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A B S T R A C T   

Low-cost sensors for particulate matter mass (PM) enable spatially dense, high temporal resolu-
tion measurements of air quality that traditional reference monitoring cannot. Low-cost PM 
sensors are especially beneficial in low and middle-income countries where few, if any, reference 
grade measurements exist and in areas where the concentration fields of air pollutants have 
significant spatial gradients. Unfortunately, low-cost PM sensors also come with a number of 
challenges that must be addressed if their data products are to be used for anything more than a 
qualitative characterization of air quality. The various PM sensors used in low-cost monitors are 
all subject to biases and calibration dependencies, corrections for which range from relatively 
straightforward (e.g. meteorology, age of sensor) to complex (e.g. aerosol source, composition, 
refractive index). The methods for correcting and calibrating these biases and dependencies that 
have been used in the literature likewise range from simple linear and quadratic models to 
complex machine learning algorithms. Here we review the needs and challenges when trying to 
get high-quality data from low-cost sensors. We also present a set of best practices to follow to 
obtain high-quality data from these low-cost sensors.  
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1. Introduction 

Low-cost sensors have the potential to greatly alter how, where, and when air pollution monitoring is done. Until 2010or so, 
measurement of particulate matter mass (PM) concentrations could be routinely performed only by entities that could afford in-
struments on the order of USD 10,000’s (generally governments or research organizations in the Global North), with overall station 
and personnel costs easily an order of magnitude higher. The past decade has seen radical changes in how air quality monitoring can be 
performed, who can perform it, and the temporal and spatial scales on which we think about air quality in general. These changes have 
been driven by the emergence of low-cost air quality sensors, including low-cost PM monitors. Low-cost sensors (LCS) have been 
utilized in (or marketed towards) projects of various scales: from citizen science projects and personal empowerment (e.g. the Airbeam 
monitor [https://www.habitatmap.org/airbeam], Plume Labs Flow monitor [https://plumelabs.com]), PurpleAir [https://www2. 
purpleair.com/]) (Ford et al., 2019; Karagulian et al., 2019; Kelly et al., 2017) to large city-scale distributed network deployments 
(Eilenberg et al., 2020; Jiao et al., 2016). These projects may also include more sparsely dispersed reference monitors to increase the 
network’s accuracy. Fig. 1 shows how the incidence of “low-cost sensor” and “air quality”/“air pollution” keywords in the scientific 
literature has increased since 2002. With the development of low-cost sensors, the general public, researchers, and even governments 
in underserved regions can now attain high time resolution PM concentration measurements from a high spatial density network. 

The biggest challenge to the widespread use of low-cost sensors is their out-of-the-box data quality is generally low. Paradoxically, 
despite the easy access to data that LCS provide, interpreting that data requires more than a cursory understanding of the sensors 
themselves and their outputs if one wants to compare LCS data to reference monitor data. A poor understanding of these sensors can 
lead to undesirable outcomes. Users from the general public could be alarmed that their measurements are much higher than that from 
their government’s reference monitors, but this could have a simple technical explanation, such as aerosol growth at high relative 
humidity since government data are reported at low to intermediate RH (35% by US and 50% by EU standards). Nations with low 
reference-monitor coverage could conclude based on LCS data that their ambient air quality is much better or much worse than reality, 
leading to ineffective air quality management policies. Where the responsibility lies in training end-users to obtain high quality data 
from low-cost sensors is an open question. 

The main benefit of low-cost PM sensors is apparent from the name; these instruments are relatively inexpensive. Most PM LCS cost 
on the order of US$10 to 100 for a single sensor, though the associated electronics and packaging can push costs to anywhere from 
$200 to $2000 – still a small fraction of the cost of traditional reference PM monitors (Table 1). Large-scale, dense networks are 
therefore possible, even in historically underserved nations. Some work has been done to evaluate makes and models of various low- 
cost sensors using formalized evaluation criteria (Fishbain et al., 2017; Williams et al., 2014) which has in general concluded that the 
as-reported data are often of low quality, suffering from various artifacts and biases. Attaining high-quality data from these low-cost 
sensors requires extra work. Here, we review and discuss these recent studies to better understand the limitations of low-cost PM 
sensors and methods used to address these limitations. Finally, we provide a set of suggestions supported by the literature for how to 
generate high-quality data from low-cost sensors. 

This manuscript is also based on the experiences and lessons learned by the authors’ deployments of over 200 low-cost PM sensors 
over much of the world for the past five years, including the USA, South Asia, and multiple countries in Europe and Africa. 

Fig. 1. Number of articles containing the keywords “low cost sensor” and either “air pollution” or “air qualitiy” on Pubmed.gov.  
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2. Sensor design 

All commercially available low-cost PM sensors utilize light-scattering as their principle of operation. Light scattering can be 
implemented in a much smaller form factor than most other methods of particle counting/mass concentration measurements. In 
principle, a low-cost PM sensor only requires three main components: a light (generally infrared or red laser) emitting diode, a 
phototransistor, and a lens to focus the diode light (Wang et al., 2015a). A fan, pump, or convective heater can be used to draw air into 
the measurement cavity. Some commonly used commercially available low-cost sensors and their general operating principles are 

Table 1 
General operating principles and price of some commonly used, commercially available low-cost PM sensors.  

Make Model Light 
wavelengtha 

Scattering 
Angle (◦)a 

Aspiration Stated Lower Particle 
Size Sensitivitya 

Output Price 
(USD) 

bShinyei PPD42NS Infrared 120 Convective >1 μm Lo Pulse Occupancy (%) ~20 
bSharp GP2Y1010AU0F Infrared 120 None 0.5 μm Lo Pulse Occupancy (%) ~20 
bSamyoung DSM501 Infrared 120 None 0.5 μm Lo Pulse Occupancy (%) ~20 
Nova SDS 011 “Red Laser” 90 Fan 0.3 μm Particle Mass concetrations 

(PM2.5, PM10) 
~20 

dDylos DC1700 “Laser” dLaser particle 
counter 

Fan (? L/ 
min) 

<0.5 μm and >2.5 μm Particle number 
concentrations 

~450 

Plantower PMS1003/3003/ 
5003 

650 nm 90 cFan (? L/ 
min) 

0.3 μm Particle Mass concetrations 20+

Sensirion SPS30 660 nm 90 Fan (? L/ 
min) 

0.3 μm Particle Mass concetrations 
(PM1, PM2.5, PM4, PM10) 

~40 

Honeywell HPMA115C0 650 nm Forward Fan (? L/ 
min) 

Unstated Particle Mass concetrations 
(PM1, PM2.5, PM4, PM10) 

~40 

dMet One NPM2 670 nm Forward 2L/min 0.1 μm Particle Mass concentration ~2000 
Alphasense OPC-N2/OPC-N3 658 nm 30 5.5L/min 0.35 μm Particle number 

concentrations 
~500  

a Wavelengths, scattering angle, and particle size sensitivities are taken from manufacturer specifications where available, or are not specified here. 
Though some manufacturers specify lower size detection limits, this may not be the case in practice, see He et al., 2020 and Tryner et al., 2020a. 

b These sensors are essentially the same but are packaged differently by different companies. 
c The PMS 1003/5003 flowrate is estimated to be approximately 0.1 lpm by Sayahi et al. (2019). 
d Sensor is an integrated sensor; all other sensors are stand alone. 

Fig. 2. Representation of the resulting output for the photodiode signal in a low-cost PM sensor using LPO with particles absent (a) and present (b) 
in the light path. 
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Table 2 
Summary of findings, sensors studied, and broad categorization of sensor effects from numerous low-cost sensor studies specifically relating to confounding factors for low-cost sensor measurements.  

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

Ardon-Dryer 
et al., 
2020 

Purpleair PA-II 
(Plantower PMS 
5003)         

X  Dual monitor setups 
like Purpeair’s are 
often well correlated 
with eachother (R2 >
0.9) 

Barkjohn 
et al., 
2020 

Plantower PMS5003 X   X  X     In Beijing, China, CF 
= atm showed higher 
correlation than CF =
1 with reference 
methods (R2 = 0.63 
vs 0.52). LCS may be 
useful in determining 
indoor/outdoor 
filtration changes. 

Castell et al. 
(2017) 

AQMesh  X      X   Lower traffic 
emissions correlate to 
better agreement with 
reference monitors. 
Onboard calibration 
factors likely the 
cause. 

Crilley et al. 
(2018) 

Alphasense OPC-N2    X  X   X  Gravimetric and 
optical reference 
methods affect end 
calibration. RH >
85% significantly 
impacts sensors. 
~20% variability in 
inter-unit precision 
for 14 sensors. 

Demanega 
et al. 
(2021) 

AirVisual, Awair, 
Clarity, Foobot, 
Kaiterra, uHoo 

X X X X       For two different 
humidities and 
multiple different 
sources, the tested 
sensors underreport 
PM concentrations by 
up to 50% 

Di Antonio 
et al. 
(2018) 

AlphaSense OPC-N2  X X X       κ-Köhler theory based 
RH correction 
significantly reduces 
overestimation of 
PM1 and PM2.5 by at 
least an order of 
magnitude 

X      X    

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

Gao et al. 
(2015) 

PUWP (Shinyei 
PPD42NS) 

High PM2.5 
concentrations (above 
100 μg m-3) require 
non-linear correction 
methods. 

Hagan and 
Kroll 
(2020) 

Theoretical, 
Idealized Sensors   

X X X      Sensor technology 
(OPC vs 
nephelometer), 
sensor design, and 
calibration aerosol 
choices all impact the 
relative error of 
sensors when 
calibrating. Mie 
Theory can be used to 
reduce some of this 
error. 

Han et al. 
(2017) 

Dylos DC1700 X X  X       PM2.5 and course PM 
(PM10-PM2.5) 
associations 
dependent on size 
distribution. RH >
60% causes 
overestimation 
(>70%) of mass 
concentrations. 

He et al. 
(2020) 

Plantower PMS5003 X  X  X      Shape of response 
function of LCS is 
closely related to 
light-scattering 
response (a complex 
function of 
composition and size 
distribution) 

Holder et al. 
(2020) 

Plantower PMS5003 
(in RAMPS and 
PurpleAirs), 
Aeroqual micro AQ 
station 

X X         A specific forest-fire 
correction can be 
made to reduce the 
impact of high 
concentration BMB 
events and reduce 
MAE < 10 μg m-3 

Jiao et al. 
(2016) 

Shinyei PMS-SYS-1, 
Dylos DC1100, 
Shinyei PPD60PV, 
Metone Aercet 831, 
Shinyei PPD42    

X   X    Including RH in 
sensor caibrations 
yielded higher 
regression 
coefficients (R2adj) 

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

for at least both the 
Shinyei and Airbeam 
sensors than 
including the 
temperature (the 
Dylos being the 
exception). Including 
both RH and T did not 
yield significantly 
higher correlations 

Kelly et al. 
(2017) 

Plantower PMS 
1003/3003 

X     X     Sensor response linear 
between 200 and 850 
μg m-3 PM2.5 in lab 
tests but ambient tests 
can show 
overestimation at 
certain periods. High 
correlation (> 0.8) to 
light-scattering, 
attenuation, and 
gravimetric reference 
methods. 

Kuula et al., 
2020 

Plantower 
PMS5003, Nova 
SDS011, Sensirion 
SPS30, Sharp 
GP2Y1010AU0F, 
Shinyei PPD42NS, 
and Omron B5W- 
LD0101   

X        None of the tested 
sensors adhere to the 
detection ranges 
declared by the 
manufacturer and 
only achieve 
independent 
responses in 1 or 2 
size bins 

Li et al. (2020) AirVisual, 
Alphasense, APT, 
Awair, Dylos, 
Foobot, PurpleAir, 
Wynd, and Xiaomi 

X X X   X     Laboratory chamber 
tests of 8 of 9 sensors 
using 3 different 
aerosol sources 
generally showed 
high correlation (R2 
> 0.9) and high 
linearity when 
compared to two 
different reference 
monitors 

Liu et al. 
(2017) 

4 Sharp, Shinyei, 
Samyoung and 
Oneair sensors  

X         Linear correlations 
are appropriate under 
tested conditions but 
change with differing 

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

size distribution 
means and 
geometrical standard 
deviations. 

Liu et al. 
(2019) 

Nova SDS011 X   X     X  Sensors highly 
correlate with each 
other (R2 > 0.97). 
Between 0 and 50 μg 
m-3 PM2.5 sensors 
reasonably correlate 
with reference (R2 ~ 
0.5). RH > 80% 
negatively effects 
sensors. 

Magi et al. 
(2020) 

Plantower PMS5003 
(PurpleAir 
PA–II–SD)    

X   X    Including both RH 
and T in calibration 
models yieded a 
27–57% 
improvement in 
sensor accuracy but 
the improvement is 
more pronounced for 
higher RH than higher 
T 

Malings et al. 
(2020) 

Met-One NPM and 
PurpleAir PA-II    

X   X  X  25 NPM and 9 PPA 
sensors show high 
inter-unit consistency 
for PM2.5 (r > 0.9, 
MAE < 2.5 μg m-3). 
Fully-empirical 
correction methods 
for RH/particle 
hygroscopicity are as 
good as or better than 
semi-theoretical 
approaches. 

Masic et al. 
(2020) 

Alphasense OPC-N2, 
Plantower PMS5003 

X          Daily average aerosol 
concentrations at 
~20 μg m-3 PM2.5 
and PM10 result in 
worse agreement with 
reference monitors 
than daily averages of 
83 μg m-3. 

Plantower PMS5003 X          MLR and RF 
calibration methods 

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

McFarlane 
et al. 
(2021) 

work well for 
collocations in 
extremely polluted 
environments such as 
Kampala, Uganda 

Pope, Gatari, 
Ng’ang’a, 
Poynter, & 
Blake 
(2018) 

AlphaSense OPC-N2         X  After collocation 
calibration, inter- 
instrument coefficient 
of variance of 8.8% 
for PM2.5. 

Eilenberg 
et al., 
2020 

Plantower PMS5003          X Instrument and 
sampling uncertainty 
percentages decrease 
as averaging times are 
increased as 
compared to 
reference 
instruments. 

Salimifard 
et al. 
(2020) 

OPC-N2, IC Sentinel, 
Speck, and Dylos 

X X         Linearity of sensors 
sensitive to particle 
concentration: 
number 
concentrations < 5 
cm-3 are strongly 
non-linear. Responses 
to different aerosol 
compositions differ in 
strength and location 
of non-linearities. 

Sousan et al. 
(2016) 

Dylos DC1700, 
Sharp 
GP2Y1010AU0F and 
DN7C3CA006  

X         Of 4 different sources 
of aerosols, sensors 
show differing bias 
and detection 
efficiencies but 
calibration can 
correct for these 
effects. 

Subramanian 
et al. 
(2020) 

MetOne NPM X          Pittsburgh-based 
sensor calibration 
applied to Kigali, 
Rwanda 
measurements 
appears to 
significantly 
underestimate 
gravimetric PM2.5 

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

Tryner et al. 
(2019b) 

Custom      X     Gravimetric methods 
as a reference method 
for low-cost sensors 
reduces bias and 
relative standard 
deviation. 

Tryner et al. 
(2020a) 

Plantower 
PMS5003, 
Amphenol Advanced 
Sensors SM-UART- 
04 L, Sensirion 
SPS30 

X X  X  X     Particle count data 
reported by the 
PMS5003 not reliable 
for various types of 
measured PM2.5 
aerosols. Some 
sensors subject to 
errors caused by 
exposure to high dust 
concentrations. 

Tryner et al. 
(2020b) 

Plantower PMS5003 
(PurpleAir 
PA–II–SD)    

X  X     Performing 
collocation 
calibrations only in 
laboratory settings 
does not translate to 
field settings. Periodic 
corrections with 
gravimetric filters 
reduces bias. 

Wang et al., 
2015 

Shinyei PPD42NS, 
Samyoung 
DSM501A, and 
Sharp 
GP2Y1010AU0F 

X X  X       All 3 sensors linear 
(R2 > 0.89) between 
0 and 1000 μg m-3 
PM2.5. Differing 
compositions can 
cause up to 10×

difference in 
measured 
concentrations. All 
sensors highly 
sensitive to RH but in 
varying directions. 

Williams et al. 
(2014) 

AirBase CanarIT, 
CairPol CairClip, 
Speck, Dylos 
DC1100, MetOne 
831, RTI MicroPEM, 
Senaris ECO PM, 
Shinyei PMS-SYS-1 

X   X       Low-cost sensors 
reasonably agree with 
equivalent reference 
methods for PM2.5 <
50 μg m-3. T and RH 
effects can be 
substantial. 

Zheng et al. 
(2018) 

Plantower PMS3003 X   X  X     Sensor performance 
increases with PM2.5 

(continued on next page) 
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Table 2 (continued ) 

Study Sensor(s) Used Topics Major finding(s) 

Aerosol 
Concentration 

Aerosol Size, 
Density, 
Composition 

Aerosol Size 
Distribution 

RH 
Effects 

Optical 
property 
effects 

Reference 
method 
selection 

Calibration 
Methods 

On-board 
Corrections 

Intersensor 
Consistency 

Averaging 
Periods 

concentrations up to 
~125 μg m-3. 
β-attenuation-based 
monitors have 
drawbacks at low 
concentrations. RH 
effects can explain up 
to 30% of the 
variance in PM2.5 
measurements. 

Zikova et al. 
(2017) 

Speck monitors 
(Syhitech 
DSM501A)  

X         Separating data 
periods into 
combustion and non- 
combustion-derived 
aerosols improves 
correlation (R2 0.3- 
>0.5). LOD of 10 μg 
m-3 PM2.5. 

Zusman et al. 
(2020) 

Shinyei PPD42NS, 
Plantower A003    

X   X    Nonlinear corrections 
of RH effects yielded 
similar or worse 
model performance 
compared to linear 
RH terms  
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summarized in Table 1. Other techniques such as quartz crystal microbalance (Paprotny et al., 2013) are not yet commercially 
available at low cost for routine monitoring and so are excluded from this manuscript. Nephelometric devices can include an additional 
filter for later correction of the real-time data, such as the MicroPEM (Williams et al., 2014) and the AMOD sampler (Wendt et al., 
2019), but the principle of operation is largely the same as for the nephelometric LCS discussed in the rest of this manuscript. The 
AMOD even uses a Plantower PMS5003 sensor like many of the low-cost monitors discussed here. 

The measurement principles of low-cost PM sensors are simple: as particles flow through the measurement cavity, the light in-
tensity of the infrared/red light reaching the phototransistor is modulated by the presence of particles in the light path. The intensity of 
the modulation, i.e. the nephelometric response, is a function of the particle (mass and number) concentration. The optics (diode, 
transistor, and lens) as well as the geometry of the measurement cell greatly impact the overall nephelometric response of these in-
struments (Williams et al., 2014). Therefore, even though the measurement principles across low-cost PM sensors are the same, 
different makes and models of low-cost sensors often perform quite differently. 

Scattering of light by particles has been studied for decades and a full discussion is beyond the scope of this paper; readers are 
referred to texts such as Bohren & Huffman (1998). Instead, here it suffices to note that the light scattering of particles in low-cost PM 
sensors falls in the Rayleigh, Mie, or geometric scattering regimes. The majority of the number, but not necessarily the mass, of an 
aerosol population will fall under the Rayleigh and Mie regimes Friedlander (2000). For a given light wavelength, in the Rayleigh and 
geometric regimes, the scattered light intensity of a single particle is proportional to the particle size (dp

6 and dp
2, respectively, where dp 

is the particle diameter). In the Mie regime, the transition between Rayleigh and geometric, scattered light intensity is a more complex 
function of particle size, shape, and refractive index. The Mie regime occurs when (for an assumed spherical particle) the size of the 
particle is similar to the wavelength of incident radiation. Therefore, for a PM LCS using an infrared/red diode, scattering of particles 
with dp’s in some range between 600 nm and 2 μm becomes a more complex, not simply proportional, function of particle size. 
Depending on the size distribution of the aerosol population, this can be problematic as a substantial portion of the total scattering of 
the aerosol can be due to particles in this size range. 

One of the characteristics of low-cost PM sensors is that they generally do not measure individual particle scattering, but the 
scattering due to a particle population. This ensemble measurement helps mitigate a number of the drawbacks of measuring individual 
particles by light scattering. Many low-cost sensors use the low-pulse occupancy (LPO) method: the phototransistor outputs either a 
high voltage (when the light path is clear) or a low voltage (when the light path contains particles) in a modulated pulse (see Fig. 2). 
The LPO, or the percentage of time in a sampling period where the voltage is low, is given as a raw signal for many (e.g. the Shinyei 
PPD42NS, Samyoung DSM501A), but not all, sensors. The LPO is proportional to the particle mass concentration similar to nephe-
lometers (He et al., 2020). The nephelometric response is sensitive to phenomena like coincidence of particles in the light path and 
particle characteristics that affect light scattering (e.g. morphology, composition; discussed below). 

Other instruments (e.g. the Sharp GP2Y1010AU0F) provide an analog voltage output as opposed to the LPO. Some instruments, like 
the MetOne NPM, report neither the LPO nor analog voltage and instead perform simple, onboard calibrations and output mass and/or 
number concentrations. Regardless of provided output though, calibration of the sensor signals are generally tied to mass concen-
trations through collocated measurements of aerosol concentrations using standardized instruments. 

While the previous discussion covers most PM LCS, a different subset of “lower-cost” sensors are the optical particle counters 
(OPCs) such as the Alphasense OPC-N3 or Particle Plus OPC. OPC-type LCS are differentiated from the cheaper nephelometric LCS in 
that OPCs detect particles individually (Hagan & Kroll 2020). As with traditional optical particle sizers that are much more expensive, 
OPC binning is done by measuring the intensity of scattered light from individual particles and assigning the signal to either one bin or 
using a probability distribution across multiple bins (Walser et al., 2017). Assignment is generally done onboard the OPC LCSs where a 
priori calibrations are used to relate scattered light intensity to particle diameter. Given that optical particle sizer (OPS)/OPC tech-
nology has been available and understood for several decades (Hagan & Kroll 2020 and references therein) and that OPCs cost several 
hundred dollars per unit putting them somewhere between true low-cost sensors and traditional OPS units, these sensors are not 
considered further in this manuscript. 

While a fully theoretical approach to calibration would be beneficial for LCS devices deployed without a collocation calibration, 
such an approach is difficult due to the a priori knowledge of the aerosol population that is required for light scattering theory. Hagan 
& Kroll (2020) have produced a model which uses Mie Theory to calculate sensor response to various aerosol properties. The model is 
useful for estimating how a given sensor reacts to different conditions, but is more a supporting tool for physical calibrations. A 
different approach to a theoretical calibration has been presented by He et al. (2020) who showed that the Plantower PMS5003 sensor 
signal can be reproduced by a transfer function which has similar characteristics to the Mie scattering curve. However, the transfer 
function is still dependent on aerosol size and composition but its calculation is much less computationally intense than Mie theory. 
The fact that a transfer function is calculable suggests that exact, explicit knowledge of each sensor’s optical response functions may 
not be necessary. Instead, as long as the sensor response over the desired size range is relatively smooth, then “simple” corrections can 
be applied to low-cost sensors and there is no direct need to solve the governing equations for the various scattering regimes for each 
sensor. Additionally, the fact that comparatively simple transfer functions are relatively accurate implies that the main drawbacks of 
measuring aerosol mass from nephelometric response are less important for the expected applications of low-cost PM sensors. The 
complex aerosol composition, shape, and morphology (Hagan & Kroll, 2020; He et al., 2020) that affect an aerosol’s refractive index 
may all therefore be “hidden” in relatively simple calibration functions for low-cost PM sensors. 

3. The complexity of sensor calibration 

Calibrating low-cost sensors is a relatively simple experimental process, but a complex topic. In general, the process consists of 
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simply measuring “actual” aerosol concentrations with an instrument which serves as a trusted reference side-by-side with a low-cost 
sensor. Then, one needs to find a calibration function that yields the best results, while fitting within other design constraints (e.g. 
computational complexity, software requirements). The complexity arises from the fact that performing a calibration leads rise to 
numerous questions. Over what range of particle concentrations can LCS be applied to? Which reference instrument should be used? 
What is an appropriate concentration measurement range for the calibration? What type (e.g. composition, morphology) of aerosols 
should be used in calibrations? Should calibrations be done with poly- or mono-disperse size distributions and which ones? What 
atmospheric conditions (RH/T) should calibrations be performed at? Where should calibrations be performed; are lab-based cali-
brations equivalent to field-based? How are appropriate calibration factors determined with respect to time and place? How often 
should calibrations at these various conditions be performed? With all of these questions answered, how does one fit the data? How 
long does a calibration then remain valid for a sensor in the field? Here we will discuss the various ways these questions have been 
answered in the past decade and end with a recommendation of best practices. Note, first, that from this section on, the term ‘reference 
instrument’ is used to represent a highly-trustworthy instrument that measures “actual” PM concentrations without explicitly speci-
fying a method or monitor. The ultimate goal of LCS should be to provide measurements as close to a FRM measurement as possible but 
since access to FRM instruments is not always possible, we do not exclude the following discussion as applying to FRM, eRM, and 
research-grade monitors equally. The reader should be aware that ideally a FRM or eRM would be used to calibrate LCS and we phrase 
the following discussion to reflect that ideal but the following is not dependent on FRM/eRM access. Second, note that this manuscript 
deals primarily with PM2.5. The methods described in section 3.4 apply to calibrating LCS for PM1, PM4, and PM10 equally as well as 
PM2.5 but sensor performance and sensitivities at these other sizes, PM10 especially, can vary much more as compared to PM2.5 (Crilley 
et al., 2018; Jayaratne et al., 2018; Tryner et al., 2020a). However, due to the importance of PM2.5 on human health, discussion of 
measurement of the other PM sizes is left to another paper. 

3.1. Sensor linearity and limits of detection 

Despite the limitations and drawbacks of calculating aerosol mass from nephelometric response, some low-cost sensors have been 
shown to have linear responses to ambient PM2.5 concentrations as high as 300 μg m− 3 (e.g., Liu et al., 2019; Malings et al., 2020; Masic 
et al., 2020; Stavroulas et al., 2020;Wang et al., 2015; Williams et al., 2014; Zheng et al., 2018). Despite this potentially large window 
of PM2.5 concentrations for which LCS can be used, the actual story of sensor linearity is fairly complicated. Much of the complication 
comes from the fact that sensor linearity is likely due to a combination of factors such as individual sensor design, sensor algorithms, 
lab versus ambient tests, and the various confounding factors that affect LCS (see section 3.3). Studies such as Wang et al. (2015a) and 
Hapidin et al. (2019), for example, showed that in laboratory tests using incense burning particles with concentrations up to 1000 and 
500 μg m− 3, respectively, R2-values exceeding 0.8 compared to research-grade monitors with no or minor corrections were attainable 
for the five different sensors tested (Shinyei PPD42NS, Samyoung DSM501A, Winsen ZH03A, Novafitness SDS011, and Sharp GP2Y). 
Contrast this result with ambient studies such as Crilley et al. (2020), Johnson, Bergin, Russell, & Hagler (2018), Zheng et al. (2018), or 
Han et al. (2017) which show that sensor linearity for similar sensors ends at an upper range of a few 100’s of ug m− 3 in real-world (i.e. 
complex aerosol sources, RH and T variations) conditions. Furthermore, sensor algorithms can play a major role in linearity where 
on-board corrections such as Plantower’s “CF = 1” and “CF = atm” can shift the upper limit of linearity from as low as 40 μg m− 3 to 
100’s of ug m− 3 (Kelly et al., 2017; Kosmopoulos et al., 2020; Zheng et al., 2018). In the end, the only sure statement is that the upper 
range where aerosol concentration responses are linear for low-cost sensors has been shown to be smaller than those of both eRM and 
research-grade monitors (Zheng et al., 2018). This in turn may necessitate the use of non-linear corrections above certain concen-
tration thresholds (Gao et al., 2015). This upper limit of concentration where linearity holds therefore necessitates end users to think 
about the anticipated concentrations at their deployment locations. Thinking about anticipated concentrations should also extend to 
the development of calibration models in that models developed solely in a “low” or “high” concentration range may not necessarily 
transfer to measurements outside of the range the calibration is built on. This is discussed more in the need to localize calibrations for 
LCS in the following section. 

Low-cost sensors have higher limits of detection than reference monitors. Lower limits of detection (LLOD) for low-cost sensors 
have been shown to have a wide range of values in laboratory tests. Wang et al. (2015b) showed a LLOD for Sharp GP2Y sensors as high 
as 26.9 μg m− 3. Bulot et al. (2020) (which also provides an excellent review of a number of studies that report limits of detection in field 
and laboratory environments) conversely showed LLOD well below 1 μg m− 3 for 5 different sensors. Austin et al. (2015) and Kelly et al. 
(2017) both showed similar results for Shinyei PPD42 sensors and Plantower PMS1003/3003 sensors with LLOD’s calculated to be 1 
and 1–3.22 μg m− 3, respectively. Outside of laboratory conditions though, sensor responses to meteorological and other conditions 
tends to bring the LLOD up. In the same paper, Kelly et al. (2017) showed that the units with a 1–3.22 μg m− 3 LLOD in the laboratory 
rose to 10.5 μg m− 3 in ambient conditions. Similarly, Zikova et al. (2017) showed a LLOD for Synhitech DSM501A sensors (inside 
Speck monitors) of 10 μg m− 3 (at 1-min data reporting; 9 μg m− 3 for 1-h averaging) for indoor and outdoor ambient measurements. 
Bulot et al. (2019) showed similar LLODs in agreement with the manufacturer recommendations for 4 different sensors in ambient 
conditions as well. This discrepancy between laboratory and ambient LLODs is not overly concerning given the number and impact of 
confounding factors for LCS (see section 3.3). Since most LCS users deploy sensors in ambient conditions, the LLOD of ~10 μg m− 3 

should be kept in mind as sensor performance in cleaner settings (e.g. remote locations or parts of the Global North) could be impacted. 
Though the use of LCS in cleaner environments (average PM2.5 < 10 μg/m3) may seem challenging, studies have shown that with 
careful corrections and long-term averaging, the uncertainties can be reduced to about ±1 μg/m3 or ~10% at these lower levels 
(Malings et al., 2020; Eilenberg et al., 2020) and the data used to determine long-term source contributions of <1 μg/m3 (Eilenberg 
et al., 2020), justifying their use in such environments. 
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3.2. The importance of reference method selection 

In general, the PM mass concentration is measured to ensure regulatory compliance. In both the US and EU, PM regulations are 
based on reference methods which use gravimetric analysis of filters at a specific temperature and RH (Carlton & Teitz, 2002; Noble 
et al., 2001). However, calibrating low-cost sensors with reference methods is difficult since gravimetric analysis is a manual, off-line 
method that generally yields low time resolution (24-h), integrated measurements. These drawbacks mean that calibrating with 
filter-based gravimetric reference methods can take considerably longer to both collect enough measurements over a wide range of PM 
concentrations and to analyze them. Additionally, all of the time-resolution improvements that low-cost PM sensors can offer are not 
evaluated when using gravimetric reference methods. The next-best option is then to use equivalent reference methods (eRMs) which 
are used to provide higher time-resolution (typically hourly) PM mass concentrations. The most common eRMs are the beta attenu-
ation monitor (BAM) and the tapered element oscillating microbalance (TEOM) though some light scattering instruments are also 
becoming commonplace (e.g. Teledyne T640, GRIMM EDM180, Fidas). The BAM, TEOM, and light scattering instruments all meet 
defined standards for being classified as equivalent to the reference methods (for 24 h averaging periods), but importantly yield 
measurements at higher time resolutions than daily. Other research-grade optical measurements (e.g. GRIMM, Dustrak) and electrical 
mobility measurements (SMPS) can be used in place of the eRMs when performing calibrations for low-cost PM sensors, but then the 
applicability of LCS data to regulatory limits becomes less clear. 

The choice of which reference method, eRM or other method is used to measure the “true” PM mass concentration is often based on 
practical considerations, namely which instrument is physically available where and when calibrations of low-cost PM sensors can be 
performed. Unfortunately, the choice of method affects perceived sensor performance, with various low-cost PM sensors under- or 
overestimating the reference methods in various conditions. Low-cost PM sensors would ideally have high agreement with 24-h 
gravimetric measurements, which are the gold-standard for regulatory uses. Literature results have varied. Gao et al. (Gao et al., 
2015) tested multiple Shinyei PPD42NS sensors and showed moderate correlation (R2 = 0.53) between the sensors and the gravimetric 
method for PM2.5 in Xi’an China. Kelly et al. (2017) and Sayahi et al. (2019), however, showed excellent correlation between PM2.5 
gravimetric analysis and Plantower 1003 and 5003 units in Salt Lake City, UT, USA. It is unclear if the difference between these studies 
is simply the model of sensor or some other issue. Though using gravimetric methods for calibrations has been shown to be able to 
generate calibrations with low biases and relative standard deviations with respect to low-cost PM sensors (Tryner et al., 2019a, 
2019b), the 24-h integration time can require much longer collocations to adequately capture the entire range of meteorological 
conditions and PM concentrations that a PM LCS might experience. The BAM is a common choice of eRM allowing hourly mea-
surements to mitigate this drawback of gravimetric methods. For the BAM, the overall correlations for PM2.5 from PM LCS are similar 
to the gravimetric methods. Feenstra et al. (2019) showed correlations ranging from poor to great (0.38 < R2 < 0.95) for 11 different 
sensors. Gao et al. (2015) observed higher correlations (R2 = 0.87–0.92) for hourly PM2.5 measurements from PUWP sensors in Xi’an 
China, as did Kosmopoulos et al. (2020) for hourly PMS 1003/3003 (R2 > 0.85) in Patras, Greece. With the TEOM, the story is similar 
to the gravimetric and BAM methods; correlation with various low-cost sensors also ranges from poor to high (R2 = 0.36–0.9) over 
multiple time integration periods, concentration ranges, and deployment locations (Badura, Batog, Drzeniecka-Osiadacz, & Modzel, 
2018; Feinberg et al., 2019; Johnson, Bonczak, & Kontokosta, 2018; Kelly et al., 2017; Liu et al., 2019; Sayahi et al., 2019; Steinle et al., 
2015). Another option to obtain even higher time-resolution reference measurements is to use optical methods such as the Teledyne 
T640 or Fidas 200. Zheng et al. (2018) showed that the precision of eRM instrument used in LCS calibrations is critical in evaluating 
sensor performance and that optical methods such as the T640 may be better than beta-attenuation-based monitors, at least at low 
concentrations for PMS3003 sensors. Ultimately, the differences in errors between the various reference methods and low-cost PM 
sensors do not necessarily arise from either the low-cost sensors or the reference methods themselves. Rather, the differences come 
from how each instrument handles the various confounding factors as well as the effects of factors like averaging time, which are 
discussed below. 

3.3. Confounding factors in LCS calibration 

Obtaining high-quality data from low-cost PM sensors is complicated by the fact that these sensors are sensitive to many factors. 
Table 2 lists a number of different categories into which low-cost PM sensor sensitivities can fall into in the Topics column. These 
limitations include the measurement of ensembles and not of single particles (light path coincidence and particle concentration) and 
the factors that affect light interactions with particles (RH, morphology, composition). Fig. 3 shows how some of these factors can 
affect low-cost PM sensor responses. The exact effects of morphology are highly variable and shown as multiple possible sensor re-
sponses. In general, the literature provides evidence that all of these factors are correctable and obtaining good-quality data from low- 
cost sensors is possible with some careful consideration of exactly what and how PM is being measured. 

Despite the various sensitivities of low-cost PM sensors, literature suggests that correcting low-cost sensors is possible with a small 
amount of work to characterize a given sensor’s reactions to various meteorological and operating conditions. Before corrections can 
occur though, users should determine if all their units respond similarly to changes in PM concentrations. Crilley et al. (2018), Liu et al. 
(2019) and Malings et al. (2020) all showed high intra-unit consistency with variability less than 20% between units. On the other 
hand, some work (Castell et al., 2017) has shown a notable unit-to-unit variation with different AQMesh units showing different 
responses to RH and temperature ranges (“high” PM bias for some units at RH < 50%, negligible for other units). SC-AQMD also 
showed similar notable unit-to-unit variation with Airviz Speck units (with DSM 501 sensors) (SCAQMD, AQ-SPEC). The cause of 
interunit variability is unclear but may be due to manufacturing tolerances with certain brands. However, users can determine if their 
interunit variability is within acceptable bounds for their use cases and then determine if individual or ensemble correction factors are 
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more appropriate. The US EPA does have guidance for LCS performance metrics (see section 3.4) that can help users determine what 
variability might be appropriate for them (Duvall et al., 2021). The gains in individual versus ensemble correction factors (i.e. using a 
custom correction for each sensor unit versus using a common correction applied to all units of the same model), however, may not 
warrant the extra work in all cases with all sensors. 

Some of the easier confounding factors to measure and control for are meteorological conditions, namely ambient temperature and 
relative humidity (RH). Because LCS generally do not include a heater or dryer at their inlets, the detected particles include water that 
should not be included in the measured PM mass concentration. Most work has shown that RH starts to significantly impact low-cost 
PM sensors when it exceeds 80–85% (Crilley et al., 2018; Liu et al., 2019; Malings et al., 2020) though Magi et al. (2020) showed that 
for Plantower PMS 5003 units the impact may start lower at 65–70% and Jayaratne et al. (2018) showed that even at 50% RH, Sharp 
GP2Y and Shinyei PPD42NS sensors show an appreciable artifact. However, it should be noted that Kosmopoulos et al. (2020) reported 
that the effect of RH on the response of Plantower PMS 5003 sensors for fine PM in South-East Europe was negligible so measurement 
location is important to consider. Generally, air quality regulations stipulate “dry” PM mass, so correcting for these hygroscopic effects 
is generally necessary. Some work has shown that linear RH corrections perform as well as or better than non-linear corrections 
(Zusman et al., 2020). On the other hand, Zheng et al. (2018) has suggested that empirical nonlinear RH corrections that have been 
previously applied to other nephelometric PM instruments can improve PM concentrations in low-cost sensors to within 10% of dry 
values. Crilley et al. (2020) have shown that applying κ-Köhler theory (using average bulk particle hygroscopicity) can improve LCS 
PM measurements to within 33% of TEOM measurements. Malings et al. (2020) suggested that empirical corrections are possibly a 
better choice than theoretical approaches because they result in lower mean absolute errors and higher correlation coefficient values 
between reference and low-cost sensors. One drawback of the empirical approach is that resultant models will be strictly limited to the 
RH range that the model is trained on. The hygroscopic growth approach should theoretically be applicable to RH ranges not explicitly 
measured. Ultimately the choice to use a linear, theoretical, or empirical method to correct for RH is up to the end user’s preferences 
and needs, but there is broad agreement in the literature that some correction needs to be made in many situations. 

The case for corrections for temperature, however, is a bit less convincing than the case for RH. Most of the literature has shown 
minimal effects of temperature on low-cost PM sensors (e.g. Liu et al., 2019; Wang et al., 2015a) with even low temperatures between 
− 5 and 5 ◦C causing positive or negative errors (− 5 to 5 μg m− 3). Oftentimes, the error terms on temperature coefficients in line-
ar/quadratic correction formulae (see next section) are larger than the coefficients themselves and therefore temperature effects can 
generally be ignored, though some studies have shown this to not always be the case (Magi et al., 2020). The general approach of 
ignoring temperature effects in calibration models may not hold true in extreme environments (hot or cold deserts especially), but 
more work is needed for the application of LCS in such extreme conditions. 

In addition to meteorological factors, sensor age and/or deployment history may also affect their performance. Sayahi et al. (2019) 
noted substantial sensor drift in one of four PMS 5003 sensors over a period of 320 days. Tryner et al. (2020a) showed some sensors 
report erroneously after exposure to high concentrations of Arizona road dust in the lab. On the other hand, Crilley et al. (2018) noted 
no substantial drift over a 4-month deployment of Alphasense OPC-N2 units under ambient conditions in Birmingham, England in 
September 2016. Malings et al. (2020) collocated two Met-One NPM sensors with reference BAMs (an eRM) over 16 months and found 
seasonal variations in mean monthly bias, with positive bias in the winter and zero or negative bias in the spring and summer, thus 
rather a cyclic behavior than a linear time shift. Overall, for large deployments of sensors (where singular faulty units can be identified 
using the ensemble) with collocation calibrations, the effects of sensor aging are likely negligible for deployments on the order of a 
year, but more research is needed on the topic of long-term LCS signal stability. However, the effects of deployment history or exposure 
to periods of high concentrations of aerosols (including dust) are factors that must be kept in mind, especially with longer deployments 
of sensors. 

A number of studies have also shown that aerosol size, density, and composition play a potentially important role in sensors’ 
linearity and overall sensitivity. Aerosol size and composition (i.e. refractive index) both inherently change particle scattering and 

Fig. 3. Representative diagram of a low-cost sensor consisting of a photodiode (PD), light source, and a measurement cavity (top row) and the 
resulting output of the PD (bottom row) for 5 different cases each measuring equivalent particle volumes: (a) no particles present, (b) 1 large 
particle, (c) 2 coincident particles, (d) a particle with complex morphology which can yield variable sensor responses, and (e) a humidified particle 
with a coating of water. 
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absorption (see Mie Theory) and therefore are expected to significantly impact any light-based PM measurements. Similarly, particle 
density differences also impact light-based measurements for the same reasons and complicate the connection between particle size 
and mass. Several studies (Liu et al., 2017; Salimifard et al., 2020; Sousan et al., 2016) have shown that low-cost sensors exhibit 
different responses to aerosols of differing physical and chemical properties. Liu et al. (Liu et al., 2017) showed that sensor response 
slopes to changing PM concentrations, for three different low-cost sensors (Oneair, Dylos, and Samyoung), changed by up to a factor of 
2–3 for different inorganic species. Salimifard et al. (2020) similarly showed up to a 20% difference in the response between organic 
and inorganic PM measurements for each of two sensors (Dylos and Speck) and Li et al. (2020) showed an even larger difference in 
response for nine different sensors measuring dust, sea salt, and incense aerosols. Demanega et al. (2021) showed an even larger 
discrepancy between 8 different sensor responses to multiple types of indoor aerosol sources with sensors showing up to a 50% dif-
ference as compared to reference research-grade monitor. Sensors that provide segmented PM measurements, e.g. PM2.5 vs PM10, like 
the Dylos 1700, are especially sensitive to particle size distributions (Han et al., 2017; Kuula et al., 2020) but even other sensors can 
have varying responses to different PM distributions, even to the point of size bins not being independent (Kuula et al., 2020; Liu et al., 
2017). Kosmopoulos et al. (2020) showed that the PurpleAir sensors had very different response even for PM2.5 during which their 
suburban site was impacted by Saharan dust and therefore the aerosol had a quite different size distribution. Aerosol composition has 
also been suggested to affect low-cost PM sensors such that even partly organic compositions can deviate from calibrations done with 
inorganic aerosols (Wang et al., 2015a). The same trend has been shown in field deployments where some sensors have better 
agreement with reference monitors at low-traffic than high traffic sites or time periods (both PM2.5 and PM10, (Castell et al., 2017); 
PM2.5 (Subramanian et al., 2020)) and when measuring combustion and non-combustion derived aerosols (Zikova et al., 2017). Some 
work has been done to reconstruct PM mass from the counts reported in the different size bins of the more expensive optical sensors (i. 
e. the OPC-N2) thereby turning the issue of size distribution sensitivity around, but this method is generally not available to less 
expensive sensors with only a couple of size channels (Crilley et al., 2018; Di Antonio et al., 2018). Kuula et al. (2020), He et al. (2020) 
and Tryner et al. (2020a) have all shown that the particle size distribution data reported by the low-cost PMS5003 sensor are not 
reliable. When tested separately with particles of specific sizes over and above the submicron range (0.1 μm to 2.0 μm), PMS5003 
sensors can show similar distributions in all size channels. 

Another factor that needs to be considered when calibrating low-cost PM sensors (and LCS in general) is the averaging times that 
sensor calibrations are built on and applied to. Eilenberg et al. (2020) showed that both instrument and sampling uncertainty with 
respect to reference-methods drop as averaging time is increased from 1 h (40–50% individual sensor uncertainty) to 100 d (10% 
individual sensor uncertainty). When combined with reports of high limits of detection at low averaging times (1 min, Zikova et al., 
2017) and the fact that each low-cost sensor outputs data at varying intervals, the importance of carefully selecting data averaging 
periods is apparent. However, though minimizing uncertainty and error and increasing limits of detection are important, completely 
negating the temporal resolution increases that low-cost PM sensors afford may not be helpful for a given use case. As with all of the 
caveats of low-cost sensors discussed here, consistency and transparency in dealing with these issues are by far the most important 
attributes when reporting low-cost data. 

3.4. Methods to account for confounding calibration factors and their evaluation 

Though there is generally a high degree of linearity between reference and the raw low-cost sensor signal for aerosol concentra-
tions, this does not necessarily mean that linear equations are the best way to convert measured scattering to actual concentrations. 
Much work has been performed for various low-cost sensors determining what preprocessing of the data is necessary, what types of 
functions are ideal, and what terms are necessary to account for. A growing trend is the application of machine learning algorithms to 
low-cost sensor data, but it is unclear if the increase in computational complexity is worth the accuracy gains (if/when they exist) over 
simpler methods. 

No matter what method is selected for correcting low-cost PM sensor data, reporting metrics that describe the fit and predictive 
power of the correction model is of paramount importance. Up to now we have mostly discussed the coefficient of determination, R2, as 
it is the most common metric reported. R2 by itself only quantifies the strength of association between two variables but not necessarily 
their agreement and is sensitive to factors such as the range of the measurements (Alexander et al., 2015). A measure of correlation (R 
or R2) is therefore necessary when assessing low-cost PM sensor calibration models, but alone it is not sufficient. In addition, the bias of 
calibration models should also be reported. Bias should be reported both as absolute and normalized values as discussed below. The 
mean normalized bias (MNB) is shown in Eq. (1): 

MNB =

∑n
i=1

(
cestimated,i − ctrue,i

)

∑n
i=1

(
ctrue,i

) (1)  

where ctrue and cestimated are PM concentrations measured by the reference monitor and LCS, respectively. A mean-normalized bias helps 
quantify the accuracy of the measurements over the collocation period. Note that MNB here is used as a model evaluation tool, not a 
data correction. Once the bias has been reported, precision can be reported as bias-corrected. For precision metrics, mean absolute 
error (MAE; eq. (2)) and root mean squared error (RMSE; eq. (3)) are often, but not always, reported. 

MAE =

∑n
i=1

⃒
⃒cestimated,i − ctrue,i

⃒
⃒

n
(2)  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
cestimated,i − ctrue,i

)2

n

√

(3) 

Both MAE and RMSE give the average model prediction error and can range from zero to values as high as the measured con-
centrations themselves. RMSE weights large errors much more than MAE, which may or may not be desirable to a specific use case. 
Since calculating both metrics is fairly straightforward, both should be reported. However, because calibration models are often built 
on different scales of PM concentrations, normalizing the accuracy metric is important so that models can be compared. Normalizing 
performance metrics allows models to be appropriately compared between environments where concentration ranges are different. For 
example, an uncertainty of 10 μg/m3 on a measurement of 10 μg/m3 is very different than the same error on a measurement of 100 μg/ 
m3. Both the MAE and RMSE can be normalized by the mean, standard deviation, difference between the maximum and minimum, the 
interquartile range, or any similar factor. The mean is likely the most physically intuitive statistic for PM concentration data, so low- 
cost PM sensor users should be reporting the bias-corrected mean normalized MAE and RMSE (CvMAE, nRMSE, eqs. (4) and (5)) for 
their models. 

CvMAE =

∑n
i=1

⃒
⃒cestimated,i − nbias − ctrue,i

⃒
⃒

∑n
i=1

(
ctrue,i

) (4)  

nRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
cestimated,i − nbias − ctrue,i

)2
√

∑n
i=1

(
ctrue,i

) (5)  

where 

nbias =
1
n

∑n

i=1

(
cestimated,i − ctrue,i

)
(6) 

It should be noted that only reporting normalized metrics may also be misleading; in the above example, reporting uncertainty as 
100% based on the first set of data may not be applicable when conditions change to the second set of data. Instrument manufacturers 
themselves generally recognize this and provide both percentages (more relevant at high concentrations) and absolute uncertainty 
(relevant at low concentrations) (e.g. see Plantower Data Sheet). Therefore, reporting both the normalized and absolute metrics is 
necessary. These accuracy metrics should relate to the shortest time intervals that are used (e.g. hourly) when the models are con-
structed. Though many LCS can give data on the order of minutes, if the reference data used to build the calibration model is not also on 
the same order of timescale, evaluating the performance of calibrations at the shorter timescale is not explicitly knowable. The best 
that can be done is to report the (e.g.) hourly metrics and assume (while clearly stating so) that the minute data will have similar 
performance. The question of whether even using data on timescales that cannot be validated is desirable is left to the end-user and 
specific applications of LCS. If 1-min sensor data is really the end-goal of using LCS, then 1-min FEM (generally optical methods) should 
be used to build the required calibration models. Regardless of this caveat, only with these metrics, at a minimum, can calibration 
models or correction methods be properly compared against one another. Many previous sensor papers have simply not reported 
enough metrics to confidently evaluate the sensor or calibration model performance (Williams et al., 2019). As it is straightforward to 
calculate the bias, MAE, RMSE, CvMAE, and nRMSE, at a minimum all of these metrics should be reported. 

Linear and quadratic/higher-order polynomial fits are computationally the least expensive ways to increase the agreement between 
low-cost PM sensors and reference methods. Here the issue of how differences in various sensor outputs and how the choice of output 
(e.g. raw signal vs built-in processing) can affect sensor calibration is set aside. This section deals with the post-processing done on 
whatever sensor output is used. Because of the high linearity of low-cost sensors with various reference methods and aerosol con-
centrations, nearly all of the literature on the subject includes linear methods for converting sensor output to calibrated PM values. As 
calibration functions should ideally correct for (or at least approximate, in the case of non-linear terms, e.g. hygroscopic growth) 
biases, the terms that show up in calibration equations are consistent with many of the sensor biases discussed in the previous section. 
Hagler et al. (2018) define most of these variables as defensible (relative humidity, temperature, elapsed time, etc.) when creating 
correction formulae, as opposed to questionable (wind speed/direction, temporal factors other than elapsed time, atmospheric mixing 
height, etc.) variables which move the calibration more into the realm of a statistical predictive model. The vast majority of studies 
have shown that including temperature and relative humidity in linear fits can improve calibration quality to some degree (e.g. Crilley 
et al., 2020; Jiao et al., 2016; Zheng et al., 2018). Similarly, many have also included higher-order polynomial terms to capture 
non-linear behaviors (e.g. (Malings et al., 2020; Zheng et al., 2018)). However, given inherent uncertainty with low-cost sensors, 
complex equations of multiple variables may not be needed; Malings et al. (2020) examined a wide (130+) combination of linear and 
quadratic regression fits but most did not reduce uncertainties much more than linear regressions that use reported PM mass and 
relative humidity. In general, if an explicit correction term for RH is included in a linear or quadratic calibration equation, then particle 
hygroscopic effects are implicitly assumed to be captured in that term even though actual hygroscopic effects are likely more complex 
in nature (see efflorescence/deliquescence curves, Köhler theory, etc). Aerosol hygroscopic growth and the increase or decrease of 
aerosol size as a function of relative humidity is the subject of much research but, for the purpose of sensor correction, linear and 
quadratic RH fits (i.e. c*RH or c*RH2) appear to be adequate though they are masking complex behaviors. Other aerosol properties that 
are known to influence nephelometric responses (e.g. particle shape, refractive index, etc.) are generally explicitly ignored and are 
implicitly assumed to be wrapped up in the linear/polynomial coefficients. As a consequence, calibrations are then specific for a given 
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aerosol source/composition/etc. (see below). Linear calibrations generally perform extremely well for most field deployments of 
low-cost sensors, commonly reaching R2 values above 0.9 with relatively low errors (though errors are not reported nearly often 
enough in the literature). The ability of linear and polynomial fitting, depending on the exact choice of terms, to be performed either on 
a circuit board or with basic computer skills allows for a very inclusive set of users to understand how their data are processed. 

The next step on the computational complexity ladder for calibration methods for low-cost PM sensors are the statistical methods. 
Often times, these methods are used to determine what terms are most important in linear/polynomial fitting. Bayesian information 
criteria has been a common method over the past five years to accomplish this (Austin et al., 2015; Castell et al., 2017; Gao et al., 2015; 
Johnson, Bonczak et al., 2018). Applications of statistical methods require much higher statistical, mathematical, and computational 
literacy than linear/polynomial fitting, but are much more transparent than machine learning algorithms. 

The last step on the computational complexity ladder is machine learning. A number of studies have applied various machine 
learning algorithms to various makes and models of LCS from neural networks (Chen et al., 2018; Li et al., 2018) to random forest 
models (Liu et al., 2019). A number of LCS manufacturers also offer calibrations of data using unspecified and/or proprietary machine 
learning algorithms e.g. (Morawska et al., 2018). Overall, the results of machine learning applications are positive, with R2 values >
0.5 generally reported (Chen et al., 2018; Johnson, Bonczak et al., 2018; Liu et al., 2019). However, machine learning algorithms are 
not necessarily better than simpler and completely transparent calibration methods; as discussed above, linear calibrations can yield 
strong correlations (R2 > 0.8) and near-zero bias. Given the computational requirements, the lack of transparency, and most 
importantly the lack of greatly improved results, machine learning algorithms do not (at present) appear to be preferable to simple 
linear fits to obtain good quality data from low-cost PM sensors. 

4. Best practices for sensor calibration 

Overall, the performance of low-cost PM sensors is subject to numerous factors and both the accuracy and precision of the cor-
responding measurements can be highly variable depending on how these factors are addressed. The ideal approach when deploying 
low-cost PM sensors is, therefore, to perform a full battery of characterization and calibration tests, in a similar micro-environment the 
sensors will be deployed in, over all of the settings and conditions expected for the duration of the deployment. Here, a full battery of 
tests refers to characterizing sensor linearity, RH and T response, as well as examining sensor response to different aerosol sources. For 
collocation calibrations, these tests are either inherent to the collocation itself or simply require parsing the collocation data into 
relevant periods (e.g., relatively clean versus relatively polluted periods, high RH and T versus low RH and T periods, examining 
different times of day or year to draw general conclusions about source contributions where applicable, etc.). Deploying sensors in the 
same environment where they will collect data helps minimize the impacts that particle composition and size distribution differences 
have on LCS, effectively by smoothing over a large ensemble of conditions. However, for practical reasons this approach is often not 
possible. Given the literature already published on low-cost PM sensors, we can recommend a set of best practices that should generally 
yield high-quality data from these sensors. Note that these recommendations are aimed primarily at ambient measurements, the LCS 
use case that the authors are most familiar with. Measurements in specific micro-environments dominated by a specific size and/or 
composition of PM (e.g. Zamora et al., 2019 may require significantly shorter LCS characterization periods. In general, if any of these 
recommendations preclude or hinder attaining high-quality data in a different use case, then the primary recommendation of being 
transparent and explicit about the steps taken to obtain high-quality data is all that must be followed. 

The physical setup of a collocation calibration should generally consist of a reference (FRM, eRM) or research-grade monitor and all 
of the low-cost PM sensors of interest deployed at the same location (ideally in the same environment that the units will ultimately be 
deployed in) for some period of time. A simultaneous collocated calibration with all low-cost units is the easiest way to identify faulty 
units and the best way to account for intra-unit variability if making a general (as opposed to unit-specific) calibration model. While 
collocations of very large networks (50+ LCS) are not always feasible due to space constraints, efforts should be taken to collocate as 
many units as possible. Outstanding units can then be handled in one of two ways. One way is to keep a subset of units collocated with 
the reference monitor for the entirety of the available collocation time and rotate out the remaining units for a few days/weeks until 
every unit is collocated. The other way would be to examine the intra-sensor consistency over the course of the post-collocation 
deployment during periods when pollution across the network is expected to be relatively similar (e.g. due to minimal influence of 
local sources) but this requires additional information and may not always be feasible. The choice of which approach to take with large 
network deployments is up to the end user but either approach should yield the same benefits. The variables of interest for the 
collocation then revolve around three factors: the conditions (atmospheric and PM concentration, composition, and size distribution) 
over which measurements are made, the choice of reference monitor, and the length of time of collocated deployment. 

The most important factor in a collocation is ensuring that the collocation period covers as wide a range of concentrations, 
compositions, and atmospheric conditions as could possibly be experienced by the sensors during post-collocation deployment. Note 
that in-situ measurements of factors like aerosol size distribution and composition are not necessary for LCS calibration but it is 
important that collocation periods and locations be selected with some a priori knowledge of the deployment location. Questions such 
as “will this collocation cover the rainy season/biomass burning season/winter”, “does the collocation site have access to air trans-
ported from all the potentially major source regions for the eventual deployment location?”, or “is the collocation site dominated by a 
single nearby source?” are questions that do not necessarily require size distribution or chemical speciation to answer but rather 
require knowledge of the major sources that affect the site. One potential way to ensure that major sources are covered (and therefore 
the ranges of aerosol concentrations and compositions that LCS would be expected to measure) is to do a multi-site collocation where 
LCS are moved between, e.g., an urban background site, a roadside site, and at a near-source site (e.g. industrial complex), similar to 
the approach of Malings et al. (2020). This approach to collocation is more work than a single-site study but can help alleviate 
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pressures to find a perfect single site. It is important to note that the overall length of time required for a given collocation will depend 
on the reference monitor used. If the reference monitor of choice is a gravimetric reference method with a 24-h time resolution, then 
the collocation may have to take place over much longer periods than if the reference monitoring was at higher (~hourly) time 
resolution, as the integrated samples will average out variations in meteorological conditions (e.g. RH and T) and source impacts. On 
the other hand, a number of studies have noted that when comparing LCS and reference instruments with longer time integrations, R2 

values increase and errors decrease (Holstius et al., 2014; Kelly et al., 2017; Malings et al., 2020; Zikova et al., 2017). In practice, 
measuring over the entire meteorological and concentration range can be difficult without a full year of collocation (Zimmerman et al., 
2018). One way to ensure this requirement is met is to periodically collocate (preferably seasonally) sensors with the reference 
monitors in environments representative of sites across the network, e.g. urban background, source-oriented, or roadside, for a 
minimum of 4 weeks per year, at different times of the year. A 4-week collocation was shown to decrease mean absolute error from 
low-cost gas sensors by 50% (Zimmerman et al., 2018). If there is a high correlation between all the sensors in a network, only a subset 
of LCS devices may need to be collocated seasonally with the reference monitors, reducing operational effort and costs. This result has 
not been explicitly verified for low-cost PM sensors and should be investigated to see if this holds as true as it does for low-cost gas 
sensors. Permanently collocating some LCS devices with the reference site is another way to capture seasonal effects on LCS perfor-
mance without bringing all the nodes back to the central calibration site(s). There may also be utility in including 2 or more sensors in 
one housing (e.g. as PurpleAir does) to add redundancy and confidence to measurements, especially as these setups often correlate well 
with each other (Ardon-Dryer et al., 2020). As low-cost sensors are generally cheap, this approach should be adopted where possible. 
Overall, as long as a collocation covers the range of temperature, humidity, PM concentration, and major sources which are likely to be 
encountered in a field deployment, the choice of length of time and method of collocation is simply a matter of logistics. If a single or 
multi-site continuous collocation approach cannot be adopted, an alternative approach could be to perform both a pre-deployment and 
a post-deployment calibration and utilize an average or a moving calibration model. 

Once the collocation is completed, the question then arises of how to process the data obtained to retrieve a useful correction 
equation. The first part of this question is what data output of a sensor is most applicable. This question is most relevant to Plantower 
PMS sensors, which provide mass concentrations with two correction factors, CF = 1 “for laboratory evaluations” and CF = atm “for 
field evaluations”, as per the manufacturer’s datasheet (Digial Universal Particle Concentration Sensor PMS5003 Series Data Manual, 
2016). The details of these calibration factors are proprietary and unavailable from the manufacturer. According to Kaiterra (Bates, 
personal communication, 2020; https://www.kaiterra.com/en/index/), a company that uses Plantower sensors to make air quality 
monitors and works closely with Plantower, the CF = 1 output is based on laboratory testing of Plantower sensors collocated with a 
BAM while sampling a smoke/soot mixture. The CF = atm output is based on ambient collocations in Beijing, China. Barkjohn et al. 
(2020a) showed a slightly higher correlation compared to a TEOM when using CF = atm versus CF = 1 measuring in various locations 
in Beijing, China with PM2.5 concentrations between 0 and 60 μg m− 3 (R2 = 0.63 vs 0.52, respectively). Stavroulas et al. (2020) found 
that the CF = 1 was closer and more linear with respect to reference methods at high concentrations (from 110 μg/m3 to over 300 
μg/m3) – when their sites were most impacted by residential wood burning. On the other hand, below 20 μg/m3, the two outputs were 
the same. We have observed similar results at similar low concentrations in Welgegund, South Africa and Pittsburgh, Pennsylvania, 
USA. Tryner et al. (2020a), on the other hand, showed a large nonlinearity for laboratory measurements at 40 μg m− 3 when using CF =
1. Wallace et al. (2021) try to use the binned size counts to develop their own correction factors, but the wider applicability of such 
approaches needs to be studied further, given that Tryner et al. (2020a) and He et al. (2020) show the binned counts are not related to 
actual aerosol size distributions. Thus, choice of which output to use as the “raw” value may be guided by the source(s) impacting the 
location, though depending on the ambient levels observed in practice, there may not be much difference. Met One and Alphasense 
both also provide on-board corrections that are user-definable. Regardless of what on-board correction end users decide to use, 
however, consistency and transparency should be stressed. As long as details about both the calibration models and the data streams 
used are provided and consistency between calibration and application periods is observed, data integrity is maintainable. Addi-
tionally, in data selection, users must be explicit about the QA/QC procedures applied to their data. The elimination of potentially 
compromised data should be performed but the criteria for these QA/QC checks must be provided. The fraction of data thus eliminated 
should also be reported. 

With the data output of the sensor selected, a calibration model can be built between the low-cost PM sensor data and reference 
monitor (or eRM). Here there are three questions to be answered by each end user: “How should the models be built?”, “What model 
(and model inputs) should be used?” and “How many models are needed?” As with all the aspects of sensor calibration discussed here, 
the goals of the LCS deployment dictate some of the answers but there are a number of best practices that should be followed regardless 
of the end goals, especially with regards to how to build models. First and foremost, transparent models (i.e. models that can be 
reproduced elsewhere using the same data) should be prioritized over black-box models. As such, open-source code should generally be 
selected over proprietary code. Second, model building should include some process for model validation. This is commonly referred to 
as creating test/train splits within a data set, i.e. reserving some amount of data from the model training to use as a test set. “Leave one 
out” has historically been used over many fields of science but k-fold cross validation has become a general recommendation in 
machine learning. K-fold cross validation is simply a resampling procedure used to evaluate models on a limited data set. This 
technique is generally purported to be a less biased estimate of model skill than a simple train/test split within the machine learning 
community (Alpaydin, 2020). Models that do not perform similarly across all k-folds of the data set should be disregarded or tuned 
differently. In reality, the number of folds to choose depends on the learning curve (a diagnostic tool visualizing model learning 
performance over experience or time) (Hastie et al., 2001) but a k-value between 5 and 10 appears to be adequate for LCS applications 
(Tryner et al., 2019a; Zimmerman et al., 2018). Some work has shown that K-fold cross validation is acceptable for even highly 
autocorrelated time-series as long as the errors are uncorrelated (which seems a reasonable assumption for LCS; Bergmeir et al., 2018). 

M.R. Giordano et al.                                                                                                                                                                                                  

https://www.kaiterra.com/en/index/


Journal of Aerosol Science 158 (2021) 105833

19

Because of this, overly constraining the folds by forcing certain time periods of sampling is likely unnecessary. Fig. 4 shows a graphical 
representation of what a k-folds cross validation actually entails. 

The second question regarding what model and inputs to choose is generally more open-ended and requires some experimentation 
by end users. As discussed in section 3.4, simpler models generally perform better than or as well as complex machine learning al-
gorithms for PM LCS. We therefore recommend that simple linear or quadratic models should be employed most often. Complex 
models run a risk of over-fitting model training datasets and therefore require additional justification for their use. As for model inputs, 
users should examine model performance using all of their potential inputs. Users should avoid questionable input parameters not 
directly related to measurement physics (e.g. time of day, wind speed; see Hagler et al., 2018), but parameters such as meteorological 
conditions (T and RH) and auxiliary aerosol data such as composition, hygroscopicity, or black carbon concentrations are all good 
potential input parameters to test. In machine learning this is called feature selection and simply entails creating models with com-
binations of inputs and choosing only the inputs that increase model performance while also being aware of estimated errors on each 
model term. As this subject of model creation is naturally open-ended, this discussion is difficult but can be illustrated with an 
imaginary, yet concrete, example where we limit model inputs to LCS PM output, RH, and T. If a 3-coefficient linear model (PM, RH, 
intercept) outperforms a 4-coefficient model (PM, RH, T, intercept), then the 3-coefficient model is the better choice as the sensors in 
question are apparently not temperature sensitive. However, situations can arise where models with more variables outperform models 
with less variables but the error bounds on a coefficient are greater than the value of the coefficient (e.g. 0.1 ± 0.2). Should the better 
performing model be used or the model with more certainty in its coefficients? In the end, the authors would err towards the latter but 
either is likely acceptable as long as the model is transparent. 

The third question regarding how many models are needed deals with the idea of whether each sensor should be treated as an 
individual or whether an ensemble treatment is good enough. For a single collocation of multiple sensors, a general calibration model 
could be made for the whole batch of sensors to be deployed, or a model for each individual sensor could be made. The former may be 
more appropriate for dense networks with dozens of sensors (as in Malings et al., 2020), while users with one or a few sensors could 
generate sensor-specific calibration models (as in Subramanian et al., 2018 ). A general model is less resource-intensive and for 
low-cost gas sensors has been suggested to result in a minimal overall performance loss (Malings et al., 2019). It may be assumed 
(pending a dedicated investigation) that a similar conclusion will hold true for PM LCS, as was shown in Malings et al. (2020). A further 
abstraction is to create a universal model based off many different collocations as done by Barkjohn et al. (2020c) for Purpleair sensors 
deployed in the United States. Users should be cautious in this approach as the resulting model may not “travel” well to sensors that are 
far outside the mean of the sensor network used to build the universal calibration. Sensors impacted by sources that are not 
well-enough represented in the universal calibration (e.g. dust from deserts, ocean/sea-spray influence, combustion sources unique to 
a certain area such as dung or trash burning) may not calibrate well but more work is needed to explore this. Ultimately, the answer to 
this question is more based around the goals and limitations of a LCS deployment. As was previously discussed though, whatever the 
answers to these questions that end-users decide are, details of the model performance including correlation (R or R2), bias (absolute 
and mean normalized), and accuracy (bias-corrected absolute and mean normalized MAE or RMSE) should also be reported so an idea 
of model performance can be conveyed. 

In summary, low-cost PM sensors need to be collocated against each other (to ensure network precision) and against a reference 
method/eRM (or other instrument of choice) to ensure measurement accuracy. Calibration periods should ideally cover the entire 
range of meteorological conditions and PM concentration levels over which the sensors are expected to operate. Though collocation 
calibrations are only discussed here as a monolith calibration, it should be noted that there do exist different practical strategies to 
apply collocation-derived calibrations. More nuanced approaches can be applied such as event-specific corrections for different types 
of pollution episodes in a large network of sensors (Kelly et al., 2021). Centralized collocation measurements can even be “distributed” 
to futher sensors through nearest-neighbor calibrations to study the spatial variations in LCS measurements (Chu et al., 2020). 

5. Moving forward with low-cost PM sensors 

Low-cost PM sensors are already altering the landscape of who, how, where, and when PM measurements are made, and who has 
access to the data. Though obtaining high-quality data from these sensors presents a unique set of challenges, these challenges are 

Fig. 4. Visual representation of a random 5-fold cross validation on collocation data.  
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surmountable. Ultimately, low-cost PM sensor users must be as open and transparent as possible with which sensors they use, how the 
calibrations were performed, and under what conditions the calibrations should apply. As long as sensor users perform collocation 
calibrations that span the entire range of expected operating conditions (RH, T, PM concentrations), report the specific correction 
factors (equations) obtained from these collocation studies, and appropriate descriptive metrics for their correction factors (correla-
tion, accuracy, and bias on separate testing data) then trust can be established that low-cost PM sensors are reporting high-quality data. 
Low-cost PM sensors have already yielded valuable insights into source contributions of aerosols, even for small changes. For example, 
Eilenberg et al. (2020) showed that a large metallurgical coke plant near Pittsburgh, PA was only responsible for 0.3 ± 0.2 μg m− 3 

PM2.5 over the long-term. Tanzer-Gruener et al. (2020) showed COVID-19 related lockdowns reduced PM2.5 by up to 1.5 μg m− 3 during 
morning rush hours, also in Pittsburgh, PA. Similarly, Chadwick et al. (2021) showed statistically significant reductions in PM due to 
COVID-19 in Salt Lake City County, Utah. Mallia et al. (2020) used LCS to validate wildfire smoke plume modeling. Stavroulas et al. 
(2020) used the measurements of network of PM sensors to quantify the impact of a nearby wildfire in different areas of Athens during 
the summer of 2019. Similarly, Stampfer et al. (2020) paired LCS with an aetholometer to understand how different sources of PM2.5 
and black carbon impact the Yakama Reservation airshed. Holder et al. (2020) showed that low-cost sensors can be used to fill in 
spatial gaps in air quality monitoring networks near wildfires with MAE less than 10 μg m− 3 in hourly PM2.5 concentrations. Sub-
ramanian et al. (2020) used low-cost sensors corrected with the methods used in this review to conduct the first long-term (over 1 year) 
measurements of air pollution in Kigali, Rwanda. The study found that annual average PM2.5 was 52 μg/m3 (well above the WHO first 
interim target of 35 μg/m3), with local sources contributing half the ambient PM2.5 in wet seasons but regional transported pollution 
likely dominant during the dry seasons. LCS calibrated with methods as described in this review were used to make the first obser-
vations of PM2.5 in Kinshasa, DRC, and Brazzaville, ROC, which have a combined population of around 17 million. Findings suggest 
that annual mean PM2.5 is about 4 times the WHO guidelines of 10 μg/m3 (Air quality guidelines, 2017). Barkjohn et al. (2020a, 2020b) 
and others have shown how LCS can be used to quantify the effects of air filtration on indoor PM2.5 exposure. Thus, low-cost PM sensors 
provide unique and useful insights into spatio-temporal impacts and sources of PM even if they require additional efforts to generate 
high-quality data. 
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