero element yr1r2...iN .

3) In addition, different nonzero elements may share the

same index of some modes. In this case, we accumulate

the multiplications between these nonzero elements and

their corresponding Kronecker product results.

Fig. 5 shows the dataflow inside our Kronecker product

module on FPGA. To begin with, the indices of the nonzero

elements in the original tensor are extracted. Then, based on

the indices of the nonzero entries, the corresponding rows of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA–CPU PLATFORM 1869

TABLE II
ACCURACY COMPARISON OF TUCKER DECOMPOSITION

WITH SVD AND WITH QRP

the orthogonal matrix factor, Ut(it, :), are selected. Assuming

there are two row vectors, every entry in one row vector

multiply with every entry in the other row vector to generate

the Kronecker product. Since we only compute the Kronecker

product between two row vectors (not two matrices), the

module only requires multiplication units (no addition units).

D. QR Decomposition With Column Pivoting

In the existing dense and sparse Tucker

factorization [4], [19], the orthogonal matrix Un is obtained

with an SVD [31] of Y(n). The SVD is accurate but extremely

slow at computing the orthogonal matrices. In order to

speedup the computation and minimize the memory usage,

we propose to use QRP [30] to obtain Un. The QRP imple-

mentation does not lose any accuracy compared with the

SVD implementation. This is clearly shown in Table II, which

reports the errors of several low-rank Tucker decomposition

with both SVD and QRP implementations, respectively.

Given a matrix A ∈ R
m×n, the QRP get an orthogonal

matrix Q ∈ R
m×n and an upper-triangular matrix R ∈ R

n×n

AP = QR (14)

with P being a permutation matrix. The P is chosen so that

the diagonal elements of R is nonincreasing

|r11| ≥ |r22| ≥ · · · ≥ |rnn|. (15)

A QRP costs about 2mn2 − 2n3/3 flops, and an SVD costs

about 2mn2 + 11n3 flops, where m ≥ n. In the sparse

Tucker factorization of a tensor X ∈ R
I1×I2×···×IN , A is

Y(n), the mode-n unfolding of the tensor Y obtained in (9).

Consequently, m = In, n =
∏

k �=n Rn, and the computa-

tional saving is huge when the tensor order N or multilinear

rank parameters (R1, R2, . . . , RN) are large. In some particu-

lar cases, we may end up with a fat rectangular matrix, Y(n)

(n > m). In this case, we can perform QRP on a square matrix,

Y(n)Y
T
(n)

.

QRP Implementation: The QRP in our implementation

is based on the Householder reflection. This method com-

putes the orthogonal matrix Q as the product of multiple

Householder reflection matrices

Q = H1H2 . . . Hm−2Hm−1. (16)

The jth reflection matrix, Hj, is defined as

Hj = I − 2vjv
T
j = I − 2

uju
T
j

uT
j uj

(17)

where uj is an unit vector and uj = [vj/(‖vj‖)]. Vector vj can

be chosen based on the jth column of A, aj:

vj = aj + sign
(

ajj

)

‖an‖e1. (18)

During every iteration of QRP, we need to update A by multi-

plying it with the Householder matrix H. In order to generate

the permutation matrix, P, we need to compare the norms

of the columns of the updated matrix A at every iteration,

arranging the columns so that the norms of the columns are in

descending order. In this way, we can place the most weighted

entries in the upper left corner of Q, achieving the similar

accuracy to SVD. Since we need to compare the norms of the

columns at each iteration, the QRP operation is sequential.

In other words, the comparison of the column norms made

it very difficult to parallelize the algorithm on FPGA. Thus,

we implement the Householder QR decomposition [30] with

column pivoting on CPU.

IV. RESULTS

This section shows the performance of our hybrid FPGA–

CPU accelerator on both synthetic and real-world datasets. We

first verify the performance of individual FPGA modules for

the TTM and Kronecker product. Afterward, we verify the

performance of the whole FPGA–CPU sparse Tucker acceler-

ator and compare it with the CPU. We use the FPGA model

XCVU9P-FLGA2577-3-e in our experiment. The maximum

frequency of the FPGA implementation is 890 MHz. The CPU

model used is Intel Core i7-6820HK CPU@2.70 GHz. The

size of the RAM is 16 GB. The CPU has a maximum memory

bandwidth of 34.1 GB/s and a thermal design power (TDP)

of 45 W. In the experiments, we prioritize the computations

on CPU to achieve the maximum performance, therefore, the

energy consumption on CPU can be estimated as the product

of runtime and TDP. We estimate the energy cost of sparse

Tucker decomposition on FPGA on Xilinx Vivado via AWS.

The communication protocol between FPGA and CPU is PCI

express, which has a maximum bandwidth of 10 GB/s. Our

design can also be implemented on a low-end FPGA such as

Zynq-7100 as well. On a low-end FPGA, we may decrease

the LUT utilization by adjusting the unroll factor in our TTM

module implementation.

A. Performance of Individual FPGA Modules

First, we verify the performance of the TTM and Kronecker

product modules on some synthetic tensor data and summarize

their performance below.

1) TTM Module: We verify the performance by consider-

ing a set of 3-way tensors Y ∈ R
R1×R2×I3 and factor

matrices U ∈ R
R3×I3 . The rank of approximate, R1,

R2, and R3, are always very small compared with the

original tensor size for data compression. Thus, we set

R1 = R2 = R3 = 32. The original tensor size, I3, is set

to increase from 32 to 256 as shown in Table III. In the

real-life examples, the original tensor size I3 can defi-

nitely be larger than 256. And the performance of the

TTM module will not perform significantly worse when

the original tensor size becomes extremely large. Here,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



1870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

TABLE III
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE TTM TASK

TABLE IV
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE KRONECKER PRODUCT TASK

we set the maximum of our tensor size to be 256 for

experimental purpose only. The FPGA achieves 1.560×
to 3.331× speedup than CPU on these tensor-matrix

products. We also compare the energy consumption

between FPGA and CPU on the TTM task. As shown

in Table III, the FPGA saves 95.6%–98.1% of energy

compared with CPU.

2) Kronecker Product Module: As shown in Section IV-C,

the Kronecker product used in the sparse Tucker decom-

position deals with two row vectors, xj ∈ R
1×Rj and

xk ∈ R
1×Rk . Therefore, we compare the performance

of Kronecker products on FPGA and CPU by chang-

ing the rank parameters R1 and R2 from 32 to 256. The

rank of approximation R1 and R2 does not necessar-

ily need to be equal to each other. We set R1 and R2

to be equal for experimental purpose only. In addition,

the rank of approximation R1, R2, and R3 are usually

very small compared with the original tensor size for

data compression. We increase the rank from 32 to 256

to demonstrate the performance of the Kronecker prod-

uct module. We estimated the power of the CPU to be

45 W. The energy consumption of CPU is estimated by

multiplying the power with the CPU time. The results

are shown in Table IV. The speedup of FPGA over CPU

ranges from 1.251× to 16.704×. As shown in Table IV,

FPGA consumes 93.519% to 99.514% less energy than

CPU on the Kronecker-product tasks.

B. Accelerator’s Performance: Synthetic Datasets

Now we evaluate the whole hybrid FPGA–CPU accel-

erator on some randomly generated synthetic sparse tensor

datasets. Specifically, we consider a set of 3-way tensors

X ∈ R
200×200×200 with different sparsity. We fix the rank

parameters R1 = R2 = R3 = 16.

Fig. 6 compares the runtime of our hybrid FPGA–CPU

platform with CPU and densor FPGA accelerator [25]. The

speedup of the hybrid FPGA–CPU accelerator is 27× ∼ 853×
compared with CPU. The speedup of our sparse Tucker accel-

erator is 1.167× ∼ 126× faster than the FPGA accelerator

designed for dense Tucker decomposition [25]. In the whole

sparse Tucker decomposition algorithm, the Kronecker product

module takes the most amount of time. However, this module

Fig. 6. Runtime comparison between the proposed hybrid platform, dense
FPGA accelerator, and CPU on a set of 200 × 200 × 200 synthetic random
tensors with different sparsity.

is parallelized in our design, and it is significantly speedup

on FPGA as shown in Section IV-A. When the tensor has

more nonzero elements, more Kronecker-product operations

are required, leading to a more significant speedup on FPGA.

C. Real-World Datasets

Finally, we verify our accelerator on four real-world

sparse tensor datasets [34]–[37]. In addition, we compare the

performance of our accelerator with sparse Tucker decom-

position on CPU and with the dense FPGA accelerator

in [25]. Table V shows the detailed runtime and energy con-

sumption of different methods on these datasets. Table VI

further shows the overall hardware resource utilization of our

method on FPGA. The FPGA design is compiled for each

dataset in order to achieve the maximum efficiency. We use

BRAM_18K, BDSP48E, FF, and LUT to denote block ran-

dom access memory, digital signal PEs, flip-flops, and LUTs,

respectively.

The detailed experiments and results are summarized below.

1) Amazon Reviews Datasets [34]: The modes of this

three-way tensor represent users, products, and words,

respectively. Each nonzero element in this tensor is the

number of times a word appears in a given review.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA–CPU PLATFORM 1871

TABLE V
PERFORMANCE OF SPARSE TUCKER DECOMPOSITION ON REAL-WORLD BENCHMARKS

TABLE VI
UTILIZATION OF FPGA ON REAL-WORLD BENCHMARKS. IN THE COLUMN OF “MEMORY,”

WE LIST THE NUMBER OF BRAM, WHERE EACH BRAM HAS 18 × 103 BITS

Additionally, we extract one portion of the Amazon

reviews tensor of size 20000×20000×20000 and choose

the rank of approximation as R1 = R2 = R3 = 32. We

perform two power iterations on all modes. The sizes of

the tensors and matrices in TTM (12) are 32×32×20000

and 32×20000, respectively. This sparse Tucker factor-

ization involves nine calls of QR decomposition on a set

of 20000 × 32 matrices in total to compute the orthogo-

nal factor matrices. Finally, there are totally 8820 calls

of Kronecker products, which depends on the number

of nonzero tensor entries. On this dataset, our hybrid

FPGA/CPU platform achieves 1.15× speedup than CPU

with only 13.5% energy consumption. Our method also

achieves 1091× speedup than the dense Tucker FPGA

accelerator [25].

2) NELL-2 Datasets [37]: This dataset is extracted from

the never ending language learner knowledge base.

The nonzero entries represent some entity-relation-entity

tuples. We extract one portion of the NELL-2 dataset

and obtain a sparse tensor of size 1000 × 1000 × 1000.

In addition, we choose our rank of approximation as

R1 = R2 = R3 = 16. We perform five power iterations

on all modes. The sizes of the tensors and matrices in

TTM (12) are 16 × 16 × 1000 and 16 × 1000, respec-

tively. This sparse Tucker factorization involves 15 calls

of QR decomposition on a set of 1000 × 256 matri-

ces in total to compute the orthogonal factor matrices.

Finally, there are totally 432 555 calls of Kronecker

products, which depends on the number of nonzero ten-

sor entries. Our hybrid FPGA/CPU platform achieves

18× speedup and 94.8% energy saving compared with

CPU. Our method is also 23.6× faster than the dense

FPGA accelerator [25].

3) Binary 3-Way Tensor for Parallel Matrix

Multiplication [35], [36]: This binary tensor

describes the parallel computation process of matrix

multiplications. Given two matrices A ∈ R
M×K and

B ∈ R
K×N , their product results in a matrix C ∈ R

M×N .

Let I1 = MK, I2 = KN and I3 = MN, then a binary

3-way tensor X can represent the parallel matrix mul-

tiplication. The first mode corresponds to the first input

matrix A with entries in row-major order; the second

mode corresponds to the input matrix B with entries in

row-major order; and the third mode corresponds to the

output matrix C with entries in column-major order.

A nonzero entry xi1i2i3 = 1 corresponds to a scalar

multiplication within the classical matrix multiplication

algorithm: the i1th entry of A is multiplied with the

i2th entry of B, and the result is accumulated into the

i3th entry of C. The number of nonzero elements in X

is nnz = MKN. We consider the case M = N = K = 5,

which results in a binary tensor X with size 25×25×25

and a sparsity of 8 × 10−3. To perform sparse Tucker

decomposition on this 3-way binary tensor, we choose

an approximation rank of R1 = R2 = R3 = 5. We

perform three steps of high-order power iterations on

all modes, leading to 3 TTM in (12) and totally 6 calls

for QRP. Finally, the number of Kronecker products

used in this dataset is 1125. Our method achieves 37×
and 1.52× speedup than CPU and than the dense FPGA

accelerator [25], respectively. Compared with the sparse

Tucker decomposition on CPU, our accelerator saves

97.1% energy.

4) Retinal Angiogram: Angiogramy is a medical diagnostic

test that uses X-ray to take picture of the blood vessels.

The images, angiogram, are always very sparse. Fig. 6

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



1872 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Fig. 7. Left: original retinal angiogram. Right: approximated image by our sparse Tucker decomposition on the FPGA/CPU hybrid platform.

shows the retinal angiogram of a patient on the left. The

size of the original retinal angiogram is 130 × 150 [38].

Tucker factorization can also be employed to compress

2-D data, because a matrix is the special case of a ten-

sor. Different from SVD compression of a matrix where

the rank is a scalar, a Tucker decomposition allows one

to set two rank parameters. We perform a sparse Tucker

decomposition with rank R = [30, 35] on this image.

We performed 12 steps of high-order power iterations

on all modes, leading to 12 TTM in (12) and totally

24 calls for QRP. We do not need any Kronecker prod-

ucts since the order of the tensor is 2. Our proposed

method achieves 19× speedup than CPU and 1.91×
speedup than dense FPGA accelerator [25], and it saves

94.4% energy compared with the sparse Tucker factor-

ization on CPU. Fig. 7 compares the original retinal

angiogram and the resulting compressed image from our

FPGA/CPU hybrid accelerator. The compression ratio

is 18.57×. While the image is highly compressed, the

essential features, such as blood vessels, are still clearly

preserved.

V. CONCLUSION

This article has proposed a hybrid FPGA–CPU accelerator

for sparse Tucker decomposition. On the algorithm level, the

Kronecker products have exploited the data sparsity and has

significantly reduced the computational complexity. The QR

with pivoting method have dramatically reduced the complex-

ity of obtaining the orthogonal mode-n matrix factors. The

FPGA modules for the TTM and for the Kronecker products

have achieved 93.519%–99.514% energy saving compared

with CPU on synthetic benchmarks. The proposed hybrid

FPGA–CPU accelerator has been evaluated with both syn-

thetic and realistic sparse tensor datasets. It has achieved

27× ∼853× speedup over CPU and 1.167×∼ 126× speedup

over the recently developed dense Tucker FPGA accelera-

tor [25] on the synthetic datasets. Our proposed methods have

also achieved 1.15× ∼1091× speedup and over 95% energy

savings on the tested real-world tensor datasets. Our proposed

accelerator have significantly outperformed CPU and dense

Tucker FPGA accelerator [25] when the tensor is very large

and sparse.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[2] I. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for
multidimensional arrays,” Linear Algebra Appl., vol. 432, no. 1,
pp. 70–88, 2010.

[3] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear sin-
gular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253–1278, 2000.

[4] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1
and rank-(r1, r2, . . . , rn) approximation of higher-order tensors,” SIAM

J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324–1342, 2000.

[5] J. D. Carroll and J. J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of ‘Eckart–Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283–319, 1970.

[6] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an ‘explanatory’ multi-modal factor analysis,” UCLA, Los
Angeles, CA, USA, Working Papers in Phonetics, 1970.

[7] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image
ensembles: TensorFaces,” in Proc. Eur. Conf. Comput. Vis., 2002,
pp. 447–460.

[8] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear subspace analysis
of image ensembles,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 2. Madison, WI, USA, 2003, pp. 93–99.

[9] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear independent com-
ponents analysis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
vol. 1. San Diego, CA, USA, 2005, pp. 547–553.

[10] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in Proc. 8th IEEE Int. Conf. Data Min., Pisa, Italy, 2008,
pp. 363–372.

[11] N. Batmanghelich, A. Dong, B. Taskar, and C. Davatzikos, “Regularized
tensor factorization for multi-modality medical image classification,” in
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervention, 2011,
pp. 17–24.

[12] Z. Zhang, T.-W. Weng, and L. Daniel, “Big-data tensor recovery for
high-dimensional uncertainty quantification of process variations,” IEEE

Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 5, pp. 687–697,
May 2017.

[13] Z. Zhang, X. Yang, I. V. Oseledets, G. E. Karniadakis, and L. Daniel,
“Enabling high-dimensional hierarchical uncertainty quantification by
ANOVA and tensor-train decomposition,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 34, no. 1, pp. 63–76, Jan. 2015.

[14] Z. Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong, “Tensor com-
putation: A new framework for high-dimensional problems in EDA,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 4,
pp. 521–536, Apr. 2017.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 



JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA–CPU PLATFORM 1873

[15] J. Luan and Z. Zhang, “Prediction of multidimensional spatial varia-
tion data via bayesian tensor completion,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 39, no. 2, pp. 547–551, Feb. 2020.

[16] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Proc. Adv. Neural Inf. Process. Syst. Conf.,
Montreal, QC, Canada, 2015, pp. 442–450.

[17] Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural
networks for video classification,” in Proc. Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 3891–3900.

[18] C. Hawkins and Z. Zhang, “Bayesian tensorized neural networks with
automatic rank selection,” 2019. [Online]. Available: arXiv:1905.10478.

[19] O. Kaya and B. Uçar, “High performance parallel algorithms for
the tucker decomposition of sparse tensors,” in Proc. IEEE 45th

Int. Conf. Parallel Process. (ICPP), Philadelphia, PA, USA, 2016,
pp. 103–112.

[20] S. Smith, J. Park, and G. Karypis, “Sparse tensor factorization
on many-core processors with high-bandwidth memory,” in Proc.

IEEE Int. Parallel Distrib. Process. Symp., Orlando, FL, USA, 2017,
pp. 1058–1067.

[21] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, “An input-adaptive
and in-place approach to dense tensor-times-matrix multiply,” in Proc.

Int. Conf. High Perform. Comput. Netw. Storage Anal., Austin, TX, USA,
2015, pp. 1–12.

[22] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” 2015. [Online]. Available: arXiv:1511.06530.

[23] N. Srivastava et al., “T2S-tensor: Productively generating high-
performance spatial hardware for dense tensor computations,” in
Proc. 27th Annu. Int. Symp. Field Program. Custom Comput. Mach.

(FCCM), San Diego, CA, USA, 2019, pp. 181–189.

[24] W.-P. Huang et al., “High performance hardware architecture for singular
spectrum analysis of hankel tensors,” Microprocess. Microsyst., vol. 64,
pp. 120–127, Feb. 2019.

[25] K. Zhang, X. Zhang, and Z. Zhang, “Tucker tensor decomposition on
FPGA,” in Proc. Int. Conf. Comput.-Aided Design, 2019, pp. 1–8.

[26] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.

(HPCA), San Diego, CA, USA, 2020, pp. 689–702.

[27] S. F. Roohi, D. Zonoobi, A. A. Kassim, and J. L. Jaremko, “Dynamic
MRI reconstruction using low rank plus sparse tensor decomposition,”
in Proc. IEEE Int. Conf. Image Process., Phoenix, AZ, USA, 2016,
pp. 1769–1773.

[28] P. Fillard, V. Arsigny, X. Pennec, P. M. Thompson, and N. Ayache,
“Extrapolation of sparse tensor fields: Application to the modeling of
brain variability,” in Proc. Biennial Int. Conf. Inf. Process. Med. Imag.,
2005, pp. 27–38.

[29] C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl.

Math., vol. 123, nos. 1–2, pp. 85–100, 2000.

[30] G. H. Golub and C. F. V. V. Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.

[31] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear Algebra. Berlin, Germany: Springer, 1971,
pp. 134–151.

[32] F. G. Gustavson, “Some basic techniques for solving sparse systems of
linear equations,” in Sparse Matrices and Their Applications. Boston,
MA, USA: Springer, 1972, pp. 41–52.

[33] P. A. Tew, “An investigation of sparse tensor formats for tensor libraries,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2016.

[34] J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
Understanding rating dimensions with review text,” in Proc. 7th ACM

Conf. Recommender Syst., 2013, pp. 165–172.

[35] A. R. Benson and G. Ballard, “A framework for practical parallel fast
matrix multiplication,” in Proc. ACM SIGPLAN Symp. Principles Pract.

Parallel Program., 2015, pp. 42–53.

[36] R. P. Brent, “Algorithms for matrix multiplication,” Dept. Comput. Sci.,
Stanford University, Stanford, CA, USA, Rep. TR-CS-70-157, DCS,
1970.

[37] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr.,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning,” in Proc. 24th AAAI Conf. Artif. Intell., vol. 5, 2010, p. 3.

[38] A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood ves-
sels in retinal images by piecewise threshold probing of a matched
filter response,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 203–210,
Mar. 2000.

Weiyun Jiang received the B.Sc. degree in electri-
cal engineering from the University of California at
Santa Barbara, Santa Barbara, CA, USA, in 2020. He
is currently pursuing the graduation degree in electri-
cal engineering with Stanford University, Stanford,
CA, USA.

His research interests include algorithm/hardware
co-design for tensor data analysis and machine
learning.

Kaiqi Zhang received the B.Sc. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2016, and the M.S. degree in electrical
and computer engineering from the University of
California at Davis, Davis, CA, USA, in 2018. He
is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with the University
of California at Santa Barbara, Santa Barbara,
CA, USA.

Colin Yu Lin received the B.Sc. degree in elec-
tronic engineering from Sun Yat-sen University,
Guangzhou, China, in 2005, the M.E. degree in com-
puter engineering from the University of Chinese
Academy of Sciences, Beijing, China, in 2008, and
the Ph.D. degree in electrical and electronic engi-
neering from the University of Hong Kong, Hong
Kong, in 2012.

From 2011 to 2012, he was a Visiting Student
Researcher with the Department of Electrical
Engineering and Computer Sciences and the

Berkeley Wireless Research Center, University of California at Berkeley,
Berkeley, CA, USA. He was an Assistant Professor with the System on
Programmable Chip Research Department, Institute of Electronics, Chinese
Academy of Sciences, Beijing, from 2012 to 2016. He is currently a Software
Development Senior Manager with Data Center Group, Xilinx, Inc., Beijing.
His current research interests include field programmable gate array (FPGA)
architecture, CAD for FPGAs, high-level synthesis, and FPGA for high
performance computing.

Feng Xing received the B.Sc. degree from Wuhan
University, Wuhan, China, the M.Sc. degree in
pure mathematics and applied mathematics from
the University of Lille, Lille, France, and the
Ph.D. degree in high performance computing from
“Maison de la Simulation,” CEA Saclay, Paris,
France, in 2014.

He worked as a Post-Doctoral Researcher with
INRIA French, Rocquencourt, France, and BRGM,
Orléans, France, for two years on high performance
geothermal simulation. He is currently a Software

Development Manager with Xilinx, Inc., Beijing, China.

Zheng Zhang (Member, IEEE) received the Ph.D.
degree in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2015.

He has been an Assistant Professor of Electrical
and Computer Engineering with the University of
California at Santa Barbara, Santa Barbara, CA,
USA, since July 2017. His research interests include
uncertainty quantification and tensor computation.
The applications of his research include design
automation of nanoscale electronics and photonics,

algorithm/hardware co-design of high-dimensional, robust, and safe machine
learning systems.

Dr. Zhang received three best paper awards from IEEE TRANSACTIONS:
the Best Paper Award of the IEEE TRANSACTIONS ON COMPUTER-AIDED

DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS in 2014, two best paper
awards of the IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND

MANUFACTURING TECHNOLOGY in 2018 and 2020, respectively, and three
best paper awards at international conferences. His Ph.D. dissertation won
the ACM SIGDA Outstanding Ph.D. Dissertation Award in Electronic Design
Automation in 2016, and the Best Thesis Award from the Microsystems
Technology Laboratory of MIT in 2015. He received the NSF CAREER
Award in 2019 and a Facebook Research Award in 2020.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore.  Restrictions apply. 


