Purging Data from Backups by Encryption

Nick Scope!, Alexander Rasin!, James Wagner?, Ben Lenard', and Karen
Heart!

! DePaul University, Chicago, IL 60604, USA
2 The University of New Orleans, New Orleans, LA. 70148, USA

Abstract. Data retention laws establish rules intended to protect pri-
vacy. These define both retention durations (how long data must be kept)
and purging deadlines (when the data must be destroyed in storage). To
comply with the laws and to minimize liability, companies should destroy
data that must be purged or is no longer needed. However, database
backups generally cannot be edited to purge “expired” data and erasing
the entire backup is impractical. To maintain compliance, data curators
need a mechanism to support targeted destruction of data in backups.
In this paper, we present a cryptographic erasure framework that can
purge data from all database backups. Our approach can be transpar-
ently integrated into existing database backup processes. We demon-
strate how different purge policies can be defined through views and
enforced by triggers without violating database constraints.

Keywords: Purging Compliance - Databases - Privacy - Encryption.

1 Introduction

Efforts to protect user data privacy and give people control over their data have
led to passage of laws such as the European General Data Protection Regula-
tion (GDPR) [6] and California Consumer Privacy Act (CCPA) [11]. With the
increased emphasis on proper data governance, many organizations are working
to implement the data retention requirements into their databases. Laws can
dictate how long data must be retained (e.g., United States Income Revenue
Service tax document retention [8]), the consent required from individuals on
how their data may be used (e.g., GDPR, Article 6), or purging policies for when
data must be destroyed (e.g., GDPR Article 17).

In this paper, we consider the problem of data purging in a database. Prior
research has only considered the problems of retention and purging policies for
data in an active (i.e., current instance) database [1]. Nevertheless, to fully com-
ply with the laws mandating data purging, a system must purge data from the
active database as well as from backups. Although backups are not part of the
active database, they can be restored into an active database at any time.

1.1 Motivation

A variety of factors make purging data from backups difficult. Backups may po-
tentially be edited by 1) restoring the backup, 2) making changes in the restored

2 N. Scope et al.

database, and then 3) creating a new (“edited”) backup. Outside of this cum-
bersome process, there is no other method of safely editing a backup. Only a
full (i.e., non-incremental, see Section 2.2) backup can be altered in this manner.
Furthermore, editing a full backup would invalidate all of its dependent incre-
mental backups. Additionally, backups may be be stored remotely (e.g., off-site)
and on sequential access media (e.g., on tape). Therefore, the ability to make
changes to any data within backups is both limited and costly.

In order to solve this problem, we propose to implement data purging through
cryptographic erasure [2]. Intuitively, a cryptographic erasure [2] approach en-
crypts the data and then purges that data by deleting decryption keys. The
advantage of this approach is that it deletes the data “remotely” without hav-
ing to access the backups. When a backup is restored, the irrecoverable data is
purged while the recoverable and non-encrypted data are fully restored into the
active database. Furthermore, this process does not invalidate partial backups.

Our framework creates shadow tables which contain an encrypted copy of all
data subject to purging policies. These shadow tables are backed up instead of
the original tables; we then use cryptographic erasure to simultaneously purge
values across all existing backups. Our approach requires no changes to current
backup practices and is compatible with both full and incremental backups. One
challenge of implementing cryptographic erasure is in balancing different policy
requirements across a relational database schema. A single row in a table may
have columns subject to different retention and purging requirements.

Our framework only applies encryption to data which is updated or inserted
after the purge policy is defined and does not retroactively apply encryption to
the already-present data (e.g., if an existing policy is changed). Our approach
focuses on addressing compliance rather than security. It will guarantee data de-
struction based on defined policies; thwarting a malicious insider who previously
copied data or decryption keys is beyond the scope of this paper. Furthermore,
purging data that remains recoverable via forensic tools is out of scope for this
paper. Our contributions are:

— We outline the requirements for defining and enforcing data purge policies

— We describe an implementation (and present a prototype) for backup data
purging that can be seamlessly integrated into existing DBMSes during
backup and restore

— We design a key selection mechanism that balances multiple policies and
retention period requirements

2 Background

2.1 Compliance Terminology

Business Record: Organizational rules and requirements for data management
are defined in units of business records. United States federal law refers to a busi-
ness record broadly as any “memorandum, writing, entry, print, representation
or combination thereof, of any act, transaction, occurrence, or event [that is]

Purging Data from Backups by Encryption 3

kept or recorded [by any| business institution, member of a profession or calling,
or any department or agency of government [...] in the regular course of business
or activity” [4]. A business record may consist of a single document for an or-
ganization (e.g., an email message). In a database, a business record may span
combinations of rows across multiple tables (e.g., a purchase order consisting of
a buyer, a product, and the purchase transaction from three tables).

Policy: A policy is any formally established rule for organizations dictat-
ing the lifetime of data. Retention policies can dictate how long data must be
saved while purge policies dictate when data must be destroyed. Policies can
originate from a variety of sources such as legislation or a byproduct of a court
ruling. Companies may also establish their own internal data retention policies
to protect confidential data. In practice, database curators work with domain ex-
perts and sometimes with legal counsel to define business records and retention
requirements based on the written policy.

Purging: In data retention, purging is the permanent and irreversible de-
struction of data in a business record [7]. A business record purge can be accom-
plished by physically destroying the device which stored the data, encrypting
and erasing the decryption key (although the ciphertext still exists, destroying
the decryption key makes it inaccessible and irrecoverable), or by fully erasing
the data from all storage.

2.2 Database Backups and Types

Backups are an integral part of business continuity practices to support disaster
recovery. There are many mechanisms for backing up a database [5] both at the
file system level and internal to the DBMS. File system backups range from a full
backup with an offline, or quiesced, database to a partial backup at file system
level that incrementally backs up changed files. Most DBMS platforms provide
backup utilities for both full and partial backups, which create backup in units
of pages (rather than individual rows).

Some utilities provide block-level backups with either a full database backup
or a partial backup capturing pages that changed since the last backup. Partial
backups can be incremental or delta. For example, if we took a full backup on
Sunday and daily partial backups and needed to recover on Thursday, database
utilities would restore the full backup from Sunday and then either 1) apply
delta backups from Monday, Tuesday, and Wednesday or 2) apply Wednesday’s
incremental backup. Because most organizations use multiple types of backups,
any purging system must work on full, incremental, and delta backups [10].

2.3 Related Work

Kamara and Lauter’s research has shown that using cryptography can increase
storage protections [9]. Furthermore, their research has shown that erasing an
encryption key can fulfill purging requirements. Our system expands on their
research by using policy definitions to assign different encryption keys relative
to their policy and expiration date.

4 N. Scope et al.

User Active Tables
Y 4= SELECT Queries
O —— . wory DELETE/INSERT/UPDATE Queries
— :
. oo Database Backup Creation
Jannanmnnnnannnnnnannnas § S ST,
m - L Database Backup Restore
R
J"""‘-.
I ——
= [—3 =
N I
—
Encryption Shadow Backups in
Key Table Tables Storage

Fig. 1. Framework Overview

Reardon et al. provided a comprehensive overview of secure deletion [12]. The
authors defined three user-level approaches to secure deletion: 1) execute a secure
delete feature on the physical medium 2) overwrite the data before unlinking or
3) unlink the data to the OS and fill the empty capacity of the physical device’s
storage. All methods require the ability to directly interact with the physical
storage device, which may not be possible for database backups in storage.

Boneh et al. used cryptographic erasure, but each physical device had a single
key [2]. We introduce an encryption key assignment system to facilitate targeted
cryptographic erasure of business records across all backups. In order to fully
destroy the data, users must also securely delete the encryption keys used for
cryptographic erasure. Reardon et al. [12] provide a summary for how to destroy
encryption keys to guarantee a secure delete. Physically erasing the keys depends
on the storage medium and is beyond the scope of this paper. However, unlike
backups, encryption keys are stored on storage medium that is easily accessible.

Ataullah et al. described some of the challenges associated with record re-
tention implementation in relational databases [1]. The authors proposed an
approach that uses view-based structure to define business records (similar to
our approach); they used view definitions to prohibit deletion of data that should
be retained. Ataullah et al. only consider purging data in an active database;
they did not consider how their approach would interact with backups.

3 Owur Process

Our proposed framework automatically applies encryption to data that is subject
to purge policy requirements whenever data are inserted or updated. An overview
of this process is presented in Figure 1. We maintain and backup a shadow
(encrypted) copy of the tables; other tables not subject to purging rules are not
affected. SELECT queries always interact with the non-encrypted database tables
(rather than shadow tables) and are not impacted by our approach. We translate
(using triggers) DELETE, INSERT, and UPDATE queries into a corresponding operation
on the encrypted shadow copy of the table. Our framework is designed to remain

Purging Data from Backups by Encryption 5

transparent to the user. For example, one can use client-side encryption without
affecting conflicting with our data purging approach. A change in purge policy
has to be manually triggered to encrypt existing data.

In our system, shadow tables are backed up instead of the corresponding
user-facing tables; tables that are not subject to purging policies are backed
up normally. When the shadow tables are restored from backup, our system
decrypts all data except for data purged per policy. For encryption keys that
expired due to a purge policy, the underlying data would be replaced with NULL
(unfortunately, purging of data unavoidably creates ambiguity with “real” NULLs
in the database). In cases where the entire row must be purged (due to a purged
primary key), the tuple would not be restored. Evaluation of possible conflicts
(e.g., purge policy on a column that is restricted to NOT NULL) is resolved during
the policy definition step.

Our default implementation uses a table called encryptionOverview (with
column definition shown in Table 1) to manage encryption keys. This table is
marked to never be backed up to avoid the problem of having the encryption
keys stored with the backup; otherwise the encryption keys could not be truly
purged. In our proof-of-concept experiments, the encryptionOverview table is
stored in the database. However, in a production system the key management
tables will be stored in a separate database. Access to these tables could be
established via a database link or in a federated fashion, allowing the keys to be
kept completely separate from the actual data.

Our framework uses time-based policy criteria for purging, bucketed per-day
by default. A bucket represents a collection of data grouped by a time range and
policy that is purged together as a single unit. All data in the same bucket for
the same policy uses the same encryption key. Our default bucket size is set to
one day because, for most purge policies, daily purging satisfies the requirements
(e.g., GDPR: Article 25 [6]). We intend to study the performance and granu-
larity trade off (by changing bucket size) in future work. The encryption keys
can be deleted by a cron-like scheduler, available in most DBMSes. However,
since we intend to separate the encryptionOverview table from the database
in production, we did not evaluate that functionality in our experiments.

Tables may contain data belonging to

multiple business records; columns in a sin- encryptionOverview
gle row may be subject to different poli- encryptionID |Int
cies. In the shadow tables, each origi- policy Varchar(50)

expirationDate|Date

nal column explicitly includes its [column
encryptionKey | Varchar(50)

name] EncryptionID, which serves as its en-
cryption key identifier (chosen based on Table 1. encryptionOverview
which policy takes precedence). Table Column Definitions

3.1 Defining Policies

Our method of defining purge policies uses SQL views to define the underlying
business records and the purge criteria. We require defining a time-based purging
period (which, at insert time, must provide at least one non-NULL value); if any

6 N. Scope et al.

employee sale customer
employeelD |char{20) |+— salelD char(20) ’—b customerlD char{20)
name char(50} customerlD |char{20} - customerName |varchar(30)
position char(20} —#employeelD |char(20) dob date
salary integer storelD char(20) address varchar(100)
dob date saleDate date supersaveEnroll [date
startDate date price integer memberLevel |varchar(10)
endDate date notes varchar(200)

Fig. 2. Sample company schema

one primary key attribute is included in a purge policy, all other columns must
be included. The purge definition must also include all child foreign keys of the
table to maintain referential integrity. For example, in the schema in Figure 2,
if the customerID in the customer table was included under a purge policy,
both customer.* columns and sale.customerID must be included. During the
restore process, a purged column value will be restored as a NULL. Thus, non-
primary-key columns subject to a purge policy must not prohibit NULLs, including
any foreign key columns. When all columns are purged from a row, the entire
tuple will not be restored (i.e., ignored on restore).

Consider a policy for a company (Figure 2) that requires purging all customer
data where the Super Save enrollment date is over twenty years old:

CREATE PURGE customerPurge AS SELECT customer.*, sale.customerID

FROM customer LEFT JOIN sale ON customer.customerID = sale.customerID

WHERE datediff(year, customer.superSaverEnroll,

date_part(’year’, CURRENT_DATE)) > 20;

In this example, the superSaveEnroll column will not contain NULL; there-
fore, at least one column can be used to determine the purge expiration date,
satisfying our definition requirements.

3.2 Encryption Process

When a new record is inserted, we use triggers to determine if any of the columns
fall under a purge policy; if so, the trigger computes the relevant policies and
when the business records must be purged. For example, consider a new employee
record inserted into the employee table:

INSERT INTO customer

(customerID, customerName,dob,address, superSaveEnroll ,memberLevel)

VALUES (1,’Johnson,Isabel’,’2/1/1990°,’Chicago’,’1/1/2021°,’Premium’) ;

Under the previously defined customerPurge policy, Isabel Johnson’s data
would have a purge date of January 1, 2041. We first check if an encryption
key for this date bucket and policy already exists in the encryptionOverview
table. If an encryption key already exists, we use it to encrypt the values cov-
ered by the purge policy; if not, a new key is generated and stored in the
encryptionOverview table. The encrypted row and the matching encryption
key ID is inserted into the customerShadow table. If a column is not covered by
a purge policy, a value of -1 is inserted into the corresponding EncryptionID

Purging Data from Backups by Encryption 7

column. The value of -1 signals that the column has not been encrypted and
contains the original value. In this example, each column in the shadow table
is encrypted with the same key, but our proposed framework allows policies to
be applied on a per-column basis. Therefore, our framework tracks each column
independently in cases where a row is either partially covered or covered by
different policies.

To support multiple purge policies, we must determine which policies apply
to the new data. A record in a table may fall under multiple policies (potentially
with different purge periods). Furthermore, a single value may belong to different
business records with different purge period lengths. In data retention the longest
retention period has priority; on the other hand, in data purging, the shortest
period has priority. Therefore, we encrypt each column using the encryption key
corresponding to the shortest purge period policy.

It is always possible to shorten the purging period of a policy by purging the
data earlier. However, our approach does not support extending the purge period
since lengthening a purge period risks violating another existing policy. Thus, if
a policy is dropped, data already encrypted under that policy will maintain the
original expiration date.

Continuing with our example, another policy dictates a purge of all “Pre-
mium+” customer address information ten years after their enrollment date.
Because this policy applies to a subset of columns on the customer table, some
columns are encrypted using the encryption key for customerPurge policy while
other columns are encrypted using the premiumPlusPurge policy. For example,
if a new Premium+ member were enrolled, the premiumPlusPurge policy would
take priority on the address field, with remaining fields encrypted using the
customerPurge policy key.

3.3 Encryption on Update

Similarly to INSERT, we encrypt all data subject to purge policy during an UPDATE.
Normally, the updated value would simply be re-encrypted and stored in the
shadow table. However, if an update changes the date and alters the applicable
purge policy (e.g., changing the start or the end date of the employee), the record
may have to be re-encrypted with a different key or decrypted (if purge policy
no longer applies) and stored unencrypted in the shadow table. Our prototype
system decrypts the primary key columns in the shadow table to identify the
updated row. This is a PostgreSQL-specific implementation requirement, which
may not be needed in other databases (see Section 4). Our system automatically
deletes the original row from the shadow table and inserts the new record (with
encryption applied as necessary), emulating UPDATE by DELETE+ INSERT.

Continuing with our example, let’s say Isabel Johnson is promoted to the
“Premium—+" level, changing the purge policies for her records. We can identify
her row in the shadow table using the customerID primary key combined with
the previously used customerIDEncryptionID. We would then apply the corre-
sponding updates to encrypt the fields covered by the policy, based on the new
policy’s encryption key.

8 N. Scope et al.

3.4 Purging Process

Purging is automated through a cron-like DBMS job ([3] in Postgres) that re-
moves expired encryption keys from encryptionOverview with a simple delete.
Our framework is designed to support purge policies and not for support of
retention policies (i.e., prevent deletions before the retention period expires).
Retention requires a separate mechanism, similar to work in [1,13]. Moreover,
key deletion will need to be supplemented by a secure deletion of the encryption
keys on the underlying hardware [12,2], guaranteeing the encryption keys are
permanently irrecoverable (which is outside the scope of this paper).

3.5 Restore Process

Our framework restores the backup with shadow tables that contain encrypted
as well as unencrypted values. Recall that the shadow tables include additional
columns with encryption ID for each value. A -1 entry in the encryptionID
column indicates that the column is not encrypted and, therefore, does not
require decryption and would be restored as-is. Our system decrypts all values
with non-expired encryption keys into the corresponding active table. For any
encrypted value associated with a purged encryptionID our system restores the
value as a NULL in the active table. If the entire row has been purged, the tuples
would not be restored into the active table.

4 Experiments

We implemented a prototype system in PostgreSQL 12.6 database to demon-
strate how our method supplements backup process with purge rules and effec-
tively purges data from backups. The database VM server consists of 8GB of
RAM, 4 vCPUs, 1 x vNIC and a 25GB VMDK file. The VMDK file was par-
titioned into: 350MB/boot, 2GB swap, and the remaining storage was used for
the / partition; this was done with standard partitioning and ext4 filesystem
running CentOS 7 on VMware Workstation 16 Pro. We demonstrate the viabil-
ity of our approach by showing that it can be implemented without changing the
original schema or standard backup procedures, while guaranteeing data purging
compliance.

We use two tables, Alpha and Beta, with Beta containing children rows of
Alpha. As shown in Figure 3, shadow tables contain the encrypted value for
each attribute and the encryption key used. Shadow tables use the datatype
bytea (binary array) to store the encrypted value regardless of the underlying
data type as well as an integer field that contains the encryption key ID used to
encrypt the field. We tested the most common datatypes such as char, varchar
and date.

This experiment used two different purge policies. The first policy requires
purging data from both tables where the alphaDate is older than five years old
and alphaGroup=‘a’ (randomly generated value occurring in approximately 25%

Purging Data from Backups by Encryption 9

Alpha Beta
alphalD char(20) +— betalD char(20)
alphaGroup char(1) »linkiD char(20)
alphaDate date betaGroup char(1)
loremAlpha varchar(50) betaDate date
loremBeta varchar(50)
AlphaShadow BetaShadow
alphalD bytea <« betalD bytea
alphaGroup bytea ¥ linkID bytea
alphaDate bytea betaGroup bytea
loremAlpha hytea betaDate bytea
alphalDEncryptionID int loremBeta bytea
alphaGroupEncryptionID |int betalDEncryptionID int
alphaDateEncryptionID int linkIDEncryptionID int
loremAlphaEncryptionID |int betaGroupEncryptionID |int
betaDateEncryptionID int
loremBetaEncryptionID |int

Fig. 3. Tables used in our experiments

of the rows). The second policy requires purging only from the Beta table where
betaDate (generated independently from alphaDate) is older than five years old
and betaGroup=‘a’ (separately generated with the same probabilities).

Our trigger on each table fires upon INSERT, UPDATE, or DELETE to propagate
the change into the shadow table(s). When the insertion trigger fires, it first
checks for an encryption key in the encryptionOverview table for the given
policy and expiration date; if one does not exist, the key is created and stored
automatically.

We pre-populated Alpha table with 1,000 rows and Beta table with 1,490
rows. We also generated a random workload of inserts (25), deletes (25), and
updates (25) for the time period between 1/1/2014 to 2/1/2019. Because we
used two different policies, we generated the data so that some of the business
records were subject to one of the purge policies and some records were subject
to both purge policies. Roughly 75% of the data generated was subject to a
purge policy. Finally, not all records requiring encryption will be purged dur-
ing this experiment due to the purge policy date not having passed. Records
generated with dates from 2017-2019 would have not expired in running of this
experiment. We then perform updates and deletes on the tables to verify that
our implementation is accurately enforcing compliance.

Using a randomly generated string of alphanumeric characters with a length
of 50, our process uses the function PGP_SYM_ENCRYPT to generate encryp-
tion keys to encrypt the input values. alphaID is the primary key of Alpha
and (alphalD, alphalDEncryptionID) is the primary key of AlphaShadow. If
alphalD is not encrypted, the column alphaIDEncryptionID is set to -1 to
maintain uniqueness and primary key constraint.

The UPDATE trigger for the Alpha table is similar to the INSERT trigger, but it
first deletes the existing row in the shadow table. Next, we determine the current

10 N. Scope et al.

applicable encryption key and insert an encrypted updated row into the shadow
table. The DELETE trigger removes the row from the AlphaShadow table upon
deletion of the row in Alpha. When alphaDate in a row from Alpha changes,
the corresponding rows in Beta table may fall under a different policy and must
be re-encrypted accordingly. Furthermore, when a Alpha row is deleted, the child
Beta row must be deleted as well along with the shadow table entries. Note that
PGP_SYM_ENCRYPT may generate several different ciphertext values given the
same value and the same encryption key. Therefore, we cannot encrypt the value
from Alpha and compare the encrypted values. Instead, we must scan the table
and match the decrypted value in the predicate (assuming the key is encrypted):
DELETE FROM alphaShadow
WHERE PGP_SYM_DECRYPT(alphalD, v_encryption_key)=o0ld.alphalD
AND alphaIDKey=v_key_id;

Changes to Beta table are a little more interesting since there is a foreign

key relationship between Beta rows and Alpha rows. When a row is inserted
or updated in the Beta table, in addition to the Alpha trigger processes, the
Beta table triggers must compare the expiration date of the Beta row to the
expiration date of the Alpha parent row and select the encryption bucket with
the shorter of the two periods.
Initialization: We first import data into the Alpha and Beta tables. We then
ran loadAlphaShadow() and loadBetaShadow() to populate the shadow tables
using the corresponding key; the dates in the encryptionOverview table are
initialized based on our expiration dates. Next, we enabled the triggers and
incremented dates in encryptionOverview by five years to simulate the policy’s
expiration at a later time.

Validation: We wrote a procedure, RestoreTables(), to restore Alpha and Beta
tables after shadow tables were restored from backup. In a production database,
the backup method would depend on the Recovery Time Objective (RTO) and
Recovery Point Objective (RPO) which would determine the backup methodol-
ogy implemented, such as with PostgreSQL’s pg_dump and excluding the tables
with sensitive data. We tested the basic backup and restore process by exporting
and importing the shadow tables, then truncating Alpha and Beta, and finally
invoking our RestoreTables() procedure. We then modified the procedure to re-
store the tables to (temporarily created) Alpha’ and Beta’ so that we could
compare restored tables to Alpha and Beta. We then verified that the values for
the restored tables match the original tables’ non-purged records.
Evaluation: We have verified that by deleting encryption keys to simulate the
expiration of data, the restore process correctly handled the absence of a key
to eliminate purged data. In total, there were 61 rows purged from Alpha and
182 rows purged from Beta, as well as the same rows purged from AlphaShadow
and BetaShadow. Therefore, we have demonstrated that our framework achieves
purging compliance in a relational database without altering tables in the exist-
ing schema or modifying the standard backup procedures.

Encrypting and maintaining a shadow copy of sensitive data to support purg-
ing incurs processing overheads for every operation that changes database con-

Purging Data from Backups by Encryption 11

tent (read operations are not affected). Optimizing the performance of this ap-
proach is going to be considered in our future work. During an INSERT on the
Alpha table, our system opens a cursor to check if an encryption key is available
in the encryptionOverview table. If the applicable key exists we fetch it, other-
wise we create a new one. Once a key is retrieved or a new key is generated, the
values that are under a purge policy are encrypted with PGP_SYM_ENCRYPT.
Next, we insert encrypted data into the shadow table as part of the transaction.
For an UPDATE, we follow the same steps but also delete the prior version of the
row from the shadow table (and may have to take additional steps if the update
to the row changes the applicable purge policy). If the policy condition changes,
we insert the shadow row into AlphaShadow and then evaluate the data in the
BetaShadow table to see if the encryption key needs to change on the encrypted
rows of the BetaShadow where the 1inkID refers to the Alpha row that changed.

The restore process is subject to decryption overheads. For example, in Post-
gres, in addition to the normal restore operation that restores the shadow table,
we recreate the unencrypted (active) version of the table. For each encrypted
column, we look up the key, then apply PGP_SYM_DECRYPT, and finally in-
sert the row into the active table (unless the row already expired). Because the
restore process creates an additional insert for every decrypted row, this also
increases the space used for the transaction logs. The performance overhead for
a restore will be correlated with doubling the size of each encrypted table (due
to the shadow copy addition) plus the decryption costs. During deletion, each
time we decrypt a row, the process of executing PGP_SYM_ENCRYPT and eval-
uating each row of the table incurs a CPU cost in addition to the I/O cost of
deleting an additional row for each deleted row. The performance for an update
statement incurs a higher overhead since an update is effectively a delete plus
insert. Some of these I/O costs, such as fetching the key, can be mitigated with
caching.

5 Discussion

5.1 Implementation

In our experiments we exported and imported the shadow tables to show that
the system worked as expected; in practice, backup methodology would depend
on the RTO and RPO on the application [10]. There are a plethora of options
that can be implemented depending on the needs of the application. One could
use pg-dump and exclude the tables containing sensitive data, so that these tables
are excluded from the backup file. If the size of the database is too large for a
periodic pg_dump, or if the RTO and RPO warrant a faster backup, one could
replicate the database to another database, and exclude the tables with sensitive
data from replication. Using the clone of the database, one could do filesystem
level backups or a traditional pg_dump. While the clone is a copy, a clone is not
versioned in time like backups would be. For example, if someone dropped a
table, the drop would replicate to the clone and not protect data against this
change, whereas a backup would allow restoring a dropped table.

12 N. Scope et al.

5.2 ACID Guarantees

If a trigger abends at any point, the transaction is rolled back. Since we at-
tach triggers to the base tables, we are able to provide ACID guarantees. These
guarantees are also extended to the shadow tables because all retention triggers
execute within the same transaction. Overall, for any table dependencies (either
between the active tables or with the shadow tables), our framework executes all
steps in a single transaction, fully guaranteeing ACID compliance. This guaran-
tee requires additional steps if we replicate the changes outside of the database
since the database is no longer in control of the transaction.

For example, if the remote database disconnects due to a failure (network
or server), the implementation would have to choose the correct business logic
for the primary database. If the primary database goes into a read-only mode,
the primary can keep accepting transactions or keep a journal to replay on the
remote database. If the implementation kept a journal to replay, organizations
must determine if is it acceptable to break ACID guarantees. Oracle DataGuard
and IBM Db2 HADR provide varying levels of replication guaranties; similar
guaranties would need to be built into our framework and verbosely explained
as to the implications. Similarly, supporting asynchronous propagation and en-
cryption of data into shadow tables would require additional investigation.

5.3 Future Work

We plan to consider asynchronous propagation (instead of triggers) to shadow
tables; although that would require additional synchronization mechanisms, it
has the potential to reduce overheads for user queries. Because scalability is a
concern, tools such as Oracle Goldengate or IBM Change Data Capture, provide
a framework to replicate changes, apply business logic, and replicate the changes
to the same database or other heterogeneous databases. We also intend to explore
developing our framework to replicate changes outside of a single database.
Our approach can easily incorporate new policies without requiring any
changes to the already defined policies. However, when a policy is removed, all
data in the shadow tables will stay bucketed under the previous policy. Further
research is needed to automatically re-map all data points to the newest policy
after a policy has been replaced or altered, to facilitate up-to-date compliance.

6 Conclusion

Organizations are increasingly subject to new requirements for data retention
and purging. Destroying an entire backup violates retention policies and prevents
the backup from being used to restore data. Encrypting the active database di-
rectly (instead of creating shadow encrypted tables) would interfere with (com-
monly used) incremental backups and introduce additional query overheads. In
this paper we have shown how a framework using cryptographic erasure is able
to facilitate compliance with data purging requirements in relational database
backups.

Purging Data from Backups by Encryption 13

Our approach does not change the active tables and maintains support for
incremental backups while providing an intuitive method for data curators to
define purge policies. This framework balances multiple overlapping policies and
maintains database integrity constraints (checking policy definitions for entity
and referential integrity). We demonstrate that cryptographic erasure supports
the ability to destroy individual values at the desired granularity across all ex-
isting backups.

Overall, our framework provides a clear foundation for how organizations can
implement purging into their backup processes without disrupting the organi-
zation’s business continuity processes. This is also accomplished without adding
any restrictions to existing databases. Our purging framework is able to guar-
antee purging compliance while being easily integrated into existing databases.

References

1. Ataullah, A.A., Aboulnaga, A., Tompa, F.W.: Records retention in relational
database systems. In: Proceedings of the 17th ACM conference on Information
and knowledge management. pp. 873-882 (2008)

2. Boneh, D., Lipton, R.J.: A revocable backup system. In: USENIX Security Sym-

posium. pp. 91-96 (1996)

Citus Data: pg-cron, https://github.com/citusdata/pg_cron

Congress, U.S.: 28 u.s. code §1732 (1948)

5. Dudjak, M., Lukié, I., Kohler, M.: Survey of database backup management. In: 27
th International Scientific and Professional Conference” Organization and Mainte-

nance Technology (2017)

6. European Parliament: Regulation (eu) 2016/679 of the european parliament and
of the council (2020), https://gdpr.eu/tag/gdpr/

7. International Data Sanitization Consortium: Data sanitization terminol-
ogy and definitions (Sep 2017), https://www.datasanitization.org/
data-sanitization-terminology/

8. IRS: How long should i keep records?, https://www.irs.gov/businesses/
small-businesses-self-employed/how-long-should-i-keep-records

9. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: International Conference
on Financial Cryptography and Data Security. pp. 136-149. Springer (2010)

10. Lenard, B., Rasin, A., Scope, N., Wagner, J.: What is lurking in your backups? p.
401-415. Springer International Publishing (2021). https://doi.org/10.1007/978-3-
030-78120-0_26

11. Office of the Attorney General: California consumer privacy act (ccpa) (Jul 2020),
https://oag.ca.gov/privacy/ccpa

12. Reardon, J., Basin, D., Capkun, S.: Sok: Secure data deletion. In: 2013 IEEE
symposium on security and privacy. pp. 301-315. IEEE (2013)

13. Scope, N., Rasin, A., Wagner, J., Lenard, B., Heart, K.: Database framework for
supporting retention policies. In: International Conference on Database and Expert
Systems Applications. Springer (2021)

=

