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Dynamic Optical Localization of a Mobile Robot
Using Kalman Filtering-Based
Position Prediction

Jason N. Greenberg

Abstracti—Autonomous mobile robots operating in areas
with poor GPS and wireless coverage (e.g., underwater)
must rely on alternative localization and communication
approaches. In this article, we present an light-emitting
diode (LED) based system that achieves simultaneous lo-
calization and communication (SLAC), where the line-of-
sight (LOS) requirement for communication is exploited to
extract the relative bearing of the communicating parties
for localization. By using Kalman filtering to obtain the
mobile robot’s predicted position, the system is able to
reduce the overhead of establishing the LOS and, therefore,
significantly improve on the quality of the localization. The
proposed design of the optical localization system is pre-
sented and its effectiveness is demonstrated with extensive
simulation and experimentation in a two-dimensional set-
ting, consisting of a mobile robot and two stationary base
nodes.

Index Terms—Bearing-based localization, dynamic local-
ization, Kalman filtering, light-emitting diode (LED) based
communication.

[. INTRODUCTION

OCALIZATION is an essential requirement for the op-
L eration of mobile systems (such as robots and vehicles)
and sensor networks. GPS is arguably the most common tool
for acquiring location. However, in many applications (such
as underwater exploration [1] and indoor navigation), GPS
signals are not available. A number of alternative localization
approaches have been developed for mobile robots operating in
areas with poor GPS service, such as computer vision-based
simultaneous localization and mapping (SLAM) [2]-[5] and
inertial measurement-based dead reckoning [6]-[8]. SLAM typ-
ically requires significant and expensive computing resources for
processing the visual or Lidar images [9], while dead reckoning
suffers from sensor drift issues [5], [10], [11].

Manuscript received January 26, 2020; accepted March 5, 2020. Date
of publication March 13, 2020; date of current version October 14, 2020.
Recommended by Technical Editor Z. Liu. This work was supported by
the National Science Foundation under Grants ECCS 1446793 and IIS
1734272. (Corresponding author: Jason Neil Greenberg.)

The authors are with the Smart Microsystems Laboratory, Depart-
ment of Electrical and Computer Engineering, Michigan State Univer-
sity, East Lansing, Ml 48824 USA (e-mail: green108@egr.msu.edu;
xbtan@egr.msu.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMECH.2020.2980434

, Student Member, IEEE, and Xiaobo Tan

, Fellow, IEEE

Although there are other localization methods that can work
without GPS signals, their use underwater tends to be achieved
through acoustic signals. While acoustic techniques are cur-
rently predominant in underwater localization and communi-
cation, they present a number of challenges because of limited
bandwidth, long propagation delays, and multipath effect, which
result in low data rates and low signal reception reliability [12],
[13]. Moreover, devices that implement acoustic-based methods
tend to be bulky and power-hungry, making them unsuitable for
small underwater robots with limited resources [1].

Optical communication systems based on light-emitting
diodes (LEDs) are an up-and-coming alternative to acoustic-
based methods. In recent years, LED systems have shown
promise in high-rate, low-power underwater communication
over short-to-medium distances [14], [15]. For example, the
system developed by Brundage [16], which used a Titan blue
lighting LED, achieved communication rates of roughly 1 Mb/s
at a distance of 13 m, while Doniec [17] demonstrated data rates
of 4 Mb/s atadistance of 50 m with their communication system,
AquaOptical II, that used an array of 18 Luxeon Rebel LEDs for
the transmitter. However, a downside of LED-based communi-
cation is the requirement of near line of sight (LOS) between
the transmitter and the receiver. The latter challenge has been
addressed in several ways, including the use of redundant trans-
mitters/receivers [18]-[21] and active alignment [15], [22], [23].

Indoor LED-based localization and communication systems
have been developed by using visible light communication
(VLC) systems, in which the overhead lights used to illuminate
the room can also be used as the transmission medium for
both data and localization purposes [24]. Nguyen et al. [25]
developed a VLC localization approach that integrates the angle
of arrival and received signal strength of the light to compute
the location, getting a minimum simulated error of 10 cm.
Qiu et al. [24] achieved a localization accuracy of 0.56 m
using a fingerprint matching approach, where fingerprints are a
mapping of position and the light intensities of each light in the
environment, and each light transmits a unique beacon pattern
allowing the localizing robot to associate a light intensity with
a particular overhead fixture. While VLC-based localization
and visible light positioning approaches are an alternative to
radio-frequency methods indoors and can work underwater in
theory, they are not practical for a typical aquatic environment
due to the difficulty in illuminating the significantly larger and
more complex environment.
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An underwater LED-based localization and communication
system was presented by Rust and Asada in [20]. This ap-
proach relies on a nonlinear light intensity model to calculate
the distance between the transmitting LED and the receiving
photodiode. However, such an approach is prone to error since
light intensity depends on both distance and receiver—transmitter
alignment. The method in [20] also uses a photodiode array to
determine the angle of the light source, which increases the size
and complexity of the system.

A. Main Contribution

In this article, we present an alternative concept of LED-based
simultaneous localization and communication (SLAC), where
the LOS requirement in LED-based communication is exploited
to extract the relative bearing of the two communicating parties.
Such bearing information for a mobile robot, with respect to mul-
tiple nodes with known locations (called base nodes or beacons),
can then be used to infer the location of the robot via triangu-
lation. In particular, we consider the single-transmitter—single-
receiver setup with active alignment for the LED communication
system [21], [22] due to its advantages in small footprint and
low power, compared with systems with multiple transmitters
and/or multiple receivers. However, the very directional nature
of such a setup, along with the mobile nature of the target
(robot), presents a significant challenge in establishing the LOS
for bearing measurement and communication.

A key contribution of this article is the proposal of Kalman
filter-based position prediction for the mobile robot, to facilitate
the establishment and maintenance of the LOS between the base
nodes and the robot. Extensive simulation and experiments have
been conducted to evaluate the proposed approach, with a com-
parison to an alternative approach not using Kalman filtering-
based location prediction. In particular, the robustness of the
proposed approach with respect to the LOS angle measurement
error and the uncertainty in the robot’s initial position is assessed
in simulation. The simulated results show that the system can
localize effectively when the angle measurements have an error
with a standard deviation of 3.0° or less. Experimental results
show that the system is able to consistently localize the mobile
node and maintain tracking of the robot indefinitely. In contrast,
a version of the approach that does not use the Kalman filtering-
based position prediction is only able to localize the mobile node
for a relatively small number of steps of the trajectory before
losing track of its position.

Some preliminary results of the proposed approach were re-
ported at the 2016 and 2017 ASME Dynamic Systems and Con-
trol Conferences [26], [27]. In [26], the LED-based SLAC con-
cept with simulation and rudimentary experimentation was first
introduced; in [27], a more systematic procedure of executing
the experiments was introduced to obtain and maintain the LOS.
This article represents a significant extension and improvement
over [26] and [27]; in particular, the enhancements have included
improved hardware for the control and tracking of the mobile
robot, revised algorithms involving additional linear filters for
extracting the LOS angle with higher accuracy, new simulation
results evaluating the robustness of the proposed approach with
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respect to measurement noise and initial estimate uncertainty,
and new experimental results including the comparison with an
alternative approach.

The rest of this article is organized as follows. In Section II,
the proposed scheme, including the basic problem setup and
the Kalman filtering-based prediction algorithm, is presented. In
Section II1, the operational protocol for the system is described in
detail. Simulation results are provided in Section IV, followed by
experimental evaluation results in Section V. Finally, Section VI
concludes this article.

Il. OVERVIEW OF THE APPROACH

In this section, we outline the major elements of this article.
Section II-A provides a more detailed description of the problem
setup, and Section II-B describes how the Kalman filter is used
for coordinating the LOS angle prediction and scanning.

A. Problem Setup

To simplify the discussion, in this article, the localization
approach is considered in the two-dimensional space. It is as-
sumed that each node is equipped with an optical transceiver
comprised of an LED transmitter and a photodiode receiver, and
that the transceiver is able to rotate a full 360°. Furthermore,
the node is able to identify at any particular moment the angle
at which its transceiver is facing with respect to a reference
direction such as the east axis identified by a magnetic compass.
Consider a three-node network composed of a pair of base nodes
(with known locations) and a mobile node to be localized, as
illustrated in Fig. 1. Through the LOS measurement, the base
nodes, denoted as BN; and BNs, respectively, determine the
bearing angles of the mobile node (MN) with respect to a
common z-axis, denoted as 01 and 0,.

The location of the MN can then be found using the locations
of BN; and BN; and the bearing angles 6 and 6, as

Ny By, + |Vi]| cos 0,
= ) (D
Ny By + |Vi|sin 6,

where [, n,]T is the position vector of the mobile node MN,
By, and By, are the respective x and y coordinates for BNy,
and |V}] is the magnitude of vector V}, as shown in Fig. 1, and
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is obtained using the Laws of Sines as

d sin(6,)
Vil = @)
Here d is the distance between BN; and BN, 6, is the com-
plement of 6,, §; = 180° — 6, and 6,, is the angle correspond-
ing to the side BN;—BNy within the MN-BN;-BNj triangle,
0, =6, — 0.

Although this localization process seems simple, the task is
involved, especially when the target is mobile. The challenge
comes from the need to have sufficient synchronization and
coordination among all three nodes to produce proper LOS mea-
surements. Otherwise the mobile node could be “spotted” (via
LOS) too infrequently, not at all, or not nearly simultaneously
by both base nodes. Another challenge results from the error
in the measured 0; and é,—purely relying on the algebraic
calculation (1) will lead to highly variable (instead of smooth)
estimated trajectories for the mobile node MN. To help address
both challenges, Kalman filtering is proposed for predicting
and estimating the location of the MN, based on the measured
location computed via (1). In particular, the prediction of the MN
location is exploited to significantly reduce the effort searching
for LOS and, thus, enable efficient and accurate localization.
The Kalman filtering algorithm is presented next.

B. Kalman Filtering Algorithm

Kalman filtering is a powerful and computationally efficient
technique for estimating the state of linear systems with Gaus-
sian noises [28]-[31], and it has been widely adopted for estima-
tion and control in various applications including robotics. The
main focus of this article is the maintenance of the LOS between
the base nodes and the mobile node. This is achieved using a
Kalman filter to predict the future location of the robot in order
to generate anticipated angles for transceiver orientation. The
mobile node ‘s dynamics are assumed to be sufficiently described
by a constant velocity model corrupted with Gaussian noise,
since it is not practical for the base nodes to have precise prior
knowledge of the mobile node’s movement. While other filtering
schemes can be potentially used, our assumption enables the use
of computationally efficient Kalman filtering for predicting the
mobile node’s position. As demonstrated later in this article,
these predictions are crucial for efficient establishment of LOS
measurement and, thus, the success of the localization scheme.
The dynamics for the mobile node can be represented as

Npy1 = Mg + VA + Wik 3)

Vg4 = Vi + Wo g “4)

where ny, = [Ny k, nny]T and vy, = (Vg k, vyyk]T are the po-
sition and velocity vectors of the mobile node at the kth time
instance, w; ;, and w, i are independent, zero-mean, white Gaus-
sian noises, and Ay, is the kth sampling interval. The observation
z}, is the noise-corrupted location measurement, computed based
on (1) and (2), calculated as

Zi = Ng + W3k 5)

where ws j, is assumed to be white, zero-mean Gaussian, and
independent of the process noises w; 5, and ws j.
The state vector X;, of the Kalman filter is defined as

Xy = [, Ty, Do, O] (6)

where [f, 7,|T and [0, ©,] are the estimated position and
velocity, respectively, of the mobile node. The equations for the
implementation of the Kalman filter, which are standard [28],
are omitted here for brevity.

At time k, the base nodes perform an angular search process
to ultimately generate the observation zj, to be used in the state
estimate update. The angular search process for each base node is
centered about the anticipated values of 8, and 6, (recall Fig. 1)
computed from the position component of the predicted state
estimate.

In particular, these anticipated angles él, . éz,k are computed
by using

A Vi, - Vi, ,
0; ) = cos ! (b> , fori=1,2 @)

where

-0 Bla:

Vi, = - (8)
10 By
-BZLE

Vi, = 9
_BZy
(7 Bis

Vin, = — , fori=1,2. (10)
ﬁ; Biy

Here, [Bi., Bly]T and [By,, Bzy]T are the locations of the
base nodes BN; and BNy, respectively, and V},, - V;,,, is the dot
product between vectors V,,,, and V3. The mobile node, in the
meantime, will use its predicted position to calculate the angular
locations of the base nodes relative to itself, and focus its light
along these angles during the angular search.

[ll. SYSTEM IMPLEMENTATION

The proposed localization method uses the following five-step
procedure.

1) Synchronization: The mobile node waits until it receives
an optical message from one of the base node. The trans-
mitted message contains the latest state estimate from the
Kalman filter, i.e., both the position and velocity of the
mobile node.

2) Movement: Upon receiving the message, the mobile node
moves along its predetermined trajectory for a fixed
amount of time and stops.

3) Measurement: The mobile node uses its recently received
state estimate and orientation data to approximate its
current position and the angular locations of the base
nodes. It will then use this information to shine its LED
light at the base nodes. On the other hand, the base nodes
use the state estimate to predict the mobile node’s next
position and the corresponding angles él’k+1 and HAMH
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from (7) to (10) so each base node can scan the light
coming from the mobile node.

4) Update: After scanning, the collected angles 6 and 6, are
used to generate the observed position z, through (1) and
(2), which is then used to update the state vector.

5) Repeat: Repeat Steps 1-4.

At the start of the program, before the first synchronization
sequence, it is assumed that all of the nodes have knowledge
of the initial position and velocity of the mobile node, but such
knowledge could have error. This article will study the impact
of the initial estimate error on the system performance. The
mobile node’s stop-and-go movement ensures that its position
is the same for each of the base node’s scans. This is crucial
to the localization accuracy since the measurement equations
in (1) and (2) assume that the observed angles correspond to
the mobile node at a single location. Overall, it is important
to point out that, because of the synchronization process, this
approach is able to keep a relatively constant sampling time
between the measurements despite the stop-and-go movement
from the mobile node. In particular, the Kalman filter is able to
capture reasonably well the average velocity of the robot.

Finally, we elaborate on the LOS measurement step. The
base node scanning procedure is the light searching process
executed individually on each base node to obtain the angle of
the mobile node relative to that base node. For each base node,
the process involves four consecutive sweeps, composed of two
pairs of clockwise then counterclockwise sweeps, about the
anticipated angle of the mobile node. During regular increments
of each of the sweeps, which have a range of 60°, the base node
reads and then records the light intensity, associating it with the
corresponding orientation of the transceiver at that particular
instant. After each sweep, the intensities are processed through a
linear filter to smooth out any irregularities in the intensities such
as spikes or dips. The angle associated with the median of the
group of highest intensities is used as the measured angle of that
sweep. This last process helps to mitigate problems associated
with moderate light saturation, where a significant span of angles
have the same or very similar intensity levels, which obscures the
correct angle associated with the direction of the mobile node.

[V. SIMULATION RESULTS

Prior to testing the approach experimentally, simulation was
conducted to examine the performance of the scheme, especially
its robustness against measurement errors and uncertainty in the
initial state estimate.

A. Simulation Setup

The simulated environment had an area defined as z €
[—6,6], y € [-11, 1] in grid units to mimic the physical space
of the experiment, where a grid unit is equivalent to approxi-
mately 23 cm. The base nodes BN; and BNy were positioned
at [—3,0]7 and [3,0]7, respectively. Two different trajectories
for the robot were used. The first was a simple closed loop as
shown in Fig. 2, and the second was a figure-8-shaped loop as
shown in Fig. 3. Each trajectory was composed of a number
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Fig. 2. Comparison of the ground truth and estimated positions for one
of the simulated trials using the simple loop trajectory, for the case when
the measurement angles of the base nodes are subjected to Gaussian
noises with a standard deviation of 0.5°.
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Fig. 3. Comparison of the ground truth and estimated positions for
one of the simulated trials using the figure-8-shaped trajectory, for the
case when the measurement angles of the base nodes are subjected to
Gaussian noises with a standard deviation of 0.5°.

position points, which were used as the ground truth positions
in the simulation.

For the simulated measurement step, the orientation value
supplied to the mobile node for adjusting its simulated
transceiver’s direction was obtained by finding the angle be-
tween the 0° orientation vector and the vector that points from
the previous to the current ground truth position with an added
zero-mean Gaussian noise, with a standard deviation of 0.5°, to
simulate the imperfection of a physical orientation sensor. The
“measured” position in simulation is obtained by triangulation
using the simulated measured bearing angles, and the latter are
obtained by corrupting the ground-truth bearing angles with
independent, zero-mean, white Gaussian noise. The amount of
error introduced to these angle measurements was controlled by
changing the standard deviation of the Gaussian noise.

B. Simulation Results

1) Impact of Angle Measurement Error: First the system was
analyzed under different levels of angle measurement error. This
was achieved by ranging the standard deviation of Gaussian
noise introduced to the angle measurements from 0.5° to 5.0°
in increments of 0.5°. For each level of standard deviation, 100
trials were conducted. To control the randomness so it would be
repeatable, a vector of 100 random seeds was chosen and used for
the corresponding trial number for each of the different levels
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Fig. 4. Average error computed among all of the simulated trials for the

simple loop trajectory for varying amounts of standard deviation in the
Gaussian noise added to the angular measurements of the base nodes.
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Fig. 5. Bar graph showing how many of the 100 simulated trials for the
simple loop trajectory were able to track the complete trajectory for each
level of standard deviation of the Gaussian noise added to the angular
measurements of the base nodes.

of standard deviation. Figs. 2 and 3 show the comparison be-
tween the ground truth positions and the corresponding Kalman
filtering-based estimated positions of the robot in a sample run
for the simple loop trajectory and the figure-8-shaped trajectory,
respectively, where the angle measurement error has a standard
deviation of 0.5°. Fig. 4 shows the average estimated position
error and the measured position error among all of the trials for
the simple loop trajectory, under each level of standard deviation
for the angle measurement error. The estimated (resp., measured)
error is the magnitude of the error obtained by comparing the
estimated (resp., measured) positions with the corresponding
ground truth position. The estimated positions are the output
positions from the Kalman filter, whereas the measured positions
zj, are computed directly from the observed bearing angles.
The average errors shown in Fig. 4 were computed using the
mean errors from each trial, which were obtained in each trial
by averaging the estimated and measured errors from all of the
steps of the trajectory the system had reached during that trial.
As the standard deviation of the Gaussian noise gets larger,
fewer number of trials were able to reach all of the steps of
the trajectory. This is reflected in Fig. 5, which shows for each
standard deviation how many of the 100 trials were able to
reach all the steps. Similarly Fig. 6 shows the average measured
and estimated errors from the 100 runs for the figure-8-shaped
trajectory, and Fig. 7 shows the number of trials that were fully
completed for the figure-8-shaped trajectory.

Measured
{ Estimated

Average Error (grid units)

A ‘%ﬁ%

0.5 1 15 2 25 3 35 4 45 5
STD of Gaussian noise (degrees)

Fig. 6. Average error computed among all of the simulated trials for
the figure-8-shaped trajectory for varying amounts of standard deviation
in the Gaussian noise added to the angular measurements of the base
nodes.
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Fig. 7. Bar graph showing how many of the 100 simulated trials for
the figure-8-shaped trajectory were able to track the complete trajectory
for each level of standard deviation of the Gaussian noise added to the
angular measurements of the base nodes.

Collectively the graphs show that the system functions well
when the angular measurement error has a standard deviation
of 2.0° or less, as it allows the system to track the mobile robot
for the entire trajectory with a 100% success rate. The system
performance is still largely satisfactory when the standard de-
viation is about 3.0°. As the standard deviation of the angle
measurement error increases, both the measured and estimated
position errors increase, as expected, and the number of trials
that fail to track the full trajectory rises. We also note that the
estimated position is always slightly more accurate than the
measured position computed directly from the bearing angles.
Finally, the localization performance for the simple loop case
is largely comparable to that for the figure-8-shaped case, with
slight performance degradation for the latter, suggesting that the
proposed scheme is robust to different trajectories for the mobile
robot.

2) Impact of the Error in Initial MN Position Estimation: The
simulation next examined the case where the position of the
mobile node initialized into the state vector had varying amount
of error from the ground truth. Similar to the angle measurement
error case, independent, zero-mean, white Gaussian noises were
added to the = and y coordinates of the mobile node’s initial
ground truth position, to obtain the initial estimate of the po-
sition. As was done in the previous case, the amount of error
introduced to this initial position estimate was controlled by
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Fig. 8. Bar graph showing how many of the 100 simulated trials for the

simple loop trajectory were able to track the complete trajectory for each
level of standard deviation of the Gaussian noise added to the initial
position of the mobile node.
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Fig. 9. Bar graph showing how many of the 100 simulated trials for
the figure-8-shaped trajectory were able to track the complete trajectory
for each level of standard deviation of the Gaussian noise added to the
initial position of the mobile node.

changing the standard deviation of the injected noise from 0.5
grid units to 3.0 grid units in increments of 0.5 grid units.

Figs. 8 and 9 show, for each level of the standard deviation,
the corresponding numbers of trials completing all steps of the
trajectory for the simple loop and figure-8-shaped trajectories,
respectively. The trend from these figures indicates that, with
an increased error in the initial position estimate, the number
of runs completing the full trajectory drops. We note that the
system does not have a 100% success rate completing the full
trajectories even when the standard deviation is as low as 0.5
grid units. Analysis of simulation data indicates that the latter
was caused by the relatively big (larger than 1) realizations of
the random variable for those runs.

3) Justification of Gaussian Noise in Position Measurement
Error: The measurement model (5) assumes a Gaussian noise
in the measurement of robot location. This assumption, along
with the assumptions made on the process noise, facilitated the
use of the Kalman filter for position prediction and estimation.
The physical implementation of the position measurement, of
course, is through triangulation using the measured bearing
angles. Next, we justify the assumption in (5) by evaluating
via simulation the measured position error distribution, based
on the statistics of error in the bearing angle measurement. In
particular, the simulation examined the error distribution in the

Fig. 10.  Error distribution of the mobile node’s position in terms of x
and y when the angular measurements are corrupted with Gaussian
noise of zero-mean and a standard deviation of 1.96°.
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frequency of error
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y position error (grid units)

Fig. 11.  Error distribution of the mobile node’s position in terms of =
and y when the angular measurements are corrupted with noise that is
uniformly distributed between [—3.43°,3.43°].

computed position of the mobile node when the ground truth
angular measurements were corrupted with Gaussian noise and
uniformly distributed noise. In simulation the same set of 1000
random location points, uniformly distributed throughout the
simulation area, were used. For each of these location points,
100 samples of the position error were computed based on the
error in bearing angle measurements. Fig. 10 shows the resulting
position error distribution when the bearing angle measurement
was corrupted with a Gaussian noise with a standard deviation of
1.96°, while Fig. 11 shows the resulting position measurement
distribution when the angle measurement was corrupted with a
uniform noise randomly distributed between [—3.43°,3.43°]. It
can be seen that these distributions resemble well the Gaussian
distributions. In addition, treating the position measurement
error as Gaussian is also supported by the effectiveness of the
proposed localization scheme in both simulation results in this
section and experimental results in the following section.

V. EXPERIMENTAL RESULTS
A. Setup

The transceiver for each node consisted of a single CREE XRE
1 Watt Blue LED (transmitter) and a Blue Enhanced photodiode
(receiver) mounted on a circular PCB board that housed the
transceiver circuitry developed by Al-Rubaiai in [22]. For the
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Fig. 12.  Hardware components on each of the nodes.

transceiver to achieve 360° rotation, it was connected to the
shaft of a stepper motor, which extended through the hollow
center of a slip ring, allowing the wiring between the PCB circuit
and the embedded controller to rotate freely with the motor.
Fig. 12 illustrates the common hardware components on each
node. The stepper motor was controlled through a Sparkfun Big
Easy Driver, with the step resolution set to a rate of 0.225° /step.
The orientation of the transceiver was determined by keeping
count of the number of steps rotated and converting back and
forth to degrees when needed.

The main processing unit for each node was an Intel Edison
Board with an Arduino Expansion Board. It controlled the
rotation of the stepper motor, transmission and reception of the
LED signals as well as the processing of the Kalman filter data.
The Intel Edison Boards had a 500 MHz Intel Atom dual-core
processor with 1 GB of DDR3 RAM, and a built-in dual-band
2.4 GHz and 5 GHz Broadcom 43340 802.11 a/b/g/n Wi-Fi
adapter.

The value for the systems’ measurement noise covariance
matrix Ry was calculated prior to the experiments by having
the system try scanning the angles of the mobile node’s position
while the mobile node remained at a fixed location. Comparing
the base node’s measured position against this fixed position
of the mobile node, errors for the x and y coordinates were
computed and then used to generate a covariance matrix using
the formula

R = Rz,a: Ra:,y
RZ/7m Ryay
K ) K ~
| E(Z‘k_,uw) Z(mk_,ux)(yk _,uy)
_ L k=1 k=1
K| K ~ K 5
2 Ok = p1y) (e = pa) 2 0= )

(1)

where K is the total number of measurements the base nodes
captured,  and gy are the magnitudes of the errors for the x
and y coordinates, respectively, and fi, and i, are the average
errors among all of the captured measurements for = and y,
respectively.

All of the experiments were contained within a grid structure
laid out on the floor with blue painters tape, which followed

Fig. 13.

Overhead view of the grid floor used in experiments.

the grout line of the tiles. The side length of each tile’s grout
was approximately 23 cm and was used to represent 1 grid unit,
which was the generic unit of length used in the experiments
to measure motion and position, see Fig. 13. The area used in
the experiments was definedas « € [—6,6], y € [—11, 1]in grid
units, where the z-axis and y-axis run parallel and perpendicular
to the metal beam holding the base nodes, respectively.

The mobile node’s orientation needs to be measured to com-
pute the required rotation for the transceiver to establish the
LOS by properly accommodating the rotation of the robot itself.
The orientation was initially intended to be obtained via the
magnetic compass of an inertial measurement unit mounted on
the robot; however, the testing environment was surrounded by
many sources of static magnetic interference and despite several
attempts at calibrating and offsetting for these interferences, the
resulting orientation output was too inconsistent and inaccurate
to be useful in this application. We make an assumption that
the magnetic compass approach will be more applicable when
experimenting in an underwater environment. Consequently,
for the experimental results shown here, the orientation data
were captured with the use of NaturalPoint’s OptiTrack motion
tracking system, which used infrared cameras placed at strategic
points above the perimeter of the grid, to illuminate and then cap-
ture the locations of reflective markers attached to a rectangular
sheet of nontransparent acrylic mounted on the mobile node.
During the experiments, OptiTrack would stream its tracked
pose data to the mobile node over Wi-Fi using universal data-
gram protocol packets. This pose data also included the ground
truth position of the MN, which was recorded into the node’s
data log purely for postprocessing analysis. The orientation data
from the motion tracking system had an average error of 0.2°,
which had negligible impact on the localization. However, in
an outdoor (including underwater) environment, the orientation
sensor (compass) will likely have larger errors, in which case one
could use wider angle lens for the LED to increase its angular
field of coverage but at the cost of its light intensity.

B. Effect of Kalman Filter-Based Position Prediction

To further demonstrate the importance of Kalman filtering-
based position prediction to the success of the proposed localiza-
tion scheme, an alternative implementation of the system where
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mobile node’s position was not used for localizing. The system perceives
its location to be the measured position computed from the bearing  Fig. 16. Comparison of the ground truth and estimated positions of the
angles. experiment.
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Fig. 15. Trajectory plot of one of the trials where Kalman filter-based
prediction of the mobile node’s position was used for localizing. The
system perceives its location to be the Kalman filtering-based estimated
position.

position prediction was not used was evaluated. In this imple-
mentation, the latest measured position, instead of the predicted
position, was used as the basis for the LOS establishment for
the mobile node and the base nodes. In particular, the previously
measured position was used to generate the angles in which the
base nodes and mobile node would use for centering the scans
and LED light shining, respectively.

In this comparative experiment, the two versions were tasked
to localize the mobile node as it traversed a short linear trajectory
parallel to the base nodes, from [~3.0, —6.0]7 to [3.5, —6.0]7
in increments of 0.5 grid units in the positive = direction, a
total of 13 steps. Three trials for each of the two versions were
conducted. Figs. 14 and 15 show the trajectory plots from one of
the trials of the versions without and with the use of the predicted
positions, respectively. Both figures compare the position that
the system perceives to be its location against the corresponding
ground truth. For each position, the corresponding step number
of the trajectory is placed next to it. For the version of the system
without prediction all of the trials were unable to complete all
13 steps. Consequently, the trial shown in Fig. 14 can only show
the ground truth positions for the steps at which it was able to
localize, since it only receives the ground truth data with the
orientation angle at the start of each step of the trajectory, and
the remaining points are filled in by the intended points from
the designed trajectory. On the other hand, all 3 trials of the
version with prediction were able to complete all 13 steps of
this trajectory.
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Fig. 18. Measured angle error is within the limits described by the
simulation analysis.

C. Results—Localization Around a Closed Loop

Two experimental trials of the system, with the mobile node
following a simple loop trajectory, were conducted with the goal
of showing the localization accuracy of the system when it was
revisiting points of the trajectory it had already traversed and
localized. Figs. 16-18 show the results obtained during one of
these trials. Fig. 16 compares the trajectory points of ground
truth and estimated positions. Fig. 17 shows the measured and
estimated position errors, which are the errors between the mea-
sured (resp., Kalman filter-estimated) position and the ground
truth position, for each step of the trajectory in the experiment.
Both Figs. 16 and 17 show that the proposed method is capable
of localizing the mobile robot around the full trajectory with
an error of less than 2 grid units. These figures also indicate
the system has more difficulty measuring the robot’s position
between the two turning portions of the trajectory in which the
mobile node is the farthest away from the base nodes. Fig. 18
shows the measured angle error for both §; and 6,, which
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indicates that the measurement and filtering scheme is able to
limit the measurement error within £ 3°.

VI. CONCLUSION

This article has presented the algorithm design and system
implementation for, to our best knowledge, the first LED-based
localization scheme with a single-transmitter—single-receiver
setup. A key idea exploited is the use of Kalman filtering, for
predicting the position of the mobile node, to facilitate the
establishment and maintenance of LOS. Simulation analysis
has been presented on how much error in LOS measurement
and knowledge of initial location that the system can withstand
and still report sufficient localization accuracy. Experimentation
shows the significance of the predicted position from the Kalman
filter and how that allows the system to localize dynamically.

As part of our future work, we will explore measurement
redundancies (by using more base nodes) to both tackle the
singularity issue which arises when the MN is collinear with
the Base Nodes and minimize the localization error stemming
from the angle measurement errors. We have adopted a constant
velocity model corrupted with noise to represent the motion of
the robot. Such a seemingly simplistic model is a reasonable
choice since the resulting scheme requires minimal knowledge
about the motion dynamics of the robot. For future work, we
will explore utilizing a rigid body motion model, with constant
linear and angular velocities corrupted with noise, which could
produce more accurate predictions of position (and orientation)
for the robot. Finally, we plan to extend the approach to the full
3-D space and will further improve the hardware and advance
the LED-based localization scheme for the use in the underwater
setting.
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