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An Incremental Gradient Method for Large-scale Distributed
Nonlinearly Constrained Optimization

Harshal D. Kaushik! and Farzad Yousefian?

Abstract— Motivated by applications arising from sensor
networks and machine learning, we consider the problem of
minimizing a finite sum of nondifferentiable convex functions
where each component function is associated with an agent and
a hard-to-project constraint set. Among well-known avenues to
address finite sum problems is the class of incremental gradient
(IG) methods where a single component function is selected
at each iteration in a cyclic or randomized manner. When
the problem is constrained, the existing IG schemes (including
projected IG, proximal JAG, and SAGA) require a projection
step onto the feasible set at each iteration. Consequently, the
performance of these schemes is afflicted with costly projections
when the problem includes: (1) nonlinear constraints, or (2) a
large number of linear constraints. Our focus in this paper lies
in addressing both of these challenges. We develop an algorithm
called averaged iteratively regularized incremental gradient

(aIR-IG) that does not involve any hard-to-project computation.

Under mild assumptions, we derive non-asymptotic rates of

convergence for both suboptimality and infeasibility metrics.

Numerically, we show that the proposed scheme outperforms
the standard projected IG methods on distributed soft-margin
support vector machine problems.

I. INTRODUCTION

We consider a finite sum minimization subject to nonlinear
inequality and linear equality functional constraints as follows:

fl@) =30, fil)

subject to  h;(z) <0

minimize (P)
zeR™

forall i € {1,...,m},

Az =b; forall s € {1,...,m},
27 >0 for all j € J,
e X,

where the component functions f; : R — R and h; : R® —
R are nonsmooth convex, A; € R%*" and b; € R%, for all
i€{1,...,m}. Also, X C R" is an easy-to-project convex
setand J C {1,...,n}. The information about f;, h;, A;, and
b; is only known by agent ¢, while the sets X and J are known
by all the agents. Parameters n, m, and p £ Z:’;l d; are
possibly large. Problem (P) arises in a breadth of applications
including expected loss minimization in statistical learning
[1] where f; is associated with a data block, as well as
distributed optimization in wireless sensor networks where
fi represents the local performance measure of the i agent
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[2]. One of the popular methods in addressing finite sum
problems, in particular, in the unconstrained regime, is the
class of incremental gradient (IG) methods where utilizing
the additive structure of the problem, the algorithm cycles
through the data blocks and updates the local estimates of
the optimal solution in a sequential manner [3]. While the
first variants of IG schemes find their roots in addressing
neural networks as early as in the *80s [4], the complexity
analysis of these schemes has been a trending research topic
in the fields of control and machine learning in the past two
decades. In addressing constrained problems with easy-to-
project constraint sets, the projected incremental gradient
(P-IG) method and its subgradient variant were developed
[5]. In the smooth case, it is described as follows: given an
initial point xo; € X, where X C R™ denotes the constraint
set, for each k& > 1, consider the following update rule:
Tpit1 = Px (xr; —wVfi(zr,)) foralli=1,...,m,
Tha1,1 = Thym+1 for all k£ > 0,

where P denotes the Euclidean projection operator and is
defined as Px(z) £ argmin . y||z — 2|2 and 7, > 0 is
the stepsize parameter. Recently, under the assumption of
strong convexity and twice continuous differentiability of
the objective function, the standard IG method was proved
to converge with the rate O(1/k) in the unconstrained
case [6]. This is an improvement to the previously known
rate of O(1/Vk) for the merely convex case. Accelerated
variants of IG schemes with provable convergence speeds
were also developed, including the incremental aggregated
gradient method (IAG) [7], [8], SAG [1], and SAGA [9].
While addressing the merely convex case, SAGA using
averaging achieves a sublinear convergence rate, assuming
strong convexity and smoothness, this is improved for non-
averaging variants of SAGA and IAG to a linear rate.
Existing gap. Despite the faster rates of convergence in
comparison with the standard IG method, the aforementioned
methods require an excessive memory of O (mn) which limits
their applications in the large-scale settings. Another existing
challenge in the implementation of these schemes lies in
addressing the hard-to-project constraints. Contending with
the presence of constraints, projected (and more generally
proximal) variants of the aforementioned IG schemes have
been developed. However, the performance of these schemes
is afflicted with costly projections when the problem includes:
(1) nonlinear constraints, or (2) a large number of linear
constraints. In the area of distributed optimization over
networks, addressing constraints has been done to a limited
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extent through employing duality theory, projection, or penalty
methods (see [10], [11], [12], [13], [14]). We also note that a
celebrated variant of the dual based schemes is the alternating
direction method of multipliers (ADMM) (e.g., see [15], [16],
[17], [18], [19]). Despite the recent advancements in this area,
most ADMM methods cannot address inequality constraints
with a separable structure as in (P). Also, ADMM schemes
often work under the premise that the communication graph
is undirected. Indeed, despite the wide-spread application of
the theory of duality and Lagrangian relaxation in addressing
constrained problems in centralized regimes, there have been
a limited work in the area of distributed optimization that can
cope with hard-to-project constraints (see [20], [11], [12] and
the references therein). Nevertheless, the problem formulation
(P) is not addressed in the aforementioned articles. Recently,
primal-dual algorithms are proposed for finite sum convex
optimization problems with conic constraints [11], [21].
A recent work [22] introduced primal-dual incremental
gradient method for nonsmooth convex optimization problems.
Moreover, iterative regularization (IR) has been employed
as a new constraint-relaxation strategy in regimes where
addressing the constraints are challenging (e.g., see [23],
[24], [25], [26]). Our work in this paper has been motivated
by the recent success of the IR approach. To this end, our
goal lies in employing the IR approach to develop an IG
algorithm that can address formulation (P) without requiring
any hard-to-project computation.

Main contributions. This work enables IG methods to
address large-scale nonlinearly constrained optimization prob-
lems efficiently. Our main contributions are as follows:

(i) We develop an algorithm called averaged iteratively regu-
larized incremental gradient (aIR-IG) where at each iteration,
a suitably defined stepsize and a regularization parameter are
updated. Importantly, the proposed algorithm circumvents
the hard-to-project computation. It is an incremental gradient
scheme in the sense that at each iteration, only the local
information of f;, h;, A;, and b; is used by agent i and
agents communicate through a cycle graph.

(i) Under mild assumptions, we derive non-asymptotic
rates of convergence for both suboptimality and infeasibility
metrics. This is done through a careful choice of the stepsize
and the regularization parameter that are updated iteratively.
Importantly, the rate analysis in this paper is done under
much weaker assumptions for functions f; in comparison
with standard IG methods.

Outline. The remainder of the paper is organized as follows.
Section II includes the algorithm outline for addressing
problem (P). We also provide the main assumptions and the
required preliminaries. Section III includes the convergence
analysis of the proposed scheme. Section IV contains the
numerical implementation where we compare the proposed
algorithm with the standard IG methods.

Notation and preliminary definitions. A function f : R™ —
R is said to be in the class Cﬁz if f is p-strongly convex in
R™, k times continuously differentiable, and its r derivative
is Lipschitz continuous with constant L. A nondifferentiable
p-strongly convex function f : R™ — Ris in the class C’g. For
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any vector x € R™, we use ||z| to denote the £-norm and z(7)
is used for denoting the j™ component of . For problem (P),
we define matrix A € RPX™ as A £ (A{,Ag, . ’A%)T

and vector b € RP* as b £ (b] 0], ..., bﬁ)T. To produce
a diagonal matrix in R™*™ from vector x, we use the notation
diag(x). For a convex function f : R™ — R with the domain
dom(f) and any z € dom(f), vector Vf(z) € R™ with
f@)+Vf(z)T(y—z) < f(y) forall y € dom(f), is called a
subgradient of f at z. We let df(x) denote the subdifferential
set of function f at x. Euclidean projection of vector = onto
a closed convex set X is denoted by Px(z). We let [m]
abbreviate the set {1,...,m}.

II. ALGORITHM OUTLINE

In this section, we first provide the main assumptions on
problem (P) and present the outline of the algorithm. Then,
we present a few preliminary results to be used in the analysis.

Assumption 1 (Properties of problem (P)). Suppose:

(a) Component function f; : R™ — R is merely convex and
subdifferentiable with bounded subgradients for all i € [m).
(b) Function h; : R™ — R is convex and subdifferentiable
with bounded subgradients for all i € [m].

(c) The set X is compact and convex.

(d) The feasible set of problem (P) is nonempty.

An underlying idea in development of Algorithm 1 is to
define a regularized error metric.

Definition 1. Consider the following term for measuring
infeasibility for an agent i:
max{ —z()
8i(2) 2 YA — bilP + 1 () + 5, 2,
where b} (z) £ max{0, h;(z)} for i € [m] and all x € R".
Further, we define ¢(x) = > | ¢i(x).

Then, for each agent 7, we consider a regularized metric
defined as ¢;(x)+ny f;(z) at iteration k. This metric captures
both infeasibility and objective component function of the
agent. Next, we derive a subgradient to this metric.

Let Oh; (z) denote the subdifferential set of the function
h; at x. Consider the vector Vh; (z) defined as VA (z) £
R (x)Vh;(x) where Vh;(z) denotes a subgradient of func-
tion h; at x. Then, from the definition of subgradient mapping
and the definition of /. (), we have that Vi (z) € O (z).
Next, consider the function > jey max {0, —zW ). A

subgradient to this function is the vector HT(LI) where 1~ ()
is defined a column vector € R™ and the value of any
component i € {1,...,n} is —1 when 2 < 0 and i € J,
otherwise that component is 0. Let xj; in R™ denote the
iterate of agent ¢ at iteration k. From the above discussion,
we can conclude that the subgradient of the regularized error
metric for agent i, is given as follows:

bi) + Vh (zp,) + Lik) + eV fi (xr3) -

AT (Aizyi — c
We are now ready to present the outline of alR-IG
scheme presented by Algorithm 1. At each iteration, agents

update their iterates in a cyclic manner by employing
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the aforementioned subgradient. Each agent uses its local
information including subgradients of functions f;, h;, as
well as matrix A; and vector b;. Here ~; and 7 are the
stepsize and regularization parameters, respectively. These
parameters are updated at each iteration. This, indeed, is
important because the convergence and rate analysis mainly
depend on the choice of v and 7. The key research question
lies in finding suitable update rules for the two sequences
so that we can achieve convergence and rate results. For the
rate analysis, we employ averaging which is characterized by
stepsize 7y and a scalar 0 < r < 1.

Algorithm 1 Averaged Iteratively Regularized Incremental
Gradient (alR-IG)

1: Input: g € R", ¢ := xo, Sy = ’}/6, and 0 <r < 1.
2. for k=0,1,...,N—1do

3: Let x) 1 := x), and select v, > 0, n > 0

4: fori=1,...,m do

Tk i+l = Px (l’kvi — Yk (A7T (Aillfk,i — bz)
+Vh (2g,) + L) 4 vy, (l‘lm)»

m

5: end for
6: Set Th41 £ Thkom+1-
7: Update the weighted average iterate as
_ SkZTk+Ypy1Tht1
Tht1 = #, where Si11:= Sk 4+ V541
8: end for

9: return: Ty.

In the f9110wing, we claim the boundedness of the sub-
gradients V¢;(z) and V f;(x) which will be used in the rate
analysis in the next section.

Remark 1. Under Assumption 1, from compactness of the
set X, the term A7 (A;x — b;) is bounded. Also, from the
boundedness of subgradients of function h; and continuity
of the function h; that is implied from convexity of h;, we
can claim that the subgradient Vi (z) £ h (x)?hl(x) is

L

bounded on the set X. Consequently, we have that V¢, (x) =
AT (A — b;) + VA (z) + -2 s a bounded subgradient
of ¢; for all z € X. This implies that there exists a scalar
C > 0 such that for all z € X, we have:

S Véi(z) <C and Vey(z) < € for all i € [m).

Remark 2. From Assumption 1, taking into account the sub-
differentiability and boundedness of subgradient of function
fi, there exists a scalar C'y > 0 such that for all z € X,

Yy H@fz (CU)H < Cy and H@fl (x)” < % for all 4 € [m].

Remark 3. Taking into account Assumption 1, from Theorem
3.61 in [27], functions f; and ¢; are Lipschitz continuous over
set X. Therefore for z,y € X, and i € [m], | f;i(z)— fi(y)] <

C
il =yl and |gi(z) — ¢i(y)] < Sllw —yll.

Next, we show that the sequence Zj, employed in Algo-
rithm 1, is a well-defined weighted average.

Remark 4. From Algorithm 1, the average of the iterate

can be written as Ty ; = Zf:o A\t xTt, where A, p =
—+—— for ¢t €{0,...,k} denote the weights. This can
Z' 07;‘

]:

be shown using induction on k& > 0.

In this work, the average of the m™ agent’s iterate is taken.
We believe the rate results also hold for the average iterates of
the other agents. This remains a future direction to analyze.

The next result will be employed in the rate analysis.

Lemma 1 (Lemma 2.14 in [26]). For any scalar o € [0,1)
_1
and integer N such that N > 21-a — 1, we have:

N+1)' N - N+1)'
% < Dk—o(k+1)7" < %

III. CONVERGENCE ANALYSIS

We begin with obtaining an error bound that will be
employed later in the construction of bounds on the objective
value and infeasibility metrics for Algorithm 1. The proof is
presented in an extended version of the paper [28].

Lemma 2. Let the sequence {xy} be generated by Algorithm
1 and {~} and {ny} be nonincreasing positive sequences.
Let Assumption 1 hold, 0 < r < 1, and scalars C,Cy > 0
be defined as in Remarks I and 2, respectively. Then, for any
y € X and k > 0, we have:

2vemk (f (ox) — f(y)) + 27, (¢ (zx) — ¢ (y))
<y ek = yll? = ek — ol
+ (14 L)t (€ +mCy)”. (1)

Next we construct the error bounds for Algorithm 1 in
terms of the sequences {~x} and {n}.

Proposition 1 (Error bounds for Algorithm 1). Consider
problem (P). Let T be generated by Algorithm 1 after N
iterations and {yi} and {0y} be nonincreasing and strictly
positive sequences. Further, let Assumption 1 hold, scalars
Cy¢,C >0, and parameter 0 < r < 1. Let scalars M, My >
0 be defined such that we have: ||z|| < M and |f(z)] <
My for all x € X. Then for any optimal solution x* to
(P), we have the following:

0 o) = (Ss) (2235

1 (C+ C )2 N ,Yr+1
(14 5) T Y )

_ N\t r— N
(b) ¢ (Tn) < (Zk:o ’Yk) (QMQ'YN L+ 2My Zk:@ Vi Mk
CHnoCy)? r
+ (1 + %) ( +n§ B ]kV:O ’VkH) .

Proof. Consider relation (1) from Lemma 2, for any y € X.
Substituting y by «* and taking into account the feasibility
of the vector z* to problem (FP), we obtain:

2vkk (f(2x) = f(2*)) + 296 (2r) <7 (II!Ek - "

s — x*|\2) + (14 L) 47T (C + mC)?.
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Taking into account the nonnegativity of 2v;¢ (xx) and
dividing both sides by 27, we have:

T P = £@) < B (llaw =27 = flawes — 2]
2
(1 L) WG )
k 1

Adding and subtracting 5 —|lzy — z *||? in the above,

"
< Ve—1

e (f(x) = f(z*)) < gitflay, — a*|f* - Vznk |zprs — 22
B T 2 1Y e (CHnuCy)®
+ (%~ 2 - 4 (14 ) G
lermv 1 term 2

Recalling the definition for scalar M, we have:

g — 21 < 2llap)|® + 2)|2*|” < 4M>. 3)

Taking into account r < 1 and the nonincreasing property of
the sequences {v;} and {7}, we have: term 1 > 0. Bounding
term 2, we have:

r—1
Vi —
T (f(xk) = f@) < 5= ok — 27|
2 r—1 ,yr:l
- 2m ||5Uk+1 -7+ <W2’“mc - 277’11]) 4M>
1 (C+77 C )2 r+1
+(1+5) T

Next, taking summations over £k = 1,..., N, we obtain:

N
Zk 1%2( (k) = f(27)) < % IIx —a*|?
-1 -1
R L e S L

r+1

1\ (C+noCs)%2 N ~
+(1+E)( n20 o Zk 1 ]f%'

“4)

Rewriting equation (2) for k = 0, we have:

r * r=1 112 12
% (F(ao) = (@) < (Ileo =2 = flan = 2|
r+1 2 2
1\ 7 (C +7]on)
+(+5)
Adding the preceding relation with (4), we obtain:
N T * rT— r—1
zk_o ok () = ) < 2007 (B - )
o Hlzo—a"|?

2mo
r+1

e
(1 + ) (C+non) Zk -,
Further from (3), and neglecting the nonpositive term,
N _r
> k=0 Vi (f@k) = f(27)) < 2M?;
7+1
(L) e

m

”7k'

1/77N

'Uk '

Next, dividing both sides by Zszo vy, taking into account
the convexity of f, and Remark 4 we obtain the result.
(b) Consider equation (1). Writing it for y := x* € X,

2970 (21) < 29fme (f (&%) = S (@) + 25" (lla = "

_ka"rl —1'*||2> (1+ rn) o (O+77k0f) .

Recalling the definition of My, we have, |f(z*)— f(zx)| <
2M . Bounding the preceding inequality,

29k0(e) < %" (low = @ F = Jansa — 2|
Ay My 4+ (1 4+ 1) 4t (O +mCy)?. (5)

Adding and subtracting 7, |||z — 2*||? in the above,

- 2 — 2
2yid(ar) <y lloe — 2|7 = lengn — 2|
_ — * 12
+dyime My + (vt = ly) ek — 27
term 3

) O HmCy)

term 4

+(1+

Using the nonincreasing property of {v;} and {7}, re-
calling 0 < » < 1, we have v, = — ’y;:} > 0, and
(1 + 4 ) 7,2“ > 0. Further, from the boundedness of set
X, we have: term 3 < ('y,: 1 —7k 1) 4M?2, and term 4
< (1+ %) "1 (C 4+ nyCy)°. Next, taking summations
over k =1,..., N, and dropping the nonpositive terms, we
obtain:

N r r— %12 r—
22k:1 Ted(xr) < 7 ! |21 — 2™ +4M? ('7 — % 1)

+ (14 L) (CH+noCr)* sy v +4AMy S0l vk
(6)

Writing equation (5) for £ = 0, we have:

— *12 %12
2956(w0) <75 (llzo = 2> = llaz = &*117) + 4w

+ (1 + %) ’YS-H (C+ 7700f)2 .
Adding this into equation (6), we have:
N ' T— * T—
2500 ho(wk) <95 o — 2 [” +4M2 (it =57
+(1+5)(C+ 7700f) Zk 0+ 4My Zk:() V-

Bounding ||z¢ — z*||? from equation (3), dividing both sides
by Ziv:o ~r, taking into account the convexity of ¢(zy), and

from Remark 4, we obtain the required result. O

Next, we present the suboptimality and infeasibility con-
vergence rate statements for the proposed algorithm.

Theorem 1 (Suboptimality and infeasibility rate results).
Consider Algorithm 1. Let Assumption 1 hold. Consider
scalars M,M; > 0 such that |z| < M and |f(z)| <
My for all x € X. Let Ty be generated by Algorithm 1
after N iterations. Let {v} and {ny} be the stepsize and
regularization parameter sequences generated using i =
\/%, e = (117?@)5 where 9,10 > 0, and 0 < b < 0.5.
Then, for any optimal solution x* to problem (P), we have:

(@) £ (@) = F&) < oo (24
s ¢

(®) ¢ @n) < 5t (22 + 2oty
s ). ®
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Proof. Taking Proposition 1 (a) and (b) into account, let us
define the following terms:

2 _r—1
Py 2M
NN ’

Ana 2 Z]kvzo Yoo ANz
C+10Cs)? =N ~1_r
Ans = (1 + %) ( H’g & 2 k=0 17k+1a
Ana 2 2M%9Y, Ans 2 2Mp Y0 g mvhs
2
Ano 2 (1+5) 5 00
From Proposition 1 (a) and (b), we have:
f@n)— f(x") < (An2+Ans) /AN,
¢ (@N) < (Ava+Ans+Ang) /AN 9)

Next, applying Lemma 1 and substituting {~x} and {7} by
their update rules, we obtain:

(N +1)1=05"

—_ VW o[y
AN,l - Zk:O (k—&-l%o-"’r 2

2(1-0.57)
2 0.5(1—r)+b 2 0.5(1—7)
Ayp = 2D L Ay = 2T
’ 070 ’ Yo
_ 1\ (C+noCy)? N vt
Avs = (1+5) =757 Yoo magntsaro=s

(m+1)'yé+7'(0+n00f)2(N+1)1’0'5(1+">“’

= 2mmo(1—0.5(1+7)+b)
= N 2an0’)/(")‘ 2Mf7]0’Y('3‘(N+1)170'57‘*b
AN,5 - Zk:o (k+1)0-5r+0 = B )

(m+1)(C+noCy)2yg T (N1 7050+
2m(1—0.5(1+r))

IN

Ang

For these inequalities to hold, we need to ensure that
conditions of Lemma 1 are met. Accordingly, we must
have 0 < 05r < 1,0 < 05(1+7r)—b < 1,0 <
0.5r+b < 1, and 0 < 0.5(1 + r) < 1. These relations
hold because 0 < r» < 1 and 0 < b < 0.5. Another
set of conditions when applying Lemma 1 includes N >
max {21/(170.57“)7 91/(1=0.5(1+1)+b) 91/(1-0.5r=b)

21/(1_0'5(1”))} — 1. Note that this condition is satisfied as
2

a consequence of N > 21— — 1, b > 0,and 0 < 7 < 1.
We conclude that all the necessary conditions for applying
Lemma 1 and obtaining the aforementioned bounds for the
terms A ; are satisfied. To show that the inequalities (7) and
(8), it suffices to substitute the preceding bounds of Ay ;, in
the inequalities (9).
Inequality (7) is obtained by rearranging the terms in the
preceding relation. Next, consider the following:
2 I
¢ (@n) <(2—1) (W(J%/Afmm + (170.52%’2;7(0N+1)b

4 (M) (CHmCr)*y0 )
2m(0.5—0.57)(N+1)0-5 ) *

Taking into account 0 < b < 0.5, equation (8) is obtained by
rearranging the terms in the preceding inequality. O

IV. NUMERICAL RESULTS

In this section, we present the simulations for the proposed
algorithm on a distributed soft-margin support vector machine
(SVM). We compare the performance of aIR-IG with the state-
of-the-art IG schemes, including the projected IG, proximal
IAG, and SAGA. The schemes are compared in terms of CPU
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time. For these numerical experiments, we use the soft-margin
formulation of SVM, as follows:

minimize Flwl* + £ Zivzl 2 (10)
w,b,z
subject to vi(wTui+b) >1—z for t=1,...,N.
zi >0 for 1=1,...,N.
Here, (ui,v1),(u2,v2),...,(un,vy) denote the dataset

such that v € R™ and v € {—1,+41}. The goal here is to find
a classifier given by w’u + b to separate the two classes of
v := +1 and v := —1, whereas w € R" and b € R. For a
distributed implementation, we define the objective for agent
i€ {1,...,m} as follows:

N .
=i

fz(vaZ) :Zm Nx(i—1) 2%\[||w||2+%zj'
==y 1

Recall that Algorithm 1 does not require any projection
onto the feasible set. However, in other schemes including
IG, proximal TAG, and SAGA a projection (more generally
a proximal step) is needed. For convenience, define z £
(w?',b, 27)T. Now for evaluating the projection of vector
z1 2 (wl, by, 21T, we solve the following optimization:

Tzl s (wTu; +0) > 1 — 25,2, >0 Vi € [N] p .
(11

Set up. The simulations were performed for m = 20 agents,
A =10, v = 1o = 1, and b = 0.25. For this experiment, time
was fixed to 200 seconds and the performance of each scheme
is recorded. Figure 1 shows the performance of Algorithm
1, projected IG, proximal IAG, and SAGA for the different
choices of dimensionality n and the total number of samples
N. Performance is recorded in terms of suboptimality and
infeasibility where suboptimality is [lw[|? + 3> z; and
infeasibility is the violation of constraints of problem (10).
Suboptimality is shown in a logarithmic scale in Figure 1.
We use the Gurobi-Python interface to solve problem (11).
Insights. With increasing the dimension and the number
of samples, the projection evaluations take longer and
consequently, the performance of the projected variant of the
aforementioned IG schemes is deteriorated. This is the case
in particular when N = 500. Note that the other schemes,
namely Proj IG, Prox IAG, and SAGA do not show any
update for N = 200 and 500 after about 70 and 20 seconds,
respectively. This is because of the interruption in their last
update due to reaching the time limit of 200 seconds.

V. CONCLUDING REMARKS

We consider the problem of minimizing the finite sum with
separable (agent-wise) nonlinear inequality and linear equality
and inequality constraints. Our work is motivated by the
computational challenges in the projected incremental gradient
schemes under the presence of hard-to-project constraints.
We develop an averaged iteratively regularized incremental
gradient scheme where we employ a novel regularization-
based relaxation technique. The proposed algorithm is de-
signed in a way that it does not require a hard-to-project
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Figure 1: Comparison of suboptimality and infeasibility of Algorithm 1, projected IG, proximal IAG, and SAGA over time.

computation. We establish the rates of convergence for the

objective function value and the infeasibility of the generated

iterates. We compare the proposed scheme with the state-
of-the-art incremental gradient schemes including projected

IG, proximal TAG, and SAGA. We observe that the proposed

scheme outperforms the projected schemes as the number of

samples or the dimension of the solution space increases.
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