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ABSTRACT

Localization of mobile robots is essential for navigation
and data collection. This work presents an optical localization
scheme for mobile robots during the robot’s continuous move-
ment, despite that only one bearing angle can be captured at a
time. In particular, this paper significantly improves upon our
previous works where the robot has to pause its movement in or-
der to acquire the two bearing angle measurements needed for
position determination. The latter restriction forces the robot to
work in a stop-and-go mode, which constrains the robot’s mo-
bility. The proposed scheme exploits the velocity prediction from
Kalman filtering, to properly correlate two consecutive measure-
ments of bearing angles with respect to the base nodes (beacons)
to produce location measurement. The proposed solution is eval-
uated in simulation and its advantage is demonstrated through
the comparison with the traditional approach where the two con-
secutive angle measurements are directly used to compute the
location.

INTRODUCTION

Mobile robot localization in GPS denied environments such
as underwater is a large field of research with many approaches
to solving the challenge. Approaches vary based on factors such
as the type of data used, how the data is captured and the algo-
rithm that converts the measured data into position. For example,
some of the varieties of observed data include distance, angle and

signal strength measurements, which can be captured by sensors
such as sonar scanners, RF antenna, inertial sensors, and optical-
based sensors, and then processed with techniques like SLAM
(Simultaneous Localization and Mapping), dead-reckoning, tri-
angulation, and trilateration [1-3].

Of the handful of the variations that can be used under-
water, many are implemented with the use of acoustic signals,
which is currently the predominant medium for underwater lo-
calization and communication. However, acoustic approaches
tend to further complicate or constrain the localization algorithm
due to the inherent limited bandwidth, long propagation delays,
and multipath effect, which result in low data rates and low sig-
nal reception reliability [4, 5]. Moreover, devices that imple-
ment acoustic-based methods tend to be bulky and power-hungry,
making them unsuitable for small underwater robots with limited
resources [6].

Optical communication systems based on Light-Emitting
Diodes (LEDs) are becoming a popular alternative to acoustic-
based methods, due to their demonstrated ability to perform well
in high-rate, low-power underwater communication over short-
to-medium distances [7-10]. However, LED-based communica-
tion is limited by its requirement to have near line-of-sight (LOS)
between the transmitter and the receiver. Fortunately, several so-
lutions to this challenges have been presented, and include the
use of redundant transmitters/receivers [11-14] and active align-
ment [8, 15, 16].

Indoor LED-based localization and communication systems
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have been developed in the form of visible light communication
(VLC) and visible light positioning (VLP) systems, where the
the overhead lights used to illuminate the room can also be used
as the transmission medium for both data and localization pur-
poses [17, 18]. However, these approaches are not practical for
a typical aquatic environment due to the difficulty in illuminat-
ing the significantly larger and more complex environment. An
underwater LED-based localization and communication system
was presented by Rust and Asada in [13]. This approach relies
on a nonlinear light intensity model to calculate the distance be-
tween the transmitting LED and the receiving photodiode. How-
ever, such an approach is prone to error since light intensity de-
pends on both distance and receiver-transmitter alignment. The
method in [13] also uses a photodiode array to determine the an-
gle of the light source, which increases the size and complexity
of the system.

Our prior works [19-21] presented an approach to LED-
based Simultaneous Localization and Communication by taking
advantage of the line of sight (LOS) requirement in LED-based
communication to extract the relative bearing between a mobile
robot and two nodes with known positions (referred to as base
nodes). The bearing angles were then used to triangulate the po-
sition of the mobile robot. A Kalman filter was implemented to
combat the challenge of measurement noises and to allow robot
position prediction to facilitate the light scan for bearing mea-
surement. However, this approach came with the assumption that
the angles were captured when the mobile robot was at a single
location. Consequently, because scanning for the light intensity
with a rotating receiver cannot capture both angles simultane-
ously, our implementation used a stop-and-go motion in order
to ensure the robot was at a single location. However, this sig-
nificantly slowed the robots movement, making it unsuitable for
time-sensitive tasks.

In this work, we propose a novel solution to LED-based
localization which is capable of capturing the position of the
robot while it is continuously moving. In particular, the pro-
posed approach takes advantage of the estimated velocity from
the Kalman filter, to properly correlate the two consecutive mea-
surements of bearing angles with respect to the two base nodes
for the position computation. In contrast to the previous works,
this approach also now uses for the first time a rigid-body model
to more accurately estimate the robot’s movement. The perfor-
mance of the proposed dynamic-prediction approach is evaluated
in simulation in the measured body orientation and compared
with the performance of the traditional approach used in our pre-
vious works, under the same noise conditions. The results show
that the dynamic-prediction method does consistently better than
the traditional method over a range of noise levels for the body
orientation measurement.

The remainder of this paper starts with a basic concept of
the LED-based localization scheme and outlines the Kalman fil-
tering scheme used in robot state prediction. Then the proposed

scheme is presented followed by a description of the simulation
setup and results. Finally, concluding remarks and future work
are provided.

OVERVIEW OF LED-BASED LOCALIZATION

To simplify the discussion, the localization approach is dis-
cussed in the two-dimensional (2D) space. All nodes have an
optical transceiver, which is an LED transmitter together with a
photodiode receiver. Each node is also able to rotate and monitor
the orientation of its transceiver about the horizontal plane. This
work assumes a network of 3 nodes, a pair of base nodes (with
known locations), BN and BN,, and a mobile node, MN, to be
localized as illustrated in Figure 1.

The mobile node’s coordinates can then be computed via the
bearing angles 0; and 6, and the known locations of the base
nodes BN and BN>:

Ny
ny

where the x,y coordinate vectors for the MN and BN; are

ey

Bix+|Vi|cos 6
By + [Vi|sin 6;

[nx, ny}T and [Bl x, B]y}T, respectively, and the magnitude of
vector V; from Figure 1 is |V;|, which is obtained via the Laws
of Sines:

@)

Here 0, is the angle corresponding to the side BN{-BN; within
the MN-BN/-BNj triangle, 6, = 6, — 0y, 6, is the complement
of 65, B, = 180° — 65, and d is the distance between BN; and
BN>.

Though the approach may appear straightforward, capturing
accurate bearing angles is made non-trivial when the target node
is mobile, since insufficient synchronization and coordination
among the nodes can lead to improper LOS, thereby degrading
both communication and angle measurements. Moreover, angle
measurement error caused by inherent noise will lead to highly
variable (as opposed to smooth) trajectory estimation for the MN,
due to the reliance on pure algebraic calculation. Kalman filter-
ing addresses these concerns by generating predicted positions of
the MN to significantly reduce the scanning effort on all parties
to facilitate LOS establishment, which then enhances localiza-
tion accuracy and efficiency. A brief overview of the Kalman
filter used in this work is discussed next.

Kalman Filtering Algorithm
In this work, the Kalman filter is used to help establish the
LOS between the mobile node and base nodes, by predicting the
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FIGURE 1. TIllustration of the traditional localization approach [20].

future state of the robot so that the base nodes and mobile node
can anticipate each other’s angular locations. In our prior work,
the mobile robot was modeled as a point mass, only focusing on
the changes in x, y coordinates. In this work, we use a rigid-
body model to represent the mobile node’s motion, monitoring
changes to both the body’s orientation and the position. For both
position and orientation, a constant (angular) velocity model cor-
rupted with Gaussian noise is used for the mobile node’s dynam-
ics, since in general the precise knowledge of its movement is
not known. These dynamics can be represented as:

Ny =0+ VA +wy g 3)
Virl = Vit wok 4
Vi1 = Wi+ Ody + w3k &)
W1 = O +wq i (6)

where n; = [nx’k, ny7k] T and v = [vx,k, vywk]T are the position
and velocity vectors of the mobile node in terms of the x and y
coordinates at the k—th time instance, y; and @y are the body ori-
entation angle and the body’s angular velocity, respectively, wy ,
W2k, W3k, and wy y are independent, zero-mean, white Gaussian
noises, and Ay is the k—th sampling interval. The observations z;
and § are the noise-corrupted location and orientation measure-
ments, respectively. They are represented as:

Zy =N +Ws g, @)
G = Wi +we k, (%)

where ws ;. and wg  are assumed to be white, zero-mean Gaus-
sian, and independent of each other and the process noises wy g,

W2 ks W3 ks and W4 k.

z; is computed from (1) and (2), which is only possible in
physical implementation when the bearing angles, 6; and 6,, are
measured by the MN at a single fixed position. The main focus
of this work addresses how z; can be computed when the bearing
angles are captured by the mobile node at different positions due
to the robot’s movement.

Ck is measured from an orientation sensor such as a magnetic
compass. Body orientation estimation is needed for the mobile
robot to compute the required rotation for the transceiver to es-
tablish the LOS, by properly accommodating the rotation of the
robot itself.

Two state vectors are used for Kalman filtering in this work.
The first state vector, X, maintains the estimate of the position
and velocity, whereas the second state vector, f)k, tracks the esti-
mate of the body orientation angle and the angular velocity. The
two state vectors are defined as

L = [, iy, D, 97 ©)

=y, o (10)

P>

(=23
~

where [Ay, ﬁy}r, [0y, Dy, ¥, and @ are the estimated position, ve-
locity, body orientation angle, and angular velocity of the mobile
node at the k—th time instance, respectively. The equations for
the implementation of the Kalman filter, which are standard [22],
are omitted here for brevity.

At time k, the predicted position from the state estimate X, _ |
is used to determine anticipated values for the bearings 8; and 6,
(recall Figure 1) that will be used in the angular scanning process
that ultimately results in the position observation z; used in the
state estimate update. Anticipated angles é1’k+1 and équﬂ of the
mobile node relative to the base nodes are computed by using

A Vi, - Vim;
9i,k+1 200871 <b,7m,|> s fori= 1,2 (11

Vi | [Vin
where,
Vo, = 8} - g;}] (12)
Vi, = g;;] (13)
Vi, = ;‘ —[ﬁij fori=1,2 (14)

In these equations [Biy, Biy| and [Byy, By, are the respective x
and y coordinates for base nodes BN| and BN, and V), - V,,,, is
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the dot product between vectors V,,, and Vp,,. The mobile node
and base nodes each have their own sets of anticipated angles for
use in the measurement process, with the mobile node using its
angles as a basis for where to start and end its scanning rotation,
and the base nodes centering their LED light about their set of
angles.

Challenges With Continuously Moving Robot

The traditional measurement system, (1) and (2), used in our
previous works assumed that the bearing angles were captured
when the mobile robot was at a single fixed position. Conse-
quently, because the physical angle scanning process takes time,
i.e., it is not physically possible to instantaneously capture both
angles with a rotating transceiver, it required the mobile node’s
trajectory to be executed in a stop-and-go manner in order to en-
sure that the robot was at the same position for both angle cap-
tures.

As beneficial as it is, the stop-and-go implementation is
time-consuming and thus limits how quickly the robot can tra-
verse its environment, making it unsuitable for time-sensitive
tasks. In this work we propose an approach that allows the robot
to localize while also moving continuously in its environment.
That is, we propose an algorithm that can compute the robot’s
position despite the fact that the two consecutive measurements
of bearing angles, with respect to the two base nodes, are cap-
tured at different times and positions.

PROPOSED APPROACH

The bearing angles, 0; and 8,, are captured by the MN while
it moves along its trajectory, where each angle is captured at a
distinct position along this path. These spotting positions are
labeled as P, and Py,, where P, is the position whose x-coordinate
is the smallest and not necessarily the position where the first
bearing angle is spotted. Localization of the robot is achieved
by determining the coordinates of these spotting positions, and
treating one these positions as the observed location z; of the
robot.

The concept for calculating these positions is considerably
more involved than the traditional approach described in (1) and
(2). To better contrast their differences, Figure 2 illustrates how
the two approaches would determine a position given the same
measured bearing angles. In particular, the diagram shows that
the traditional approach would use the two angles to find a con-
verging point at Py, which is significantly distant from the two
ground-truth locations, P, and Py, where the angles were actu-
ally captured by the robot. Moreover, with access to only the
bearing angles, the coordinates for P, and Py, could be any of the
points along the two edges of the triangle formed by Py, BNy,
and BN;. To determine an estimate of the positions for P, or Py,
this work exploits the MN’s most recently estimated velocity to
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FIGURE 2. Tllustration comparing the traditional approach and the
proposed dynamic-prediction approach, for the case when 6; and 6, are
at spots P, and Py, respectively..

properly combine the two measured angles.

Measurement Equations

The locations of the mobile node, P, and P}, where it spot-
ted a bearing angle can be determined by solving for the x and
y distances between each spot location and the base node of the
corresponding captured angle, by using these angles along with
the estimated velocity of the mobile node. For instance, in Fig-
ure 2, BN; and P, are separated from each other by x, and y,.
Similarly, BN; and Py, are related by x;, and y;. These distances
can be expressed in generalized mathematical relationships as:

Py = BN+ Ax, (15)
Py = BN, +Bxy, (16)
P,y = BN, +Cy, a7
P,y = BN2y + Dy, (18)

where Py, Py, and F,y, P, are the x and y coordinates of P,
and Py, respectively, BNy, BN, and BNy,, BN, are the x and y
coordinates of BN and BNy, respectively, and A, B, C, and D
are the sign values of the distances x,, xp, ¥, and yj, respectively.
A, B, C, and D reflect where the spot locations are relative to the
base nodes, and can be determined by inspecting the properties
of the captured bearing angles. In particular, A and B take on the
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sign value of cos 81 and cos 65, respectively, and C and D take on
the sign value of sin 6, and sin 6,, respectively.

From the relationships in (15) — (18), expressions for the
distances x4, Xp, ¥, and y, can be derived as:

d— n—f—BEysmﬁ(p
Xa = tan o (19)
_ W
Vo = Xgtan o (20)
Vb =Ya+EA (21)
M
xb_tanﬁ (22)
where,
d = BN, — BNy, (23)
1 ="7cos 24)
A = ysing (25)
+1, (0°< ¢ <90°)

—t 2
P {—1, (—=90° < ¢ < 0°) (26)
(p=4+1)A(C=4+1)A(D=+1)

+1, Vv
(p=-DA(C=-1)A(D=-1)
E= 27
(p=-1)A(C=+DAD=+1)
-1, Vv
(P=+1)A(C=-1)AD=-1)

In these equations, d is the distance between the base nodes, 7 is
the x-distance between the spotted points, i.e., the distance from
P, to Py, and A is the y-distance between the spotted points with
E being its associated sign value, which is determined from a
combination of the slope, p, and the sine values of the bearing
angles. The variables o and 8 represent the inner angles of the
triangles that each base node makes with its corresponding spot-
ting point and are computed from 8; and 6,, respectively, and ¥
and ¢ are the magnitude and angle of the Kalman filter-estimated
velocity of the mobile node’s movement, respectively. To sim-
plify the discussion, it is assumed, without loss of generality,
that the base nodes are separated only along the x-axis. By using
the two sets of relationships (15) — (18) and (19) — (22) the posi-
tion of P, (or Py) can be computed and then used in the Kalman
filter’s state estimate update.

The above relationships, (15) — (22), were developed from
the situation shown in Figure 2, where 6; and 6, are captured
at spots P, and Py, respectively. In the case where 6; and 6,

Y-axis (world)
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FIGURE 3. Illustration of the moving measurement approach, which
shows the situation when 0 and 6, are at spots Py, and P,, respectively.

are alternatively captured at spots Py, and P,, respectively, as is
illustrated in Figure 3, equations (15) — (22) would be simply
adjusted to reflect the new association between the angles spot
positions and the base nodes.

SIMULATION SETUP

The proposed dynamic-prediction algorithm was evaluated
in simulation and its performance was compared to the tradi-
tional approach to computing the measured position. In partic-
ular, the robustness of both approaches was tested against mea-
surement error in the body orientation, which results in error in
bearing angle measurement.

The robot’s performance was evaluated with a closed loop
trajectory as shown in Figure 4. The trajectory was defined in
terms of a number of position points, which were used as the
ground-truth positions in the simulation. Base nodes BN; and
BN, were positioned at [—1,0]” and [1,0]”, respectively.

Simulated Measurements

The simulated robot body orientation measurement was gen-
erated by adding zero-mean Gaussian noise to the ground truth
orientation value. The simulated ground truth body orientation
of the mobile node was obtained by finding the angle between
the 0° orientation vector and the vector that points from the pre-
vious to the current ground truth position. The amount of error
in the orientation measurement was controlled by adjusting the
standard deviation of the Gaussian noise.

The Kalman filter-estimated body orientation (based on the
body orientation measurement) was used to adjust the mobile
node’s transceiver angle in order to establish LOS by properly
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FIGURE 4. Comparison of the ground truth and estimated positions
for one of the simulated trials using the loop trajectory, for the case when
the body orientation angle measurement is subjected to Gaussian noise
with a standard deviation of 1.00°.

accommodating the robot’s own rotation. The error in the esti-
mated orientation angle had the effect of eschewing the scanned
light intensities thus resulting in errors in the angle error.

Angle measurements were generated by simulating the pro-
cess of the MN scanning the light intensities shown by the base
nodes. The range of the mobile node’s scan was the angular dis-
tance between the predicted angles, él,k+1 and ég,kﬂ, computed
in (11), plus an additional 30° in the opposite direction of each
angle. The scan resolution was set to a step size of 0.225°, to
mimic the rotation resolution of the stepper motor used in the
hardware implementation of our previous works. The amount of
time that elapsed between the steps of the scan was determined
by dividing the ground truth amount of time that elapses between
the start and end of scan by the number of steps in the current
range of rotation. The ground truth amount of time that elapses
between the start and end of the scan was determined by taking
the average time lapse between the start and end of scans from a
small set of preliminary hardware tests.

The strength of the artificial light intensities were based on
the degree of LOS achieved between the transceivers of the mo-
bile node and the base nodes at each step of the mobile node’s
transceiver rotation. This degree of LOS, which ranged from
[0.0, 1.0] with a value of 1.0 representing direct LOS, was first
scaled by 7.3 to mimic the range of voltages measured by the
photodiode, and was then injected with zero-mean Gaussian
noise with a standard deviation of 0.5 volts to represent the inher-
ent error associated with the light measuring process. The bear-
ing angles were extracted from the simulated light intensities by
determining the angular position of mobile node’s transceiver at
the center point of the two peaks in the intensity scan.

SIMULATION RESULTS

For all of the simulation results presented here the standard
deviation of the body orientation error was varied from 1.0° to
5.0° in increments of 1.0°. For each level of standard deviation,
100 trials were conducted, where 100 random seeds were cho-
sen to ensure the randomness would be repeatable for each of the
cases. Figure 4 compares the ground truth and estimated posi-
tions in the x,y plane in one sample run for the loop trajectory,
when the amount of standard deviation of Gaussian noise applied
to the body orientation measurement was 1.00°.

Figures 5 and 6 show the average estimated error and the
number of completed trials, respectively, for (a) the proposed
dynamic-prediction approach when the ground truth velocity be-
tween the spotting points is used for the measurement equa-
tion, (b) the proposed dynamic-prediction approach when the
predicted-velocity between the spotting points is used for the
measurement equation, and (c) for the traditional approach where
the two bearing angles were treated as being obtained from
the same location. For the data shown in Figure 6, a trial
was considered completed if the system was able to localize
the mobile node’s position at each and every trajectory step.
The results in these figures show that in general the proposed
dynamic-prediction approach performs better than the traditional
approach; however, there is still clearly room for us to improve
as the dynamic-prediction approach with the ground truth ve-
locity does the best out of all 3 variations. In particular, while
the performance of the dynamic-prediction approach using the
predict-velocity does better than the traditional approach, it is not
as nearly good as the version which uses the ground truth veloc-
ity. It is believed that the discrepancy in performance is caused
by poor velocity estimates, to be improved upon for future work.

CONCLUSION

In this paper we have proposed an approach to LED-based
localization of a continuously moving robot. By utilizing the
estimated velocity of the mobile robot we were able to address
the main challenge of measuring the robot’s position despite the
bearing angles being measured at different times and positions.

It was shown in simulation that the proposed dynamic-
prediction approach was capable of localizing the mobile robot
despite the bearing angles being captured at different times and
locations. In addition, it also performed better than the traditional
approach, which assumed the bearing angles were measured at a
single location, for a single closed loop trajectory and under var-
ious levels of body orientation measurement noise.

Despite the successful results from the current simulation,
there is still clear evidence that the approach can be refined fur-
ther to yield more accurate results. Moreover, this system is lim-
ited to configurations where the MN is not collinear with the base
nodes, as otherwise a singularity issue arises, resulting in ambi-
guity of the measured position. In [23] we proposed a localiza-
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FIGURE 5. Average estimated position errors computed among all
of the trials for varying amounts of standard deviation in the Gaussian
noise added to the body orientation measurements of the mobile node.
Estimated position error is the difference between the ground truth and
the position from the Kalman filter’s state vector X, = [ﬁx, ﬁy} after
processing the observed position z;. Subplot a) shows the average error
for the proposed dynamic-predication approach when the ground truth
velocity between the two spotting points was used in the measurement
equation. Subplot b) shows the average error for the proposed dynamic-
predication approach when the predicted-velocity between the two spot-
ting points was used in the measurement equation. Subplot ¢) shows the
average error for the traditional approach.

tion approach which was capable of tracking the mobile robot
when it is at or near a collinear configuration by using more base
nodes which are strategically placed to provide alternative mea-
surements perspectives in these cases. In future work this multi-
ple base node approach will be extended to adopt the dynamic-
prediction measurement system as proposed in this work. Ad-
ditional future work will explore testing this approach in more
complicated trajectories, such as the figure-8 shape, as well as
implementing the scheme in hardware. Eventual goals for this
work also include expanding to a 3D setting and using water-
proofed hardware for underwater experimentation.
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FIGURE 6. Bar graph showing how many of the 100 simulated trials
for the loop trajectory were able to track the mobile node for the com-
plete trajectory for each level of standard deviation of the Gaussian noise
added to the body orientation measurements of the mobile node. Sub-
plot a) shows the results for the proposed dynamic-predication approach
when the ground truth velocity between the two spotting points was used
in the measurement equation. Subplot b) shows the results for the pro-
posed dynamic-predication approach when the predicted-velocity be-
tween the two spotting points was used in the measurement equation.
Subplot ¢) shows the results for the traditional approach.
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