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Synopsis Communication is a social process and usually occurs in a network of signalers and receivers. While social
network analysis has received enormous recent attention from animal behaviorists, there have been relatively few
attempts to apply these techniques to communication networks. Communication networks have the potential to offer
novel insights into social network studies, and yet are especially challenging subjects, largely because of their unique
spatiotemporal characteristics. Namely, signals propagate through the environment, often dissociating from the body of
the signaler, to influence receiver behavior. The speed of signal propagation and the signal’s active space will affect the
congruence of communication networks and other types of social network; in extreme cases, the signal may persist and
only first be detected long after the signaler has left the area. Other signals move more rapidly and over greater distances
than the signaler could possibly move to reach receivers. We discuss the spatial and temporal consequences of signaling
in networks and highlight the distinction between the physical location of the signaler and the spread of influence of its
signals, the effects of signal modality and receiver sensitivity on communication network properties, the potential for
feedbacks between network layers, and approaches to analyzing spatial and temporal change in communication networks
in conjunction with other network layers.

Introduction Aguilar et al. 2019). Communication regulates many

The recent explosion of research into animal social
networks has revealed that social structure plays a
critical role in ecological and evolutionary processes
including sexual selection, the evolution of coopera-
tion, disease transmission, and the spread of innova-
tions (Croft et al. 2009; Firth et al. 2015; McDonald
and Pizzari 2018; Sah et al. 2018). Techniques for
analyzing social networks are coevolving with in-
creasingly sophisticated technology for tracking and
recording the behaviors of large numbers of animals
in space and time (Krause et al. 2013; Levin et al.
2015; Gill et al. 2016; Gernat et al. 2018; Smith and
Pinter-Wollman 2021). This increased data availabil-
ity enables partitioning social networks into layers
based on specific behaviors, and examining links be-
tween these network layers (Finn et al. 2019; Smith-
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social interactions, and so plays a key role in deter-
mining social structure. Nevertheless, and despite the
fact that communication has long been recognized as
occurring in a network (McGregor and Dabelsteen
1996), it is rare for studies of social networks to
focus on explicit communication interactions, and
for studies on communication networks to utilize
the techniques of social network analysis to under-
stand network-level properties of communication.
The case for a better integration between communi-
cation network studies and social network analysis
was recently made by Snijders and Naguib (2017),
who describe many fruitful avenues of research. Our
aim is to extend this argument, both encouraging
new advances in studies of animal social and com-
munication networks and indicating associated
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Communication networks in space and time

challenges, by emphasizing an aspect of communica-
tion that makes it an especially unique and interest-
ing system with which to study animal social
structure: its spatial and temporal characteristics.

The basis of any network analysis is to define
connections (“edges”) between individuals in the
network (“nodes”; for a detailed review of techniques
for constructing and analyzing animal social net-
works, see Farine and Whitehead 2015). Briefly, in
animal social network analysis, edges represent either
discrete dyadic interactions at close range (e.g.,
grooming, physical attack; Fig. 1B), or instead, under
the “gambit of the group,” edges are made between
all individuals observed in a group at a given time
(Fig. 1C; Whitehead and Dufault 1999). We define
communication networks as networks of signalers
and receivers, with edges generated between each
signaler and any individuals that receive its signals.
Communication networks are a subset of the net-
works found in animal groups, with each network
representing a “layer” in the overall social structure,
but communication networks have unique properties
(Fig. 1). Specifically, in communication networks
signals may be directed toward specific individuals,
but because signals propagate more widely, they are
likely to reach other individuals within the signal’s
active space (where, and for how long, a signal can
be detected by receivers). To characterize the net-
work, each individual interaction (e.g., each instance
of signaling, although other sampling levels are pos-
sible) is recorded in a matrix quantifying all such
interactions between all possible dyads of individuals
over a period of sampling. These matrices can then
be used to build visualizations of the network, with
each node representing an individual and edges rep-
resenting either that there is a connection between
two individuals (unweighted networks), or quantify-
ing the strength of the connection between two indi-
viduals  (weighted networks). The edges in
communication networks built from individual sig-
naling interactions are directed, representing the
asymmetry of the signaler and receiver roles in any
given instance of communication, and depicted as
arrows from signaler to receiver on network dia-
grams. Network statistics can be calculated that char-
acterize an individual’s position in the network,
including the strength and number of its connections
with others (Farine and Whitehead 2015).

Despite the challenge of quantifying connections
in communication networks (see the section
Measuring and constructing communication net-
works), we argue that communication will provide
novel insights into the understanding of animal so-
cial networks, largely because of the spatiotemporal
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characteristics of signal propagation. First, aside
from tactile signals, all signals propagate through
space and/or time to reach receivers. The spatial pat-
tern and speed of propagation, the rate at which the
signal decays, and receiver detection abilities will de-
termine both the number of connections with other
individuals (i.e., edges) and, if the influence of the
signal varies with distance, the strength of those con-
nections (i.e., edge weights, in a weighted network).
Second, the rapid spread and large spatial reach of
many animal signals, combined with signals’ influ-
ence on receiver behavior, generate potential for
rapid feedbacks between individual behavior and so-
cial structure (Cantor et al. 2020), including not only
communication interactions but also spatial posi-
tioning, group membership, and group density.
Third, the communication network is not necessarily
congruent with other social network layers. Among
other reasons, this occurs because individuals’ move-
ments may be dissociated from the location and/or
movements of their signals (particularly for long-
lasting structures, chemical deposits, and long-
distance signals; Schaedelin and Taborsky 2009).
Furthermore, the short temporal scale and rapid rep-
etition of many communication interactions imply
that the time constant for network turnover is
much smaller than for many other social processes.
Below, we discuss these characteristics of communi-
cation networks in more detail, show how the spa-
tiotemporal characteristics of communication raise
challenges for network analyses, offer some
approaches to deal with those challenges, and argue
that explicit incorporation of communication inter-
actions into studies of social networks will lead to
advances in emerging areas of interest in the study of
animal social structure.

Active space and communication
networks

Communication networks are characterized by con-
nections between signalers and receivers, which are
determined by physical relationships between indi-
viduals, how signals propagate in space and time,
and receiver sensory capabilities. Different signal mo-
dalities have different transmission properties, and
therefore may be received by different individuals.
For instance, the spatial reach of many broadcast
acoustic signals can be quite large (Payne and
Webb 1971; McComb et al. 2003), while some chem-
ical signals, though also detectable over long distan-
ces, generally propagate more slowly and are limited
by water or wind speed (Dusenbery 1989). Electrical
and vibratory signals usually have a very limited
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Fig. 1 Illustration of edge placement in communication networks and traditional social networks. (A) shows the actual spacing of
organisms. The individuals in the top row are a signaler and intended receiver. Those in the middle row are unintended receivers. (B)
Edges in a hypothetical social network (solid lines) based on physical interactions. Edges in a hypothetical communication network
would instead be placed between the signaler and all receivers within the active space of the signal (dashed arrows). The white square
represents the signaler, the black circle the intended receiver, and the grey circles unintended receivers. (C) As in (B), but here the
social network is depicted based on the gambit of the group approach, with edges between all individuals.

active space (Hopkins 1999; Cokl and Virant-
Doberlet 2003). Acoustic and electrical signals and
visual displays are often temporally ephemeral, while
many chemical deposits can persist for much longer
periods of time (Soso et al. 2014; Brahmachary and
Poddar-Sarkar 2015). Although deposited chemical
signals may not propagate as far or as fast as many
other signal types, they may nevertheless reach many
individuals, due to the movement of individuals to-
ward a relatively fixed long-term signal (as can some
visual signals e.g., bowerbird bowers; Diamond 1986;
fiddler crab burrow hoods; Christy et al. 2001).
Thus, there is often some dissociation between the
signaler and its signals in either space or time, which
raises a challenge for comparisons of communication
networks with other network layers based on prox-
imity. In principle, an animal could be interacting
physically with one individual (forming an edge be-
tween nodes representing the two individuals in a
social interaction network), at the same time that
one or more signals it produced in the past affect
other individuals elsewhere (in which case it may be
appropriate to consider the signal itself as the node,
with a second layer in the communication network
connecting the individual signaler to all of its signal
nodes).

All of these patterns of signal propagation will
vary depending on heterogeneity in the transmission
characteristics of the environment (Richards and
Wiley 1980). For instance, noise may reduce the ac-
tive space of acoustic signals (Romer 2001), while

turbidity and vegetation structure could do the
same for visual signals (Wong et al. 2007). Thus,
communication network structure (i.e., the pattern
of connections between individuals) will vary with
environmental conditions, even for the same spatial
configuration of individuals.

Receivers have received less attention in spatio-
temporal studies of communication because it is
less straightforward to quantify their behavior than
it is the propagation of a signal. Ultimately, to de-
termine signal active space and characterize edges in
communication networks, it is not sufficient to show
that the signaler produced a signal in some place and
time when the receiver could have detected it; we
must also show that the receiver was in fact influ-
enced by that signal, and how it was influenced, a
considerably greater challenge (but not an insur-
mountable one, e.g., Lohr et al. 2003). Receivers’
abilities to detect and evaluate signals are limited
by the sensitivity and tuning of their sensory systems.
We discuss approaches for defining receivers in com-
munication networks in the section Measuring and
constructing communication networks, below.
Receiver characteristics will also have more subtle
effects by influencing how information percolates
within communication networks (Halupka 2014;
Hare et al. 2014). For instance, many receivers ex-
hibit selective attention toward only a subset of the
nearest signalers or a subset of signal components,
even if others may also be close enough to be
detected (Greenfield and Snedden 2003; Yorzinski
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et al. 2013). Temporal processes such as memory,
sampling, and information integration will also in-
fluence receiver effects on the communication net-
work (Schwartz et al. 2004; Akre and Ryan 2010).
The information content of signals degrades with
distance and over time, thus receivers may be af-
fected by signals differently depending on their rela-
tive positions. For instance, individuals at close range
to a signaling interaction between two other individ-
uals may perceive and respond to the signal itself,
while those further away might only perceive that an
interaction is taking place (but not clearly perceive
the signals). These secondary connections raise addi-
tional challenges for measuring communication
networks.

Multimodal signals raise further challenges for
characterizing communication networks because dif-
ferent components of the same display have different
spatiotemporal propagation patterns (Uetz et al.
2013). The consequences of this differential propaga-
tion will depend on the function of the multiple sig-
nal components (Johnstone 1996). For instance, if the
components are redundant (Uetz et al. 2009), then
the communication network could reasonably be
reconstructed based on the active space of the more
distantly propagating modality. However, if the com-
ponents provide separate messages, it may be neces-
sary to calculate different network layers for each
component (see the section Comparing network
layers, below), due to the different propagation char-
acteristics of each modality, and because there are
essentially two different signals that just happen to
be produced simultaneously. If the function of the
signal depends on an interaction between the signal’s
components (Narins et al. 2003), then the network
may instead be limited by the least distantly propa-
gating modality, and there may be variation in the
effect of the signal (i.e., the edge weight) depending
on the distance to the receiver. In any of these cases,
it is challenging to calculate associations between sig-
nalers and receivers because the response of receivers
to each modality, and to their combination, must be
understood. This difficulty is not limited to the study
of communication networks but is a general challenge
in the study of animal communication. However, the
understanding of multimodal signal processing is rap-
idly advancing and may enable more accurate char-
acterizations of connections between signalers and
receivers in communication networks.

Feedback loops

Communication networks are of interest to the
larger study of social structures in part because
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communication is fundamental in shaping that
structure in the first place. Individual behavior in
signaling interactions affects group-level phenomena
such as the spacing, composition, and persistence of
social groups. For instance: (1) Bouts of group sig-
naling are often catalyzed by single individuals and
can likewise be ended when specific individuals drop
out (Brooke et al. 2000; Dapper et al. 2011). Finer
temporal patterns can be generated by the coordina-
tion of signals between individuals, leading to whole
groups signaling in synchrony or alternation
(Greenfield 2005). (2) Spatial distributions are influ-
enced by local levels of competition, with individuals
adjusting their distance from one another according
to the competitiveness of their neighbors’ signals
(Murphy and Floyd 2005; Nityananda and
Balakrishnan 2008). (3) The presence of specific
types of signalers or receivers in the network can
have strong effects on network structure and func-
tion. For instance, unreliable signalers may destabi-
lize both communication systems and social groups
if they produce many dishonest signals (Popat et al.
2015). These effects may cascade across trophic levels
in the broader communication network, as in the
case of mimicry: if Batesian mimics become too
prevalent, the effectiveness of aposematic signaling
is reduced (Mallet and Joron 1999; Harper and
Pfennig 2007), which could lead to changes in sig-
naling strategies. Although eavesdroppers that use
signals to locate prey are not considered in tradi-
tional social network studies, their presence can dra-
matically alter communication network structure
(Zuk et al. 2006; Goodale et al. 2019). Meanwhile,
the spatial structure also modulates the influence
that individuals have on groups (Sosna et al
2019). Many social network studies show that cen-
trality in the network (Farine and Whitehead 2015)
determines an individual’s influence on the social
group (Drewe 2010; Weber et al. 2013), although
depending on how information spreads, peripheral
individuals are sometimes more influential (Sosna
et al. 2019; Firth 2020).

Individuals, via their communication behavior,
therefore can affect their social group, but the oppo-
site is also true: characteristics of the social group
can affect individual communication behavior. For
instance: (1) The density of individuals in the social
group determines the intensity of competition, the
level of noise (particularly noise produced by the
signalers themselves), and the active space needed
for effective signaling (Quick and Janik 2008;
Fernandez et al. 2017), resulting in phenomena like
the Lombard effect where signalers increase their sig-
nal amplitude in high noise levels (Brumm and



818

Zollinger 2011). (2) Network density (the number of
actual edges out of all possible edges) and topology
(distribution of edges) determine whether and how
quickly information propagates to others, and thus
whether these individuals’ communication behavior
is affected (Kashima et al. 2013; Romano et al. 2018).
(3) The actual pattern of connections, for instance,
the network assortativity (phenotypic correlations
among connected individuals), shapes which individ-
uals a signaler can reach (Croft et al. 2009), and
therefore the costs and benefits of different signaling
strategies (Bates et al. 2010). Thus, there are feed-
backs between individual and group behavior.
Individual-group feedbacks are emerging as an im-
portant phenomenon in animal social networks
(Cantor et al. 2020), but have received little attention
in the context of communication networks despite
their likely prevalence.

Measuring and constructing
communication networks

A major challenge for characterizing communication
networks is that while identifying signalers is
straightforward, determining who both the intended
and actual recipients are can be difficult. There are
many ways to address this challenge, which we cat-
egorize here based on whether edges between signal-
ers and receivers are defined by proximity, response,
or timing (Fig. 2). There are advantages and disad-
vantages to each approach. Thus far, few studies
have employed any of these approaches to character-
izing communication networks but, given improve-
ments in technology and analysis techniques, these
should be considered in future studies.

1. Proximity approaches (Fig. 2A) assume that
individuals within a given distance (millimeters to
kilometers depending on signal characteristics) of
the signaler are receivers, whether intended or oth-
erwise. When constructing the network, edges are
placed between the signaler and all individuals
within the chosen distance (edge weights could be
used to represent absolute distance, as many signals
will have greater influence at close range; Snijders
and Naguib 2017). This method applies well to
broadcast signals (e.g., song, anti-predator signals)
because these tend to be “intended” for many if
not all individuals in proximity of the signal
(Templeton and Carlson, 2019). This approach also
works well for some signals that have a limited range
because only individuals within a specific area can
receive the signal (e.g., quiet calls; Reichard and
Anderson, 2015). However, it can be difficult to de-
termine signal range, for instance when signal
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propagation is directional and depends on the ori-
entation of the signaler, or when environmental het-
erogeneity affects propagation patterns. Furthermore,
the proximity approach assumes that all individuals
in the area received the signal, but this may be in-
correct because receivers vary in their sensory capa-
bilities, attention, and threshold for response, both
within species (Ronald et al. 2012) and between spe-
cies (Stevens 2013). This is especially the case in
instances of so-called “private” communication
channels, in which signals have specific parameters
(e.g., ultrasonic frequencies or ultraviolet light) that
cannot be detected by unintended receivers such as
eavesdropping predators (e.g., Cummings et al.
2003).

2. In response approaches (Fig. 2B), edges in the
network are created between the signaler and all
individuals that produce a specific behavioral re-
sponse (e.g., fleeing, alertness, and direction changes;
Suzuki 2012). An advantage of this approach over
proximity approaches is that response behaviors are
often straightforward to recognize and thus respond-
ing individuals can be confidently assigned as recip-
ients of the signal. However, this requires
monitoring all individuals in proximity to the sig-
naler and a thorough understanding of their behav-
ioral repertoire, which may be technically
challenging. Furthermore, this approach ignores
individuals that may have received, but not
responded to, the signal with specific behaviors,
and does not account for individuals that did not
respond to the original signaler, but to another re-
ceiver of the initial signal instead.

3. Timing approaches (Fig. 2C) address some of
the weaknesses of response approaches by placing
edges between signalers and only those potential
receivers that produce a behavioral response within
a certain time window after the signal. These
approaches are especially applicable to cases where
the response is another signal, because many com-
munication interactions require a specific timing to
be effective. The major challenge for applying timing
approaches to signaling interactions is to determine
that a given signal was in fact a response to a pre-
vious signal. This may require knowledge of species-
specific timing intervals (Heller and von Helversen
1986), but can also be tested statistically by examin-
ing whether response timing is non-random with
respect to the signals of other individuals in the
group. For instance, Anisimov et al. (2014) recorded
vocalizations of all individuals in a group of zebra
finches, and then used cross-correlation analyses of
the timing of each individual’s signals to determine
which individuals responded to one another’s calls.
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Fig. 2 Three approaches to determine edges in communication networks. Each example is based on alarm signaling. (A) Proximity
approaches: a signal (produced by the individual spotting a predator, indicated by the arrow) has a specific area of influence (oval area)
inside of which all individuals are assumed to receive the signal. (B) Response approaches: only individuals that exhibit a specific
response (e.g., looking up after an alarm call) are considered to have received the signal. (C) Timing approaches: edges are made
between the signaler and individuals that respond only within a specific period of time (timing represented by the clock above each
potential receiver; assuming a signal produced at 12:00, individuals whose response timing (orange arrow) is within the specified time
window (dark wedge) are considered to have responded to the signal), but no edges are created between the signaler and individuals
that do not respond or that respond outside of that time window. For each approach, we illustrate (i) the signaler and individual
responses and (ii) edges in the communication network for this instance of signaling, as arrows from signaler to receiver.

Similarly, Stowell et al. (2016) used methods based
on neural network analyses to analyze temporal pat-
terning of interactions among individual zebra
finches to examine network stability and the influ-
ence of specific individuals. Another complication
with both response and timing approaches is if mul-
tiple individuals signal simultaneously, in which case
it may be impossible to tell whether a receiver was
responding to one or both of the signalers.
Another challenge for constructing networks, and
one that has received little attention in the context of
communication networks, is to choose the time pe-
riod in which associations are sampled to build the
network (Psorakis et al. 2015; Zhao et al. 2018).
Sampling times that are too short may miss rare,
but important, events, while sampling times that

are too long may obscure faster changes taking place
in the network (Blonder et al. 2012; Davis et al.
2018). For instance, in many chorusing species,
most signaling takes place within a discrete time pe-
riod (Greenfield 1994; Staicer et al. 1996), which
may therefore be a convenient sampling unit.
However, within chorusing events, there can be
bouts of signaling, and times with higher and lower
signaling rates within bouts (Greenfield 2005).
Additionally, some social relationships may only be
detectable by examining associations across longer
time periods, for instance, whether certain individu-
als tend to signal in especially dense areas, or in
proximity to other specific individuals across multi-
ple chorusing events. Here again, the modality and
context of signaling will play a role in setting the
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temporal parameters of the network. Long-lasting
chemical deposits and physical structures will have
a very different turnover rate than ephemeral acous-
tic and visual displays. Likewise, whether or not the
network is stable over time is an important consid-
eration because it will determine whether a single
snapshot of the communication network suffices to
describe its properties (Fisher and Pinter-Wollman
2020). For instance, display networks in species
with long-term territories may be stable relative to
those in species engaged in scramble competition.
Regardless, it is likely that communication network
stability (the time period over which individual com-
munication associations are relatively repeatable) will
differ from that of other social network layers, al-
though this has not been tested. A related temporal
issue is to define what constitutes an edge in the
communication network. Our discussion so far
largely implies edge creation on every instance of a
signal reaching a receiver, but this may be impracti-
cal or misleading for, among others, relatively sta-
tionary species with high signal repetition rates.
Aggregating over longer temporal periods, for in-
stance by creating edges based on participation in a
bout of signaling, may be useful but faces the same
tradeoffs discussed above for the timescale over
which the network is constructed. Essentially the
same issues arise for spatial network dynamics:
some decisions must be made about what constitutes
a group in space (James et al. 2009), and the out-
come of this decision may differ between communi-
cation networks and other social network layers.

Comparing network layers

Communication networks are inherently a part of
the larger social network. It is often of interest to
determine the relationships of different network
layers to one another (Finn et al. 2019). All of these
network layers can be measured using a variety of
methods and with different input data, which raises
a challenge for analysis because these will not all
recover the same network structure (Greenfield
2010; Templeton and Carlson 2019). Association
networks (which characterize the amount of time
individuals spend near one another) are one of the
more common social networks measured, but many
other networks exist based on specific interactions
(e.g., affiliative, dominance, or grooming networks;
Croft et al. 2008). Similarly, many different commu-
nication networks can be created for signals with
different functions (e.g., affiliative signals, agonistic
signals, feeding signals). The behaviors and signals
used to construct the network will necessarily
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determine whether communication networks are
correlated with other network layers. Comparing
networks built from similar behaviors will likely re-
sult in higher correlation (e.g., grooming social net-
works and affiliative signal communication networks;
Kulahci et al. 2015). However, the factors that deter-
mine the congruence of different network layers re-
main poorly understood.

Recent advances in multilayer network analyses
allow for combining communication networks with
other network layers (e.g., proximity, aggression, or
affiliation networks) to create more comprehensive
social networks and to determine the degree of over-
lap between different network layers. There are a
number of different formulations of multilayer net-
works including multiplex networks (where each
node connects to itself in multiple networks) and
interconnected networks (where each node does
not necessarily represent the same entity in each net-
work; Finn et al. 2019). For example, Smith-Aguilar
et al. (2019) show how multilayer network analysis
can be used to incorporate multiple types of related
networks to determine if some network layers are
correlated, and to describe a more comprehensive
group network using multiple interaction types.
However, many methodological challenges remain,
largely because of the spatiotemporal characteristics
of different network processes (Hobson et al. 2013).
Comparisons between network layers that were con-
structed using very different methods due to differ-
ing scales in time and space may not be valid
(Castles et al. 2014). Analyses that explicitly focus
on spatial and temporal dynamics of different net-
work layers are needed to address these issues
(Pinter-Wollman et al. 2014; Farine 2018; Fisher
and Pinter-Wollman 2020). These techniques will
be especially crucial for integrating communication
networks with other layers of the social network,
because of the complex spatiotemporal dimensions
of signaling.

Conclusions and future directions

We have emphasized throughout that the spatial and
temporal characteristics of communication signals
have interesting and often unexplored implications
for the broader understanding of animal social net-
works, and that indeed communication likely plays a
larger role in shaping social network structure than
is currently appreciated. Although the spatiotempo-
ral dynamics of communication raise many chal-
lenges for characterizing animal communication
networks, new technologies and analysis methods
are rapidly expanding what is possible, and we argue
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that the resulting improved understanding of animal
communication and social behavior will be well
worth the effort. We conclude by briefly describing
two profitable next steps.

Better characterization of signal active spaces in
networks

There have been many studies demonstrating how
signals attenuate in different environmental conditions,
but relatively few have considered how signal propaga-
tion relates to the spacing and detection capabilities of
potential receivers. In some cases, active spaces, and
therefore the potential to directly influence others in
the network, are surprisingly small relative to typical
interindividual distances (Deb and Balakrishnan 2014).
There are many logistical challenges, but with increased
ability to track the position of individuals, technology
such as microphone arrays (Blumstein et al. 2011) and
acoustic cameras (Stoeger et al. 2012), or even the use
of neurophysiological presentations in the field
(“biological microphones”; Gilbert and Elsner 2000),
the true reach of signals in the network can be
determined.

Anthropogenic effects

Human activities are dramatically altering popula-
tions and individual behavior (Palumbi 2001). These
effects directly impinge on social associations and are
therefore likely to affect network layers and the rela-
tionships between layers via feedback loops (Snijders
et al. 2017). For instance, increases in anthropogenic
noise and habitat fragmentation will reduce the
number and strength of connections between indi-
viduals, slowing the spread of information (Laiolo
and Tella 2005; Dunlop 2019; Grabarczyk et al.
2020), while reductions in population size or in-
creased mortality of specific individuals may desta-
bilize the network entirely (Williams and Lusseau
2006;  Maldonado-Chaparro et al.  2018).
Additionally, signaling by introduced species may
disrupt communication networks in native species
by adding noise and reducing signal active space,
potentially also reducing the connections among
individuals in the network (Medeiros et al. 2017).
The severity of these effects will depend on their
spatiotemporal extent and the resilience of networks
to disturbance. Future studies examining the broader
effects for networks of these disturbances and their
mitigation will tell us a great deal about how pop-
ulations respond to anthropogenic changes.

These are just a few of the many promising pos-
sibilities for research on communication as a social
network. By more fully integrating these behaviors
in realistic ecological contexts, we will come closer
to understanding the complex social lives of
animals.
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