1864

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Sparse Tucker Tensor Decomposition
on a Hybrid FPGA—CPU Platform

Weiyun Jiang

Abstract—Recommendation systems, social network analysis,
medical imaging, and data mining often involve processing sparse
high-dimensional data. Such high-dimensional data are naturally
represented as tensors, and they cannot be efficiently processed
by conventional matrix or vector computations. Sparse Tucker
decomposition is an important algorithm for compressing and
analyzing these sparse high-dimensional datasets. When energy
efficiency and data privacy are major concerns, hardware accel-
erators on resource-constraint platforms become crucial for the
deployment of tensor algorithms. In this work, we propose a
hybrid computing framework containing CPU and FPGA to
accelerate sparse Tucker factorization. This algorithm has three
main modules: 1) tensor-times-matrix (TTM); 2) Kronecker
products; and 3) QR decomposition with column pivoting (QRP).
In addition, we accelerate the former two modules on a Xilinx
FPGA and the latter one on a CPU. Our hybrid platform achieves
23.6x ~ 1091x speedup and over 93.519% ~ 99.514% energy
savings compared with CPU on the synthetic and real-world
datasets.

Index Terms—Field programmable gate arrays, high level syn-
thesis, high performance computing, neural network hardware.

I. INTRODUCTION

S MASSIVE data is collected from social media, wear-

able devices, and Internet of Things, novel algorithms

and platforms are highly desired to handle data-intensive com-
puting tasks. Vector- and matrix-based methods can efficiently
process 1-way data (e.g., a sequence of voice data) or 2-way
data (e.g., a gray-scale image), but they are often inefficient
to handle multiway data. Representative examples includes
3-way (or order-3) E-commerce data (which records cus-
tomers’ preference on massive products over a few months),
4-way (or order-4) cardiac image data (which records the spa-
tial data of 3-D at multiple time points). Processing such
multiway data often suffers from the curse of dimensionality.
Tensors are a high-order generalization of matrices and vec-
tors, and they are a natural tool to represent and process
multiway data [1]. Leveraging various tensor decomposition
or factorization methods [1]-[4], the curse of dimensionality

Manuscript received May 14, 2020; revised August 20, 2020; accepted
September 28, 2020. Date of publication October 20, 2020; date of current
version August 20, 2021. This work was supported by NSF under Award
1817037. This article was recommended by Associate Editor W. Zhang.
(Corresponding author: Weiyun Jiang.)

Weiyun Jiang, Kaiqi Zhang, and Zheng Zhang are with the Department
of Electrical and Computer Engineering, University of California at Santa
Barbara, Santa Barbara, CA 93106 USA (e-mail: weiyunjiang@ucsb.edu;
kzhang70@ucsb.edu; and zhengzhang @ece.ucsb.edu).

Colin Yu Lin and Feng Xing are with the Data Center Group, Xilinx,
Beijing 100101, China (e-mail: yulinl @xilinx.com; fengx @xilinx.com).

Digital Object Identifier 10.1109/TCAD.2020.3032626

, Kaiqi Zhang, Colin Yu Lin, Feng Xing

, and Zheng Zhang =, Member, IEEE

of storing and computing multiway data can be avoided or
significantly mitigated in many applications. For instance, the
canonical polyadic (CP) [5], [6] and tensor-train [2] factor-
izations can reduce the storage cost and unknown variables
from an exponential function to a linear one. Tucker factor-
ization [3] can be used for high-order principle component
analysis or facial recognition [7]-[9]. Tensor computation
has achieved tremendous success in data mining [10], com-
puter vision [7]-[9], medical imaging [11], electronic design
automation [12]-[15], and deep learning [16]-[18].

The emerging tensor computation concept brings in massive
research opportunities and challenges on the hardware level.
Due to the fundamental difference between tensor and matrix
computations, we may need to rethink many aspects of tensor
computation (e.g., storage, computing, and data movement)
on specific platforms. Increasing research results have been
reported to improve the tensor data storage and computing on
the cloud and high-performance clusters [19]-[21]. However,
little work has been done on resource-constrained platforms.
This becomes increasingly important as the need of energy-
efficient machine learning and data privacy surges. In order
to address these issues, some efforts have been made toward
tensor-compressed neural networks on mobile devices [22]
and dense tensor operations on FPGA. For instance, some
dense tensor operations, including MTTKRP, tensor-times-
matrix (TTM), and TTMc, were accelerated in [23]; a spectral
analysis of Hankel tensors was reported in [24]. To perform
dense Tucker decomposition on FPGA, Zhang et al. [25]
divided the hardware architectures into three modules: 1)
TTM; 2) singular value decomposition (SVD) via Jacobi iter-
ations; and 3) tensor permutation/reshaping. In addition, a
warm-start algorithm was used to reduce the cost of Jacobi
iterations. The resulting FPGA accelerator demonstrated sig-
nificant speedup compared with both CPU and GPU. However,
the FPGA accelerator [25] cannot exploit data sparsity, and
it becomes energy- and time-inefficient when dealing with
sparse tensors. Srivastava et al. [26] reported some sparse ten-
sor computation kernels. For instance, it demonstrated how
to implement both dense and sparse tensor operations, such
as sparse TTMc via sparse compute pattern SF>. To the best
of our knowledge, there is no FPGA accelerator available for
sparse Tucker decomposition.

In this article, we investigate the hardware acceleration
of Tucker factorization for sparse tensor data. Sparse ten-
sors widely appear in practice due to the missing information
in recommendation systems, medical image, or E-commerce
data. For instance, in magnetic resonance imaging (MRI), one

0278-0070 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA-CPU PLATFORM

(a)

Fig. 1.

can generate a sparse tensor by partial MRI scanning, then
reconstruct the whole image with a low cost [27]. In neuro-
science, researchers use sparse tensors to monitor the brain
variability [28]. In EDA, it is often too expensive to obtain
all simulation or measurement data, thus one uses a partially
sampled sparse tensor for process variation or performance
uncertainty prediction [12], [14], [15]. Although extensive
algorithms have been developed to process sparse tensors, their
hardware/algorithm co-optimization remains a rarely explored
field [25]. This task has become increasingly important as
energy efficiency and privacy cause lots of concerns in the
data science and machine learning community.

A. Article Contributions and Organization

This article proposes to design an energy- and memory-
efficient hybrid FPGA-CPU accelerator for sparse Tucker
decomposition [19]. This algorithm consists of three major
components: 1) TTM [1]; 2) Kronecker product [29]; and
3) QR decomposition with column pivoting (QRP) [30]. Our
specific contributions include the following.

1) On the hardware side, we present a high-level synthesis
(HLS) FPGA implementation for sparse Tucker decom-
position. We describe the design of two modules, TTM
and Kronecker product, by exploiting the data sparsity.

2) On the algorithm side, we replace the conventional
SVD [31] with the QRP [30] to reduce the data storage
cost and to speedup the computation.

3) We implement our FPGA accelerator in a Xilinx FPGA
on Amazon Web service (AWS). Then we compare our
hybrid FPGA—CPU accelerator with CPU and with the
recently developed dense FPGA accelerator [25] on syn-
thetic and real-world sparse tensor benchmarks. Our
hybrid FPGA—CPU accelerator achieves 1.15x~1091 x
speedup and consumes 93.519% ~ 99.514% less energy.
In addition, our proposed accelerator achieves significant
speedup (23.6x~ 1091 x) when the tensor is very large
and sparse

This article is organized as follows. Section II introduces some
background information about tensor operations. Section III
presents the algorithm and our Vivado HLS FPGA design of
a sparse Tucker decomposition. We compare our FPGA/CPU
hybrid platform with CPU and the dense Tucker FPGA accel-
erator [25] in terms of runtime and energy efficiency in
Section IV. Finally, Section V concludes this article.

II. PRELIMINARIES OF TENSORS

This section presents some background about tensors, which
is necessary for understanding the ideas of this article.

1865

(b)

(a) Matrix is a 2-D data array (e.g., one slice of MRI data). (b) 3-way tensor is a 3-D data array (e.g., multiple slices of images).

Definition 1: A tensor X € RIX2x=xIv j5 a high-
dimensional array of order N. Here, the order N (also known
as “way”) is the total number of dimensions. A matrix
X € RM*™m s a second-order (or 2-D) tensor, and its
element indexed by (i1, i2) can be denoted as x;,;,. For a gen-
eral Nth-order (or N-way) tensor X, its element indexed by
(i1, 2, ..., in) is denoted as X;i,...iy-

Fig. 1 shows a matrix (e.g., one slice of MRI data) and
a 3-way tensor, respectively. In this article, we use boldface
lower-case letters (e.g., X) to denote vectors, boldface upper-
case letters (e.g., X) to denote matrices, and boldface Euler
script letters (e.g., X’) to denote tensors. A scalar is denoted
by a lower-case letter, e.g., x.

Definition 2: The inner product of two tensors with the
same size is defined as

(X,) = Z Xitig-inYirin i+)]

ili2"'iN

Furthermore, the Frobenius norm (also known as F-norm) of
a tensor X is defined as || X||p = /(X X).

Definition 3: A matricization operation (also known as
unfolding or flattening) reshapes a tensor into a matrix. The
mode-n matricization of a tensor X € R/ *2xxIN is denoted
as X(,) which has I, rows and [| kstn I, columns. Elementwise,
we have each entry of X, as

X (ins J) = Xigig-iy

N k—1
withj=1+ Y -1 [] In 2)
k=1,k#n m=1,m#n

Definition 4: The mode-n tensor matrix product (or TTM),
between a tensor X € RI<2XxIN and a matrix U € R/ >/
is denoted as

G =X x, U, where G € RIVXI-1XIxbuixxly = (3

Elementwise, we can write this operation as

I
it n_tjing1oiy = E Xiyig..iy Wjiy - 4

in=1

We may also obtain a TTM product by using the unfolded
tensors

g:Xx,,U@G(,,) =UX(,,). (5)

We further introduce a matrix operation that will be used
in our subsequent tensor computation.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

1866

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Algorithm 1 Standard HOOI for Tucker Decomposition

Algorithm 2 Sparse Tucker Decomposition

1: Initialize {U,}}_, via HOSVD

2: while not converge do

3 forn=1,2,...,N do

4: yZXX1U1T---X,Z_1U’{71 X,H_]UZ;JF]---XNUZ\}
5: Unfold Y and perform SVD: Y,, = USVT

6: U,, < the first R,, columns of U.

7. end for

8: end while

9: return {Un}ﬁlvzl.

TABLE I
COORDINATE (COO) FORMAT OF A 5 X 5 x 5 x 5 SPARSE TENSOR. HERE,
(i,], k,I) DENOTES AN INDEX, AND nnz IS THE VALUE OF AN ASSOCIATED
NONZERO DATA ELEMENT

t | J k] T] nnz
1 1 1 1 2
T T[T][5 75
T T3]3 4
2224 5

Definition 5: Given a matrix A € R™*" and another matrix
B € RP*4, their Kronecker product A ® B is the following
matrix C € R™P*"4

anB a,B

am1 B B

III. ACCELERATOR FOR SPARSE TUCKER DECOMPOSITION

Given a tensor X e R/1*2XxIv the Tucker decompo-
sition [4] approximates it with a small low-rank core tensor
G € RRi*RxxR¥ and N factor matrices {U, € R R}V |

X%gX1U1X2U2~~~XNUN. 7

Here (R1, Ry, ..., Ry) is a multilinear tensor rank.

The Tucker decomposition can be regarded as a high-order
generalization of SVD, and it is often implemented with the
power iteration method called high-order orthogonal iteration
(HOOI) in [4]. As shown in Algorithm 1, it aims to find
the orthogonal matrices {U, € RI™Rn}N {0 maximize the
F-norm of

G=Xx; Ul x, U} ... xy UL 8)

In every iteration, we need to compute the R, dominant left
singular vectors of unfolded matrix Y(,), where

YV=Xx1U] - xu1 U_; xp1 UL - xy UL (9)

The orthogonal matrix is obtained by an SVD of the unfolded
matrix Y.

The standard HOOI becomes very inefficient for sparse ten-
sors because line 4 of Algorithm 1 does not exploit any data
sparsity and always performs N — 1 times of TTM operations.

Input: A sparse tensor X
R1,...,Ry: rank of approximation
1: initialize Uy, .
2: repeat
3: forn=1,2,...,Ndo

.., UN randomly.

4: for Xip, . in 75 0 do

5: Y () (i, 2) += Xy, v | ®rn U@,)]
6: end for

7: U, < QRP(Y(,,), Ry)

8: end for

9. G« YxyUL
10: until convergence or maximum number of iterations
reached

QOutput:
G: a Ry X...xRy core tensor
Uy, ...,UN: U, is a R, x I,, factor matrix

A. Overall Algorithm Flow

In this article, we design an FPGA-CPU hybrid accelera-
tor based on [19] to perform Tucker factorization for sparse
tensors. Two formats can be used to represent sparse tensors.

1) The coordinate format (COQO) stores a sparse tensor with
all nonzero elements and their associated coordinate vec-
tors, shown in Table I. The first four columns represent
the coordinate (i, j, k, [) of four nonzero elements, and
the last column represents the corresponding value. The
COO format usually requires storage of O(nnzxN) index
values and O(nnz) nonzero data values, where nnz is the
number of nonzero elements and N is the mode of the
tensor.

2) Compressed sparse fiber format (CSF) stores a sparse
tensor by compressing the indices of nonzero ele-
ments that share the same coordinates. It is regarded
as high-dimensional version of the compressed sparse
row (CSR) or compressed sparse column (CSC) for-
mats used for matrices in [32]. The CSF format requires
OQ2 * (nnz+ s+ f) + 2) to store an order-3 tensor with
s slices, f fibers, and nnz nonzero values.

In this article, we use the COO format because of its flex-
ibility and simplicity. Furthermore, the COO format provides
better performance on merging-related TTM [33]. If we do not
assume any special structure of the tensor and the nonzero ele-
ments are uniformly distributed, there will be rarely multiple
nonzero elements in a given fiber. In such a general case, the
CSF format barely has any advantages in storage compression.

The algorithm flow is summarized in Algorithm 2.
Compared with the standard dense Tucker factorization, the
following techniques are used to exploit the data sparsity.

1) Instead of storing the whole tensor, we only store the

nonzero entries by specifying their values and indices.

2) When performing the TTM in (9), we do not perform
N — 1 levels of iterations over all modes except mode
n. Instead, we only consider the nonzero elements of
X and have a one-level iteration over the indices of all
nonzero elements in X.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA-CPU PLATFORM

Sparse Tucker Decomposition

Kronecker T Ti QR Decomposition
Product ensor lIMesH: with Column

Module Matrix Module

Pivoting Module

Fig. 2. Hybrid FPGA—CPU platform for sparse Tucker factorization.

3) In order to reduce the computational and memory cost
of extracting orthogonal matrix factor U,, we replace
the SVD of Y, with a QRP.

The proposed accelerator architecture is shown in Fig. 2.
Because it is difficult to parallelize the QRP operation, we
implement it on CPU. Both (8) and (9) require TTM opera-
tions, but they are handled in different ways. For (8), we only
need to compute

G=YxyUy

once for each iteration after obtaining Y (which is often dense)
by (9). Therefore, we design a specialized TTM module on
FPGA in Section III-B. For the power iteration in (9), we
design a Kronecker product module on FPGA to accelerate
the sparse operation, which is detailed in Section III-C.

(10)

B. Tensor-Times-Matrix on FPGA

The computation of G in (8) requires N tensor-matrix
products on the original huge-size tensor X. This expensive
computation actually can be simplified.

Assuming that we have already done the power iteration (9)
for n = N and obtained a small-size tensor Y € RE1>R2x--xIy
and an orthogonal factor matrix Uy € R/V*R¥ We only need
to compute the mode-N tensor-matrix product (10) to obtain
the core tensor G (line 9, Algorithm 2). This TTM can be
written in an elementwise manner:

Iy

= Z Yriry...iyUN (N, TN).

in=1

(¥ xy U}) (11)

ryr...rv

Equivalently, we can express this particular TTM with
unfolded tensors as follows:

G=YxyU} & Gy =UaYw. (12)

Here Gv) and Y(y) are the mode-N unfolding of the tensors
G and Y, respectively.

In FPGA design, the 3-D sparse tensor X € RI2x5 g
stored with a cost O(nnz), where nnz denotes the number of
nonzero elements. However, the tensor) € RR1>*R2x53 jp (10)
is dense, and we need to store all of its elements. Although
Y is multidimensional, it is unnecessary to create a new copy
of this tensor. We can just reshape it into a 2-D matrix of size
R1R> x I3. Meanwhile, it is critical to process the entries of
Y in several batches. The batch size, b, controls the number

1867

Algorithm 3 Vivado HLS Implementation of TTM on 3-Way
Tensors
Require: Y € RRiR2x g ¢ RR3 13
£ =RiRy, b =32
for (i, =0;ip < £;is +=b) do
initialize tmp as zero
for (k=0;k < R3; k++) do
for (i, =0;i, < b;i,++) do
for t =0;t < I3; t++) do
tmpl[i,, k] += Y[i, + ip, t] * Ulk, 1]
end for
end for
end for
for (k =0;k < R3; k++) do
for (i, =0;i, < b; i,++) do
Glip + ip, k] = tmp[i,,]
end for
end for
end for

Output: G € RRIR2xRs

of entries in Y, being processed in each iteration. If we set
the batch size as b = R1R», we will end up with three nested
for-loops because the outermost for-loop is redundant. As a
result, all the entries of Y have to be processed at the same
time, resulting in an extremely large amount of loop unrolling,
which is not practical when R{R; is larger. To overcome this
issue, we decrease our batch size to 32 and separate this loop
into two parts, resulting in four nested for-loops to compute
the resultant tensor of the TTM. In this way, we could achieve
optimal loop unrolling on memory-constrained FPGAs.

We provide the Vivado HLS implementation pseudocode of
the TTM for a 3-way tensor X in Algorithm 3. Given a 3-
way tensor, X € RI*2x5(10) is a mode-3 TTM between
Y e RREixRxI3 gnd U € RB*R3 where G € RRixR2xRs g
the result. In the pseudocode, we reshape our tensors Y €
RRixR2xI3 and G e RRI*R2XR3 jnto matrices Y e RFiR2x/3
and G € RRiR2xR;3, Basically, we divide our result, G, into
several portions such that we can update one portion of G in
each batch.

1) We initialize the temporary matrix, tmp as zero matrix
of size b x R3, where b is the batch size. This temporary
matrix stores one portion of our result G.

2) We compute TTM by multiplying unfolded tensor Y and
U based on (12) and store the results in tmp.

3) We just update one portion of G with tmp.

In order to optimize the Vivado HLS implementation, we
reshape U in cyclic forms by a factor of 8, and we reshape
Y and tmp in cyclic forms by a factor of 16. Furthermore,
in order to save RAM usage, we assign only one port of
RAM to the variables, Y, U, and tmp. We also assign the
intermediate variable tmp to registers instead of memory to
minimize memory usage.

Fig. 3 shows the dataflow in the TTM computation module
on FPGA. According to the elementwise formula (11), each
entry of the resultant tensor can be recognized as the sum of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

1868

‘ Tensor Interface ‘

V(1)

Uit @@

e
L0
. L@

TTM dataflow.

Y2.1....)

o
5o
o
o

Y@3.1,...)

5o
e
oo
b

Y.l,...)

b
o
e
ba

Matrix Interface

Fig. 3.

product between the entries from the original tensor Y and
the entries from the matrix Un. In Fig. 3, it shows that data
from the tensor interface, y,, ,,.. iy multiplies with the data from
the matrix interface, Un(iy, ry). After the multiplication, the
results are summed up to obtain the entries in the resultant
tensor, (Y Xy U};,)r1 ot -

A detailed dataflow of the processing element (PE) for TTM
is shown in Fig. 4, which was proposed in [25]. A buffer
temporarily stores the intermediate result after multiplying the
tensor and the matrix. For each batch, the multiplexer selects
and adds the intermediate result to the new product. Once all
batches are processed, the final result is stored the DRAM.

C. Kronecker Products on FPGA

The power iteration (9) requires O(Rd X n) operations, and
it consumes most of the computational power and runtime in
the sparse Tucker decomposition. Although an FPGA design
was presented in [25] to accelerate power iterations, existing
design cannot handle sparse tensor data efficiently. Therefore,
leveraging [19], [29], we design an FPGA module to compute
the power iteration via Kronecker products.

We consider a sparse 3-way tensor X as an example. We
investigate the power iteration of mode 1, which is written
as Y = X x, Uyl x3 Us”. To exploit the sparsity, we may
choose to compute the Kronecker products and consider only
nonzero elements x;j # 0 [19]

Yy (i,) = Yy (i,) + xi[U2G,) @ Us(k,] (13)

The number of Kronecker products depends on the number of
nonzero elements in X', which is often very small for sparse
tensors. Furthermore, a Kronecker product can be reused for
all nonzero elements that share the same indices (j, k) for the
second and third modes. Therefore, replacing TTM of (9) with
some Kronecker products can largely reduce the computational
complexity. Additionally, directly computing TTM is memory-
inefficient when the size and order of X are large, causing a
high cost of RAM and registers on FPGA.
In the Vivado HLS implementation, we utilize nested for-
loops to implement the Kronecker product (Algorithm 4).
1) In order to parallelize the Kronecker product on FPGA,
we pipeline the first for-loop and unroll the second
for-loop. The rank of approximation, Ry, R, and Rj3,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Tensor Intcrface’j

Matrix InterfaceD—®

New Batch

o D

Result
Buffer

Fig. 4. TTM PE [25].

Algorithm 4 Vivado HLS Implementation of a Kronecker
Product

1: Input: ac RI*R2 p e RIXRs

2: for (i=0;i < Rp;i++) do

33 for (j=0;j <R3 j++) do

4: c[R3 x i +j] = a[i] x b[j]

5 end for

6: end for

7. Output: ¢ € RI*RR3

{ Sparse Tensor ’

Index Value

o

Value

<

Y
3
\ 4

X

Matrix | Value

4
X
A

G

» | Accumulator

Value

X
|

Fig. 5. Dataflow of a Kronecker product.

are usually very small compared with the mode sizes.
Therefore, the available memory, lookup tables (LUTSs)
and registers are often sufficient for parallelization.

2) To update the corresponding rows of unfolded data Y)
in the power iteration, we simply multiply the Kronecker
product result in the LUTs with the corresponding
nonzero element y, ,, iy

3) In addition, different nonzero elements may share the
same index of some modes. In this case, we accumulate
the multiplications between these nonzero elements and
their corresponding Kronecker product results.

Fig. 5 shows the dataflow inside our Kronecker product
module on FPGA. To begin with, the indices of the nonzero
elements in the original tensor are extracted. Then, based on
the indices of the nonzero entries, the corresponding rows of

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA-CPU PLATFORM

TABLE II
ACCURACY COMPARISON OF TUCKER DECOMPOSITION
WITH SVD AND WITH QRP

Tucker Decomposition
with SVD
1.9222 x 10—99
1.3846 x 10~
1.1588 x 10~ 99
1.2114 x 10~99
3.8450 x 10~ 10

Tucker Decomposition
with QRP
1.9228 x 10799
1.3820 x 10~
1.1786 x 10~99
1.2115 x 10~99
3.8531 x 10~ 10

Tensor Size

50 x 50 x 50
100 x 100 x 100
200 x 200 x 200
400 x 400 x 400
800 x 800 x 800

the orthogonal matrix factor, U;(i;, :), are selected. Assuming
there are two row vectors, every entry in one row vector
multiply with every entry in the other row vector to generate
the Kronecker product. Since we only compute the Kronecker
product between two row vectors (not two matrices), the
module only requires multiplication units (no addition units).

D. QR Decomposition With Column Pivoting

In the existing dense and sparse Tucker
factorization [4], [19], the orthogonal matrix U, is obtained
with an SVD [31] of Y(;,). The SVD is accurate but extremely
slow at computing the orthogonal matrices. In order to
speedup the computation and minimize the memory usage,
we propose to use QRP [30] to obtain U,. The QRP imple-
mentation does not lose any accuracy compared with the
SVD implementation. This is clearly shown in Table II, which
reports the errors of several low-rank Tucker decomposition
with both SVD and QRP implementations, respectively.

Given a matrix A € R"™", the QRP get an orthogonal
matrix Q € R”™*" and an upper-triangular matrix R € R™”

AP = QR (14)

with P being a permutation matrix. The P is chosen so that
the diagonal elements of R is nonincreasing

15)

il = |roal = -+ = |1l

A QRP costs about 2mn*> — 2n3/3 flops, and an SVD costs
about 2mn> + 11n° flops, where m > n. In the sparse
Tucker factorization of a tensor X € RIxDRx-xIv A jg
Y (), the mode-n unfolding of the tensor) obtained in (9).
Consequently, m = I,, n =]_[k #n R,, and the computa-
tional saving is huge when the tensor order N or multilinear
rank parameters (R1, R, ..., Ry) are large. In some particu-
lar cases, we may end up with a fat rectangular matrix, Y
(n > m). In this case, we can perform QRP on a square matrix,
Y Y(,)-

ORP Implementation: The QRP in our implementation
is based on the Householder reflection. This method com-
putes the orthogonal matrix Q as the product of multiple
Householder reflection matrices

Q=HH,.. Hy Hn 1. (16)

The jth reflection matrix, Hj, is defined as

ul
uju;

Tu:
u;

Hj=I—2vjva=I— (17)

1869

where u; is an unit vector and w; = [v;/(]|v;|])]. Vector v; can
be chosen based on the jth column of A, a;:

v; = aj + sign(ajj)lla,[le;. (18)

During every iteration of QRP, we need to update A by multi-
plying it with the Householder matrix H. In order to generate
the permutation matrix, P, we need to compare the norms
of the columns of the updated matrix A at every iteration,
arranging the columns so that the norms of the columns are in
descending order. In this way, we can place the most weighted
entries in the upper left corner of Q, achieving the similar
accuracy to SVD. Since we need to compare the norms of the
columns at each iteration, the QRP operation is sequential.
In other words, the comparison of the column norms made
it very difficult to parallelize the algorithm on FPGA. Thus,
we implement the Householder QR decomposition [30] with
column pivoting on CPU.

IV. RESULTS

This section shows the performance of our hybrid FPGA—
CPU accelerator on both synthetic and real-world datasets. We
first verify the performance of individual FPGA modules for
the TTM and Kronecker product. Afterward, we verify the
performance of the whole FPGA—CPU sparse Tucker acceler-
ator and compare it with the CPU. We use the FPGA model
XCVU9P-FLGA2577-3-e in our experiment. The maximum
frequency of the FPGA implementation is 890 MHz. The CPU
model used is Intel Core i7-6820HK CPU@2.70 GHz. The
size of the RAM is 16 GB. The CPU has a maximum memory
bandwidth of 34.1 GB/s and a thermal design power (TDP)
of 45 W. In the experiments, we prioritize the computations
on CPU to achieve the maximum performance, therefore, the
energy consumption on CPU can be estimated as the product
of runtime and TDP. We estimate the energy cost of sparse
Tucker decomposition on FPGA on Xilinx Vivado via AWS.
The communication protocol between FPGA and CPU is PCI
express, which has a maximum bandwidth of 10 GB/s. Our
design can also be implemented on a low-end FPGA such as
Zyng-7100 as well. On a low-end FPGA, we may decrease
the LUT utilization by adjusting the unroll factor in our TTM
module implementation.

A. Performance of Individual FPGA Modules

First, we verify the performance of the TTM and Kronecker
product modules on some synthetic tensor data and summarize
their performance below.

1) TTM Module: We verify the performance by consider-
ing a set of 3-way tensors) € RRI*RexI3 and factor
matrices U € RR>*5. The rank of approximate, Rj,
R>, and R3, are always very small compared with the
original tensor size for data compression. Thus, we set
R = R, = Rz = 32. The original tensor size, I3, is set
to increase from 32 to 256 as shown in Table III. In the
real-life examples, the original tensor size I3 can defi-
nitely be larger than 256. And the performance of the
TTM module will not perform significantly worse when
the original tensor size becomes extremely large. Here,

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

1870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021
TABLE III
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE TTM TASK
. @ CPU FPGA
Tensor Size Matrix Size Run-Time | Energy Run-Time | Energy
32 X 32 X 32 32 X 32 0.493 ms 22.19 mJ | 0.148 ms 0.4212 mJ
32 X 32 X 64 32 X 64 0.596 ms | 26.82mJ | 0.281 ms | 0.8000 mJ
32 X 32 x 128 | 32 X 128 1.165 ms 52.43 mJ | 0.546 ms 1.556 mJ
32 X 32 X 256 | 32 X 256 2.021 ms 90.95 mJ | 1.077 ms 3.067 mJ
TABLE IV
PERFORMANCE COMPARISON OF FPGA AND CPU ON THE KRONECKER PRODUCT TASK
: : CPU FPGA
Size of x; | Size of Xk | pmrrTie Energy Run-Time | Energy
Tx 32 Tx 32 0.655 s | 0.4345 mJ | 0.578 fis | 2.111 /)
Tx 64 T X 64 T4.72 ps | 0.6624 mJ | 2.301 ps | 8.403 uJ
Tx 128 Tx 128 2187 s | 1119 mJ] | 9.195 us | 3358 d
T % 256 T X 256 1824 ;s | 2171 mJ | 38.55 ps | 140.7 il
we set the maximum of our tensor size to be 256 for o
experimental purpose only. The FPGA achieves 1.560x
to 3.331x speedup than CPU on these tensor-matrix —— sparse Tucker CPU
. 1 | |=—©— sparse Tucker CPU/FPGA (proposed)
products. We also compare the energy consumption 10 dense Tucker FPGA
between FPGA and CPU on the TTM task. As shown
in Table III, the FPGA saves 95.6%-98.1% of energy z
compared with CPU. £ 00f
2) Kronecker Product Module: As shown in Section IV-C, 5
the Kronecker product used in the sparse Tucker decom-
position deals with two row vectors, x; € R® and ot F 1
x; € R'Rc, Therefore, we compare the performance e © {‘-M
of Kronecker products on FPGA and CPU by chang-
ing the rank parameters R; and R, from 32 to 256. The 5 ‘ ‘ ‘ ‘ ‘
rank of approximation R; and R, does not necessar- 0.88 0.9 0.92 094 0.96 0.98 !
ily need to be equal to each other. We set Ry and R, Sparsity
to be equal for experimental purpose only. In addition, Fig. 6. Runtime comparison between the proposed hybrid platform, dense

the rank of approximation Ri, R, and R3 are usually
very small compared with the original tensor size for
data compression. We increase the rank from 32 to 256
to demonstrate the performance of the Kronecker prod-
uct module. We estimated the power of the CPU to be
45 W. The energy consumption of CPU is estimated by
multiplying the power with the CPU time. The results
are shown in Table IV. The speedup of FPGA over CPU
ranges from 1.251x to 16.704x. As shown in Table IV,
FPGA consumes 93.519% to 99.514% less energy than
CPU on the Kronecker-product tasks.

B. Accelerator’s Performance: Synthetic Datasets

Now we evaluate the whole hybrid FPGA-CPU accel-
erator on some randomly generated synthetic sparse tensor
datasets. Specifically, we consider a set of 3-way tensors
X e R200x200x200 with different sparsity. We fix the rank
parameters Ry = Ry = R3 = 16.

Fig. 6 compares the runtime of our hybrid FPGA-CPU
platform with CPU and densor FPGA accelerator [25]. The
speedup of the hybrid FPGA—CPU accelerator is 27 x ~ 853
compared with CPU. The speedup of our sparse Tucker accel-
erator is 1.167x ~ 126x faster than the FPGA accelerator
designed for dense Tucker decomposition [25]. In the whole
sparse Tucker decomposition algorithm, the Kronecker product
module takes the most amount of time. However, this module

FPGA accelerator, and CPU on a set of 200 x 200 x 200 synthetic random
tensors with different sparsity.

is parallelized in our design, and it is significantly speedup
on FPGA as shown in Section IV-A. When the tensor has
more nonzero elements, more Kronecker-product operations
are required, leading to a more significant speedup on FPGA.

C. Real-World Datasets

Finally, we verify our accelerator on four real-world
sparse tensor datasets [34]-[37]. In addition, we compare the
performance of our accelerator with sparse Tucker decom-
position on CPU and with the dense FPGA accelerator
in [25]. Table V shows the detailed runtime and energy con-
sumption of different methods on these datasets. Table VI
further shows the overall hardware resource utilization of our
method on FPGA. The FPGA design is compiled for each
dataset in order to achieve the maximum efficiency. We use
BRAM_18K, BDSP48E, FF, and LUT to denote block ran-
dom access memory, digital signal PEs, flip-flops, and LUTs,
respectively.

The detailed experiments and results are summarized below.

1) Amazon Reviews Datasets [34]: The modes of this

three-way tensor represent users, products, and words,
respectively. Each nonzero element in this tensor is the
number of times a word appears in a given review.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA-CPU PLATFORM

TABLE V
PERFORMANCE OF SPARSE TUCKER DECOMPOSITION ON REAL-WORLD BENCHMARKS

1871

Benchmarks Amazon Nell-2 Paralle] Matrix Multiplication | Retinal Angiogram
Tensor Size 20K x 20K x 20K | 1K x 1K X IK 25 X 25 X 25 T30 X 150
Sparsity 1.128 x 10~ 10 2.40 x 10~° 8 x 10~3 0.18
CPU Run-Time 100.045 s 7.355 s 8.175 x 10~ 2 s 0.1838 s
Energy 2502.03 7 330987 3687 8277
Hybrid FPGA/CPU Run-Time 86.785 s 0.403 s 2.179 x 1073 s 9.898 x 10~ 3 s
(proposed) Energy 3896.08 T 17107 0.10577J 0.4667 J
Dense FPGA Tucker [25] | Run-Time 9.47 x 107 s 9.5 s 9.9x 1073 s 118 x 10~ % s
TABLE VI

UTILIZATION OF FPGA ON REAL-WORLD BENCHMARKS. IN THE COLUMN OF “MEMORY,”
WE LIST THE NUMBER OF BRAM, WHERE EACH BRAM Has 18 x 103 BITS

Name Expression | Instance | Memory | Multiplexer | Register Total Available | Utilization (%)
BRAM_ 18K - - 542 - - 542 4320 13
Amazon DSP48E - 282 - - - 282 6840 4
FF 0 17257 - - 107670 | 124927 | 2364480 5
LUT 406251 17649 - 20587 - 443268 | 1182240 37
BRAM_I8K - - 63 - - 63 4320 1
Nell-2 DSP48E - 470 - - - 470 6840 7
FF 0 29495 - - 54691 84186 2364480 1
LUT 405656 30863 - 13972 - 450491 | 1182240 38
Parallel BRAM_I8K - - 2 - - 2 4320 ~ 0
Matrix DSP48E - 16 - - - 16 6840 ~0
Multiplication FF 0 759 - - 107 866 2364480 ~0
LUT 49799 778 - 707 - 51284 1182240 1
BRAM_I8K - - 5 - - 5 4320 ~ 0
Retinal DSP48E - 21 - - - 21 6840 ~0
Angiogram FF 0 17171 - - 9438 10609 2364480 ~0
LUT 121303 1089 B 2256 B 124648 | 1182240 TT
Additionally, we extract one portion of the Amazon 3) Binary 3-Way Tensor for Parallel Matrix
reviews tensor of size 20000 x 20000 x 20000 and choose Multiplication [35], [36]: This binary tensor

the rank of approximation as Ry = R = R3 = 32. We
perform two power iterations on all modes. The sizes of
the tensors and matrices in TTM (12) are 32 x 32 x20000
and 32 x 20000, respectively. This sparse Tucker factor-
ization involves nine calls of QR decomposition on a set
of 20000 x 32 matrices in total to compute the orthogo-
nal factor matrices. Finally, there are totally 8820 calls
of Kronecker products, which depends on the number
of nonzero tensor entries. On this dataset, our hybrid
FPGA/CPU platform achieves 1.15x speedup than CPU
with only 13.5% energy consumption. Our method also
achieves 1091 x speedup than the dense Tucker FPGA
accelerator [25].

2) NELL-2 Datasets [37]: This dataset is extracted from
the never ending language learner knowledge base.
The nonzero entries represent some entity-relation-entity
tuples. We extract one portion of the NELL-2 dataset
and obtain a sparse tensor of size 1000 x 1000 x 1000.
In addition, we choose our rank of approximation as
R1 = Ry = Rz = 16. We perform five power iterations
on all modes. The sizes of the tensors and matrices in
TTM (12) are 16 x 16 x 1000 and 16 x 1000, respec-
tively. This sparse Tucker factorization involves 15 calls
of QR decomposition on a set of 1000 x 256 matri-
ces in total to compute the orthogonal factor matrices.
Finally, there are totally 432555 calls of Kronecker
products, which depends on the number of nonzero ten-
sor entries. Our hybrid FPGA/CPU platform achieves
18x speedup and 94.8% energy saving compared with
CPU. Our method is also 23.6x faster than the dense
FPGA accelerator [25].

4)

describes the parallel computation process of matrix
multiplications. Given two matrices A € RM*K and
B € REXN | their product results in a matrix C € RM®*V,
Let Iy = MK, I = KN and I3 = MN, then a binary
3-way tensor X’ can represent the parallel matrix mul-
tiplication. The first mode corresponds to the first input
matrix A with entries in row-major order; the second
mode corresponds to the input matrix B with entries in
row-major order; and the third mode corresponds to the
output matrix C with entries in column-major order.
A nonzero entry X;;, = 1 corresponds to a scalar
multiplication within the classical matrix multiplication
algorithm: the ijth entry of A is multiplied with the
irth entry of B, and the result is accumulated into the
izth entry of C. The number of nonzero elements in X
is nnz = MKN. We consider the case M =N =K =5,
which results in a binary tensor X with size 25 x 25 x 25
and a sparsity of 8 x 1073, To perform sparse Tucker
decomposition on this 3-way binary tensor, we choose
an approximation rank of Ry = R = Rz = 5. We
perform three steps of high-order power iterations on
all modes, leading to 3 TTM in (12) and totally 6 calls
for QRP. Finally, the number of Kronecker products
used in this dataset is 1125. Our method achieves 37 x
and 1.52x speedup than CPU and than the dense FPGA
accelerator [25], respectively. Compared with the sparse
Tucker decomposition on CPU, our accelerator saves
97.1% energy.

Retinal Angiogram: Angiogramy is a medical diagnostic
test that uses X-ray to take picture of the blood vessels.
The images, angiogram, are always very sparse. Fig. 6

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

1872

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 9, SEPTEMBER 2021

Fig. 7.

shows the retinal angiogram of a patient on the left. The
size of the original retinal angiogram is 130 x 150 [38].
Tucker factorization can also be employed to compress
2-D data, because a matrix is the special case of a ten-
sor. Different from SVD compression of a matrix where
the rank is a scalar, a Tucker decomposition allows one
to set two rank parameters. We perform a sparse Tucker
decomposition with rank R = [30, 35] on this image.
We performed 12 steps of high-order power iterations
on all modes, leading to 12 TTM in (12) and totally
24 calls for QRP. We do not need any Kronecker prod-
ucts since the order of the tensor is 2. Our proposed
method achieves 19x speedup than CPU and 1.91x
speedup than dense FPGA accelerator [25], and it saves
94.4% energy compared with the sparse Tucker factor-
ization on CPU. Fig. 7 compares the original retinal
angiogram and the resulting compressed image from our
FPGA/CPU hybrid accelerator. The compression ratio
is 18.57x. While the image is highly compressed, the
essential features, such as blood vessels, are still clearly
preserved.

V. CONCLUSION

This article has proposed a hybrid FPGA-CPU accelerator
for sparse Tucker decomposition. On the algorithm level, the
Kronecker products have exploited the data sparsity and has
significantly reduced the computational complexity. The QR
with pivoting method have dramatically reduced the complex-
ity of obtaining the orthogonal mode-n matrix factors. The
FPGA modules for the TTM and for the Kronecker products
have achieved 93.519%-99.514% energy saving compared
with CPU on synthetic benchmarks. The proposed hybrid
FPGA-CPU accelerator has been evaluated with both syn-
thetic and realistic sparse tensor datasets. It has achieved
27x ~853x speedup over CPU and 1.167x~ 126 speedup
over the recently developed dense Tucker FPGA accelera-
tor [25] on the synthetic datasets. Our proposed methods have
also achieved 1.15x ~1091x speedup and over 95% energy
savings on the tested real-world tensor datasets. Our proposed
accelerator have significantly outperformed CPU and dense

Left: original retinal angiogram. Right: approximated image by our sparse Tucker decomposition on the FPGA/CPU hybrid platform.

Tucker FPGA accelerator [25] when the tensor is very large
and sparse.

REFERENCES

[1] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455-500, 2009.

[2] 1. Oseledets and E. Tyrtyshnikov, “TT-cross approximation for
multidimensional arrays,” Linear Algebra Appl., vol. 432, no. 1,
pp. 70-88, 2010.

[3] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear sin-
gular value decomposition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4,
pp. 1253-1278, 2000.

[4] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1
and rank-(rq, ra, ..., ry) approximation of higher-order tensors,” SIAM
J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1324-1342, 2000.

[5] J. D. Carroll and J. J. Chang, “Analysis of individual differences in
multidimensional scaling via an n-way generalization of ‘Eckart—Young’
decomposition,” Psychometrika, vol. 35, no. 3, pp. 283-319, 1970.

[6] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and
conditions for an ‘explanatory’ multi-modal factor analysis,” UCLA, Los
Angeles, CA, USA, Working Papers in Phonetics, 1970.

[71 M. A. O. Vasilescu and D. Terzopoulos, “Multilinear analysis of image
ensembles: TensorFaces,” in Proc. Eur. Conf. Comput. Vis., 2002,
pp. 447-460.

[8] M. A. O. Vasilescu and D. Terzopoulos, “Multilinear subspace analysis
of image ensembles,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., vol. 2. Madison, WI, USA, 2003, pp. 93-99.

[91 M. A. O. Vasilescu and D. Terzopoulos, “Multilinear independent com-
ponents analysis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
vol. 1. San Diego, CA, USA, 2005, pp. 547-553.

[10] T. G. Kolda and J. Sun, “Scalable tensor decompositions for multi-aspect
data mining,” in Proc. 8th IEEE Int. Conf. Data Min., Pisa, Italy, 2008,
pp. 363-372.

[11] N. Batmanghelich, A. Dong, B. Taskar, and C. Davatzikos, “Regularized
tensor factorization for multi-modality medical image classification,” in
Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervention, 2011,
pp. 17-24.

[12] Z. Zhang, T.-W. Weng, and L. Daniel, “Big-data tensor recovery for
high-dimensional uncertainty quantification of process variations,” IEEE
Trans. Compon. Packag. Manuf. Technol., vol. 7, no. 5, pp. 687-697,
May 2017.

[13] Z. Zhang, X. Yang, 1. V. Oseledets, G. E. Karniadakis, and L. Daniel,
“Enabling high-dimensional hierarchical uncertainty quantification by
ANOVA and tensor-train decomposition,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 1, pp. 63-76, Jan. 2015.

[14] Z. Zhang, K. Batselier, H. Liu, L. Daniel, and N. Wong, “Tensor com-
putation: A new framework for high-dimensional problems in EDA,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 36, no. 4,
pp. 521-536, Apr. 2017.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: SPARSE TUCKER TENSOR DECOMPOSITION ON HYBRID FPGA-CPU PLATFORM

[15] J. Luan and Z. Zhang, “Prediction of multidimensional spatial varia-
tion data via bayesian tensor completion,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 39, no. 2, pp. 547-551, Feb. 2020.
A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov, “Tensorizing
neural networks,” in Proc. Adv. Neural Inf. Process. Syst. Conf.,
Montreal, QC, Canada, 2015, pp. 442-450.

Y. Yang, D. Krompass, and V. Tresp, “Tensor-train recurrent neural
networks for video classification,” in Proc. Int. Conf. Mach. Learn.,
vol. 70, Aug. 2017, pp. 3891-3900.

C. Hawkins and Z. Zhang, “Bayesian tensorized neural networks with
automatic rank selection,” 2019. [Online]. Available: arXiv:1905.10478.
0. Kaya and B. Ugar, “High performance parallel algorithms for
the tucker decomposition of sparse tensors,” in Proc. IEEE 45th
Int. Conf. Parallel Process. (ICPP), Philadelphia, PA, USA, 2016,
pp. 103-112.

S. Smith, J. Park, and G. Karypis, “Sparse tensor factorization
on many-core processors with high-bandwidth memory,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., Orlando, FL, USA, 2017,
pp. 1058-1067.

J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, “An input-adaptive
and in-place approach to dense tensor-times-matrix multiply,” in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal., Austin, TX, USA,
2015, pp. 1-12.

Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” 2015. [Online]. Available: arXiv:1511.06530.

N. Srivastava et al., “T2S-tensor: Productively generating high-
performance spatial hardware for dense tensor computations,” in
Proc. 27th Annu. Int. Symp. Field Program. Custom Comput. Mach.
(FCCM), San Diego, CA, USA, 2019, pp. 181-189.

[24] W.-P. Huang et al., “High performance hardware architecture for singular
spectrum analysis of hankel tensors,” Microprocess. Microsyst., vol. 64,
pp. 120-127, Feb. 2019.

K. Zhang, X. Zhang, and Z. Zhang, “Tucker tensor decomposition on
FPGA,” in Proc. Int. Conf. Comput.-Aided Design, 2019, pp. 1-8.

N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor com-
putations,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), San Diego, CA, USA, 2020, pp. 689-702.

S. F. Roohi, D. Zonoobi, A. A. Kassim, and J. L. Jaremko, “Dynamic
MRI reconstruction using low rank plus sparse tensor decomposition,”
in Proc. IEEE Int. Conf. Image Process., Phoenix, AZ, USA, 2016,
pp. 1769-1773.

P. Fillard, V. Arsigny, X. Pennec, P. M. Thompson, and N. Ayache,
“Extrapolation of sparse tensor fields: Application to the modeling of
brain variability,” in Proc. Biennial Int. Conf. Inf. Process. Med. Imag.,
2005, pp. 27-38.

C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl.
Math., vol. 123, nos. 1-2, pp. 85-100, 2000.

G. H. Golub and C. F. V. V. Loan, Matrix Computations, 3rd ed.
Baltimore, MD, USA: Johns Hopkins Univ. Press, 1996.

G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” in Linear Algebra. Berlin, Germany: Springer, 1971,
pp. 134-151.

F. G. Gustavson, “Some basic techniques for solving sparse systems of
linear equations,” in Sparse Matrices and Their Applications. Boston,
MA, USA: Springer, 1972, pp. 41-52.

P. A. Tew, “An investigation of sparse tensor formats for tensor libraries,”
Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst.
Technol., Cambridge, MA, USA, 2016.

J. McAuley and J. Leskovec, “Hidden factors and hidden topics:
Understanding rating dimensions with review text,” in Proc. 7th ACM
Conf. Recommender Syst., 2013, pp. 165-172.

A. R. Benson and G. Ballard, “A framework for practical parallel fast
matrix multiplication,” in Proc. ACM SIGPLAN Symp. Principles Pract.
Parallel Program., 2015, pp. 42-53.

R. P. Brent, “Algorithms for matrix multiplication,” Dept. Comput. Sci.,
Stanford University, Stanford, CA, USA, Rep. TR-CS-70-157, DCS,
1970.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka, Jr.,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning,” in Proc. 24th AAAI Conf. Artif. Intell., vol. 5, 2010, p. 3.

A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood ves-
sels in retinal images by piecewise threshold probing of a matched
filter response,” IEEE Trans. Med. Imag., vol. 19, no. 3, pp. 203-210,
Mar. 2000.

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

[27]

(28]

[29]
(30]

[31]

(32]

[33]

[34]

[35]

(36]

[37]

[38]

1873

Weiyun Jiang received the B.Sc. degree in electri-
cal engineering from the University of California at
Santa Barbara, Santa Barbara, CA, USA, in 2020. He
is currently pursuing the graduation degree in electri-
cal engineering with Stanford University, Stanford,
CA, USA.

His research interests include algorithm/hardware
co-design for tensor data analysis and machine
learning.

Kaiqi Zhang received the B.Sc. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2016, and the M.S. degree in electrical
and computer engineering from the University of
California at Davis, Davis, CA, USA, in 2018. He
is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with the University
of California at Santa Barbara, Santa Barbara,
CA, USA.

Colin Yu Lin received the B.Sc. degree in elec-
tronic engineering from Sun Yat-sen University,
Guangzhou, China, in 2005, the M.E. degree in com-
puter engineering from the University of Chinese
Academy of Sciences, Beijing, China, in 2008, and
the Ph.D. degree in electrical and electronic engi-
neering from the University of Hong Kong, Hong
Kong, in 2012.

From 2011 to 2012, he was a Visiting Student
Researcher with the Department of Electrical
Engineering and Computer Sciences and the
Berkeley Wireless Research Center, University of California at Berkeley,
Berkeley, CA, USA. He was an Assistant Professor with the System on
Programmable Chip Research Department, Institute of Electronics, Chinese
Academy of Sciences, Beijing, from 2012 to 2016. He is currently a Software
Development Senior Manager with Data Center Group, Xilinx, Inc., Beijing.
His current research interests include field programmable gate array (FPGA)
architecture, CAD for FPGAs, high-level synthesis, and FPGA for high
performance computing.

Feng Xing received the B.Sc. degree from Wuhan
University, Wuhan, China, the M.Sc. degree in
pure mathematics and applied mathematics from
the University of Lille, Lille, France, and the
Ph.D. degree in high performance computing from
“Maison de la Simulation,” CEA Saclay, Paris,
France, in 2014.

He worked as a Post-Doctoral Researcher with
INRIA French, Rocquencourt, France, and BRGM,
Orléans, France, for two years on high performance
geothermal simulation. He is currently a Software
Development Manager with Xilinx, Inc., Beijing, China.

Zheng Zhang (Member, IEEE) received the Ph.D.
degree in electrical engineering and computer sci-
ence from the Massachusetts Institute of Technology,
Cambridge, MA, USA, in 2015.

He has been an Assistant Professor of Electrical
and Computer Engineering with the University of
California at Santa Barbara, Santa Barbara, CA,
USA, since July 2017. His research interests include
uncertainty quantification and tensor computation.
The applications of his research include design
automation of nanoscale electronics and photonics,
algorithm/hardware co-design of high-dimensional, robust, and safe machine
learning systems.

Dr. Zhang received three best paper awards from IEEE TRANSACTIONS:
the Best Paper Award of the IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS in 2014, two best paper
awards of the IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND
MANUFACTURING TECHNOLOGY in 2018 and 2020, respectively, and three
best paper awards at international conferences. His Ph.D. dissertation won
the ACM SIGDA Outstanding Ph.D. Dissertation Award in Electronic Design
Automation in 2016, and the Best Thesis Award from the Microsystems
Technology Laboratory of MIT in 2015. He received the NSF CAREER
Award in 2019 and a Facebook Research Award in 2020.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on December 22,2021 at 01:52:20 UTC from IEEE Xplore. Restrictions apply.

