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Bilevel Distributed Optimization in Directed Networks

Farzad Yousefian!

Abstract— Motivated by emerging applications in wireless
sensor networks and large-scale data processing, we consider
distributed optimization over directed networks where the
agents communicate their information locally to their neighbors
to cooperatively minimize a global cost function. We introduce
a new unifying distributed constrained optimization model
that is characterized as a bilevel optimization problem. This
model captures a wide range of existing problems over
directed networks including: (i) Distributed optimization with
linear constraints; (ii) Distributed unconstrained nonstrongly
convex optimization over directed networks. Employing a
novel regularization-based relaxation approach and gradient-
tracking schemes, we develop an iteratively regularized push-
pull gradient algorithm. We establish the consensus and
derive new convergence rate statements for suboptimality and
infeasibility of the generated iterates for solving the bilevel
model. The proposed algorithm and the complexity analysis
obtained in this work appear to be new for addressing the
bilevel model and also for the two sub-classes of problems. The
numerical performance of the proposed algorithm is presented.

I. INTRODUCTION

We consider a class of bilevel distributed optimization
problems in directed networks given as follows:

Iin ;fz(x) st.x € azge%JH ;gl(x), (1)
where we make the following assumptions:

Assumption 1: (a) Functions f; : R" — R are ps—
strongly convex and Lj;—smooth for all <. (b) Functions
gi : R" — R are convex and L,—smooth for all 4. (c) The
set argming cpn ., g;(z) is nonempty.

Here, m agents cooperatively seek to find among the
optimal solutions to the problem mingegn .-, g;(x), one
that minimizes a secondary metric, i.e., 2211 fi(x). Here,
functions f; and g; are known locally only by agent i and
the cooperation among the agents occurs over a directed
network. Given a set of nodes N, a directed graph (digraph)
is denoted by G = (N, E) where £ C N x N is the set of
ordered pairs of vertices. For any edge (i,j) € £, i and j
are called parent node and child node, respectively. Graph
G is called strongly connected if there is a path between
the pair of any two different vertices. The digraph induced
by a given nonnegative matrix B € R™*™ is denoted by
G = (NB,EB), where Ng £ [m] and (j,7) € &g if and
only if B;; > 0. We let Ni8(i) and N3"(i) denote the set of
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parents (in-neighbors) and the set of children (out-neighbors)
of vertex i, respectively. Also, Ry denotes the set of roots
of all possible spanning trees in Gg.

Problem formulation (1) is often referred to as the “selection
problem” and is considered in addressing ill-conditioned
optimization problems where mingern Y .o, gi(x) s
sensitive to data perturbations. In addition, it can be employed
in addressing the following classes of problems.

Special cases of the proposed model: Problem (1) provides
a unifying mathematical framework capturing several existing
problems in the distributed optimization literature. From these,
we present two important cases below:

(i) Distributed linearly constrained optimization in directed
networks: Consider the model given as:

. m Ajx =0b; forall i€ [m],
sER 2z fi(z) st z; >0 forjeJCn], 2)

where A; € R™i*" and b; € R™i are known parameters. Let
problem (2) be feasible. Then, by defining for ¢ € [m],

gi(2) = 3| A = bil3 + 55 ey max{0, —z;}2, (3)

problem (2) is equivalent to (1) (cf. proof of Corollary 1).
(ii) Distributed unconstrained optimization in the absence of
strong convexity: Let us define fi(z) := |z|3/m. Then,
problem (1) is equivalent to finding the least {o-norm
solution of the following canonical distributed unconstrained
optimization problem:

min Y| g, (), (4)

where g;’s are all smooth merely convex (cf. Corollary 2).

Existing theory on distributed optimization in networks:
The classical mathematical models, tools, and algorithms for
consensus-based optimization were introduced and studied
as early as the *70s [12] and ’80s [34], [35], [5]. Of these,
in the seminal work of Tsitsiklis [34], it was assumed the
agents share a global (smooth) objective while their decision
component vectors are distributed locally over the network.
In the past two decades, in light of the unprecedented growth
in data and its imperative role in several broad fields such
as social networks, biology, and medicine, the theory of
distributed and parallel optimization over networks has much
advanced. The distributed optimization problems with local
objective functions were first studied in [19], [25]. In this
framework, the agents communicate their local information
with their neighbors in the network at discrete times to
cooperatively minimize the global cost function. Without
characterizing the communication rules explicitly, this model
can be formulated as ) ;" fi(x) subject to = € X. Here, the
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local function f; is known only to the agent ¢ and X denotes
the system constraint set. This modeling framework captures
a wide spectrum of decentralized applications in the areas
of statistical learning, signal processing, sensor networks,
control, and robotics [9]. Because of this, in the past decade,
there has been a flurry of research focused on the design
and analysis of fast and scalable computational methods to
address applications in networks. Among these, average-based
consensus methods are one of the most studied approaches.
Here, the network is characterized with a stochastic matrix
that is possibly time-varying. The underlying idea is that at a
given time, each agent uses this matrix and obtains a weighted-
average of its neighbors’ local variables. Then, the update is
completed by performing a standard subgradient step for the
agent. Random projection distributed scheme were developed
for both synchronous and asynchronous cases, assuming X £
N~ &; [16], [32]. For the constrained model where X is easy-
to-project, a dual averaging scheme was developed in [10].
The algorithm EXTRA [30] and its proximal variant were
developed addressing X = R™. EXTRA is a synchronous and
time-invariant scheme and achieves a sublinear and a linear
rate of convergence for smooth merely convex and strongly
convex problems, respectively. Among many other works such
as [18], [13], is the DIGing algorithm [24] which was the first
work achieving a linear convergence rate for unconstrained
optimization over a time-varying network. When the graph is
directed, a key shortcoming in the weighted-based schemes
lies in that the double stochasticity requirement of the weight
matrix is impractical. Push-sum protocols were first leveraged
in [22], [23], [26] to weaken this requirement. Recently, the
Push-Pull algorithm equipped with a linear convergence rate
was developed in [27] for unconstrained strongly convex
problems. Extensions of push-sum algorithms to nonconvex
regimes have been developed more recently [29], [20], [33].
Other popular distributed optimization schemes are the dual-
based methods, such as ADMM-type methods studied in [6],
[37], [36], [17], [31], [3]. Most of these algorithms can
address only static and undirected graphs. Moreover, there
are only a few works in the literature that can cope with
constraints employing primal-dual methods [8], [21], [7], [2].
Research gap and contributions: Despite much advances,
the existing models and algorithms for in-network
optimization have some shortcomings. For example, the
problem is often assumed to be unconstrained, e.g., in Push-
DIGing [24] and Push-Pull [27] algorithms that have been
recently developed. Further, the complexity analysis in those
algorithms is done under the assumption that the objective
function is strongly convex. In this work, we aim at addressing
these shortcomings through considering the bilevel framework
(1). Utilizing a novel regularization-based relaxation approach,
we develop a new push-pull gradient algorithm where at each
iteration, the information of iteratively regularized gradients
is pushed to the neighbors, while the information about the
decision variable is pulled from the neighbors. We establish
the consensus and derive new convergence rate statements for
suboptimality and infeasibility of the generated iterates for
solving the bilevel model. The proposed algorithm extends

[27] to address a class of bilevel problems. The complexity
analysis obtained in this work appears to be new and addresses
the aforementioned shortcomings.

Notation: For an integer m, the set {1,...,m} is denoted
as [m]. A vector x is assumed to be a column vector (unless
otherwise noted) and xT denotes its transpose. We use |||
to denote the Euclidean vector norm of z. A continuously
differentiable function f : R™ — R is said to be ps—strongly
convex if and only if its gradient mapping is py—strongly
monotone, i.e., (Vf(z) = Vf(y)" (w—y) > pgllx—y]3 for
any z,y € R". Also, it is said to be L ;—smooth if its gradient
mapping is Lipschitz continuous with parameter Ly > 0,
i.e., for any z,y € R", we have [|[Vf(z) — Vf(y)ll2 <
Ly||z — y||2. We use the following definitions:

x2 [z, ozl YE L, o, Y] €RTFT
f(z) = 2111 fi(z), f(x) £ Z?il fi(z:),
Vf(x) £ [Vfl(xl)v Tt me(xm)]T € R™X™,

Analogous definitions apply to functions g and g, and
mapping Vg. Here, x; denotes the local copy of the decision
vector for agent ¢ and x includes the local copies of all agents.
Vector y; denotes the auxiliary variable for agent i to track the
average of regularized gradient mappings. Throughout, we use
the following definition of a matrix norm: Given an arbitrary
vector norm || - ||, the induced norm of a matrix W € R™*"
is defined as [W]| 2 [[War..... [Wan|]ll-

Remark 1: Under the above definition of matrix norm, it
can be seen we have ||[Ax|| < ||A||||x]|| for any A € R™>*™
and x € R™*P, Also, for any a € R™*! and z € R*", we
have [laz| = ||all ]

2.

II. ALGORITHM OUTLINE

To solve the model (1) in directed networks, due to
the presence of the inner-level optimization constraints,
Lagrangian duality does not seem applicable. Overcoming
this challenge calls for new relaxation rules that can tackle
the inner-level constraints. We consider a regularization-based
relaxation rule. To this end, motivated by the recent success of
so-called iteratively regularized (IR) algorithms in centralized
regimes [40], [39], [14], [1], [15], we develop Algorithm
1. Core to the IR framework is the philosophy that the
regularization parameter \j is updated after every step within
the algorithm. Here, each agent holds a local copy of the
global variable x, denoted by x; j, and an auxiliary variable
Yk 18 used to track the average of a regularized gradient. At
each iteration, each agent 7 uses the ¢th row of two matrices
R = [R;;] € R™*™ and C = [C;;] € R™*™ to update
vectors x; ;. and y; 1, respectively. Below, we state the main
assumptions on the these two weight mixing matrices.

Assumption 2: (a) The matrix R is nonnegative, with a
strictly positive diagonal, and is row-stochastic, i.e., R1 = 1.
(b) The matrix C is nonnegative, with a strictly positive
diagonal, and is column-stochastic, i.e., 1T7c =17. (c) The
induced digraphs Ggr and Ger satisfy Rgr N Rgr # 0.

Assumption 2 does not require the strong condition of a
doubly stochastic matrix for communication in a directed
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Algorithm 1 Iteratively Regularized Push-Pull

1: Input: For all i € [m], agent ¢ sets step-size v, 0 > 0,
pulling weights R;; > 0 for all j € N{(i), pushing
weights C;; > 0 for all j € N&"(i), an arbitrary initial
point z; o € R™ and y; 0 := Vg;(xi0) + XV fi(zio);

2: for k=0,1,... do

32 For all ¢ € [m], agent i receives (pulls) the

vector Tjr — 7YjkY;k Irom each agent j €
NiB(i), sends (pushes) Cyyir to each agent
¢ € N&'(i), and does the following updates:
Zj k1 i= Z;nzl Rij (255 — VjxYjk)

Yik+1 i= E;":l Cijyjk +Vagi(ziks1)

+ M1 Vi(@igt1) — Vai(zik) — M Vfi(zig);
4: end for

network. In turn, utilizing a push-pull protocol and in a
similar fashion to the recent work [27], it only entails
a row stochastic R and a column stochastic matrix C.
An example is as follows where agent 1 chooses scalars
ri,¢; > 0 and sets Ri,j =1/ (|N@ ()| + ;) for j € N2 (i),
R,; = 7“1/(|./\/'i“ ] ‘—l—rz) Coi == 1/ (IN&"(i)| + ¢;) for
e Ng'(i), Ci; == ¢if (INZ" ()| + ¢;), and O otherwise.
Note that Assumption 2(c) is weaker than imposing strong
connectivity on Gg and Gc. The update rules in Algorithm
1 can be compactly represented as the following:

Xp+1 =R (Xp — Y1¥k) , (5)
Yit+1 :=Cyr + Vg(xpt1) + A1 VE(Xp11)
— Vg(xi) — M VE(xz), (6)

where v, > 0 is defined as v, = diag (Y15, - - -, Yim.k)-

III. PRELIMINARIES OF CONVERGENCE ANALYSIS

Under Assumption 2, there exists a unique nonnegative
left eigenvector u € R™ such that 'R = u” and u71 = m
Similarly, there exists a unique nonnegative right eigenvector
v € R™ such that Cv = v and 17v = m (cf. Lemma 1 in
[27]). Throughout, we use the following definitions

Definition 1: For k > 0 and the regularization parameter
Ak > 0, let 2* 2 argmingc, . o) {f ()} € R,
z3, £ argmingcp. {g(z) + Apf(z)} € R We define
the mapping Gi(x) = Vg(x) + \VE(x) € R™*7,
and functions Gj(x) £ L17Gy(x) € R, Gy(z) =
Gi (127) € RY™™, g, £ Gi(zr) € RY™"™ where
T, = LtuTx, € R™™ We let Ly £ L, + A\,Ly and
g2 L lTy € Rlxn Lastly, we define A, £ ‘1 )““ .

Here, x* denotes the optimal solution of problem (1) and

(1>

x5 is defined as the optimal solution to a regularized problem.

Note that the strong convexity of g(x) + A\ f(z) implies
that 23 exists and is a unique vector (cf. Proposition 1.1.2
in [4]). Also, under Assumption 1, the set argmin g(x) is

closed and convex. As such, from the strong convexity of f
and invoking Proposition 1.1.2 in [4] again, we conclude that
x* also exists and is a unique vector. The sequence {73, }
is the so-called Tikhonov trajectory and plays a key role

in the convergence analysis (cf. [11]). The mapping Gy (x)
denotes the regularized gradient matrix. The vector Z; holds
a weighted average of the local copies of the agent’s iterates.
Next, we consider a family of update rules for the sequences
of the step-size and the regularization parameter under which
the convergence and rate analysis can be performed.

Assumption 3 (Update rules): Assume the step-size -y,

and the regularlzatlon parameter \j are updated satisfying:
Yk m and A\, := kj\-l 7 Where 4 = max;e(m) Vj.k
for k > 0, and a and b satisfy the following conditions:
0O<b<a<land a+b<1. Also, let ay > 0% for k>0
for some 6 > 0, where aj £ %'LLT")/]CI/.
The constant § in Assumption 3 measures the size of the range
within which the agents in Rr N Rgr select their stepsizes.
The condition oy, > 64y is satisfied in many cases including
the case where all the agents choose strictly positive stepsizes
(see Remark 4 in [27] for more details). In the following
lemma, we list some of the main properties of the update
rules in Assumption 3 that will be used in the analysis.

Lemma 1 (Properties of the update rules): Under
Assumption 3, we have: {\;}7° is a decreasing strictly
positive sequence satisfying A — 0, ﬁ — 0, Apr1 < Ag
forall k > 0, Ap_y < 525 for k > 1 Where Ay is given
by Def. 1. Also, {’Yk}k,() 1s a decreasing strictly positive
sequence such that 4, — 0 and K—; — 0. Moreover, for
any scalar 7 > 0, there exists an integer K, such that
% < 1+4 79K\ for all k > K.

Remark 2: The proofs of Lemmas 1, 2, and 3 are omitted
to utilize the space. However, for completeness, these proofs
are provided in an extended version of this paper in [38].
Next, we present some key properties of the regularized
sequence {73 } that will be used in the rate analysis.

Lemma 2 (Properties of Tikhonov trajectory): Let
Assumptions 1 and 3 hold and z3, be given by Def. 1.
Then, we have: (i) The sequence {z} } converges to
the unique solution of problem (1), i.e., z*. (ii) There

exists a scalar M > 0 such that for any k£ > 1, we have

* * M
Txe ~ T 9 < [LfAk 1

In the following, we state the properties of the regularized
maps to be used in finding error bounds in the next section.

Lemma 3: Consider Algorithm 1. Let Assumptions 1 and 2
hold. For any k£ > 0, mappings G, G, and gi, given by Def. 1
satisfy the following relations: (i) We have that g, = G (xx).
(ii) We have G (mjk) = 0. (iii) The mapping G (z) is
(Arps)-strongly monotone and Lipschitz continuous with
parameter Ly. (iv) We have ||7r — gk|l2 < L—\ﬂ% %k — 12|,
and [ gill> < Lil|zi — a3, |
We state the following result from [27] introducing two matrix
norms induced by matrices R and C.

Lemma 4 (cf. Lemma 4 and Lemma 6 in [27]): Let
Assumption 2 hold. Then: (i) There exist matrix norms
|- |lr and | - || such that for og 2 HR— 1u”

and
R

H we have that og < 1 and o¢ < 1. (ii)

There exist scalars 0Rr,2,0C,2,0R,C;0c,r > 0 such that
for any W € R™*", we have |[W|r < drz2||W]|2,

oc S HC
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Wle < dca2llWl2. [Wlr < drclWlec.
Wle < JderlWr, [W]2 < [W]r, and
(W2 < [W]lc.

IV. CONVERGENCE AND RATE ANALYSIS

We analyze the convergence of Algorithm 1 by introducing
the errors metrics ij+1 - x§k| o Ixe+1 — 1Zkt1l|Rs
l¥k+1 — vUrt1llc. Of these, the first term relates the
averaged iterate with the Tikhonov trajectory, the second term
measures the consensus violation for the decision matrix, and
the third term measures the consensus violation for the matrix
of the regularized gradients. For k > 1, let us define Ay as

T
A 2 (135 — 25, s 6 — 17l lly — uykncl . We
begin by deriving a system of recursive relations for the three
error terms provided below. The proof is provided in the
extended version of this paper [38].

Proposition 1: Consider Algorithm 1 under Assumptions
1, 2, and 3. Let oy, and 4 be given by Assumption 3, and
co £ e |[T- iulTHc. Then, there exist scalars M > 0,
Bg > 0, and an integer K such that for any £ > K, we
have Ak+1 < HpAj + hp where Hp = [Hij,k}gxg and
hi = [hi k]3x1 are given as follows:

Fellull2
m )

. axLi ._
Hiyg=1—progy, Hizyp = 52k Higy =

Hoy g :
Hos = orY0R,c, Hsz i := oc + coLiyk||R]|2,
Hsy = coLyi (3k||R]|2||v||2 Lk + 2¢/mAy),

Hanp := coL (IR = T, + 40 R Ivl2 25 + 24 ),

MAy,—
hy g Mo
1,k wp 0

orVkLi|[V|r, Hazk = or (1 +%HVHR%>7

MorAr Li|lvr A1
— 1

ha i = 1r

hai = coLn (GelRI2[VlloLe + vmAy + 2555 ) Ao
Next, we derive a unifying recursive bound for the three
error terms introduced earlier. The proof is provided in the
extended version of this paper in [38].

Proposition 2: Consider Algorithm 1. Let Assumptions 1,
2, and 3 hold. Then, there exists an integer X > 1 such that
for any k£ > K, the following holds:

@) [|Agsill2 < (1 —0.5uparp)||Akll2 + OAgk_1, where

© = max {1,0r%0Lo[¥|Ir, coLo (o[ R|2[[¥[[2Lo
+v/mhg + /LfCOBg/M)} \/gM/Mf.

(b) There exists a scalar B > 0 such that ||Ag|l2 < %.
Our first main result is provided below where we derive a
family of convergence rates for the bilevel formulation (1).
Theorem 1 (Rate statements for the bilevel model):
Consider problem (1) and Algorithm 1. Let Assumptions 1,
2, and 3 hold. Then, we have the following results:
(a) We have limp .., Zr = z*. Also, the consensus
violation of x;, and y}, characterized by ||Xx+1 — 1Zx+11||r
and ||yr+1 — VUr+1||c. respectively, are both bounded by
O (1/k*=2~") for any sufficiently large k.
(b) We have f(z;,)— f(z*) < Ql(Lg;r)“’Lf) 357 for some
Q; > 0 and any sufficiently large k.

MAk_1

© g(jk) - g(LU*) < QQ(LQ;)\OLIF) k2721a72b + A[})ﬂ%s for
Q5,93 > 0 and any sufficiently large k.

Proof: (a) From Lemma 2(a), we have that {z3, }
converges to x*. Moreover, from Proposition 2(b), we have
that |7, — @}, | [|2 converges to zero. Therefore, we have
limy,_,00 T, = «*. To derive the bounds for ||x, — 1Z4|| g
and |y, — vJi|| . from the definition of A}, in Proposition
2, we can write: [x; — 1Z;|lg < [Akl2 = O (K7*7P).
Similarly, we obtain ||y — vijillc = O (K'~*7°).

(b) Consider the regularized function g(z) + Axf(x). Note
that it is Lj;-smooth, where Lj, £ Ly + A Ly. Since xj{k is
the minimizer of g(x) + Arf(x), we have z € R™:

9(@) + Mef (@) — g (23,) — M f (a5,) < &= ||lo — a3, ||5-

Also, we can write that g (z} ) + M f (z3,) < g(2%) +
Axf (z*). Combining the preceding two relations and
substituting = by Tpi1, we obtain g (Tri1) — g(z*) +
Mk (f (Tg1) = £ (2%)) < B [[Zrar — 25, ||, - Applying the
bound from Proposition 2(b), we obtain:

9 (Trg1) — g (@) + A (f (Tgr) — [ (27))

< W@’ﬂb for all k > K. 7)

Note that from the definition of x* in Def. 1, we have
g (ZTr41) — g (x*) > 0. This implies that for all £ > X:

f (jk—&-l) - f (x*) < (L;}iz) (k+1)21—2a73b'
Therefore, the desired relation holds for Q; £ %j.
(c) From part (a), we know that {Z;} converges to z*. This
result and that f is a continuous function imply that there
exists a scalar Qg > 0 such that |f (Zp+1) — f (z*)] < Qs.
Thus, from the inequality (7) and the update rule for Ay:

_ 2
9 (Zpt1) —g(a*) < (LOQB ) (k+1)21—2a—2b + (;?:fl\())ba

for all k¥ > XK. Therefore, the desired relation holds. |
In the following, we present the implications of the results
of Theorem 1 in solving the constrained problem (2).
Corollary 1 (Rates for the linearly constrained model):
Consider problem (2) and Algorithm 1 where g;(z) is defined
by (3). Let the feasible set be nonempty and Assumption 1(a)
and Assumption 2 hold. Suppose Assumption 3 holds with
a:=0.2 and b := 0.2 — ¢/3 where € > 0 is a sufficiently
small scalar. Then, we have limy_, ., x = =* and for any
sufficiently large k:
(a) We have [xj11 — 1Zp41|lr = O (1/k%6+</3), and
[Yht1 = Vs llg = O (1/R00T</3).
(b) We have f(zx) — f(z*) = O (1/k' 7).
(c) We have [|[Az; — b3 = O (1/k%27</3) where A £
[AT .. AT]" and b 2 [b7,... 7]

Proof: First, we show that problem (2) is equivalent to
problem (1). Let X; and X5 denote the feasible set of problem
(1) and (2), respectively. Suppose £ € X; is an arbitrary
vector. Thus, we have & € argmingepn 3 > i |Ajz—bil|3+
3 2 jey max{0, —z;}*. From the assumption X # 0,
there exists a point z satisfying AZ = b and z; > 0
for all j € J. This implies that the minimum of the
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function 3 > | [|Aiz — bill5 + 50 D0 max{0, —z;}7 is
zero. Therefore, £ must satisfy Az = b and z; > 0 for
all j € J, implying that £ € Xo. Next, suppose & € Xy
is an arbitrary vector. Thus, we have 2 37" | ||A;& — b;]|3 +
= eq max{0, —#;}*> =0 implying that Z is a minimizer
of the I A — b3 + Z]ejmaX{O —z;}2.
Therefore, we have z € X;. We conclude that X; = X5 and
thus problems (1) and (2) are equivalent. Next, we show that
Assumption 1(b) is satisfied. From the definition of function
g; by (3), it is not hard to show that Vg;(x) indeed exists and
Vgi(z) = AT (Ajz — b;) — Zjejmax{() —x;}e;. Note
that the mapping A7 (A;x — b ;) is Lipschitz with parameter
p (AiTAi) denoting the spectral norm of AT A;. Also, it
can be shown that the mapping Z e max{O —z;}e;

is Lipschitz with parameter —— (proof omitted). Thus,

we conclude that Assumption l(b) is met for L, £

max;c(m) p (A7 Ai) + —=. Therefore, all conditions of
Theorem 1 hold. To obtain the rate results in part (a), (b),
(c), it suffices to substitute a by 0.2 and b by 0.2 — £ in the
corresponding parts in Theorem 1. [ ]
Lastly, we present the implications of the results of Theorem
1 in addressing the absence of strong convexity. The proof is
in [38].

Corollary 2 (Rates for problem (4)): Consider problem
(4) and Algorithm 1 where we set f;(z) := |z|3/m. Let
Assumption 1(b), 1(c) and Assumption 2 hold. Suppose
Assumption 3 holds with ¢ := 0.4 and b := 0.4 — € where
€ > 0 is a sufficiently small scalar. Let xj, denote the
least ¢5-norm optimal solution of problem (4). Then, for
any sufficiently large k:

(a) We have [xp11 — 1Zpyillr = O (1/k°2%€) and

IYk+1 — VTrt1llc = O (1/k0.2+e).
(b) We have ¢(Zx) — g (x}‘2) =0 (1/k0-4—6) and that ||74 —
23,113 = O (1/k%).

V. NUMERICAL RESULTS

(1) Distributed sensor network problems: We first compare
Algorithm 1 with the Push-Pull algorithm [27] in a sensor
network example. We consider the unconstrained ill-posed
problem mingegn o, ||lz: — Hiz||3, where H; € R
and z; € R? denote the measurement matrix and the noisy
observation of the i sensor. Due to the challenges raised
by ill-conditioning and also the lack of convergence and
rate guarantees, Push-Pull algorithm needs to be applied
to a regularized variant of the problem. To this end, in
the implementation of the Push-Pull scheme, we use an /o
regularizer with a parameter 0.1. Accordingly, in Algorithm
1, we set Ao := 0.1. We employ the tuning rules according to
Corollary 2, while a constant step-size is used for the Push-
Pull method. We generate H; and z; randomly and choose
m = 10, n = 20, and d = 1. We generate matrices R and C
from the same underlying graph with two different directed
graphs (see Figure 1). Weuse R =1 — 5 dmx Ly where Lg
denotes the Laplacian matrix and d;** denotes the maximum
in-degree. We use the same formula for C using maximum
out-degree.

Directed star graph Directed ring graph

----- Push-Pull : wees PUSh-PUII
—— Algorithm 1 b

—— Algorithm 1

xk/m)

1fi (IT

m

ka2 Ln3;

----- Push-Pull
—e— Algorithm 1

=+ Push-Pull
== Algorithm 1

117

m

Lonk. —

Iterations Iterations

Fig. 1: Algorithm 1 vs. regularized Push-Pull algorithm under
different choices of R and C.

Insights: Figure 1 shows the comparison of the two

schemes. We compare objective function values and consensus
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——Xg|| - In

violations. For the latter, we use the term ka —
terms of the objective function value, Algorithm 1 performs
significantly better both cases.

(2) Distributed ill-conditioned linear inverse problems:
Here g(z) := 1", ||Aiz — ;|3 and f(z) := 1||z||3, where
A; € R™™ and b; € R? denote the locally known 3 block
of the Toeplitz blurring operator and the given blurred image,
respectively. Figure 2 shows the progress of deblurring across
the 9 agents over a directed ring graph.

a 'y | -
. U y
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| blocks and distribute [ |, [ ] 1
among the agents
.

The blurred image Initial dmnbuted blocks After 5 iterations

Ll RNE pae
fi . NS SR
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After 10 iterations After 102 iterations After 10% iterations

|

Fig. 2: Performance of IR-PushPull in distributed image
deblurring using 9 agents over a ring digraph

(3) Distributed linear SVM: Consider a linear SVM where
D £ {(ug,ve) € R" x {—1,+1} | £ € S} denotes the data
set and S £ {1,...,s} denotes the index set. Let S be
partitioned into S, and S, randomly. Let S; denote the
data locally known by agent ¢ where U]” ; S; = S,,,,. Consider
the following primal SVM model:

2 W(mTue-i-b)Zl—Zb
=5 + ZEESi Ze) S't'z,go, VLES;, Vig[m],

®)

min 357", (57
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Fig. 3: IR-PushPull vs. centralized scheme for SVM: 10
agents, 300 training sample size, and 500 testing sample size

where € R™,b € R,z € RlSwnl 5 > 0. Figure 3 shows
the implementation of IR-PushPull on directed line and star
graphs with m := 10 and 7 := 0.05.

Insights: IR-PushPull performs very well compared to the
centralized variant. This is examined both in terms of
suboptimality and infeasibility metrics in different network
topology settings.
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