Database Framework for Supporting Retention
Policies

Nick Scope!, Alexander Rasin!, James Wagner?, Ben Lenard', and Karen
Heart!

! DePaul University, Chicago, IL 60604, USA
2 University of New Orleans, New Orleans, LA. 70148, USA

Abstract. Compliance with data retention laws and legislation is an
important aspect of data management. As new laws governing personal
data management are introduced (e.g., California Consumer Privacy Act
enacted in 2020) and a greater emphasis is placed on enforcing data pri-
vacy law compliance, data retention support must be an inherent part
of data management systems. However, relational databases do not cur-
rently offer functionality to enforce retention compliance.

In this paper, we propose a framework that integrates data retention
support into any relational database. Using SQL-based mechanisms, our
system supports an intuitive definition of data retention policies. We
demonstrate that our approach meets the legal requirements of retention
and can be implemented to transparently guarantee compliance. Our
framework streamlines compliance support without requiring database
schema changes, while incurring an average 6.7% overhead compared to
the current state-of-the-art solution.

Keywords: Retention Compliance - Databases - Privacy.

1 Introduction

Laws intended to protect privacy, prevent fraud, or support financial audits
require companies to implement data retention policies. Companies may also
establish internal data retention policies for confidential data (e.g., for routine
business operation or audits) and to minimize risks (e.g., data destruction to
prevent theft). Thus, companies can be subject to multiple data retention policies
requiring preservation of some data and deletion of other data. For example, the
US Health Insurance Portability and Accountability Act [13] requires medical
data to be retained for at least 6 years, the Children’s Online Privacy Protection
Act states that personal information for children is retained “for only as long
as is reasonably necessary to fulfill the purpose for which the information was
collected” [15]. Moreover, recent laws such as European General Data Protection
Regulation and California Consumer Privacy Act [7] established the “right to be
forgotten”, which entitles individuals to request deletion of their personal data.

Relational database management systems (DBMS) do not support mecha-
nisms to enforce data retention requirements. As a result, organizations build

2 N. Scope et al.

User query Organization’s Retention Policies
[] []

— Manual

Original .
conversion
Database [€===== ~—
Tabl T~
ables Auto

Retalnl data generate

B —

Fig. 1. Retention workflow overview. Gray boxes represent new components; dashed
line represents automated framework steps; solid line represents manual steps.

ad-hoc solutions manually. As retention laws are created, databases will need
to support automated retention compliance. Additionally, the solution must be
intuitive for database curators to set up, and transparent from user’s perspective.

In this paper, we describe a framework implementation that can guarantee
data retention compliance in a relational database. Our approach builds on the
work of Ataullah et al. [8] by expanding DBMS functionality to facilitate com-
pliance with legal requirements of data retention. For example, we transparently
move deleted (but retained) data to an archive (reflecting its new status) rather
than block the delete operation.

Figure 1 provides an overview of our approach for enforcing retention poli-
cies. User delete (or update) transactions are allowed to proceed normally, but
data that must be retained are automatically and transparently copied into
the archive. As long as the retention policies are correctly defined (see Sec-
tion 4), our database triggers can guarantee compliance by reacting to changes
in data. SELECT queries are not affected, because deleted data is always removed
from the original database tables. Archive tables store all deleted-but-retained
data, mirroring the active table with two additional columns: archivePolicy and
transactionID (see Section 4). Our contributions in this paper are:

— We define the requirements a database must support and enforce to comply
with data retention policies (Section 2).

— We outline an add-on framework for complying with retention requirements
within any relational database (Section 4).

— We detail how our framework meets the various requirements to facilitate
data retention compliance (Section 5).

Section 6 evaluates our framework performance. We demonstrate that the
retention policy implementation overhead is proportional to the number of tables
and the number rows archived per-transaction. We further demonstrate that our
extended functionality incurs only a 6.7% overhead over Ataullah et al. [8].

2 Retention Definitions and Requirements

Business Records: Data retention policies operate in terms of a business record.
Federal law refers to a business record broadly as any “memorandum, writ-
ing, entry, print, representation or combination thereof, of any act, transaction,

Database Framework for Supporting Retention Policies 3

occurrence, or event” that is “kept or recorded” by any “business institution,
member of a profession or calling, or any department or agency of government”
“in the regular course of business or activity” [9].

Defining Policy: Business records may span multiple tables; therefore a com-
prehensive data retention framework must allow the mapping of policies across
tables. Although some requirements may only preserve the records against dele-
tion, other domains (such as the medical field) require that a complete history
of record updates is retained as well. Our approach relies on SQL view syntax
to define policies, making it intuitive for a database administrator (DBA) to
formulate and verify policy settings. As long as the view correctly defines the
protected business records, our framework will correctly identify them.

Enforcing Policy Compliance: Data in a database can be deleted or updated
either by user directly (using SQL) or indirectly (e.g., by trigger effects). A
comprehensive data retention framework must ensure that data is retained and
purged according to the policy definition. It should not be possible for any action
to bypass or interfere with retention rules; at the same time, retention should
not interfere with normal database operation. We rely on triggers to ensure that
all data changes (direct or indirect) are checked against the policies. Archiving
the data before the change takes place guarantees non-interference. Retention
requirements typically preserve data for a period of time (although some may be
permanently such as ”for life of the company “). We use a DBMS-specific built-in
scheduler to perform a regular purge as requested by a policy (see Section 5). Fi-
nally, our approach relies completely on DBMS functionality to minimize exter-
nal dependencies; consequently, transactional ACID guarantees are maintained
as supplied by the DBMS.

3 Related Work

Public Research: Ataullah et al. described some of the challenges associated with
record retention implementation in relational databases [8]; the authors propose
an approach that uses a view-based structure to define business records for re-
tention rules, similar to our solution. However, instead of interrupting queries,
we allow them to proceed as-is after we archive retained business records (con-
ceptually similar to a write ahead log). As discussed in Sections 4 and 5, our
approach may generate redundancy but avoids risk of retention policy conflict.

Private Sector Tools: Amazon S3 offers an object life-cycle management tool.
The DoD’s “Electronic Records Management Software Applications Design Cri-
teria Standard” (DoD 5015-02-STD) defines requirements for record-keeping
systems storing DoD data; a DoD compliant retention system must support
retention thresholds such as time or event (C2.2.2.7). S3’s object life-cycle man-
agement is limited to time criteria only. Moreover, S3 is file-based and therefore
lacks sufficient granularity.

Oracle’s Golden Gate (GG) [14] or IBM’s Change Data Capture (CDC) [1]
allow changes to be replicated from one database to another. However, these
software packages are not specifically designed to support data retention re-

4 N. Scope et al.

quirements (although they could be expanded to support it, similarly to our
approach). GG operates by inspecting REDO logs, making it difficult to incor-
porate the concept of business records.

Mimeo [5] provides similar functionality for Postgres; similar to CDC and
GG, Mimeo would have to be revised to support retention in terms of business
records since it operates on a per-table basis. IBM InfoSphere Optim Archive
[11] has archiving functionality which can be used for retention. It archives data
from an active database, removing data from active storage. Users define business
records for archiving using Select-Project-Join (SPJ) queries, same as our and
Ataullah et al. [8] approaches. A major limitation of IBM’s solution is that
archiving must be initiated manually or by a script.

4 Policy Setting

Policy Mapping: In practice, DBAs work with domain experts and legal counsel
to implement retention policies. We assume that DBAs can expresses a business
record as a view and that relevant event data is available in the database (e.g.,
the date of receiving a subpoena to preserve certain data). Initially mapping the
business records and retention policies to database tuples is a manual process;
thereafter, our SQL-based system automates enforcement of the policies.

Creating Retention Policies: A business record is mapped as a Select-Project-
Join (SPJ) view. SPJ queries are sufficient to define regulations and contractual
terms business records (used by both IBM [11] and Ataullah et al. [8]). We
propose new SQL syntax, CREATE RETAIN, to implement views that express the
business records that must be protected from deletion.

CREATE RETAIN requires the SELECT clause to contain the primary key of every
table appearing in the FROM clause of the defined policy. Moreover, any columns
referenced in the WHERE clause must be included in the SELECT clause. These
constraints are required to verify the retained copy in the archive against the
relevant policy criteria. Additionally, each retention policy is handled indepen-
dently, which may incur redundancy when policies overlap.

Suppose that a company imposes a retention rule that requires retaining
all applications and their interview history data (excluding interview notes) for
any hired applicant. When a DELETE is issued, the target data is checked against
existing policies to see if it belongs to a business record(s) that must be archived.
For each active retention policy, our system automatically creates a mirror policy
for the archive. Archive protection policies guarantee that business records in the
archive will not be purged until the retention criteria has expired. The names
of the archive policy and archive tables are prepended with “archive”. The
archive tables and policies also include additional columns: transactionID to
purge retained data in instances of aborted transactions and archivePolicy to
purge policy-specific records in the archive. Because the same table row may
be archived by two different overlapping policies, archivePolicy also serves to
uniquely identify archive rows.

Database Framework for Supporting Retention Policies 5

Because some retention requirements mandate a complete history of updates,
we propose an optional EXACT keyword to the RETAIN syntax in order to imple-
ment views that identify business records that must retain a complete history.
RETAIN EXACT policy ensures that the business record is archived before an up-
date. Preserving a comprehensive history is a common requirement in the med-
ical field where every update to a patient’s record must be preserved.

Any column subject to an active retention policy (RETAIN or RETAIN EXACT)
cannot be removed or altered in the schema. In order to drop or change a column,
the DBA would first remove all retention policies that apply to that column. Our
approach is designed to behave like any other database constraint (e.g., a foreign
key) and therefore it must be addressed before schema changes can be applied.

5 Policy Execution

Enforcing Retention Policies: Our system uses triggers to check which of the to-
be-deleted rows fall under retention policies. To ensure transactional consistency,
we archive retained rows before proceeding with deletion; should the DELETE or
UPDATE transaction abort, we will (eventually) delete unneeded records from the
archive. Archive clean up can be executed any time after the DELETE transaction
was aborted because all archive entries are uniquely identified by a transac-
tion id and retention policy. Anytime a DELETE is run on a table with retention
protections, a BEFORE DELETE trigger would fire and insert all data protected
by retention policies into the archive table(s) before DELETE executes. Columns
not covered under a retention policy default to NULL in the archive. Using trig-
gers ensures that we protect all data, including data that is indirectly targeted
by cascading DELETEs and UPDATEs. Similar to how RETAIN protects data against
deletions, policies defined using RETAIN EXACT additionally archive all protected
business records when an UPDATE is made to the underlying data. If a user were
to update a table that is protected by RETAIN EXACT, the policy (at a minimum)
would also include referenced primary keys of other tables. If additional update
queries target the same business record, the data would again be copied to the
archive before the UPDATE query executes.

Interacting with the Archive: The retention archive tables contain deleted
data and should not be accessible without special permissions. We propose the
SQL syntax SELECT ARCHIVE to retrieve data from the archive (similar to how
IBM’s InfoSphere Optim Archive operates). INSERT, DELETE, and UPDATE opera-
tions against the archive are prohibited to protect data integrity. To comply with
the data purging requirements, we propose a PURGE command that deletes all el-
igible (i.e., no longer protected by a retention policy) records from the archive.
The PURGE command translates the name of a provided policy into a series of
DELETE queries. Because the records in the archive incorporate the policy name,
PURGE does not require checks for overlapping policies. Organizations may wish
to automatically and regularly purge all data which is no longer required to be
retained. For example, HIPAA requires medical information to be retained as
long as it is used, after which it must immediately be removed [13]. A regular

6 N. Scope et al.

and automatic purging would remove all unprotected records. The purging pro-
cess would be executed by the DBMS scheduler ([6] in Oracle, [2] in Db2, [4]
in PostgreSQL, [3] in MariaDB). Most DBMSes include a cron-like scheduler to
execute tasks on a set interval.

6 Experiments

In order to evaluate the performance of our framework, we measure the per-
transaction runtime overhead. We assess linear schemas (a linked series of tables),
where each table is linked to a single child table with a foreign key. All tables
include columns for a primary key (char), a foreign key (char), a retention
criteria (boolean), a delete criteria (boolean), and lorem (varchar), except the
top-most parent table of the schema which does not contain a foreign key column.

The child-most table in the schema always contains approximately 50M rows
(roughly 3.38GB). Each primary key from a parent table is joined to an average
of 2.5 rows in its child table. The dataset for each schema was built independently
to fit these parameters. We chose this schema type as the most expensive (to
measure the upper-bound overhead) for implementing retention; a star schema
would offer additional choices for optimizing join queries. Our experiments were
performed on a server with an Intel i7 7700k processor with 16GB of RAM on
spinning disk drive using PostgreSQL 12.3 with default settings on Windows 10.
Both the Python 3.7 script (used to collect the runtimes) and PostgreSQL ran
on the same machine.

The goal of these experiments is to determine the driving factors for our
framework’s overhead and quantify the performance penalties. The runtimes are
evaluated on a per-query single-transaction basis. We evaluate delete transac-
tions that affect between 1 and 100 rows (we also verified that update overhead
is equivalent to delete overhead). The size of the average transaction is based on
the evaluation performed by Hsu et al. [10] who quantified the number of pages
written by real-world database workloads. The median number of pages written
by a transaction was shown as 1.1 on average, with variations between domains
(e.g., Bank, Retail, Insurance) [10]. In our analysis, we therefore assume that
the number of rows written by one transaction is frequently less than 10.

Framework Overhead Analysis: In this experiment, we tested combinations
of the policy size (0-100 rows), delete size (1-100 rows), and overlapping percents
(0-100%). Overlap percent refers to the intersection of the retention policy and
the delete query (e.g., a DELETE of 50 rows and a policy covering 50 rows with
overlap of 50% corresponds to an overlap of 25 rows). Overlap rows refers to the
number of rows that are ultimately archived (e.g., 25 in this example).

To establish a performance baseline, we executed DELETEs without our re-
tention framework. In subsequent experiments, we subtracted the runtime of
baseline DELETEs from the runtime with retention enabled. We then normalized
the results by computing the percentage overhead introduced by our system.

There was a 0.894 correlation between the number of rows requiring archiving
and the performance overhead (illustrated in Figure 2). This was the strongest

Database Framework for Supporting Retention Policies 7

100

Runtime Overhead (%)

COverlap Rows (#)

Fig. 2. Single Delete Txn Overhead (Two Tables)

relationship between variable combination. On the other hand, the size of the
policy had a correlation of 0.192 with the runtime overhead percent, and the
delete size had a correlation of 0.279. Checking if rows require archiving mini-
mally impacts the runtime. Therefore, the overhead is driven by archiving the
business records.

Furthermore, the overhead is modeled using a linear regression (illustrated
as the line in Figure 2). The model shows the overhead of our framework is
a function of the number of archived rows. Our experiments found that for
fewer than 10 overlap rows, the runtime overhead with archiving was statistically
insignificant compared to the runtime without archiving (Figure 2). In practice,
most DELETEs and UPDATES do not target a large quantity of rows [10]. Therefore
we conclude that our framework overhead is acceptable in practice.

Comparison of Archiving to State-of-the-Art: The major difference between
our proposed approach and Ataullah et al.’s work [8] is that we automatically
and transparently archive retained data instead of blocking the transaction with
an error. In this experiment, each query is executed as a separate transaction;
therefore, whenever an exception is returned, that single query is undone (no
additional rollback of previous transactions). As with Ataullah et al. [8], we
use triggers to check queries against defined policies. In this experiment, we
compare the runtime of these transactions when stopping the transaction using
an exception versus archiving the data and letting the transaction proceed. We
used the same process and data as the previous experiment.

Overall, our process averaged a runtime overhead of 6.7% compared to Ataullah
et al. [8]. Although our framework introduces overhead, it eliminates potential
conflicts between the retention system and existing user queries and triggers.
Therefore, it ensures that organization processes are continued without the con-
cern of violating retention policy requirements.

7 Conclusion and Future Work

In this paper, we presented and evaluated a database framework for retention
policy compliance. We use views to define business records and policy conditions,

8 N. Scope et al.

thereby ensuring accurate retention (as long as the view correctly reflects the
business records). When records are targeted by a delete or an update query,
they are automatically and transparently retained in the archive before the data
is modified. Our framework has the significant benefit of using SQL-based com-
mands to define policies and automates archiving business records through trig-
gers. Our experiments demonstrate that our framework can guarantee retention
compliance requirements with an acceptable performance overhead.

Although our framework ensures that requested data is deleted, some data
will remain in the underlying database storage as well as in previously created
backups [12]. Further research must address these sources of remaining data
to fully facilitate retention compliance in purging databases. Additionally, we
plan to investigate migrating the archive tables to an external DBMS instance.
Finally, we plan to extend a similar framework to NoSQL databases.

References

1. https://www.ibm.com/support/knowledgecenter/SSTRGZ_10.2.1/com.ibm.
cdcdoc.cdcforzos.doc/concepts/infospherechangedatacaptureoverview.
html

2. Admin_task_add procedure - schedule a new task, https://www.ibm.com/

support/knowledgecenter/SSEPGG_11.1.0/com.ibm.db2.luw.sql.rtn.doc/

doc/r0054371.html

Event scheduler, https://mariadb.com/kb/en/event-scheduler/

pg-cron, https://github.com/citusdata/pg_cron

Pgxn, https://pgxn.org/dist/mimeo/1.2.3/doc/mimeo . .html

Scheduling jobs with oracle scheduler, https://docs.oracle.com/cd/E11882_01/

server.112/e25494/scheduse . htm#ADMINO34

California consumer privacy act (Jul 2020), https://oag.ca.gov/privacy/ccpa

8. Ataullah, A.A., Aboulnaga, A., Tompa, F.W.: Records retention in relational
database systems. In: Proceedings of the 17th ACM conference on Information
and knowledge management. pp. 873-882 (2008)

9. Congress, U.S.: 28 u.s. code §1732 (1948)

10. Hsu, W.W., Smith, A.J., Young, H.C.: Characteristics of production database
workloads and the tpc benchmarks. IBM Systems Journal 40(3), 781-802 (2001)

11. IBM: Infosphere optim archive, https://www.ibm.com/products/
infosphere-optim-archive

12. Lenard, B., Rasin, A., Scope, N., Wagner, J.: What is lurking in your backups? In:
IFIP International Conference on ICT Systems Security and Privacy Protection.
pp. 401-415. Springer (2021)

13. for Medicare & Medicaid Services, C., et al.: The health insurance portability and
accountability act of 1996. http://www.cms.hhs.gov/hipaa p. 158 (1996)

14. Oracle: (Sep 2018), https://docs.oracle.com/goldengate/
c1230/gg-winux/GGCON/introduction-oracle-goldengate.htm#
GGCON-GUID-EF513E68-4237-4CB3-98B3-2E203A68CBD4

15. University, W.S.: Retention guidelines for protected data (2020), https://www.
libraries.wright.edu/special/recordsmanagement/retention

S Gk W

=

