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Abstract—Autonomous mobile robots operating in areas
with poor GPS and wireless coverage (e.g., underwater)
must rely on alternative localization and communication
approaches. In this article, we present an light-emitting
diode (LED) based system that achieves simultaneous lo-
calization and communication (SLAC), where the line-of-
sight (LOS) requirement for communication is exploited to
extract the relative bearing of the communicating parties
for localization. By using Kalman filtering to obtain the
mobile robot’s predicted position, the system is able to
reduce the overhead of establishing the LOS and, therefore,
significantly improve on the quality of the localization. The
proposed design of the optical localization system is pre-
sented and its effectiveness is demonstrated with extensive
simulation and experimentation in a two-dimensional set-
ting, consisting of a mobile robot and two stationary base
nodes.

Index Terms—Bearing-based localization, dynamic local-
ization, Kalman filtering, light-emitting diode (LED) based
communication.

I. INTRODUCTION

L
OCALIZATION is an essential requirement for the op-

eration of mobile systems (such as robots and vehicles)

and sensor networks. GPS is arguably the most common tool

for acquiring location. However, in many applications (such

as underwater exploration [1] and indoor navigation), GPS

signals are not available. A number of alternative localization

approaches have been developed for mobile robots operating in

areas with poor GPS service, such as computer vision-based

simultaneous localization and mapping (SLAM) [2]–[5] and

inertial measurement-based dead reckoning [6]–[8]. SLAM typ-

ically requires significant and expensive computing resources for

processing the visual or Lidar images [9], while dead reckoning

suffers from sensor drift issues [5], [10], [11].
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Although there are other localization methods that can work

without GPS signals, their use underwater tends to be achieved

through acoustic signals. While acoustic techniques are cur-

rently predominant in underwater localization and communi-

cation, they present a number of challenges because of limited

bandwidth, long propagation delays, and multipath effect, which

result in low data rates and low signal reception reliability [12],

[13]. Moreover, devices that implement acoustic-based methods

tend to be bulky and power-hungry, making them unsuitable for

small underwater robots with limited resources [1].

Optical communication systems based on light-emitting

diodes (LEDs) are an up-and-coming alternative to acoustic-

based methods. In recent years, LED systems have shown

promise in high-rate, low-power underwater communication

over short-to-medium distances [14], [15]. For example, the

system developed by Brundage [16], which used a Titan blue

lighting LED, achieved communication rates of roughly 1 Mb/s

at a distance of 13 m, while Doniec [17] demonstrated data rates

of 4 Mb/s at a distance of 50 m with their communication system,

AquaOptical II, that used an array of 18 Luxeon Rebel LEDs for

the transmitter. However, a downside of LED-based communi-

cation is the requirement of near line of sight (LOS) between

the transmitter and the receiver. The latter challenge has been

addressed in several ways, including the use of redundant trans-

mitters/receivers [18]–[21] and active alignment [15], [22], [23].

Indoor LED-based localization and communication systems

have been developed by using visible light communication

(VLC) systems, in which the overhead lights used to illuminate

the room can also be used as the transmission medium for

both data and localization purposes [24]. Nguyen et al. [25]

developed a VLC localization approach that integrates the angle

of arrival and received signal strength of the light to compute

the location, getting a minimum simulated error of 10 cm.

Qiu et al. [24] achieved a localization accuracy of 0.56 m

using a fingerprint matching approach, where fingerprints are a

mapping of position and the light intensities of each light in the

environment, and each light transmits a unique beacon pattern

allowing the localizing robot to associate a light intensity with

a particular overhead fixture. While VLC-based localization

and visible light positioning approaches are an alternative to

radio-frequency methods indoors and can work underwater in

theory, they are not practical for a typical aquatic environment

due to the difficulty in illuminating the significantly larger and

more complex environment.
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An underwater LED-based localization and communication

system was presented by Rust and Asada in [20]. This ap-

proach relies on a nonlinear light intensity model to calculate

the distance between the transmitting LED and the receiving

photodiode. However, such an approach is prone to error since

light intensity depends on both distance and receiver–transmitter

alignment. The method in [20] also uses a photodiode array to

determine the angle of the light source, which increases the size

and complexity of the system.

A. Main Contribution

In this article, we present an alternative concept of LED-based

simultaneous localization and communication (SLAC), where

the LOS requirement in LED-based communication is exploited

to extract the relative bearing of the two communicating parties.

Such bearing information for a mobile robot, with respect to mul-

tiple nodes with known locations (called base nodes or beacons),

can then be used to infer the location of the robot via triangu-

lation. In particular, we consider the single-transmitter–single-

receiver setup with active alignment for the LED communication

system [21], [22] due to its advantages in small footprint and

low power, compared with systems with multiple transmitters

and/or multiple receivers. However, the very directional nature

of such a setup, along with the mobile nature of the target

(robot), presents a significant challenge in establishing the LOS

for bearing measurement and communication.

A key contribution of this article is the proposal of Kalman

filter-based position prediction for the mobile robot, to facilitate

the establishment and maintenance of the LOS between the base

nodes and the robot. Extensive simulation and experiments have

been conducted to evaluate the proposed approach, with a com-

parison to an alternative approach not using Kalman filtering-

based location prediction. In particular, the robustness of the

proposed approach with respect to the LOS angle measurement

error and the uncertainty in the robot’s initial position is assessed

in simulation. The simulated results show that the system can

localize effectively when the angle measurements have an error

with a standard deviation of 3.0◦ or less. Experimental results

show that the system is able to consistently localize the mobile

node and maintain tracking of the robot indefinitely. In contrast,

a version of the approach that does not use the Kalman filtering-

based position prediction is only able to localize the mobile node

for a relatively small number of steps of the trajectory before

losing track of its position.

Some preliminary results of the proposed approach were re-

ported at the 2016 and 2017 ASME Dynamic Systems and Con-

trol Conferences [26], [27]. In [26], the LED-based SLAC con-

cept with simulation and rudimentary experimentation was first

introduced; in [27], a more systematic procedure of executing

the experiments was introduced to obtain and maintain the LOS.

This article represents a significant extension and improvement

over [26] and [27]; in particular, the enhancements have included

improved hardware for the control and tracking of the mobile

robot, revised algorithms involving additional linear filters for

extracting the LOS angle with higher accuracy, new simulation

results evaluating the robustness of the proposed approach with

Fig. 1. Illustration of the problem setup.

respect to measurement noise and initial estimate uncertainty,

and new experimental results including the comparison with an

alternative approach.

The rest of this article is organized as follows. In Section II,

the proposed scheme, including the basic problem setup and

the Kalman filtering-based prediction algorithm, is presented. In

Section III, the operational protocol for the system is described in

detail. Simulation results are provided in Section IV, followed by

experimental evaluation results in Section V. Finally, Section VI

concludes this article.

II. OVERVIEW OF THE APPROACH

In this section, we outline the major elements of this article.

Section II-A provides a more detailed description of the problem

setup, and Section II-B describes how the Kalman filter is used

for coordinating the LOS angle prediction and scanning.

A. Problem Setup

To simplify the discussion, in this article, the localization

approach is considered in the two-dimensional space. It is as-

sumed that each node is equipped with an optical transceiver

comprised of an LED transmitter and a photodiode receiver, and

that the transceiver is able to rotate a full 360◦. Furthermore,

the node is able to identify at any particular moment the angle

at which its transceiver is facing with respect to a reference

direction such as the east axis identified by a magnetic compass.

Consider a three-node network composed of a pair of base nodes

(with known locations) and a mobile node to be localized, as

illustrated in Fig. 1. Through the LOS measurement, the base

nodes, denoted as BN1 and BN2, respectively, determine the

bearing angles of the mobile node (MN) with respect to a

common x-axis, denoted as θ1 and θ2.

The location of the MN can then be found using the locations

of BN1 and BN2 and the bearing angles θ1 and θ2 as

[

nx

ny

]

=

[

B1x + |V1| cos θ1

B1y + |V1| sin θ1

]

(1)

where [nx, ny]
T is the position vector of the mobile node MN,

B1x and B1y are the respective x and y coordinates for BN1,

and |V1| is the magnitude of vector V1, as shown in Fig. 1, and
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is obtained using the Laws of Sines as

|V1| =
d sin(θ̄2)

sin(θn)
. (2)

Here d is the distance between BN1 and BN2, θ̄2 is the com-

plement of θ2, θ̄2 = 180◦ − θ2, and θn is the angle correspond-

ing to the side BN1–BN2 within the MN–BN1–BN2 triangle,

θn = θ2 − θ1.

Although this localization process seems simple, the task is

involved, especially when the target is mobile. The challenge

comes from the need to have sufficient synchronization and

coordination among all three nodes to produce proper LOS mea-

surements. Otherwise the mobile node could be “spotted” (via

LOS) too infrequently, not at all, or not nearly simultaneously

by both base nodes. Another challenge results from the error

in the measured θ1 and θ2—purely relying on the algebraic

calculation (1) will lead to highly variable (instead of smooth)

estimated trajectories for the mobile node MN. To help address

both challenges, Kalman filtering is proposed for predicting

and estimating the location of the MN, based on the measured

location computed via (1). In particular, the prediction of theMN
location is exploited to significantly reduce the effort searching

for LOS and, thus, enable efficient and accurate localization.

The Kalman filtering algorithm is presented next.

B. Kalman Filtering Algorithm

Kalman filtering is a powerful and computationally efficient

technique for estimating the state of linear systems with Gaus-

sian noises [28]–[31], and it has been widely adopted for estima-

tion and control in various applications including robotics. The

main focus of this article is the maintenance of the LOS between

the base nodes and the mobile node. This is achieved using a

Kalman filter to predict the future location of the robot in order

to generate anticipated angles for transceiver orientation. The

mobile node‘s dynamics are assumed to be sufficiently described

by a constant velocity model corrupted with Gaussian noise,

since it is not practical for the base nodes to have precise prior

knowledge of the mobile node’s movement. While other filtering

schemes can be potentially used, our assumption enables the use

of computationally efficient Kalman filtering for predicting the

mobile node’s position. As demonstrated later in this article,

these predictions are crucial for efficient establishment of LOS

measurement and, thus, the success of the localization scheme.

The dynamics for the mobile node can be represented as

nk+1 = nk + vk∆k + w1,k (3)

vk+1 = vk + w2,k (4)

where nk = [nx,k, ny,k]
T and vk = [vx,k, vy,k]

T are the po-

sition and velocity vectors of the mobile node at the kth time

instance,w1,k andw2,k are independent, zero-mean, white Gaus-

sian noises, and∆k is the kth sampling interval. The observation

zk is the noise-corrupted location measurement, computed based

on (1) and (2), calculated as

zk = nk + w3,k (5)

where w3,k is assumed to be white, zero-mean Gaussian, and

independent of the process noises w1,k and w2,k.

The state vector x̂k of the Kalman filter is defined as

x̂k = [n̂x, n̂y, v̂x, v̂y]
T

(6)

where [n̂x, n̂y]
T and [v̂x, v̂y] are the estimated position and

velocity, respectively, of the mobile node. The equations for the

implementation of the Kalman filter, which are standard [28],

are omitted here for brevity.

At time k, the base nodes perform an angular search process

to ultimately generate the observation zk to be used in the state

estimate update. The angular search process for each base node is

centered about the anticipated values of θ1 and θ2 (recall Fig. 1)

computed from the position component of the predicted state

estimate.

In particular, these anticipated angles θ̂1,k, θ̂2,k are computed

by using

θ̂i,k = cos−1

(

Vbi · Vmi

|Vbi | |Vmi
|

)

, for i = 1, 2 (7)

where

Vb1
=

[

0

0

]

−

[

B1x

B1y

]

(8)

Vb2
=

[

B2x

B2y

]

(9)

Vmi
=

[

n̂−
x

n̂−
y

]

−

[

Bix

Biy

]

, for i = 1, 2. (10)

Here, [B1x, B1y]
T and [B2x, B2y]

T are the locations of the

base nodes BN1 and BN2, respectively, and Vbi · Vmi
is the dot

product between vectors Vmi
and Vbi . The mobile node, in the

meantime, will use its predicted position to calculate the angular

locations of the base nodes relative to itself, and focus its light

along these angles during the angular search.

III. SYSTEM IMPLEMENTATION

The proposed localization method uses the following five-step

procedure.

1) Synchronization: The mobile node waits until it receives

an optical message from one of the base node. The trans-

mitted message contains the latest state estimate from the

Kalman filter, i.e., both the position and velocity of the

mobile node.

2) Movement: Upon receiving the message, the mobile node

moves along its predetermined trajectory for a fixed

amount of time and stops.

3) Measurement: The mobile node uses its recently received

state estimate and orientation data to approximate its

current position and the angular locations of the base

nodes. It will then use this information to shine its LED

light at the base nodes. On the other hand, the base nodes

use the state estimate to predict the mobile node’s next

position and the corresponding angles θ̂1,k+1 and θ̂2,k+1
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from (7) to (10) so each base node can scan the light

coming from the mobile node.

4) Update: After scanning, the collected angles θ1 and θ2 are

used to generate the observed position zk through (1) and

(2), which is then used to update the state vector.

5) Repeat: Repeat Steps 1–4.

At the start of the program, before the first synchronization

sequence, it is assumed that all of the nodes have knowledge

of the initial position and velocity of the mobile node, but such

knowledge could have error. This article will study the impact

of the initial estimate error on the system performance. The

mobile node’s stop-and-go movement ensures that its position

is the same for each of the base node’s scans. This is crucial

to the localization accuracy since the measurement equations

in (1) and (2) assume that the observed angles correspond to

the mobile node at a single location. Overall, it is important

to point out that, because of the synchronization process, this

approach is able to keep a relatively constant sampling time

between the measurements despite the stop-and-go movement

from the mobile node. In particular, the Kalman filter is able to

capture reasonably well the average velocity of the robot.

Finally, we elaborate on the LOS measurement step. The

base node scanning procedure is the light searching process

executed individually on each base node to obtain the angle of

the mobile node relative to that base node. For each base node,

the process involves four consecutive sweeps, composed of two

pairs of clockwise then counterclockwise sweeps, about the

anticipated angle of the mobile node. During regular increments

of each of the sweeps, which have a range of 60◦, the base node

reads and then records the light intensity, associating it with the

corresponding orientation of the transceiver at that particular

instant. After each sweep, the intensities are processed through a

linear filter to smooth out any irregularities in the intensities such

as spikes or dips. The angle associated with the median of the

group of highest intensities is used as the measured angle of that

sweep. This last process helps to mitigate problems associated

with moderate light saturation, where a significant span of angles

have the same or very similar intensity levels, which obscures the

correct angle associated with the direction of the mobile node.

IV. SIMULATION RESULTS

Prior to testing the approach experimentally, simulation was

conducted to examine the performance of the scheme, especially

its robustness against measurement errors and uncertainty in the

initial state estimate.

A. Simulation Setup

The simulated environment had an area defined as x ∈
[−6, 6], y ∈ [−11, 1] in grid units to mimic the physical space

of the experiment, where a grid unit is equivalent to approxi-

mately 23 cm. The base nodes BN1 and BN2 were positioned

at [−3, 0]T and [3, 0]T , respectively. Two different trajectories

for the robot were used. The first was a simple closed loop as

shown in Fig. 2, and the second was a figure-8-shaped loop as

shown in Fig. 3. Each trajectory was composed of a number

Fig. 2. Comparison of the ground truth and estimated positions for one
of the simulated trials using the simple loop trajectory, for the case when
the measurement angles of the base nodes are subjected to Gaussian
noises with a standard deviation of 0.5◦.

Fig. 3. Comparison of the ground truth and estimated positions for
one of the simulated trials using the figure-8-shaped trajectory, for the
case when the measurement angles of the base nodes are subjected to
Gaussian noises with a standard deviation of 0.5◦.

position points, which were used as the ground truth positions

in the simulation.

For the simulated measurement step, the orientation value

supplied to the mobile node for adjusting its simulated

transceiver’s direction was obtained by finding the angle be-

tween the 0◦ orientation vector and the vector that points from

the previous to the current ground truth position with an added

zero-mean Gaussian noise, with a standard deviation of 0.5◦, to

simulate the imperfection of a physical orientation sensor. The

“measured” position in simulation is obtained by triangulation

using the simulated measured bearing angles, and the latter are

obtained by corrupting the ground-truth bearing angles with

independent, zero-mean, white Gaussian noise. The amount of

error introduced to these angle measurements was controlled by

changing the standard deviation of the Gaussian noise.

B. Simulation Results

1) Impact of Angle Measurement Error: First the system was

analyzed under different levels of angle measurement error. This

was achieved by ranging the standard deviation of Gaussian

noise introduced to the angle measurements from 0.5◦ to 5.0◦

in increments of 0.5◦. For each level of standard deviation, 100

trials were conducted. To control the randomness so it would be

repeatable, a vector of 100 random seeds was chosen and used for

the corresponding trial number for each of the different levels

Authorized licensed use limited to: Michigan State University. Downloaded on February 28,2021 at 05:19:35 UTC from IEEE Xplore.  Restrictions apply. 



GREENBERG AND TAN: DYNAMIC OPTICAL LOCALIZATION OF MOBILE ROBOT USING KALMAN FILTERING-BASED POSITION PREDICTION 2487

Fig. 4. Average error computed among all of the simulated trials for the
simple loop trajectory for varying amounts of standard deviation in the
Gaussian noise added to the angular measurements of the base nodes.

Fig. 5. Bar graph showing how many of the 100 simulated trials for the
simple loop trajectory were able to track the complete trajectory for each
level of standard deviation of the Gaussian noise added to the angular
measurements of the base nodes.

of standard deviation. Figs. 2 and 3 show the comparison be-

tween the ground truth positions and the corresponding Kalman

filtering-based estimated positions of the robot in a sample run

for the simple loop trajectory and the figure-8-shaped trajectory,

respectively, where the angle measurement error has a standard

deviation of 0.5◦. Fig. 4 shows the average estimated position

error and the measured position error among all of the trials for

the simple loop trajectory, under each level of standard deviation

for the angle measurement error. The estimated (resp., measured)

error is the magnitude of the error obtained by comparing the

estimated (resp., measured) positions with the corresponding

ground truth position. The estimated positions are the output

positions from the Kalman filter, whereas the measured positions

zk are computed directly from the observed bearing angles.

The average errors shown in Fig. 4 were computed using the

mean errors from each trial, which were obtained in each trial

by averaging the estimated and measured errors from all of the

steps of the trajectory the system had reached during that trial.

As the standard deviation of the Gaussian noise gets larger,

fewer number of trials were able to reach all of the steps of

the trajectory. This is reflected in Fig. 5, which shows for each

standard deviation how many of the 100 trials were able to

reach all the steps. Similarly Fig. 6 shows the average measured

and estimated errors from the 100 runs for the figure-8-shaped

trajectory, and Fig. 7 shows the number of trials that were fully

completed for the figure-8-shaped trajectory.

Fig. 6. Average error computed among all of the simulated trials for
the figure-8-shaped trajectory for varying amounts of standard deviation
in the Gaussian noise added to the angular measurements of the base
nodes.

Fig. 7. Bar graph showing how many of the 100 simulated trials for
the figure-8-shaped trajectory were able to track the complete trajectory
for each level of standard deviation of the Gaussian noise added to the
angular measurements of the base nodes.

Collectively the graphs show that the system functions well

when the angular measurement error has a standard deviation

of 2.0◦ or less, as it allows the system to track the mobile robot

for the entire trajectory with a 100% success rate. The system

performance is still largely satisfactory when the standard de-

viation is about 3.0◦. As the standard deviation of the angle

measurement error increases, both the measured and estimated

position errors increase, as expected, and the number of trials

that fail to track the full trajectory rises. We also note that the

estimated position is always slightly more accurate than the

measured position computed directly from the bearing angles.

Finally, the localization performance for the simple loop case

is largely comparable to that for the figure-8-shaped case, with

slight performance degradation for the latter, suggesting that the

proposed scheme is robust to different trajectories for the mobile

robot.

2) Impact of the Error in Initial MN Position Estimation: The

simulation next examined the case where the position of the

mobile node initialized into the state vector had varying amount

of error from the ground truth. Similar to the angle measurement

error case, independent, zero-mean, white Gaussian noises were

added to the x and y coordinates of the mobile node’s initial

ground truth position, to obtain the initial estimate of the po-

sition. As was done in the previous case, the amount of error

introduced to this initial position estimate was controlled by
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Fig. 8. Bar graph showing how many of the 100 simulated trials for the
simple loop trajectory were able to track the complete trajectory for each
level of standard deviation of the Gaussian noise added to the initial
position of the mobile node.

Fig. 9. Bar graph showing how many of the 100 simulated trials for
the figure-8-shaped trajectory were able to track the complete trajectory
for each level of standard deviation of the Gaussian noise added to the
initial position of the mobile node.

changing the standard deviation of the injected noise from 0.5

grid units to 3.0 grid units in increments of 0.5 grid units.

Figs. 8 and 9 show, for each level of the standard deviation,

the corresponding numbers of trials completing all steps of the

trajectory for the simple loop and figure-8-shaped trajectories,

respectively. The trend from these figures indicates that, with

an increased error in the initial position estimate, the number

of runs completing the full trajectory drops. We note that the

system does not have a 100% success rate completing the full

trajectories even when the standard deviation is as low as 0.5

grid units. Analysis of simulation data indicates that the latter

was caused by the relatively big (larger than 1) realizations of

the random variable for those runs.

3) Justification of Gaussian Noise in Position Measurement

Error: The measurement model (5) assumes a Gaussian noise

in the measurement of robot location. This assumption, along

with the assumptions made on the process noise, facilitated the

use of the Kalman filter for position prediction and estimation.

The physical implementation of the position measurement, of

course, is through triangulation using the measured bearing

angles. Next, we justify the assumption in (5) by evaluating

via simulation the measured position error distribution, based

on the statistics of error in the bearing angle measurement. In

particular, the simulation examined the error distribution in the

Fig. 10. Error distribution of the mobile node’s position in terms of x
and y when the angular measurements are corrupted with Gaussian
noise of zero-mean and a standard deviation of 1.96◦.

Fig. 11. Error distribution of the mobile node’s position in terms of x
and y when the angular measurements are corrupted with noise that is
uniformly distributed between [−3.43◦, 3.43◦].

computed position of the mobile node when the ground truth

angular measurements were corrupted with Gaussian noise and

uniformly distributed noise. In simulation the same set of 1000

random location points, uniformly distributed throughout the

simulation area, were used. For each of these location points,

100 samples of the position error were computed based on the

error in bearing angle measurements. Fig. 10 shows the resulting

position error distribution when the bearing angle measurement

was corrupted with a Gaussian noise with a standard deviation of

1.96◦, while Fig. 11 shows the resulting position measurement

distribution when the angle measurement was corrupted with a

uniform noise randomly distributed between [−3.43◦, 3.43◦]. It

can be seen that these distributions resemble well the Gaussian

distributions. In addition, treating the position measurement

error as Gaussian is also supported by the effectiveness of the

proposed localization scheme in both simulation results in this

section and experimental results in the following section.

V. EXPERIMENTAL RESULTS

A. Setup

The transceiver for each node consisted of a single CREE XRE

1 Watt Blue LED (transmitter) and a Blue Enhanced photodiode

(receiver) mounted on a circular PCB board that housed the

transceiver circuitry developed by Al-Rubaiai in [22]. For the
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Fig. 12. Hardware components on each of the nodes.

transceiver to achieve 360◦ rotation, it was connected to the

shaft of a stepper motor, which extended through the hollow

center of a slip ring, allowing the wiring between the PCB circuit

and the embedded controller to rotate freely with the motor.

Fig. 12 illustrates the common hardware components on each

node. The stepper motor was controlled through a Sparkfun Big

Easy Driver, with the step resolution set to a rate of 0.225◦/step.

The orientation of the transceiver was determined by keeping

count of the number of steps rotated and converting back and

forth to degrees when needed.

The main processing unit for each node was an Intel Edison

Board with an Arduino Expansion Board. It controlled the

rotation of the stepper motor, transmission and reception of the

LED signals as well as the processing of the Kalman filter data.

The Intel Edison Boards had a 500 MHz Intel Atom dual-core

processor with 1 GB of DDR3 RAM, and a built-in dual-band

2.4 GHz and 5 GHz Broadcom 43340 802.11 a/b/g/n Wi-Fi

adapter.

The value for the systems’ measurement noise covariance

matrix Rk was calculated prior to the experiments by having

the system try scanning the angles of the mobile node’s position

while the mobile node remained at a fixed location. Comparing

the base node’s measured position against this fixed position

of the mobile node, errors for the x and y coordinates were

computed and then used to generate a covariance matrix using

the formula

R =

[

Rx,x Rx,y

Ry,x Ry,y

]

=
1

K

⎡

⎢

⎢

⎣

K
∑

k=1

(x̃k − µx)
2

K
∑

k=1

(x̃k − µx)(ỹk − µy)

K
∑

k=1

(ỹk − µy)(x̃k − µx)
K
∑

k=1

(ỹk − µy)
2

⎤

⎥

⎥

⎦

(11)

where K is the total number of measurements the base nodes

captured, x̃ and ỹ are the magnitudes of the errors for the x
and y coordinates, respectively, and µx and µy are the average

errors among all of the captured measurements for x and y,

respectively.

All of the experiments were contained within a grid structure

laid out on the floor with blue painters tape, which followed

Fig. 13. Overhead view of the grid floor used in experiments.

the grout line of the tiles. The side length of each tile’s grout

was approximately 23 cm and was used to represent 1 grid unit,

which was the generic unit of length used in the experiments

to measure motion and position, see Fig. 13. The area used in

the experiments was defined asx ∈ [−6, 6], y ∈ [−11, 1] in grid

units, where the x-axis and y-axis run parallel and perpendicular

to the metal beam holding the base nodes, respectively.

The mobile node’s orientation needs to be measured to com-

pute the required rotation for the transceiver to establish the

LOS by properly accommodating the rotation of the robot itself.

The orientation was initially intended to be obtained via the

magnetic compass of an inertial measurement unit mounted on

the robot; however, the testing environment was surrounded by

many sources of static magnetic interference and despite several

attempts at calibrating and offsetting for these interferences, the

resulting orientation output was too inconsistent and inaccurate

to be useful in this application. We make an assumption that

the magnetic compass approach will be more applicable when

experimenting in an underwater environment. Consequently,

for the experimental results shown here, the orientation data

were captured with the use of NaturalPoint’s OptiTrack motion

tracking system, which used infrared cameras placed at strategic

points above the perimeter of the grid, to illuminate and then cap-

ture the locations of reflective markers attached to a rectangular

sheet of nontransparent acrylic mounted on the mobile node.

During the experiments, OptiTrack would stream its tracked

pose data to the mobile node over Wi-Fi using universal data-

gram protocol packets. This pose data also included the ground

truth position of the MN, which was recorded into the node’s

data log purely for postprocessing analysis. The orientation data

from the motion tracking system had an average error of 0.2◦,

which had negligible impact on the localization. However, in

an outdoor (including underwater) environment, the orientation

sensor (compass) will likely have larger errors, in which case one

could use wider angle lens for the LED to increase its angular

field of coverage but at the cost of its light intensity.

B. Effect of Kalman Filter-Based Position Prediction

To further demonstrate the importance of Kalman filtering-

based position prediction to the success of the proposed localiza-

tion scheme, an alternative implementation of the system where

Authorized licensed use limited to: Michigan State University. Downloaded on February 28,2021 at 05:19:35 UTC from IEEE Xplore.  Restrictions apply. 



2490 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 5, OCTOBER 2020

Fig. 14. Trajectory plot of one of the trials where prediction of the
mobile node’s position was not used for localizing. The system perceives
its location to be the measured position computed from the bearing
angles.

Fig. 15. Trajectory plot of one of the trials where Kalman filter-based
prediction of the mobile node’s position was used for localizing. The
system perceives its location to be the Kalman filtering-based estimated
position.

position prediction was not used was evaluated. In this imple-

mentation, the latest measured position, instead of the predicted

position, was used as the basis for the LOS establishment for

the mobile node and the base nodes. In particular, the previously

measured position was used to generate the angles in which the

base nodes and mobile node would use for centering the scans

and LED light shining, respectively.

In this comparative experiment, the two versions were tasked

to localize the mobile node as it traversed a short linear trajectory

parallel to the base nodes, from [−3.0, −6.0]T to [3.5, −6.0]T

in increments of 0.5 grid units in the positive x direction, a

total of 13 steps. Three trials for each of the two versions were

conducted. Figs. 14 and 15 show the trajectory plots from one of

the trials of the versions without and with the use of the predicted

positions, respectively. Both figures compare the position that

the system perceives to be its location against the corresponding

ground truth. For each position, the corresponding step number

of the trajectory is placed next to it. For the version of the system

without prediction all of the trials were unable to complete all

13 steps. Consequently, the trial shown in Fig. 14 can only show

the ground truth positions for the steps at which it was able to

localize, since it only receives the ground truth data with the

orientation angle at the start of each step of the trajectory, and

the remaining points are filled in by the intended points from

the designed trajectory. On the other hand, all 3 trials of the

version with prediction were able to complete all 13 steps of

this trajectory.

Fig. 16. Comparison of the ground truth and estimated positions of the
experiment.

Fig. 17. Measured and estimated position error for each step of the
trajectory.

Fig. 18. Measured angle error is within the limits described by the
simulation analysis.

C. Results—Localization Around a Closed Loop

Two experimental trials of the system, with the mobile node

following a simple loop trajectory, were conducted with the goal

of showing the localization accuracy of the system when it was

revisiting points of the trajectory it had already traversed and

localized. Figs. 16–18 show the results obtained during one of

these trials. Fig. 16 compares the trajectory points of ground

truth and estimated positions. Fig. 17 shows the measured and

estimated position errors, which are the errors between the mea-

sured (resp., Kalman filter-estimated) position and the ground

truth position, for each step of the trajectory in the experiment.

Both Figs. 16 and 17 show that the proposed method is capable

of localizing the mobile robot around the full trajectory with

an error of less than 2 grid units. These figures also indicate

the system has more difficulty measuring the robot’s position

between the two turning portions of the trajectory in which the

mobile node is the farthest away from the base nodes. Fig. 18

shows the measured angle error for both θ1 and θ2, which
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indicates that the measurement and filtering scheme is able to

limit the measurement error within ± 3◦.

VI. CONCLUSION

This article has presented the algorithm design and system

implementation for, to our best knowledge, the first LED-based

localization scheme with a single-transmitter–single-receiver

setup. A key idea exploited is the use of Kalman filtering, for

predicting the position of the mobile node, to facilitate the

establishment and maintenance of LOS. Simulation analysis

has been presented on how much error in LOS measurement

and knowledge of initial location that the system can withstand

and still report sufficient localization accuracy. Experimentation

shows the significance of the predicted position from the Kalman

filter and how that allows the system to localize dynamically.

As part of our future work, we will explore measurement

redundancies (by using more base nodes) to both tackle the

singularity issue which arises when the MN is collinear with

the Base Nodes and minimize the localization error stemming

from the angle measurement errors. We have adopted a constant

velocity model corrupted with noise to represent the motion of

the robot. Such a seemingly simplistic model is a reasonable

choice since the resulting scheme requires minimal knowledge

about the motion dynamics of the robot. For future work, we

will explore utilizing a rigid body motion model, with constant

linear and angular velocities corrupted with noise, which could

produce more accurate predictions of position (and orientation)

for the robot. Finally, we plan to extend the approach to the full

3-D space and will further improve the hardware and advance

the LED-based localization scheme for the use in the underwater

setting.
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