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Synopsis Identifying individual animals is crucial for many biological investigations. In response to some of the
limitations of current identification methods, new automated computer vision approaches have emerged with strong
performance. Here, we review current advances of computer vision identification techniques to provide both computer
scientists and biologists with an overview of the available tools and discuss their applications. We conclude by offering
recommendations for starting an animal identification project, illustrate current limitations, and propose how they might
be addressed in the future.

Introduction

The identification' of specific individuals is central
to addressing many questions in biology: does a sea
turtle return to its natal beach to lay eggs? How does
a social hierarchy form through individual interac-
tions? What is the relationship between individual
resource use and physical development? Indeed, the
need for identification in biological investigations
has resulted in the development and application of
a variety of identification methods, ranging from
physical tags (Racz et al. 2021) to genetic methods
(Palsbell 1999; John 2012), GPS tracking (Baudouin
et al. 2015), and radio-frequency identification
(Bonter and Bridge 2011; Weissbrod et al. 2013).
While each of these methods is capable of providing
reliable re-identification, each is also subject to

1 In publications, the terminology re-identification is of-
ten used interchangeably. In this review we posit that
re-identification refers to the recognition of (previ-
ously) known individuals, hence we use identification
as the more general term.
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limitations, such as invasive implantation or deploy-
ment procedures, high costs, or demanding logistical
requirements. Image-based identification techniques
using photos, camera-traps, or videos offer (poten-
tially) low-cost and non-invasive alternatives.
However, identification success rates of image-
based machine analyses have traditionally been lower
than many of the aforementioned alternatives.
Nonetheless, experts can perform this task very well
(e.g., Jouke et al. 2020), further motivating computer
vision approaches.

Using computer vision to identify animals dates
back to the early 1990s and has developed quickly
since (see Schneider et al. (2019) for an excellent
historical account). The advancement of new ma-
chine learning tools, especially deep learning
(LeCun et al. 2015; Norouzzadeh et al. 2018;
Schneider et al. 2019; Mathis et al. 2020; Xiongwei
et al. 2020), offers powerful methods for improving
the accuracy of image-based identification analyses.
In this review, we introduce relevant background for
animal identification with deep learning based on
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visual data, review recent developments, identify
remaining challenges, and discuss the consequences
for biology, including ecology, ethology, neurosci-
ence, and conservation modeling. We aimed to cre-
ate a review that can act as a reference for
researchers who are new to animal identification
and can also help current practitioners interested
in applying novel methods to their identification
work.

Biological context for identification

Conspecific identification is crucial for most animals
to avoid conflict, establish hierarchy, and mate (e.g.,
Hagey and Macdonald 2003; Martin et al. 2008;
Levréro et al. 2009). For some species, it is under-
stood how they identify other individuals—for in-
stance, penguin chicks make use of the distinct
vocal signature based on frequency modulation to
recognize their parents within enormous colonies
(Jouventin et al. 1999). However, for many species,
the mechanisms of conspecific identification are
poorly understood. What is certain is that animals
use multiple modalities to identify each other, from
audition, to vision and chemosensation (Hagey and
Macdonald 2003; Martin et al. 2008; Levréro et al.
2009). Much like animals use different sensors, tech-
niques using different modalities have been proposed
for identification. From the technical point of view,
the selection of characteristics for animal identifica-
tion (termed biometrics) is primarily based on uni-
versality, uniqueness, permanence, measurability,
feasibility, and reliability (Jain et al. 2007). More
specifically, reliable biometrics should display little
intra-class variation and strong inter-class variation.
Fingerprints, iris scans, and DNA analysis are some
of the well-established biometric methods used to
identify humans (Palsbell 1999; Jain et al. 2007;
John 2012). However, other physical, chemical, or
behavioral features such as gait patterns may be
used to identify animals based on the taxonomic
focus and study design (Jain et al. 2007; Kithl and
Burghardt 2013). For the purposes of this review, we
will focus on visual biometrics and what is currently
possible.

Visual biometrics: framing the problem

What are the key considerations for selecting poten-
tial “biometric” markers in images? We believe they
are: (1) a strong differentiation among individuals
based on their visible traits and (2) the reliable pres-
ence of these permanent features by the species of
interest within the study area. Furthermore, one
should also consider whether they will be applied
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to a closed or open set (Jonathon Phillips and
Grother 2011). Consider a fully labeled dataset of
unique individuals. In closed set identification, the
problem consists of images of multiple, otherwise
known, individuals, who shall be “found again” in
(novel) images. In the more general and challenging
case of open set identification, the (test) dataset may
contain previously unseen individuals, thus permit-
ting the formation of new identities. Depending on
the application, both of these cases are important in
biology and may require the selection of different com-
putational methods. Open-set identification in general is
an unsolved problem, as long-tail distributions (of indi-
viduals) stymies fine-grained discrimination.

Animal identification: the computer
vision perspective

Some animals have specific visual traits, such as
characteristic fur patterns, a property that greatly
simplifies visual identification, while other species
lack a salient, distinctive appearance (Fig. la and
b). Apart from visual appearance, additional chal-
lenges complicate animal identification, such as
changes to the body over time, environmental
changes and migration, deformable bodies, variabil-
ity in illumination and view, as well as obstruction
(Fig. 1b).

Computational pipelines for animal identification
consist of a sensor and modules for feature extrac-
tion, decision-making, and a system database (Fig.
l¢; Jain et al. 2007). Sensors, typically cameras, cap-
ture images of individuals which are transformed
into salient, discriminative features by the feature
extraction module. In computer vision, a feature is
a distinctive attribute of the content of an image (at
a particular location). Features might be, for exam-
ple, edges, textures, or more abstract attributes. The
decision-making module uses the computed features
to identify the most similar known identities from
the system database module, and in some cases, as-
sign the individual to a new identity.

For many other tasks, such as animal localization,
species classification and pose estimation, computer
vision pipelines follow similar principles (see Box 1
for more details on those systems). As we will illus-
trate below, many of these tasks also play an impor-
tant role in identification pipelines; for instance
animal localization and alignment is a common
component (see Fig. 1c).

In order to quantify identification performance,
let us define the relevant evaluation metrics. These
include top-N accuracy, that is, the frequency of the
true identity being within the N most confident
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(a) Examples of features for individual identification

M. Vidal et al.

Whale Shark Zeia
(spot pattern) (stripe pattern)

(b) Variability within and across individuals

Individual 2 Individual 1

Individual 3

(c¢) Machine learning identification pipeline
Sensor

Guenon
(facial fur pattern)

Cheetah Shark
(spot pattern) (dorsal fin contour)

Individual 2 Individual 1

Individual 3

king & Sy i
R Metric Learming  pocirive
=

~

_—

Negative

' d é =

@,mn 8

ﬂ. Anchor H

Fig. 1 (a) Animal biometrics examples featuring unique distinguishable phenotypic traits (adapted with permission from unsplash.com).
(b) Three pictures each of three example tigers from the Amur Tiger relD Dataset (Shuyuan et al. 2019) and three pictures each of
three example bears from the McNeil River State Game Sanctuary (photo credit Alaska Department of Fish and Game). The tiger

stripes are robust visual biometrics. The bear images highlight the variations across seasons (fur and weight changes). Postures and

contexts vary more or less depending on the species and dataset and further complicate identification. (c) Machine learning identi-

fication pipeline from raw data acquisition through feature extraction to identity retrieval.

predictions, and the mean average precision (mAP)
defined in Box 2. A perfect system would demon-
strate a top-1 score and mAP of 100%. However,
animal identification through computer vision is a
challenging problem, and as we will discuss, algo-
rithms typically fall short of this ideal performance.
Research often focuses on one species (and dataset),
which is typically encouraged by the available data.
Overall, few benchmarks have been established, and
adding to the varying difficulty and variability of the
different datasets, different evaluation methods and
train-test splits are used, making the comparison be-
tween the different methods arduous and the perfor-
mance dependent on the architecture—dataset pair.
Thus, one must proceed with extreme caution
when comparing publications to each other, if work-
ing with a different species, or a different dataset of
the same species. We hope that future work will fo-
cus on standardizing evaluation protocols, and

sharing data and code, so that results can be straight-
forwardly compared.

As reviewed by Schneider et al. (2019), the use of
computer vision for animal identification dates back
to the early 1990s. This recent review also contains a
comprehensive table summarizing the major mile-
stones and publications. In the meantime, the field
has further accelerated, and we provide a table with
salient animal identification datasets since its publi-
cation (Table 1).

In computer vision, features are the components
of an image which are considered significant. In the
context of animal identification pipelines (and com-
puter vision more broadly), two classes of features
can be distinguished. Handcrafted features are a class
of image properties that are manually selected (a
process known as “feature engineering”) and then
used directly for matching or computationally uti-
lized to train classifiers. This stands in contrast to
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Table 1 Recent animal identification publications and relevant data
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Method Species Target Identities Train Images Test Images Results

Chen et al. (2020) Panda Face 218 5845 402 Top-1: 96.27%

Shuyuan et al. (2019) Tiger (ATRW) Body 92 1887 1762 Top-1: 889, Top-5: 96.6,
mAP: 71.0°

Liu et al. (2019) Tiger (ATRW) Body 92 1887 1762 Top-1: 95.6, Top-5: 974,
mAP: 88.9°

Moskvyak et al. (2019) Manta Ray Underside 120 1380 350 Top-1: 62.05 £ 3.24, Top-5:
93.65+1.83

Moskvyak et al. (2019) Humpback Whale Fluke 633 2358 550 Top-1: 62.78 £ 1.6, Top-5:
93.46 = 0.63

Bouma et al. (2018) Common Dolphin Fin 180 ~2800 ~700 Top-1:90.5%2, Top-5:
93.6*1

Nepovinnykh et  al Saimaa Ringed Seal Pelage 46 3000 2000 Top-1: 67.8, Top-5: 88.6

(2020)

Schofield et al. (2019) Chimpanzee Face 23 3,249,739 1,018,494 Frame-acc : 79.12%, Track-
acc: 92.47%

Clapham et al. (2020) Brown Bear Face 132 3740 934 Acc: 83.9%

This table extends the excellent list in Schneider et al. (2019) by subsequent publications.

? Closed set.
® Single camera wild.

deep features which are automatically determined
using learning algorithms to train hierarchical proc-
essing architectures based on data (LeCun et al
2015; Mathis et al. 2020; Xiongwei et al. 2020). In
the following sections, we will structure the review of
relevant papers depending on the use of handcrafted
and deep features. We also provide a glossary of
relevant machine learning terms in Box 2.

Handcrafted features

The use of handcrafted features is a powerful, clas-
sical computer vision method, which has been ap-
plied to many different species that display unique,
salient visual patterns, such as zebras’ stripes (Lahiri
et al. 2011), cheetahs’ spots (Kelly 2001), and gue-
nons’ face marks (Allen and Higham 2015; Fig. la).
Hiby et al. (2009) exploited the properties of tiger
stripes to calculate similarity scores between individ-
uals through a surface model of tigers’ skins. The
authors report high model performance estimates
(a top-1 score of 95% and a top-5 score of 100%
on 298 individuals). It is notable that this technique
performed well despite differences in camera angle of
up to 66 degrees and image collection dates of
7 years, both of which serve to illustrate the strength
of this approach. In addition to the feature descrip-
tors used to distinguish individuals by fur patterns,
these models may also utilize edge detectors, thereby
allowing individual identification of marine species
by fin shape. Indeed, Hughes and Burghardt (2017)
employed edge detection to examine great white

shark fins by encoding fin contours with boundary
descriptors. The authors achieved a top-1 score of
82%, a top-10 score of 91%, and a mAP of 0.84
on 2456 images of 85 individuals (Hughes and
Burghardt 2017). Similarly, Weideman et al. (2017)
used an integral curvature representation of cetacean
flukes and fins to achieve a top-1 score of 95% using
10,713 images of 401 bottlenose dolphins and a top-
1 score of 80% using 7173 images of 3572 humpback
whales. Furthermore, work on great apes has shown
that both global features (i.e., those derived from the
whole image) and local features (i.e., those derived
from small image patches) can be combined to in-
crease model performance (Alexander 2012; Loos
and Ernst 2013). Local features were also used in
Crouse et al. (2017), who achieved top-1 scores of
93.3%%3.23% on a dataset of 462 images of 80 in-
dividual red-bellied lemurs. Prior to matching, the
images were aligned with the help of manual eye
markings. Extracting contours using classic algo-
rithms from images can be challenging—recently,
Weideman et al. used deep learning to more robustly
extract contours, which improved identification of
elephants and humpback whales (Hendrik et al.
2020).

Common handcrafted features are designed to ex-
tract salient, invariant features from images can also
be utilized; a classical example is the scale-invariant
feature transform (Lowe 2004). Building upon this,
instead of focusing on a single species, Crall et al.
(2013) developed HotSpotter, an algorithm able to
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Box 1 Other relevant computer vision tasks

Deep learning has greatly advanced many computer vision tasks relevant to biology (LeCun et al. 2015; Norouzzadeh et al. 2018;
Schneider et al. 2019; Mathis et al. 2020; Wu et al., 2020). For example:

Animal detection: A subset of object detection, the branch of computer vision that deals with the tasks of localizing and classifying objects
in images or videos. Current state-of-the-art methods for object recognition usually employ anchor boxes, which represent the target
location, size, and object class, such as in EfficientDet (Tan et al. 2020), or newly end-to-end like, as in DETR (Carion et al. 2020). Of
particular interest for camera-trap data is the powerful MegaDetector (Beery et al. 2019), which is trained on more than 1 million labeled
animal images and also actively updated.? Also relevant for camera-traps, Beery et al. (2020) developed attention-based detectors that can
reason over multiple frames, integrating contextual information and thereby strongly improving performance. Various detectors have
been used in the animal identification pipeline (Redmon et al. 2016; Liu et al. 2016; Ren et al. 2017), which, however, are no longer state-
of-the-art on detection benchmarks.

Animal species classification: The problem of classifying species based on pictures (Villa et al. 2017; Norouzzadeh et al. 2018). As
performance is correlated to the amount of training data, most recently synthetic animals have been used to improve the classification of
rare species, which is a major challenge (Beery et al. 2020).

Pose estimation: The problem of estimating the pose of an entity from images or videos. Algorithms can be top down, where the
individuals are first localized, as in Wang et al. (2020) or bottom up (without prior localization) as in Cheng et al. (2020). Recently,
several user-friendly and powerful software packages for pose estimation with deep learning for animals were developed, reviewed in
Mathis et al. (2020); real-time methods for closed-loop feedback are also available (Kane et al. 2020).

Alignment: In order to effectively compare similar regions and orientations—animals (in pictures) are often aligned using pose estima-

M. Vidal et al.

tion or object recognition techniques.

use stripes, spots, and other patterns for the identi-
fication of multiple species.

As these studies highlight, for species with highly
discernible physical traits, handcrafted features have
shown to be accurate but often lack robustness. Deep
learning has strongly improved the capabilities for
animal identification, especially for species without
clear visual traits. However, as we will discuss, hybrid
systems have emerged recently that combine hand-
crafted features and deep learning.

Deep features

In the last decade, deep learning, a subset of machine
learning in which decision-making is performed us-
ing learned features generated algorithmically (e.g.,
empirical risk minimization with labeled examples;
Box 2) has emerged as a powerful tool to analyze,
extract, and recognize information. This emergence
in large part is due to increases in computing power,
the availability of large-scale datasets, open-source
and well-maintained deep learning packages, and
advances in optimization and architecture design
(LeCun et al. 2015; Schneider et al. 2019; Xiongwei
et al. 2020). Large datasets are ideal for deep learn-
ing, but data augmentation, transfer learning, and
other approaches reduce the thirst for data (LeCun

2 https://github.com/microsoft/CameraTraps/blob/mas-
ter/megadetector.md

et al. 2015; Schneider et al. 2019; Mathis et al. 2020;
Xiongwei et al. 2020). Data augmentation is a way to
artificially increase dataset size by applying image
transformations such as cropping, translating, rotat-
ing, as well as incorporating synthetic images (LeCun
et al. 2015; Mathis et al. 2020; Beery et al. 2020).
Since identification algorithms should be robust to
those changes, augmentation often improves
performance.

Deep learning models can learn multiple increas-
ingly complex representations within their progres-
sively deeper layers and can achieve high
discriminative power. Furthermore, as deep features
do not need to be specifically engineered and are
learned correspondingly for each unique dataset,
deep learning provides a potential solution for
many of the challenges typically faced in individual
animal identification. Such challenges include species
with few natural markings, inconsistencies in mark-
ings (caused by changes in pelage, scars, etc.), low-
resolution sensor data, odd poses, and occlusions.
Two methods have been widely used for animal
identification with deep learning: classification and
metric learning.

Classification models

In the classification setting, a class (identity) from a
set number of classes is probabilistically assigned to
the input image. This assignment decision comes
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Box 2 Deep Learning terms glossary

Machine and deep learning: Machine learning seeks to develop algorithms that automatically detect patterns in data. These algorithms
can then be used to uncover patterns, to predict future data, or to perform other kinds of decision making under uncertainty (Murphy
2012). Deep learning is a subset of machine learning that utilizes artificial neural networks with multiple layers as part of the algorithms.
For computer vision problems, ConvNets are the de-facto standard building blocks. They consist of stacked convolutional filters with
learnable weights (i.e., connections between computational elements). Convolutions bake translation invariance into the architecture and
decrease the number of parameters due to weight sharing, as opposed to ordinary fully-connected neural networks (Krizhevsky et al. 2012;
LeCun et al. 2015; He et al. 2016). SVMs: A powerful classification technique, which learns a hyperplane to separate data points in feature
spaces; nonlinear SVMs also exist (Murphy 2021). Principal component analysis (PCA): An unsupervised technique that identifies a lower
dimensional linear space, such that the variance of the projected data is maximized (Murphy 2021); Turk and Pentland (1991) used it for
face recognition.

Classification network: A neural network that directly predicts the class of an object from inputs (e.g., images). The outputs have a
confidence score as to whether they correspond to the target. Often trained with a cross entropy loss, or other prediction error based
losses (Krizhevsky et al. 2012; Chatfield et al. 2014; He et al. 2016).

Metric learning: A branch of machine learning which consists in learning how to measure similarity and distance between data points
(Bellet et al. 2013)—common examples include siamese networks and triplet loss.

Siamese networks: Two identical networks that consider a pair of inputs and classify them as similar or different, based on the distance
between their embeddings. It is often trained with a contrastive loss, a distance-based loss, which pulls positive (similar) pairs together
and pushes negative (different) pairs away:

(W, Y, X 1,X2) = (1= Y)~(Dw)? + (Y)%{max(o, m— Dy )}

N =

where Dyy is any metric function parametrized by W, Y is a binary variable that represents if (X 1, X ;) is a similar or dissimilar pair
(Hadsell et al. 2006).
Triplet loss: As opposed to pairs in siamese networks, this loss uses triplets; it tries to bring the embedding of the anchor image closer to

another image of the same class than to an image of a different class by a certain margin. In its naive form
¢ = max(d,, — dg ., + margin, 0)

where d, , (d,.,) is the distance from the anchor image to its positive (negative) counterpart. As shown in Hermans et al. (Hermans et al.
2017), models with this loss are difficult to train, and triplet mining (heuristics for the most useful triplets) is often used. One solution is
semi-hard mining, e.g., showing moderately difficult samples in large batches, as in Schroff et al. (2015). Another more efficient solution
is the batch hard variant introduced in (Hermans et al. 2017), where one samples multiple images for a few classes, and then keeps the
hardest (i.e., furthest in the feature space) positive and the hardest negative for each class to compute the loss. Mining the easy positives
(very similar pairs; Hong et al. 2020), has recently proven to obtain good results.

mAP: With precision defined as TPT—EFP (TP: true positives, FP: false positives), and recall defined as 75 (FN: false negative), the average
precision is the area under the precision recall curve (see Murphy (2021) for more information), and the mAP is the mean for all queries.
Transfer learning: The process when models are initialized with features, trained on a (related) large-scale annotated dataset, and then
finetuned on the target task. This is particularly advantageous when the target dataset consists of only few labeled examples (Mathis et al.
2020; Zhuang et al. 2020). ImageNet is a large-scale object recognition data set (Russakovsky et al. 2015) that was particularly influential
for transfer learning. As we outline in the main text, many methods use ConvNets pre-trained on ImageNet such as AlexNet (Krizhevsky

et al. 2012), VGG (Chatfield et al. 2014), and ResNet (He et al. 2016).
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after the extraction of features usually done by con-
volutional neural networks (ConvNets), a class of
deep learning algorithms typically applied to image
analyses. Note that the input to ConvNets can be the
raw images, but also the processed handcrafted fea-
tures. In one of the first appearances of ConvNets
for individual animal classification, Freytag et al

(2016) improved upon work by Loos and Ernst
(2013) by increasing the accuracy with which indi-
vidual chimpanzees could be identified from two
datasets of cropped face images (C-Zoo and C-Tai)
from 82.88+1.52% and 64.35+1.39% to 91.99+1.32
% and 75.66+0.86%. Freytag et al. (2016) used lin-
ear support vector machines (SVMs) to differentiate
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features extracted by AlexNet, a popular ConvNet
(Krizhevsky et al. 2012). They also tackled additional
tasks including sex prediction and age estimation.
Subsequent work by Brust et al. (2017) also used
AlexNet features on cropped faces of gorillas, and
SVMs for classification. They reported a top-5 score
of 80.3% with 147 individuals and 2500 images. A
similar approach was developed for elephants by
Korschens et al. (2018). The authors used the
YOLO object detection network (Redmon et al
2016) to automatically predict bounding boxes
around elephants’ heads (see Box 1). Features were
then extracted with a ResNet50 (He et al. 2016)
ConvNet, and projected to a lower-dimensional
space by principal component analysis, followed by
SVM (dlassification. On a highly unbalanced dataset
(i.e., highly uneven numbers of images per individ-
ual) consisting of 2078 images of 276 individuals,
Korschens et al. (2018) achieved a top-1 score of
56% and a top-10 score of 80%. This increased to
74 and 88% for top-1 and top-10, respectively, when
two images of the individual in question were used
in the query. In practice, it is often possible to cap-
ture multiple images of an individual, for instance
with camera traps, hence multi-image queries should
be used when available.

Other examples of ConvNets for classification in-
clude work by Deb et al. (2018), who explored both
open- and closed-set identification for 3000 face
images of 129 lemurs, 1450 images of 49 golden
monkeys, and 5559 images of 90 chimpanzees. The
authors used manually annotated landmarks to align
the faces, and introduced the PrimNet model archi-
tecture, which outperformed previous methods (e.g.,
Schroff et al. 2015 and Crouse et al. 2017 that used
handcrafted features). Using this method, Deb et al.
(2018) achieved 93.76%+0.90%, 90.36+0.92% and
75.82+1.25% accuracy for lemurs, golden monkeys,
and chimpanzees, respectively, for the closed-set.
Finally, Chen et al. (2020) demonstrated a face clas-
sification method for captive pandas. After detecting
the faces with Faster-RCNN (Ren et al. 2017), they
used a modified ResNet50 (He et al. 2016) for face
segmentation (binary mask output), alignment (out-
puts are the affine transformation parameters), and
classification. They report a top-1 score of 96.27%
on a closed set containing 6441 images from 218
individuals. Chen et al. (2020) also used the Grad-
CAM method (Selvaraju et al. 2019), which propa-
gates the gradient information from the last convolu-
tional layers back to the image to visualize the neural
networks’ activations, to determine that the areas
around the pandas’ eyes and noses had the strongest
impact on the identification process.

M. Vidal et al.

While the examples presented thus far have
employed still images, videos have also been used
for deep learning-based animal identification.
Unlike single images, videos have the advantage
that neighboring video frames often show the same
individuals with slight variations in pose, view, and
obstruction. While collecting data, one can gather
more images in the same time-frame (at the cost
of higher storage). For videos, Schofield et al.
(2019) introduced a complete pipeline for the iden-
tification of chimpanzees, including face detection
(with a single shot detector; Liu et al. 2016), face
tracking (Kanade-Lucas-Tomasi tracker), sex and
identity recognition (classification problem through
modified VGG-M architectures; Chatfield et al.
2014), and social network analysis. The video format
of the data allowed the authors to maximize the
number of images per individual, resulting in a data-
set of 20,000 face tracks of 23 individuals. These
amounts to 10,000,000 face detections, resulting in
a frame-level accuracy of 79.12% and a track-level
accuracy of 92.47%. The authors also use a confu-
sion matrix to inspect which individuals were iden-
tified incorrectly and reasons for this error. Perhaps
unsurprisingly, juveniles and (genetically) related
individuals were the most difficult to separate. In
follow-up work, Bain et al. (2019) were able to pre-
dict identities of all individuals in a frame instead of
predicting from face tracks. The authors showed that
it is possible to use the activations of the last layer of
a counting ConvNet (i.e., whose goal is to count the
number of individuals in a frame) to find the spatial
regions occupied by the chimpanzees. After crop-
ping, the regions were fed into a fine-grained classi-
fication ConvNet. This resulted in similar
identification precision compared to using only the
face or the body, but a higher recall.

In laboratory settings and for videos, tracking is a
common approach to identify individual animals
and is the process of locating moving objects over
time using a camera (Weissbrod et al. 2013; Dell et
al. 2014). Recent tracking system, such as idtracker.ai
(Romero-Ferrero et al. 2019), TRex (Walter and
Couzin 2021), and DeepLabCut (Lauer et al. 2021)
have demonstrated the ability to track individuals in
groups of lab animals (fish, mice, etc.) by combining
tracking with a ID-classifying ConvNet.

(Deep) metric learning

Most recent studies on identification have focused
on deep metric learning, a technique that seeks to
automatically learn how to measure similarity and
distance between deep features. Deep metric learning
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approaches commonly employ methods such as sia-
mese networks or triplet loss (Box 2). Schneider et
al. (2020) found that triplet loss always outper-
formed the siamese approach in a recent study con-
sidering a diverse group of five different species
(humans, chimpanzees, humpback whales, fruit flies,
and Siberian tigers); thereby they also tested many
different ConvNets, and metric learning always gave
better results. Importantly, metric learning frame-
works naturally are able to handle open datasets,
thereby allowing for both re-identification of a
known individual and the discovery of new
individuals.

Competitions often spur progress in computer vi-
sion (Mathis et al. 2020; Xiongwei et al. 2020). In
2019, the first large-scale benchmark for animal
identification was released (example images in Fig.
1b). It poses two identification challenges on the
ATRW tiger dataset: plain, where images of tigers
are cropped and normalized with manually curated
bounding boxes and poses, and wild, where the
tigers first have to be localized and then identified
(Shuyuan et al. 2019).

The authors of the benchmark also evaluated var-
ious baseline methods and showed that metric learn-
ing was better than classification. Their strongest
method was a pose part-based model, which based
on the pose estimation subnetwork processes the ti-
ger image in seven parts to get different feature rep-
resentations and then used triplet loss for the global
and local representations. On the single-camera, wild
setting, the authors reported a mAP of 71.0, a top-1
score of 88.9%, and a top-5 score of 96.6% from 92
identities in 8076 videos (Shuyuan et al. 2019).
Fourteen teams submitted methods and the best
contribution for the competition, developed a novel
triple-stream framework (Liu et al. 2019). The
framework has a full image stream together with
two local streams (one for the trunk and one for
the limbs, which were localized based on the pose
skeleton) as an additional task. However, they only
required the part streams during training, which,
given that pose estimation can be noisy, is particu-
larly fitting for tiger identification in the wild. Liu et
al. (2019) also increased the spatial resolution of the
ResNet backbone (He et al. 2016). Higher spatial
resolution is also commonly used for other fine-
grained tasks such as human re-identification, seg-
mentation (Chen et al. 2018), and pose estimation
(Cheng et al. 2020; Mathis et al. 2020). With these
modification, the authors achieved a top-1 score of
95.6% for single-camera wild-ID and a score of
91.4% across cameras.
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Metric learning has also been used for mantas
with semi-hard triplet mining (Moskvyak et al
2019). Human-assembled photos of mantas’ under-
sides (where they have unique spots) were fed as
input to a ConvNet. Once the embeddings were cre-
ated, Moskvyak et al. (2019) used the k-nearest
neighbors (k-NN) algorithm for identification. The
authors achieved a top-1 score of 62.05+3.24% and
top-5 of 93.65%£1.83% using a dataset of 1730
images of 120 mantas. Replicating the method for
humpback whales’ flukes, the authors report a top-
1 score of 62.78+1.6% and a top-5 score of 93.46*
0.63% using 2908 images of 633 individual whales.
Similarly, Bouma et al. (2018) used batch hard trip-
let loss to achieve top-1 and top-5 scores of 90.5*2
% and 93.6%1%), respectively, on 3544 images of 185
common dolphins. When using an additional 1200
images as distractors, the authors reported a drop of
12% in the top-1 score and 2.8% in the top-5 score.
The authors also explore the impact of increasing the
number of individuals and the number of images per
individual, both leading to score increases.
Nepovinnykh et al. (2020) applied metric learning
to re-identify Saimaa ringed seals. After segmenta-
tion with DeepLab (Chen et al. 2018) and subse-
quent cropping, the authors extracted pelage
pattern features with a Sato tubeness filter used as
input to their network. Indeed, Kshitij and Sai
(2020) also showed that—for some species—priming
ConvNets with handcrafted features produced better
results than using the raw images. Instead of using k-
NNs, Nepovinnykh et al. (2020) adopt topologically
aware heatmaps to identify individual seals—both
the query image and the database images are split
into patches whose similarity is computed, and
among the most similar, topological similarity is
checked through angle difference ranking. For 2000
images of 46 seals, the authors achieved a top-1 score
of 67.8% and a top-5 score of 88.6%. Overall, these
recent papers highlight that recent work has com-
bined handcrafted and deep learning approaches to
boost the performance.

Applications of animal identification in
field and laboratory settings®

Here, we discuss the use of computer vision techni-
ques for animal identification from a biological

3 For the purposes of this review, we forgo discussion of
individual identification in the context of the agricul-
tural sciences, as circumstances differ greatly in those
environments. However, we note that there is an
emerging body of computer vision for the identifica-
tion of livestock (Qiao et al. 2020; William et al. 2021).
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perspective and offer insights on how these techni-
ques can be used to address broad and far-reaching
biological and ecological questions. In addition, we
stress that the use of semi-automated or full deep
learning tools for animal identification is in its in-
fancy and current results need to be evaluated in
comparison with the logistical, financial, and poten-
tial ethical constraints of other commonly used sam-
pling methods.

The specific goals for animal identification can
vary greatly among studies and settings, objectives
can generally be classified into two categories—ap-
plied and etiological—based on rationale, intention,
and study design. Applied uses include those with
the primary aims of describing, characterizing, and
monitoring observed phenomena, including species
distribution and abundance, animal movements
and home ranges, or resource selection (Baird et al.
2008; Hughes and Burghardt 2017; Harris et al.
2020). These studies frequently adopt a top-down
perspective in which the predominant focus is on
groups (e.g., populations), with individuals simply
viewed as units within the group and minimal inter-
pretation of individual variability. As such, many of
the modeling techniques employed for applied inves-
tigations, such as mark-recapture (Royle et al. 2013;
Choo et al. 2020), are adept at incorporating quan-
tified uncertainty in identification. However, reliable
identification of individuals in applied studies is es-
sential to accurate enumeration and differentiation
when creating generalized models based on individ-
ual observations (Marin-Cudraz et al. 2019).

If not addressed and accounted for, misidentifica-
tion can result in potential bias with substantial con-
sequences for biological interpretations and
conclusions (Rovero and Zimmermann 2016). For
example, Johansson et al. (2020) demonstrated the
potential ramifications of individual misclassification
on capture-recapture-derived estimates of popula-
tion abundance using camera trap photos of captive
snow leopards. The authors employed a manual
identification method wherein human observers
were asked to identify individuals in images based
on pelage patterns. Results indicated that observer
misclassification resulted in population abundance
estimates that were inflated by up to one-third.
Hupman et al. (2018) also noted the potential for
individual misidentification to result in under- or
over-inflation of abundance estimates in a study ex-
ploring the use of photo-based mark-recapture for
assessing population parameters of common dol-
phins. The authors found that inclusion of less dis-
tinctive individuals, for which identification was
more difficult, resulted in seasonal abundance

M. Vidal et al.

estimates that were substantially different (sometimes
lower and sometimes higher) than when using pho-
tos of distinctive individuals only.

Many other questions, such as identifying the so-
cial hierarchy from passive observation, demand
highly accurate identity tracking (Weissbrod et al.
2013; Schofield et al. 2019). Weissbrod et al.
(2013) showed that due to the fine differences in
social interactions even high identification rates of
99% can have measurable effects on results (as social
hierarchy requires integration over long time scales).
Though the current systems are not perfect, they can
already outperform experts. For instance, Schofield
et al. (2019) demonstrated (on a test set, for the
frame-level identification task) that both novices
(around 20%) and experts (around 42%) are out-
performed by their system that reaches 84%, while
only taking 60ms versus 130min and 55min, for
novices and experts, respectively.

These studies demonstrate the need to (1) be
aware of the specific implications of potential errors
in individual identification to their study conclusions
and (2) choose an identification method that seeks
to minimize misclassification to the extent practica-
ble given their specific objectives and study design.
While the techniques described in this review have
already assisted in lowering identification error rates
so as to mitigate this concern, for some applications
they already reach sufficient accuracy (e.g., for con-
servation and management; Berger-Wolf et al. 2017;
Crouse et al. 2017; Schofield et al. 2019; Guo et al.
2020), neuroscience and ethology (Romero-Ferrero
et al. 2019; Lauer et al. 2021; Walter and Couzin
2021), and public engagement in zoos (Brookes
and Burghardt 2020)). However, for many contexts,
they have yet to reach the levels of precision associ-
ated with other applied techniques.

For comparison, genetic analyses are among the
highest current standards for individual identifica-
tion in applied investigations. While genotyping er-
ror rates caused by allelic dropouts, null alleles, false
alleles, and so on. can vary between 0.2% and 15%
per locus (Wang 2018); genetic analyses combine
numerous loci to reach individual identification er-
ror rates of 1% (Weller et al. 2006; Baetscher et al.
2018). We stress that apart from accuracy many
other variables should be considered, such as the
relatively high logistical and financial costs associated
with collecting and analyzing genetic samples, and
the requirement to resample for re-identification.
These results in sample sizes that are orders of mag-
nitude smaller than many of the studies described
above, with attendant decreases in explanatory/pre-
dictive power. Furthermore, repeated invasive
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sampling may directly or indirectly affect animal be-
havior. Minimally invasive sampling (MIS) techni-
ques using feces, hair, feathers, remote skin
biopsies, and so on offer the potential to conduct
genetic identification in a less intrusive and less ex-
pensive manner (Carroll et al. 2018). MIS analyses
are, however, vulnerable to genotyping errors associ-
ated with sample quality, with potential consequent
ramifications to genotyping success rates (e.g., 87,
80, and 97% for Fluidigm SNP type assays of wolf
feces, wildcat hair, and bear hair, respectively; Carroll
et al. (2018) and references therein). These chal-
lenges, coupled with the increasing success rates
and low financial and logistical costs of computer
vision analyses, may effectively narrow the gap
when  selecting an identification  technique.
Furthermore, in some scenarios, the acceptable level
of analytical error can be reduced without
compromising the investigation of specific project
goals, in which case biologists may find that current
computer vision techniques are sufficiently robust to
address applied biological questions in a manner that
is low cost, logistically efficient, and can make use of
pre-existing and archival images and video footage.
In particular, the mark-recapture model, commonly
employed in biological and ecological studies, lends
itself well to a photo-identification adjustment
(Royle et al. 2013; Choo et al. 2020). In a reworked
format, the first photo would be a “capture,” the
photo-identification would be the “mark,” and sub-
sequent images would be the “recapture.” Other
types of data or partial data, for example, time stamp
or GPS location, may be incorporated to boost the
success rate of photo-identification in mark-recap-
ture models (Augustine et al. 2019, 2020).

Unlike their applied counterparts, etiological uses
of individual identification do not seek to describe
and characterize observed phenomena, but rather, to
understand the mechanisms driving and influencing
observed phenomena. This may include questions
related to behavioral interactions, social hierarchies,
mate choice, competition, altruism, and so on. (e.g.,
Parsons et al. 2009; Clapham et al. 2012; Weissbrod
et al. 2013; Dell et al. 2014). Etiological studies are
frequently based on a bottom-up perspective, in
which the focus is on individuals, or the roles of
individuals within groups, and interpretations of in-
dividual variability often play predominant roles
(Diaz Lopez 2020). As such, etiological investigations
may seek to identify individuals in order to derive
relationships among individuals, interpret outcomes
of interactions between known individuals, assess
and understand individuals’ roles in interactions or
within groups, or characterize individual behavioral
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traits (Kelly et al. 1998; Constantine et al. 2007;
Krasnova et al. 2014;Schofield et al. 2019). These
studies are commonly done in laboratory settings,
which present some study limitations. The ability
to record data and assign it to an individual in the
wild may be crucial to understand the origin and
development of personality (Judy and Groothuis
2010; Dall et al. 2012). Characterizing behavioral
variability of individuals is of great importance for
understanding behavior (Roche et al. 2016). This has
been highlighted in a meta-analysis that showed that
a third of behavioral variation among individuals
could be attributed to individual differences (Bell
et al. 2009). The impact of repeatably measuring
observations for single individuals can also be illus-
trated in the context of brain mapping. Repeated
sampling of human individuals with fMRI is reveal-
ing fine-grained features of functional organization,
which were previously unseen due to variability
across the population (Braga and Buckner 2017).
Overall, longitudinal monitoring of single individuals
with powerful techniques such as omics (Chen et al.
2012) and brain imaging (Poldrack 2021) is herald-
ing an exciting age for biology.

Starting an animal identification project

For biological practitioners seeking to make sense of
the possibilities offered by computer vision, the im-
portance of inter-disciplinary collaborations with
computer scientists cannot be overstated. Since the
advent of high definition camera traps, some scien-
tists find they have hours of opportunistically col-
lected footage without a direct line of inquiry
motivating the data collection. Collaboration with
computer scientists can help to ensure the most pro-
ductive analytical approach to using this footage to
derive biological insights. Furthermore, by instituting
collaborations early in the study design process,
computer scientists can assist biologists in imple-
menting image collection protocols that are specifi-
cally designed for use with deep learning analyses.
General considerations for starting an image-based
animal identification project, such as which feature
to focus on, are nicely reviewed by Kiithl and
Burghardt (2013). Although handcrafted features
can be suited for certain species (e.g., zebras), deep
learning has proven to be a more robust and general
framework for image-based animal identification.
However, at least a few thousand images with ideally
multiple examples of each individual are needed,
constituting the biggest limitation to obtaining
good results. As such, data collection is a crucial
part of the process. Discussion between biologists
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and computer scientists is fundamental and should
be engaged before data collection. As previously
mentioned, camera traps (Rovero and
Zimmermann 2016; Caravaggi et al. 2017; Choo et
al. 2020) can be used to collect data on a large spa-
tial scale with little human involvement and less im-
pact on animal behavior. Images from camera traps
can be used both for model training and monitored
for inference. The ability of camera traps to record
multiple photos/videos of an individual allows mul-
tiple streams of data to be combined to enhance the
identification process (as for localization [Beery et al.
2020]). Furthermore, camera traps minimize the po-
tential influence of humans on animal behavior as
seen in Schneider et al. (2019). However, noninva-
sive genetic sampling can be even less invasive, as
camera traps can be heard and seen by animals
(Meek et al. 2014).

Following image collection, researchers should
employ tools to automatically sieve through the
data to localize animals in pictures. Recent powerful
detection models by Beery et al. (2019, 2020), trained
on large-scale datasets of annotated images, are be-
coming available and generalize reasonably well to
other datasets (Box 1). Those or other object detec-
tion models can be used out-of-the-box or finetuned
to create bounding boxes around faces or bodies
(Redmon et al. 2016; Liu et al. 2016; Ren et al.
2017), which can then be aligned by using pose es-
timation models (Mathis et al. 2020). Additionally,
animal segmentation for background removal/identi-
fication can be beneficial.

Most methods require an annotated dataset, which
means that one needs to label the identity of differ-
ent animals on example frames; unsupervised meth-
ods are also possible (e.g., Turk and Pentland 1991;
Crall et al. 2013; Otto et al. 2018). To start animal
identification, a baseline model using triplet loss
should be tried, which can be improved with differ-
ent data augmentation schemes, combined with a
classification loss, and/or expanded into more
multi-task models. If attempting the classification
approach, assigning classes to previously unseen
individuals is not straightforward. Most works usu-
ally add a node for “unknown individual.” The eval-
uation pipeline to monitor the model’s performance
has to be carefully designed to account for the way
in which it will be used in practice. Of particular
importance is how to split the dataset between train-
ing and testing subsets to avoid data leakage.

Ideally, one trains the model with the type of data
that are used during deployment. In our experience
generalization across different cameras is typically
not ideal, which is why it is important to get results
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from different cameras during training if generaliza-
tion is important. However, there are also computa-
tional methods to deal with this. For human
reidentification, Zhong et al. (2018) used
CycleGAN to transfer images from one camera style
to another, although camera traps are perhaps too
different. The generalization to other (similar) spe-
cies is also a path to explore.

Other aspects to consider are the efficiency of
models, even if identification is usually in an offline
setting. Also, adding a “human-in-the-loop” ap-
proach, if the model does not perform perfectly,
can still save time relative to a fully manual ap-
proach. For other considerations necessary to build
a production ready system, readers are encouraged
to look at Duyck et al. (2015), who created Sloop,
with subsequent deep learning integration by Kshitij
and Sai (2020) used for the identification of multiple
species. Furthermore, Berger-Wolf et al. (2017)
implemented  different  algorithms such as
HotSpotter (Crall et al. 2013) in the Wild Me plat-
form, which is actively used to identify a variety of
species.

Beyond image-based identification

As humans are highly visual creatures, it is intuitive
that we gravitate to image-based identification tech-
niques. Indeed, this preference may offer few draw-
backs for applied uses of individual identification in
which the researcher’s perspective is the primary lens
through which discrimination and identification will
occur. However, the interpretive objectives of etio-
logical uses of identification add an additional layer
of complexity that may not always favor a visually
based method. When seeking to provide inference on
the mechanisms shaping individual interactions, eti-
ological applications must both (1) satisfy the
researcher’s need to correctly identify known indi-
viduals and (2) attempt to interpret interactions
based on an understanding of the sensory method
by which the individuals in question identify and re-
identify conspecifics (Tibbetts 2002; Thom and
Hurst 2004; Tibbetts and Dale 2007).

Different species employ numerous mechanisms
to engage in conspecific identification (e.g., olfactory,
auditory, and chemosensory; Hagey and Macdonald
2003; Martin et al. 2008; Levréro et al. 2009). For
example, previous studies have noted that giant pan-
das use olfaction for mate selection and assessment
of competitors (Hagey and Macdonald 2003;
Swaisgood et al. 2004). Conversely, Schneider et al.
(2018) showed that Drosophila, which was previ-
ously assumed not to be strongly visually based,
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were able to engage in successful visual identification
of conspecifics. Thus, etiological applications that
seek to find mechanisms of animal identification
must consider both the perspectives of the researcher
and the individuals under study (much like Uexkill’s
concept of Umwelt (Jakob 1992)), and researchers
must embrace their roles as both observers and
translators attempting to reconcile potential differ-
ences between human and animal perspectives.

Just as animals identify each other with different
senses, future methods could also focus on other
forms of data. Indeed, deep learning is not just rev-
olutionizing computer vision, but problems as di-
verse as finding novel antibiotics (Stokes et al.
2020) and protein folding (Service 2020). Thus, we
believe that deep learning will also strongly impact
identification techniques for nonvisual data and
make those techniques both logistically feasible and
sufficiently noninvasive so as to limit disturbances to
natural behaviors. Previous studies have employed
techniques that are promising. For example, acoustic
signals were used by Marin-Cudraz et al. (2019) for
counting of rock ptarmigan, and by Dan et al.
(2019) in an identification method that seems to
generalize to multiple bird species. Furthermore,
Kulahci et al. (2014) used deep learning to describe
individual identification wusing olfactory—auditory
matching in lemurs. However, this research was con-
ducted on captive animals and further work is re-
quired to allow for application of these techniques in
wild settings.

Conclusions and outlook

Recent advances in computational techniques, such
as deep-learning, have enhanced the proficiency of
animal identification methods. Furthermore, end-
to-end pipelines have been created, which allow for
the reliable identification of specific individuals,
with, in some cases, better than human-level perfor-
mance. As most methods follow a supervised learn-
ing approach, the expansion of datasets is crucial for
the development of new models, as is collaboration
between computer science and biological teams in
order to understand the applicable questions to
both fields. Hopefully, this review has elucidated
the fact that lines of inquiry to one group might
have previously been unknown to the other, and
that interdisciplinary collaboration offers a path for
future methodological developments that are analyt-
ically nimble and powerful, but also applicable, de-
pendable, and practicable to addressing real-world
phenomena.
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As we have illustrated, recent advances have con-
tributed to the deployment of some methods, but
many challenges remain. For instance, individual
identification of unmarked, featureless animals such
as brown bears or primates has not yet been
achieved for hundreds of individuals in the wild.
Likewise, discrimination of close siblings remains a
challenging computer vision individual identification
problem. How can the performance of animal indi-
vidual identification methods be further improved?

Since considerably more attention and effort has
been devoted to the computer vision question of
human identification, versus animal identification,
this vast literature can be used as a source of inspi-
ration for improving animal individual identification
techniques. Many human identification studies ex-
periment with additional losses in a multi-task set-
ting. For instance, whereas triplet loss maximizes
inter-class distance, the center loss minimizes intra-
class distance, and can be used in combination with
the former to pull samples of the same class closer
together (Wen et al. 2016). Furthermore, human
identification studies demonstrate the use of spatio-
temporal information to discard impossible matches
(Wang et al. 2019). This idea could be used if an
animal has just been identified somewhere and can-
not possibly be at another distant location (using
camera traps timestamps and GPS). Re-ranking the
predictions has also been employed to improve per-
formance in human-based studies using metric
learning (Zhong et al. 2017). This approach aggre-
gates the losses with an additional re-ranking based
distance. Appropriate augmentation techniques can
also boost performance (Zhong et al. 2020). In order
to overcome occlusions, one can randomly erase rec-
tangles of random pixels and random size from
images in the training data set.

Applications involving human face recognition
have also contributed significantly to the develop-
ment of identification technologies. Human face
datasets typically contain orders of magnitude more
data (thousands of identities and many more
images—e.g., the YouTube Faces dataset; Wolf et
al. 2011) than those available for other animals.
One of the first applications of deep learning to hu-
man face recognition was DeepFace, which used a
classification approach (Yaniv et al. 2014). This was
followed by Deep Face Recognition, which imple-
mented a triplet loss bootstrapped from a classifica-
tion network (Parkhi et al. 2015) and FaceNet by
Schroff et al. (2015) which used triplet loss with
semi hard mining on large batches. FaceNet achieved
a top-1 score of 95.12% when applied to the
YouTube Faces dataset. Some methods also showed



912

promise for unlabeled datasets; Otto et al. (2018)
proposed an unsupervised method to cluster millions
of faces with approximate rank order metric. We
note that this research also raises ethical concerns
(Van Noorden 2020). Finally, benchmarks are im-
portant for advancing research and fortunately they
are emerging for animal identification (Shuyuan et
al. 2019), but more are needed.

Opverall, broad areas for future efforts may include
(1) improving the robustness of models to include
other sensory modalities (consistent with conspecific
identification inquiry) or movement patterns, (2)
combining advanced image-based identification tech-
niques with methods and technologies already com-
monly used in biological studies and surveys (e.g.,
remote sensing, population genetics, mark—recapture,
etc.), and (3) creating larger benchmarks and data-
sets, for instance, via Citizen Science programs (e.g.,
eMammal; iNaturalist, Great Grevy’s Rally). While
these areas offer strong potential to foster analytical
and computational advances, we caution that future
advancements should not be dominated by technical
innovation, but rather, technical development should
proceed in parallel with, or be driven by, the appli-
cation of novel and meaningful biological questions.
Following a question-based approach will assist in
ensuring the applicability and utility of new technol-
ogies to biological investigations and potentially mit-
igate against the use of identification techniques in
suboptimal settings.
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