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ABSTRACT: NMR-derived chemical shifts are structural fingerprints that are sensitive to the underlying conformational
distributions of molecules. Thus, chemical shift data are now routinely used to infer the dynamical or conformational ensembles of
peptides and proteins. However, for RNAs, techniques for inferring their conformational ensembles from chemical shift data have
received less attention. Here, we used chemical shift data and the Bayesian/maximum entropy (BME) approach to model the
secondary structure ensembles of several single-stranded RNAs. Inspection of the resulting ensembles indicates that the secondary
structure of the highest weighted (most probable) conformer in the ensemble typically resembled the known NMR structure.
Furthermore, using apo chemical shifts measured for the HIV-1 TAR RNA, we found that our framework reproduces the expected
structure yet predicts the existence of a previously unobserved base pair, which we speculate may be sampled transiently. We expect
that the chemical shift-based BME (CS-BME) framework we describe here should find utility as a general strategy for modeling
RNA ensembles using chemical shift data.

■ INTRODUCTION

Determining the conformational states accessible to RNA is a
critical first step in establishing links between their sequence,
structure, dynamics, and biological function(s).1 Modeling the
RNA conformational ensemble is, however, challenging
because the number of unknowns exceeds that which can be
measured experimentally. Also, many conformers exist in low
abundance and have short lifetimes and therefore fall outside
experimental detection. Although recent advances in NMR
such as relaxation dispersion and saturation transfer have made
it possible to study these previously “invisible” yet functionally
important conformational states,2,3 they still remain difficult to
characterize. NMR does, however, provide access to chemical
shift signatures of RNA that one could, in principle, use to infer
their conformational ensembles, which may include con-
formers that resemble these transient states. Although there
has been some initial exploration of the utility of chemical
shifts in inferring RNA ensembles,4 compared to proteins,5−21

the use of chemical shifts to infer conformational ensembles of
RNA has remained relatively underexplored.

There are two frameworks that one could use to infer
conformational ensembles starting from a set of ensemble-
averaged experimental data like chemical shifts.22 First,
experimental data could be used as restraints during folding
simulations to guide algorithms to regions of conformational
space that maximize the agreement between measured and
simulated data.23−27 Second, experimental data could be used
to reweight an initial ensemble of structures such that
ensemble-averaged, back-calculated data agree with the
observed experimental data.28−30 Compared with restraining,
reweighting methods are attractive because they are fast and
flexible, and a single initial ensemble can be reweighted using
multiple data sets, allowing easy comparison of the resulting
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ensembles, which are important in cases where each data set
corresponds to the RNA under distinct physicochemical
conditions.
Here, we applied the Bayesian/maximum entropy

(BME)31,32 reweighting technique to model the ensembles of
RNA using chemical shift data. The goal of BME is to find a
new distribution of conformations within a given library, such
that the data back-calculated from the reweighted library (or
the conformational/dynamical ensemble) exhibit good agree-
ment with available experimental data. Using chemical shift-
based BME (CS-BME), we generated secondary structure
ensembles of 15 single-stranded RNAs. To achieve this, we first
trained a set of models that predicted chemical shifts from
secondary structure models. Then, for each RNA, we
generated a conformational library containing secondary
structures that the RNAs are likely to adopt. Using our
chemical shift predictors, we next computed chemical shifts
associated with each conformer within the conformational
library. For each RNA, the chemical shifts back-calculated from
the conformers and their associated experimental chemical
shifts were then used to reweight each conformational library
and produce a conformational ensemble. In general, we found
that the most dominant structure in the ensemble closely
resembled the known structure. In addition, for the HIV-1
TAR, we analyzed its dynamical ensemble and predict that it
may sample a state harboring a previously unobserved base
pair.

■ METHODS
RNA Chemical Shifts from Secondary Structures. Our

objective in this study was to implement a framework for using
chemical shift data to infer RNA secondary structure
ensembles. Central to this technique is the comparison
between measured chemical shifts and chemical shifts
computed from secondary structure models. As such, we
trained secondary structure to chemical shifts (SS2CS)
models, which take the RNA secondary structure as input
and output the predicted chemical shifts for different nucleus
types. To train the SS2CS models, we compiled a data set
composed of the secondary structure and chemical shifts for
108 RNAs. The secondary structures were retrieved from
model 1 of each NMR bundle using the program DSSR from
the 3DNA suite.33 The NMR chemical shifts were downloaded
from the Biological Magnetic Resonance Data Bank (BMRB:
http://www.bmrb.wisc.edu/). As we have done in previous
work,34 we corrected 13C data that were predicted to contain
systematic referencing errors.35

To predict the non-exchangeable chemical shifts of, namely,
H1′, H2′, H3′, H4′, H2, H5, H5′, H5″, H6, H8, C1′, C2′, C3′,
C4′, C5′, C2, C5, C6, and C8, we first constructed a data set
for individual nucleus types. Briefly, for each nucleus type, the
chemical shifts associated with this nucleus type from all the
RNAs, along with the secondary structure features of each
residue, were combined into a large data set. The secondary
structural features we encoded from the input structure file
include (for residue i) (1) the length of the RNA; (2) the
residue types of residues i, i − 1, and i + 1; (3) the residue type
of residue i’s pairing partner j, if exists; (4) the residue types of
the pairing partner of residues i − 1 and i + 1, if exist; (5) the
residue types of residues j − 1 and j + 1, if exist; and (6) the
residue types of the pairing partner of residues j − 1 and j + 1,
if exist (Figure 1). The features we used to predict the
chemical shifts for a central residue i consist of the secondary

structure features of residues i − 3, i − 2, i − 1, i, i + 1, i + 2,
and i + 3. Thus, even for single-stranded regions, the features
carry information about the unique environment of around
individual nucleotides by capturing the extended nearest-
neighbor sequence context and local structure associated with
each residue and its neighbors. These features used contain
similar information to the subset of the “attributes” used
previously to train similar SS2CS predictors, namely, RNA-
Shifts36 and RNAShifts2.37 These attributes, however, contain
additional higher structural information that includes the
position in a tetraloop, multiplets, stacking, and pseudoknots.37

Our secondary structure features do not contain analogous
information.
We applied this featurization to all residues in each RNA and

mapped these features to the corresponding chemical shifts to
construct our final data set (Table S3). To train SS2CS
predictors, we used the random forest approach.38 When
training a random forest model, a collection (or ensemble) of
independent decision trees are trained such that the aggregate
predictions of the ensemble agree with the target, which in this
study are measured chemical shifts. We trained 19 random
forest models, one for each nucleus type (H1′, H2′, H3′, H4′,
H2, H5, H5′, H5″, H6, H8, C1′, C2′, C3′, C4′, C5′, C2, C5,
C6, and C8). To predict chemical shifts for a given residue i,
the secondary structure features for that residue i and i − 3, i −
2, i − 1, i + 1, i + 2, and i + 3 are combined and fed into the
SS2CS predictors for each nucleus. The resulting estimates for
each nucleus type are then compiled to provide estimates for
the chemical shifts associated with that residue. Because the
features used to predict chemical shifts contain long-range
sequence and structure information that captures the local
context within which a given nucleotide in the RNA resides,
chemical shift prediction is dependent on this context.

Reweighting RNA Secondary Structures Using Chem-
ical Shifts. To model the secondary structure ensembles of
RNAs using chemical shift data, we employed a probabilistic
approach in which we assigned weights to a collection (or

Figure 1. Illustration of the feature extraction technique we applied to
describe individual residues in an RNA based on their secondary
structure. Shown are examples of the secondary structure features
associated with a residue in the (a) stem and (b) single-stranded
regions. Here, we used “X” to denote a null residue. To estimate
chemical shifts for a central residue i, our predictors take as input
long-range sequence-structure information that consists of the
secondary structure features of residues i − 3, i − 2, i − 1, i, i + 1,
i + 2, and i + 3.
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library) of RNA structures conditioned on available and
experimentally measured chemical shift data. To do this, we
utilized the BME. BME has emerged as a robust framework for
integrating experimental measurements with simulation data
like computed chemical shifts. The central idea is to optimize
the weights assigned to each member or conformer in a
conformational library of (a priori) structures to maximize the
agreement between the reweighted ensemble-averaged proper-
ties and the experimental observations, while minimally
changing the initial weights (or priors). Techniques developed
based on maximum entropy reweighting have been successfully
applied to protein and RNA for structure determination and
force field refinement.39−41

Here, we applied a BME31 approach where the error or
uncertainty of experimental data is also taken into account.
From previous studies,42−44 it can be shown that the optimal
weights will minimize the following loss function:
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Here, wj and wj
0 are the new and original weights of the jth

member in the ensemble, respectively, n is the population of
the ensemble, σi is the uncertainty of the measurement Fi

exp,
and F(xj) is the back-calculated property from the jth member
in the ensemble. In this study, σi (the uncertainty) corresponds
to the error in chemical shifts computed using our SS2CS
predictors and does not necessarily correspond to the specific
error in a system. Additional sources of error in the
experimental data may similarly be present, but here, we
assume that they are small relative to the errors in the
computed chemical shifts. In the loss function (eq 1), the
first term (χ2) describes the agreement between the
experimental data and the back-calculated properties from
structure models and the second term (Srel) describes the
deviation of the new weights from the original weights. The
original weights, in our case, are 1/n if there are n members in
the ensemble. Others have shown that the optimal weights can
also be calculated through Maximum A Posteriori (MAP)
estimation14 by minimizing the negative log-likelihood of the
posterior distribution. This method is called Bayesian
ensemble refinement, and it is mathematically equivalent to
the maximum entropy with error or the BME approach
described above.
Testing Chemical Shift-Based Reweighting of RNA

Secondary Structures. To test the ability of chemical shift-
based reweighting to resolve RNA secondary structures, we
applied BME to reweight the conformational libraries of 15
RNAs based on their sets of measured and computed chemical
shifts. We first created an ensemble of low-energy secondary
structures for a given RNA sequence using the tool MC-Fold
from the MC-Sym suite45 (as it allows the formation of
pseudoknotted structures). However, for large RNAs, it may
take a long time to generate decoys using MC-Fold. For this

reason, we used AllSub from the RNAstructure modeling suite
instead for the largest RNA in our data set, the HIV-1 RNA
(PDB ID: 2N1Q), which has 155 nts. Using MC-Fold, we
generated 10 different structures whose folding free energies
are within 30% of the lowest energy structure. The exception
was the fluoride riboswitch for which we combined decoys
generated from AllSub and MC-Fold to ensure that the pool of
structures was diverse and contained both pseudoknotted and
non-pseudoknotted structures. The structures were then
combined with the native structure to form the final
conformational library. If the native structure contained non-
canonical base pairs, then native structures with and without
the non-canonical base pairs are included in the final
conformational library.
Next, for each RNA, the SS2CS predictors were used to

predict the chemical shifts of all non-exchangeable nuclei in
each conformer of the corresponding ensemble. After
generating chemical shift predictions using SS2CS, we then
applied BME to the measured and computed chemical shifts
and assigned weights to individual conformers in the structural
ensemble. According to eq 1, θ is a global scaling factor that
controls the relative contribution of the entropy terms in the
overall loss function . It reflects the trade-off between two
terms: (1) χ2, which is the agreement between experimental
data and predicted chemical shifts, and (2) Srel, which is the
deviation of the new distribution from the original uniform
distribution. Theoretically, the smaller θ is, the more is
dependent on χ2 and the better agreement we should be able
to achieve between experimental reweighted ensemble-
averaged chemical shifts. In reality, we found that for some
RNAs, θ and χ2 may not be positively correlated. To find the
best θ, we scanned different values from 1.0 to 200.0 (with a
step of 1.0) and calculated χ2 (using eq 2) at each θ.31 The
optimal θ was chosen as the one that minimized χ2 versus θ
(Figure S3a). Across the 15 RNAs in our CS-BME benchmark
set, the optimal θ ranged between 3.0 and 102.0 (with a mean
of 28.4) (Figure S3b).

Visualizing RNA Secondary Structures. Throughout
this article, we used circular plots to display RNA secondary
structures. In these plots, the RNA residues are arranged along
a circle, and the base pairs are represented as lines between
individual residues. To summarize the CS-BME ensembles, we
used circular secondary structure base pair probability plots
(CS2BP2plots),46 circular secondary structure plots in which
base pair probability information is encoded in the color and
thickness of the lines respecting base pairs. We generated these
plots using in-house R-scripts.

■ RESULTS AND DISCUSSION
Random forest models predict chemical shifts from

secondary structures with similar accuracy to models
that estimate them from atomic structures. We began by
developing 2D chemical shift estimators. To accomplish this,
we used existing proton (1H) and carbon (13C) chemical shifts
for 108 RNAs to train a set of machine learning models that
estimate the non-exchangeable H1′, H2′, H3′, H4′, H2, H5,
H5′, H5″, H6, H8, C1′, C2′, C3′, C4′, C5′, C2, C5, C6, and
C8 chemical shifts based on features extracted from the 2D
structure of an RNA (see Methods; Tables S1 and S3). We
trained machine learning models for each nucleus type using
random forest regression, which aggregates the predictions
from an ensemble of decision trees. We chose the random
forest method because in preliminary testing using cross-
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validation on the training set, it outperformed other baseline
methods (Figure S1). Shown in Figure 2 is the mean absolute
error (MAE) between measured chemical shifts and chemical
shifts computed from the secondary structure in a test set; the
test set consisted of 20% of the data that were excluded from
the data set used to train the random forest predictors (Table
S1). For protons, the MAE ranged between 0.09 and 0.16 ppm,
with a mean of 0.12 ppm (Figure 2a), and for carbons, the
MAE ranged between 0.64 and 1.25 ppm, with a mean of 0.86
ppm (Figure 2b). These MAE values show similar trends to
those calculated over the independent set of RNAs used to
benchmark the CS-BME approach described below (Figure
S2). In this case, the MAEs were higher and ranged between
0.11 and 0.25 ppm, with a mean of 0.16 ppm for protons
(Figure S2a) and 0.66 and 2.01 ppm, with a mean of 1.17 ppm,
for carbons (Figure S2b). Overall, these MAE values are
comparable to the accuracy achieved by RNAShifts2 (∼0.12
and ∼0.80 ppm and protons and carbons, respectively37). They
are also similar to the accuracy achieved using models that,
instead of secondary structures, predict chemical shifts from
atomic structures of RNA; the MAEs for such predictors are
∼0.15 and 0.81 ppm for protons and carbons, respectively.47

The secondary structure of the most probable
conformer within CS-BME ensembles typically resem-
bles the secondary structure of the reference NMR
model. Having trained robust 2D chemical shift predictors, we

next attempted to assess the utility of chemical shifts in
modeling 2D, RNA dynamical ensembles. Dynamical ensem-
bles are defined by the structure and relative population of
states that a molecule is likely to populate. Specifically, we
sought to use a probabilistic modeling framework to assign
weights to conformers in conformational libraries of RNAs by
comparing measured chemical shifts to chemical shifts
computed using our estimators. First, we compiled libraries
of likely secondary structures that can be adopted by each of
the 15 RNAs in our validation/benchmark set. The number of
conformers in these libraries ranged between 11 and 18 (Table
1). For each conformer in the libraries, we computed the set of
non-exchangeable proton and carbon chemical shifts and then
used BME to assign weights to each conformer; using BME,
we assigned weights to conformers in a library in a manner that
maximized agreement between measured chemical shifts and
chemical shifts computed from our SS2CS models while also
accounting for the inherent uncertainty in the predictions
(Methods).
To check if BME reweighting was successful, we computed

Δχ2, which is the difference of χ2 (eq 2) after and before BME
reweighting. Negative values of Δχ2 indicate instances where
BME reweighting identified conformational weights that
improved the agreement between measured and computed,
ensemble-averaged chemical shifts. Across the 15 RNAs in our
validation set, Δχ2 ranged between −0.149 and −1.204 with a

Figure 2. Estimated accuracy of our secondary structure chemical shift predictors. The barplots show the MAE (mean absolute error) between
measured chemical shifts and chemical shifts computed from secondary structures in a validation set (Table S1). The red dashed lines indicate the
average MAE.

Table 1. Summary of CS-BME Ensembles of RNAs in the Validation Set

PDB ID description size N Δχ2 weight TPR PPV

1HWQ VS ribozyme substrate stem loop 30 11 −0.299 0.42 0.75 1.00
1YMO P2b-P3 pseudoknot from human telomerase 47 12 −0.179 0.30 0.88 1.00
2L3E P2a-J2a/b-P2b of human telomerase RNA 35 11 −0.632 0.57 0.86 0.92
2LU0 κ-ζ region of S.cerevisiae group II intron ai5(γ) 49 12 −1.110 0.80 0.84 1.00
2LUB helix H1 of the human HAR1 37 11 −0.892 0.86 0.94 1.00
2N1Q HIV-1 core packaging signal 155 14 −0.119 0.29 0.53 0.73
2N6X CssA5 of CssA thermometer 43 12 −1.179 0.43 0.94 1.00
2N7X microRNA 20b pre-element 23 11 −0.380 0.62 1.00 0.90
2N82 microRNA 20b pre-element with Rbfox RRM 23 12 −0.722 0.53 0.83 0.62
2NBY J domain of EMCV IRES 39 11 −0.190 0.49 0.88 1.00
2NC0 St domain of EMCV IRES 28 11 −0.149 0.27 0.83 1.00
5KH8 apo state fluoride riboswitch 47 18 −0.618 0.61 0.94 1.00
5KMZ tetrahymena telomerase RNA pseudoknot 31 11 −0.189 0.27 0.33 0.31
5V16 enterovirus IRES domain to stimulate viral translation 41 12 −0.344 0.43 0.82 0.93
6GZK tetramethylrhodamine (TMR) aptamer 3 48 13 −1.204 0.53 0.76 1.00
mean 45 13 −0.547 0.50 0.81 0.90
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mean value of −0.547, indicating that BME reweighting was
successful.
Reported in Table 1 are the true positive rate (TPR) and

positive predictive values (PPV) between the secondary
structure in reference NMR models and the secondary
structure of the conformers that were assigned the highest
CS-BME weight. TPR and PPV values approaching 1
correspond to conformers that are identical to the reference
secondary structure. Across the 15 RNAs, the mean TPR and
PPV were 0.81 and 0.90, respectively. For 13 of the 15 RNAs,
the conformers with the highest CS-BME weight had TPR or
PPV values greater than 0.80. The exceptions were 2N1Q and
5KMZ, the two RNAs for which only proton chemical shifts
were available and thus used for reweighting. Together, our
results indicate that CS-BME reweighting was generally
successful, resulting in conformational weights that improved
the agreement between measured and computed chemical
shifts. Furthermore, the highest weighted conformer in the CS-
BME ensembles resembled the reference NMR structures,
indicating that the CS-BME reweighting of the libraries led to
ensembles in which the ground-state (GS; most probable)
structures were consistent with GS-state structures observed
via NMR solution studies.
To highlight the latter point further, we show in Figure 3

circular secondary structure base pair probability plots

(CS2BP2Plots)46 of four representative RNAs, namely, the
core domain of the human telomerase RNA (PDB ID: 2L3E),
the group II intron ai5γ RNA (PDB ID: 2LU0), the fluoride
riboswitch RNA (PDB ID: 5KH8), and the TMR aptamer 3
RNA (PDB ID: 6GZK). The complete set of CS2BP2Plots can
be found in the Supporting Information (Figures S4−S18).
These modified CS2BP2Plots contain information about the
probability of contacts between any two residues across the
CS-BME ensemble. In these plots, we encode information
about the probabilities of finding two bases paired in terms of
both the thickness of the lines connecting pairs of residues and
their color, thick and green corresponding to higher
probabilities. Also, in these plots, the size of the sphere
associated with each residue encodes information about the
relative chemical shift error of that residue across the CS-BME
ensemble; the larger the sphere, the larger the mean error
between measured chemical shifts and ensemble-averaged
chemical shifts computed for atoms residing on the associated
residue. In these CS2BP2Plots, the pair probabilities are derived
from the CS-BME weights by summing base pair probabilities
across the respective ensembles. Inspection of these plots
confirms that, across the ensembles, high-probability base pairs
coincide with the base pairs found in the reference NMR
models. Interestingly, many of the base pairs that are missed,
that is, those base pairs that across the ensemble have low base

Figure 3. CS-BME-derived CS2BP2Plots for the core domain of the human telomerase RNA (PDB ID: 2L3E), the group II intron ai5γ RNA (PDB
ID: 2LU0), the fluoride riboswitch RNA (PDB ID: 5KH8), and the tetramethylrhodamine (TMR) aptamer 3 RNA (PDB ID: 6GZK). In these
plots, the size of the spheres encodes information about the relative residue-wise chemical shift error; the larger the sphere, the larger the chemical
shift error associated with a given residue. The thick lines that are shaded gray indicate base pairs in the reference NMR model.
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pair probabilities yet are present in the reference NMR model,
are flanking base pairs in terminal regions of their respective
stems or correspond to non-canonical pairs. We initially
speculated that these discrepancies were the result of local
errors in our predicted chemical shifts. However, we saw no
obvious pattern between the location of these missed base
pairs and the chemical shift errors (encoded by the sphere size
in Figure 3).
The CS-BME ensemble of apo HIV-1 TAR predicts the

existence of a previously unobserved U23-G26 base
pair. We concluded our study by applying the CS-BME
approach to the HIV-1 transactivating response (TAR)
element RNA. Because it is a small yet dynamically complex
RNA,49 TAR is an excellent model system for developing
techniques to model RNA dynamical ensembles.48,50,51 Using
measured apo-TAR chemical shifts,48 we modeled the
secondary structure ensemble of TAR using CS-BME. To
achieve this, we generated a conformational library of TAR
using an in-house tool, ss-Sampler (https://github.com/
atfrank/SS-Sampler). Given an input sequence, ss-Sampler
generates structures that maximize base-pairing and stem-
stacking interactions. To achieve this, ss-Sampler enumerates
the stems associated with a given sequence and then assembles
complete structures using a genetic algorithm guided by a
simple hydrogen-bonding counting and base-stacking fitness
function.52 Because the genetic algorithm is stochastic, many
cycles can be run to generate a collection of secondary
structures and so sample the conformational space of RNAs.
Over the course of 200 cycles, we generated a collection of 48
unique structures using ssSampler. We then selected the

conformers with energies that were at least 1 standard
deviation lower than the median energy of the initial set of
48 conformers, and reweighted the resulting 12-membered
library using CS-BME and apo-TAR chemical shifts.
Shown in Figure 4a−e are the top five highest weighted

conformers in the CS-BME ensemble of TAR (which
accounted for 0.85 of the total conformational weights). The
secondary structure of top three conformers resembles the
typical stem-bulge-stem-loop structure of TAR. The CS-BME-
derived CS2BP2Plot of apo TAR is shown in Figure 4f. The
plot captures the ensemble view of TAR base pairs derived
from the CS-BME reweighting. In general, the lower stem
region (residues 17−22 and 40−45) is predicted to be more
stable than the upper stem region (residues 26−29 and 36−
39) of TAR. Notably, the CS-BME ensemble predicts G26-
C39, which is observed in the reference NMR structure of apo
TAR, to have a lower-than-expected base pair probability (p ∼
0.29). This is because the ensemble also predicts that G26
forms a novel base pair with U23 (p ∼ 0.29). Interestingly,
NMR studies of wt-TAR have detected a spectroscopic
signature of a yet-to-be-characterized transient state that
exhibits relaxation−dispersion at G26 C8 and A27 C1′.53
The electronic environment near these sites is likely to be
altered by the formation of the U23-G26 base pair. It is
intriguing to speculate that TAR may sample a structure like
model 1 (Figure 4a) and that such a structure may in part
explain this observed dispersion. Further work will be needed
to test whether TAR transiently samples a state that harbors a
U23-G26 base pair.

Figure 4. CS-BME results for apo-TAR. Shown in (a−e) are circular plots of the secondary structure of the five highest weighted conformers in the
CS-BME TAR ensemble. Shown in (f) is the CS2BP2Plot of apo TAR, which was derived from its CS-BME ensemble. In (f), the thick lines that are
shaded gray indicate base pairs in the reference NMR model (PDB ID: 7JU1).48
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■ DISCUSSION AND CONCLUSIONS

In this study, we explored the use of chemical shift data to
model the secondary structure, dynamical/conformational
ensemble of RNAs. First, we trained estimators that take the
secondary structure of an RNA as input and output estimates
of the non-exchangeable proton and carbon chemical shifts.
We found that we could estimate these chemical shifts with an
accuracy that is on par with models that estimate chemical
shifts from atomic coordinates. Next, using our secondary
structure-based chemical shift predictors, we explored the
utility of chemical shifts to reweight conformational libraries to
generate ensemble descriptions of RNAs. Across a set of 15
RNAs, we used measured and computed chemical shifts along
with the BME approach (CS-BME) to construct ensembles.
The resulting ensembles recover most of the base pairs in the
solution NMR models of these RNAs. Finally, we applied CS-
BME to generate secondary structure ensembles of apo-TAR.
The ensemble predicts the existence of a previously
unobserved and, possibly, a transient U23-G26 base pair.
CS-BME is a potentially powerful approach to model the

RNA dynamical ensembles at the secondary structure level and
potentially at the atomic level. However, CS-BME has several
limitations. First, as a reweighting approach, CS-BME is
sensitive to sampling. If sampling is incomplete, the resulting
ensemble could fail to include conformers that, although not
sampled (in silico), may actually be sampled in solution.
Second, BME contains a hyperparameter θ that must be
tuned.31 In this study, we scanned θ values and identified the
largest θ value that minimized χ2. The weights associated with
this θ value were then used to model the ensemble. Third, CS-
BME is limited by the accuracy with which we could compute
chemical shifts. Compared to experimental chemical shift
errors, our proton and carbon prediction errors, 0.12 and 0.86
ppm, are large. Fortunately, BME uses the estimated
uncertainty to guide weight optimization. Despite this, because
the large fraction of base pairs in most RNAs correspond to
canonical, Watson−Franklin−Crick base pairs, our predictors
may produce large chemical shift errors for residues involved in
non-canonical pairing (e.g., Figure S4; G6-A25 and A7-G24
base pairs). In some instances, these larger errors may
negatively impact the ability of CS-BME ensembles to recover
non-canonical base pairs.
More accurate predictors should lead to higher-quality

ensembles and an enhanced ability to resolve conformational
states of RNA, including those containing non-canonical pairs.
A barrier toward realizing more accurate predictors is the
scarcity of paired data sets of chemical shifts and structures of
RNA. More fundamentally, because measured chemical shifts
are conformationally averaged, the mapping of individual
structures to measured chemical shifts, as has been done by us
when training our predictors, introduces errors that limit the
accuracy of the resulting predictors. One path forward would
be to rely on data in which one-to-one structure-shift mapping
is guaranteed. This could, in principle, be achieved by mapping
individual structures to quantum mechanically derived
chemical shifts and then training chemical shift predictors
using the resulting chemical shift-structure database. Finally,
the CS-BME framework we tested relies on assigned chemical
shifts. Assigning chemical shifts is currently the bottleneck in
NMR spectroscopy. However, histogram-based BME might be
a path toward leveraging unassigned 2D NMR chemical shift
data for CS-BME.

An additional caveat to our CS-BME approach is that it
assumes that the distinct conformational states that an RNA
samples are in fast exchange, with the overall chemical shift
signature of the RNA being a weighted average over these
states. Under slow exchange, certain peaks may have distinct
chemical shifts associated with each state an RNA samples. If
these peaks can be assigned and resolved, they could be used
to compile distinct chemical shift data sets, and CS-BME could
then be carried out separately using each of these chemical
shift data sets.
Despite these limitations, CS-BME provides a framework to

construct a probabilistic representation of RNA secondary
structure based on NMR chemical shift data. These can be
used to essentially convert NMR chemical shifts into a base
pair probability matrix, which one can use to construct
probabilistic restraints for RNA structure prediction or
selection. Though CS-BME currently requires assigned
chemical shifts as an input, it still is a valuable framework for
generating hypotheses about the likely conformational states
RNA samples based on their chemical shifts, particularly in
cases where NMR spectroscopy was used for mechanistic
studies and not structure determination. It should also prove
helpful when chemical shifts are the only available data (for
instance, when probing RNA transient states). Moreover, CS-
BME can generate predictions to corroborate or falsify
structural predictions generated using other orthogonal
techniques.
Finally, we stress that CS-BME is a general technique. Thus,

it can be powered using chemical shifts computed using
predictors other than the ones we implemented in this study,
for example, RNAShifts2.37 Also, one can use it with chemical
shifts computed using 3D-based chemical shift prediction
methods, opening up the possibility of using CS-BME to
model the atomic ensembles of RNA.47,54−58
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tool for generating structural ensembles of partly disordered proteins
from chemical shifts. Bioinformatics 2018, 35, 1234−1236.
(21) Ytreberg, F. M.; Borcherds, W.; Wu, H.; Daughdrill, G. W.
Using chemical shifts to generate structural ensembles for intrinsically
disordered proteins with converged distributions of secondary
structure. Intrinsically Disord. Proteins 2015, 3, No. e984565.
(22) Rangan, R.; Bonomi, M.; Heller, G. T.; Cesari, A.; Bussi, G.;
Vendruscolo, M. Determination of structural ensembles of proteins:
restraining vs reweighting. J. Chem. Theor. Comput. 2018, 14, 6632−
6641.
(23) Best, R. B.; Vendruscolo, M. Determination of protein
structures consistent with NMR order parameters. J. Am. Chem. Soc.
2004, 126, 8090−8091.
(24) Chen, Y.; Campbell, S. L.; Dokholyan, N. V. Deciphering
protein dynamics from NMR data using explicit structure sampling
and selection. Biophys. J. 2007, 93, 2300−2306.
(25) Low, J. T.; Weeks, K. M. SHAPE-directed RNA secondary
structure prediction. Methods 2010, 52, 150−158.
(26) Borkar, A. N.; De Simone, A.; Montalvao, R. W.; Vendruscolo,
M. A method of determining RNA conformational ensembles using
structure-based calculations of residual dipolar couplings. J. Chem.
Phys. 2013, 138, 215103.
(27) Cavalli, A.; Camilloni, C.; Vendruscolo, M. Molecular dynamics
simulations with replica-averaged structural restraints generate
structural ensembles according to the maximum entropy principle. J.
Chem. Phys. 2013, 138, 094112.
(28) Jensen, M. R.; Salmon, L.; Nodet, G.; Blackledge, M. Defining
conformational ensembles of intrinsically disordered and partially
folded proteins directly from chemical shifts. J. Am. Chem. Soc. 2010,
132, 1270−1272.
(29) Krzeminski, M.; Marsh, J. A.; Neale, C.; Choy, W.-Y.; Forman-
Kay, J. D. Characterization of disordered proteins with ENSEMBLE.
Bioinformatics 2013, 29, 398−399.
(30) He, W.; Chen, Y.-L.; Pollack, L.; Kirmizialtin, S. The structural
plasticity of nucleic acid duplexes revealed by WAXS and MD. Sci.
Adv. 2021, 7, No. eabf6106.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c05651
J. Phys. Chem. B 2021, 125, 9970−9978

9977

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kexin+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c05651?ref=pdf
https://doi.org/10.1038/s41580-019-0136-0
https://doi.org/10.1038/nchembio.238
https://doi.org/10.1038/nchembio.238
https://doi.org/10.1002/cbic.201900072
https://doi.org/10.1002/cbic.201900072
https://doi.org/10.1021/jp310863c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp310863c?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/cphc.201300387
https://doi.org/10.1002/cphc.201300387
https://doi.org/10.1002/prot.22197
https://doi.org/10.1002/prot.22197
https://doi.org/10.1002/prot.22197
https://doi.org/10.1002/prot.23220
https://doi.org/10.1002/prot.23220
https://doi.org/10.1007/978-1-61779-927-3_11
https://doi.org/10.1007/978-1-61779-927-3_11
https://doi.org/10.1007/978-1-61779-927-3_11
https://doi.org/10.1007/s10858-010-9438-4
https://doi.org/10.1007/s10858-011-9524-2
https://doi.org/10.1007/s10858-012-9668-8
https://doi.org/10.1007/s10858-012-9668-8
https://doi.org/10.1007/s10858-012-9668-8
https://doi.org/10.1007/s10858-015-9993-9
https://doi.org/10.1007/s10858-015-9993-9
https://doi.org/10.1021/acs.jpclett.0c00858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.0c00858?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja210951z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja210951z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja210951z?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja4083717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja4083717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja4083717?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b00351?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b00351?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.6b00351?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42003-021-01759-1
https://doi.org/10.1038/s42003-021-01759-1
https://doi.org/10.1038/s42003-021-01759-1
https://doi.org/10.1038/s42004-020-0323-0
https://doi.org/10.1038/s42004-020-0323-0
https://doi.org/10.1038/s42004-020-0323-0
https://doi.org/10.1089/cmb.2015.0184
https://doi.org/10.1089/cmb.2015.0184
https://doi.org/10.1089/cmb.2015.0184
https://doi.org/10.1093/bioinformatics/bty755
https://doi.org/10.1093/bioinformatics/bty755
https://doi.org/10.1093/bioinformatics/bty755
https://doi.org/10.4161/21690707.2014.984565
https://doi.org/10.4161/21690707.2014.984565
https://doi.org/10.4161/21690707.2014.984565
https://doi.org/10.1021/acs.jctc.8b00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00738?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0396955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0396955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1529/biophysj.107.104174
https://doi.org/10.1529/biophysj.107.104174
https://doi.org/10.1529/biophysj.107.104174
https://doi.org/10.1016/j.ymeth.2010.06.007
https://doi.org/10.1016/j.ymeth.2010.06.007
https://doi.org/10.1063/1.4804301
https://doi.org/10.1063/1.4804301
https://doi.org/10.1063/1.4793625
https://doi.org/10.1063/1.4793625
https://doi.org/10.1063/1.4793625
https://doi.org/10.1021/ja909973n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja909973n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja909973n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/bts701
https://doi.org/10.1126/sciadv.abf6106
https://doi.org/10.1126/sciadv.abf6106
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c05651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(31) Bottaro, S.; Bengtsen, T.; Lindorff-Larsen, K. Methods Mol. Biol.
2020, 2112, 219−240.
(32) Bonomi, M.; Camilloni, C.; Cavalli, A.; Vendruscolo, M.
Metainference: A Bayesian inference method for heterogeneous
systems. Sci. Adv. 2016, 2, No. e1501177.
(33) Lu, X.-J.; Bussemaker, H. J.; Olson, W. K. DSSR: an integrated
software tool for dissecting the spatial structure of RNA. Nucleic Acids
Res. 2015, 43, No. e142.
(34) Zhang, K.; Frank, A. T. Conditional Prediction of Ribonucleic
Acid Secondary Structure Using Chemical Shifts. J. Phys. Chem. B
2019, 124, 470−478.
(35) Aeschbacher, T.; Schubert, M.; Allain, F. H.-T. A procedure to
validate and correct the 13 C chemical shift calibration of RNA
datasets. J. Biomol. NMR 2012, 52, 179−190.
(36) Barton, S.; Heng, X.; Johnson, B. A.; Summers, M. F. Database
proton NMR chemical shifts for RNA signal assignment and
validation. J. Biomol. NMR 2013, 55, 33−46.
(37) Brown, J. D.; Summers, M. F.; Johnson, B. A. Prediction of
hydrogen and carbon chemical shifts from RNA using database
mining and support vector regression. J. Biomol. NMR 2015, 63, 39−
52.
(38) Breiman, L. Random forests. Mach. Learn. 2001, 45, 5−32.
(39) Choy, W.-Y.; Forman-Kay, J. D. Calculation of ensembles of
structures representing the unfolded state of an SH3 domain. J. Mol.
Biol. 2001, 308, 1011−1032.
(40) Bottaro, S.; Bussi, G.; Kennedy, S. D.; Turner, D. H.; Lindorff-
Larsen, K. Conformational ensembles of RNA oligonucleotides from
integrating NMR and molecular simulations. Sci. Adv. 2018, 4,
No. eaar8521.
(41) Cesari, A.; Gil-Ley, A.; Bussi, G. Combining simulations and
solution experiments as a paradigm for RNA force field refinement. J.
Chem. Theor. Comput. 2016, 12, 6192−6200.
(42) Hummer, G.; Köfinger, J. Bayesian ensemble refinement by
replica simulations and reweighting. J. Chem. Phys. 2015, 143, 243150.
(43) Pitera, J. W.; Chodera, J. D. On the use of experimental
observations to bias simulated ensembles. J. Chem. Theor. Comput.
2012, 8, 3445−3451.
(44) Köfinger, J.; Stelzl, L. S.; Reuter, K.; Allande, C.; Reichel, K.;
Hummer, G. Efficient ensemble refinement by reweighting. J. Chem.
Theor. Comput. 2019, 15, 3390−3401.
(45) Parisien, M.; Major, F. The MC-Fold and MC-Sym pipeline
infers RNA structure from sequence data. Nature 2008, 452, 51−55.
(46) Léger, S.; Costa, M. B. W.; Tulpan, D. Pairwise visual
comparison of small RNA secondary structures with base pair
probabilities. BMC Bioinf. 2019, 20, 293.
(47) Frank, A. T.; Law, S. M.; Brooks, C. L., III A simple and fast
approach for predicting 1H and 13C chemical shifts: toward chemical
shift-guided simulations of RNA. J. Phys. Chem. B 2014, 118, 12168−
12175.
(48) Shi, H.; Rangadurai, A.; Abou Assi, H.; Roy, R.; Case, D. A.;
Herschlag, D.; Yesselman, J. D.; Al-Hashimi, H. M. Rapid and
accurate determination of atomistic RNA dynamic ensemble models
using NMR and structure prediction. Nat. Commun. 2020, 11, 5531.
(49) Dethoff, E. A.; Petzold, K.; Chugh, J.; Casiano-Negroni, A.; Al-
Hashimi, H. M. Visualizing transient low-populated structures of
RNA. Nature 2012, 491, 724.
(50) Frank, A. T.; Stelzer, A. C.; Al-Hashimi, H. M.; Andricioaei, I.
Constructing RNA dynamical ensembles by combining MD and
motionally decoupled NMR RDCs: new insights into RNA dynamics
and adaptive ligand recognition. Nucleic Acids Res. 2009, 37, 3670−
3679.
(51) Lu, J.; Kadakkuzha, B. M.; Zhao, L.; Fan, M.; Qi, X.; Xia, T.
Dynamic ensemble view of the conformational landscape of HIV-1
TAR RNA and allosteric recognition. Biochemistry 2011, 50, 5042−
5057.
(52) Chou, F.-C.; Kladwang, W.; Kappel, K.; Das, R. Blind tests of
RNA nearest-neighbor energy prediction. Proc. Natl. Acad. Sci. U.S.A.
2016, 113, 8430−8435.

(53) Merriman, D. K.; Xue, Y.; Yang, S.; Kimsey, I. J.; Shakya, A.;
Clay, M.; Al-Hashimi, H. M. Shortening the HIV-1 TAR RNA bulge
by a single nucleotide preserves motional modes over a broad range of
time scales. Biochemistry 2016, 55, 4445−4456.
(54) Dejaegere, A.; Bryce, R. A.; Case, D. A. An empirical analysis of
proton chemical shifts in nucleic acids; ACS Publications, 1999.
(55) Cromsigt, J. A.; Hilbers, C. W.; Wijmenga, S. S. Prediction of
proton chemical shifts in RNA−their use in structure refinement and
validation. J. Biomol. NMR 2001, 21, 11−29.
(56) Frank, A. T.; Bae, S.-H.; Stelzer, A. C. Prediction of RNA 1H
and 13C chemical shifts: a structure based approach. J. Phys. Chem. B
2013, 117, 13497−13506.
(57) Swails, J.; Zhu, T.; He, X.; Case, D. A. AFNMR: automated
fragmentation quantum mechanical calculation of NMR chemical
shifts for biomolecules. J. Biomol. NMR 2015, 63, 125−139.
(58) Wang, Y.; Han, G.; Jiang, X.; Yuwen, T.; Xue, Y. Chemical shift
prediction of RNA imino groups: application toward characterizing
RNA excited states. Nat. Commun. 2021, 12, 1595.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c05651
J. Phys. Chem. B 2021, 125, 9970−9978

9978

https://doi.org/10.1126/sciadv.1501177
https://doi.org/10.1126/sciadv.1501177
https://doi.org/10.1093/nar/gkv716
https://doi.org/10.1093/nar/gkv716
https://doi.org/10.1021/acs.jpcb.9b09814?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcb.9b09814?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10858-011-9600-7
https://doi.org/10.1007/s10858-011-9600-7
https://doi.org/10.1007/s10858-011-9600-7
https://doi.org/10.1007/s10858-012-9683-9
https://doi.org/10.1007/s10858-012-9683-9
https://doi.org/10.1007/s10858-012-9683-9
https://doi.org/10.1007/s10858-015-9961-4
https://doi.org/10.1007/s10858-015-9961-4
https://doi.org/10.1007/s10858-015-9961-4
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1006/jmbi.2001.4750
https://doi.org/10.1006/jmbi.2001.4750
https://doi.org/10.1126/sciadv.aar8521
https://doi.org/10.1126/sciadv.aar8521
https://doi.org/10.1021/acs.jctc.6b00944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.6b00944?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4937786
https://doi.org/10.1063/1.4937786
https://doi.org/10.1021/ct300112v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300112v?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b01231?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature06684
https://doi.org/10.1038/nature06684
https://doi.org/10.1186/s12859-019-2902-6
https://doi.org/10.1186/s12859-019-2902-6
https://doi.org/10.1186/s12859-019-2902-6
https://doi.org/10.1021/jp508342x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508342x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp508342x?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-020-19371-y
https://doi.org/10.1038/s41467-020-19371-y
https://doi.org/10.1038/s41467-020-19371-y
https://doi.org/10.1038/nature11498
https://doi.org/10.1038/nature11498
https://doi.org/10.1093/nar/gkp156
https://doi.org/10.1093/nar/gkp156
https://doi.org/10.1093/nar/gkp156
https://doi.org/10.1021/bi200495d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/bi200495d?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1523335113
https://doi.org/10.1073/pnas.1523335113
https://doi.org/10.1021/acs.biochem.6b00285?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.6b00285?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biochem.6b00285?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1023/a:1011914132531
https://doi.org/10.1023/a:1011914132531
https://doi.org/10.1023/a:1011914132531
https://doi.org/10.1021/jp407254m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp407254m?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s10858-015-9970-3
https://doi.org/10.1007/s10858-015-9970-3
https://doi.org/10.1007/s10858-015-9970-3
https://doi.org/10.1038/s41467-021-21840-x
https://doi.org/10.1038/s41467-021-21840-x
https://doi.org/10.1038/s41467-021-21840-x
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c05651?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

