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ABSTRACT

Given two Hermitian matrices Y and A, the Harish-Chandra-
Itzykson—-Zuber (HCIZ) distribution is given by the density
eTUAU™Y) with respect to the Haar measure on the unitary group.
Random unitary matrices distributed according to the HCIZ dis-
tribution are important in various settings in physics and random
matrix theory, but the problem of sampling efficiently from this dis-
tribution has remained open. We present two algorithms to sample
matrices from distributions that are close to the HCIZ distribution.
The first produces samples that are £-close in total variation dis-
tance, and the number of arithmetic operations required depends
on poly(log 1/£). The second produces samples that are £-close in
infinity divergence, but with a poly(1/&) dependence. Our results
have the following applications: 1) an efficient algorithm to sample
from complex versions of matrix Langevin distributions studied
in statistics, 2) an efficient algorithm to sample from continuous
maximum entropy distributions over unitary orbits, which in turn
implies an efficient algorithm to sample a pure quantum state from
the entropy-maximizing ensemble representing a given density ma-
trix, and 3) an efficient algorithm for differentially private rank-k
approximation that comes with improved utility bounds for k > 1.
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1 INTRODUCTION

Let U(n) denote the group of n X n unitary matrices and let y de-
note the Haar probability measure on U(n). Given n X n Hermitian
matrices Y and A, consider the following measure on U(n):

eTr(UAU* Y)dll(U) (1)
The corresponding density is referred to as the Harish-Chandra-
Itzykson-Zuber (HCIZ) density and has been extensively studied,
implicitly and explicitly, in physics, random matrix theory, statistics,
and theoretical computer science. A major result about the HCIZ
density is that its integral over U(n) admits an exact expression as
a determinant.

THEOREM 1.1 (HCIZ INTEGRAL FORMULA). For n X n Hermitian
matrices Y and A with distinct eigenvalues y; > --- > yp and
A1 > --- > Ay respectively, we have the following:'

n—1 idi
. det([e¥"* ]1<i,j<n)
TH(UAU*Y) _ <ij<
e du(U) = | | ! .2
/U(n) HU) pzlp [Ti<j(yi —yj)(4i — 2)) ©

Theorem 1.1 was proved by Harish-Chandra [13] and by Itzykson
and Zuber [14]. See the post by Terry Tao [35] and the notes of the
second author [26] for more on the HCIZ integral.

Physics and Random Matrix Theory. Matrices distributed accord-
ing to the HCIZ density are important in various settings in physics
and random matrix theory. For instance, they appear in multi-matrix
models in quantum field theory and string theory [9, 14], and they
are also related to models of coupled Gaussian matrices [14] that
have been used to solve the Ising model on a planar random lat-
tice [4, 19]. In particular, the moments of HCIZ distributed unitary
matrices play a role in computing correlation functions for matrix
models of gauge theories and have been studied extensively since
the 1990’s [10, 11, 27, 32, 33].

The HCIZ integral also arises in many other places in random
matrix theory. Notably, it occurs in expressions for the joint spectral
densities of a number of matrix ensembles, such as Wishart matrices
and off-center Wigner matrices [12]. However, the basic question
about sampling from the HCIZ distribution has remained open.

The problem of sampling from the HCIZ distribution can be
equivalently cast as the problem of sampling according to an expo-
nential density specified by Y on the U(n)-orbit of A. Let

Op = {UAU* | U € U(n)}

1Although (2) assumes that all y; and A; are distinct, when this is not the case one can
still use Theorem 1.1 to obtain an exact determinantal formula for the HCIZ integral,
simply by applying L’H6pital’s rule to the right-hand side of (2).
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denote the orbit of A under the conjugation action of U(n). Every
such orbit contains a diagonal element diag(d) where A is the se-
quence of eigenvalues of A listed in non-increasing order, and thus
we always assume A = diag(A). Further, one can write any X € Op
as X = UAU" for some U € U(n), so that the density of the measure
(1) can be rewritten as

(V- X) = THUAU"Y)

where (Y, X) := Tr(Y*X). Thus, we arrive at the following problem.

PROBLEM 1.2 (SAMPLING FROM UNITARY ORBITS). Given twon X n
Hermitian matrices Y and A = diag(A), sample an X € Oy from the
probability distribution

dv(X) o< eV X0 dpp (X),

where i is the U(n)-invariant probability measure on Op.

®)

Statistics. Distributions of the kind mentioned in (3) have also
been studied under the name matrix Langevin or matrix Bingham
in statistics [7, 8]. The difference is that these distributions are
supported on orbits of the orthogonal group rather than the uni-
tary group. Obtaining efficient algorithms to sample from such
distributions was left as an open problem; see Section 2.5.2 of [8].

Continuous Maximum Entropy Distributions over Matrix Mani-
folds. In recent works [21, 22], distributions as in (3) arose as solu-
tions to maximum entropy problems over manifolds, with appli-
cations to computing the entropy-maximizing representation of
a quantum density matrix as an ensemble of “pure states”. Con-
cretely, the authors study the following problem: given a matrix
A in the convex hull of Oy, compute the probability density sup-
ported on Op whose expected value is A and that minimizes the
Kullback-Leibler divergence to pp. As an example, if we let A be
the diagonal matrix with exactly one 1 and rest 0s, the convex
hull of Oy is exactly the set of PSD matrices with trace one — den-
sity matrices. Thus, in this case, the solution to the above entropy
problem gives a way to “infer” an ensemble of pure states corre-
sponding to a given density matrix A, following the principle of
maximum entropy [1, 15, 16, 34]. The authors show that the solu-
tion to the above optimization problem gives rise to the distribution
of the form e<Y*’X>d,uA(X) for some Y*. Their main result is a
polynomial-time algorithm to find this optimal solution that runs
in time, roughly, the number of bits needed to represent A and the
distance of A to the “boundary” of the convex hull of Oy. While
[21, 22] gave polynomial-time algorithms to compute the optimal
value Y*, designing an algorithm to sample from the corresponding
distribution was left as an open problem.

Differentially Private Algorithms for Low-Rank Approximation.
An important technique to obtain differentially private algorithms
is the exponential mechanism due to [25]. In the context of rank-k
approximation of a given matrix, it amounts to sampling from an
exponential density of the type (3) on the orbit corresponding to
rank-k projections [6, 18]. To the best of our knowledge, the only
result on this problem is an approximate algorithm for the rank-1
case given by [18]. They left it as an open problem to simplify their
rank-1 algorithm and also to come up with an algorithm to sample
from the corresponding exponential mechanism for the rank-k case
when k > 1.
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Our Contributions. We present two efficient algorithms to ap-
proximately sample from HCIZ distributions or, equivalently, from
exponential densities on unitary orbits. The two algorithms differ in
how they approximate the target HCIZ distribution. Our first algo-
rithm approximates in the total variation distance and is sufficient
for many applications.

THEOREM 1.3 (MAIN RESULT — TOTAL VARIATION DISTANCE).
There is an algorithm that, given a ¢ > 0 and n X n Hermitian
matrices A = diag(d) and Y = diag(y), outputs a matrix X that is
distributed according to a distribution that is £-close in total varia-
tion distance to dv(X) o« e<Y’X>d;1A(X). The number of arithmetic
operations required to run the algorithm is polynomial in log % and

the number bits required to represent y and A.

Our second algorithm approximates the target distribution in the
(stronger) infinity divergence (Definition 2.6) and is used for the
differential privacy application.

THEOREM 1.4 (MAIN RESULT — INFINITY DIVERGENCE). There is
an algorithm that, given a ¢ > 0 and n X n Hermitian matrices
A = diag(}) and Y = diag(y), outputs a matrix X that is distributed
according to a distribution that is &-close in infinity divergence dis-
tance to dv(X) o e<Y’X>d,uA(X). The number of arithmetic opera-
tions required to run the algorithm is polynomial in Amax — Amin,
Ymax — Ymin> %, and the number bits required to represent y and A.

Note that while the approximation guarantee of the second al-
gorithm (Theorem 1.4) is better, the number of arithmetic opera-
tions it performs depends polynomially on % as opposed to poly-

logarithmically in % as in the first algorithm (Theorem 1.3). We
leave it as an open problem to give an algorithm which samples
from a distribution that is £-close in infinity divergence, but with
arithmetic operations depending polynomially on log %

Theorem 1.3 enables efficient numerical simulation of models in
physics and random matrix theory where HCIZ densities arise. Our
algorithms also make progress on the open problems mentioned
earlier. In particular, Theorem 1.3 immediately gives efficient algo-
rithms to 1) sample from complex matrix Langevin distributions
[7, 8] and 2) sample from continuous maximum entropy distribu-
tions on unitary orbits studied by [21, 22], implying an efficient algo-
rithm to sample a pure quantum state from the entropy-maximizing
ensemble corresponding to a given density matrix. Moreover, The-
orem 1.4 implies an efficient algorithm for the exponential mecha-
nism for differentially private rank-k approximation [6, 18, 25]. As
a consequence, we show that Theorem 1.4 allows us to obtain an
efficient differentially private rank-k approximation with improved
utility.

THEOREM 1.5 (DIFFERENTIALLY PRIVATE LOW-RANK APPROXIMA-
TION). There is a randomized algorithm that, given a d X d positive
definite matrix A and its eigenvaluesy; > --- > yq > 0, an integer
1<k<d,ane > 0,and asmall§ > 0, outputs a rank-k d X d
Hermitian projection P such that Ep [(A,P)] > (1 - §) Zlle Yi as
long as Zf:l yi=C- % -log % where C > 0 is a universal constant.
This algorithm is e-differentially private and requires a number of
arithmetic operations which is polynomial in y1 — yq, % and the
number of bits required to represent y.
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Note that the utility bound promised by Theorem 1.5 is about %
compared to the utility bound of roughly d7k3 due to [18] for k > 1.

The proofs of Theorems 1.3 and 1.4 are identical except for an
intermediate step that we mention below. One of the key difficulties
in sampling from an HCIZ distribution is that its domain, a unitary
orbit, is a non-convex algebraic manifold. The individual entries
of the desired sample matrix are highly correlated due to the al-
gebraic constraints that define the orbit, which makes it difficult
to break the problem into lower-dimensional subproblems. Our
main technical contribution is to reduce the problem of sampling
from an exponential density on a unitary orbit to sampling from an
exponential density on a bounded convex polytope. In particular,
we use an alternative parameterization of unitary orbits based on
the Rayleigh map, which sends a Hermitian matrix X to a natural
organization of the eigenvalues of all leading principal submatrices
of X. The image of each U(n)-orbit under the Rayleigh map is a
convex polytope called a Gelfand-Tsetlin (GT) polytope, which is
cut out by linear inequalities given by the interlacing properties
of the eigenvalues. This mapping reveals a recursive structure in-
trinsic to U(n)-orbits, which is hard to see directly in the ambient
space of matrices. The Rayleigh map from a given U(n)-orbit to
the corresponding GT polytope is not injective. However, one can
show that 1) the HCIZ density on the orbit pushes forward to an
exponential density on the polytope, and 2) the HCIZ density is
constant on the fibers of the Rayleigh map. Therefore, to solve the
sampling problem on the orbit, it suffices to sample a point from an
exponential density on the GT polytope, and then sample a Hermit-
ian matrix uniformly at random from the fiber of the Rayleigh map
over that point. To sample from the GT polytope, we use results of
[23] for Theorem 1.3 and results of [3] for Theorem 1.4.

We give a detailed technical overview of the algorithms and the
proofs of Theorems 1.3 and 1.4 in Section 3. The formal algorithms
and proofs appear in Sections 4, 5, and 6. Some proofs and details
have been omitted from this version of the paper due to space
constraints (see [20] for the full version).

2 RAYLEIGH TRIANGLES AND
GELFAND-TSETLIN POLYTOPES

In this section we introduce some definitions and facts that we will
need in what follows. In particular, we discuss two types of combi-
natorial objects that are fundamental to the geometry of Hermitian
matrices: Rayleigh triangles and Gelfand-Tsetlin polytopes.

DEFINITION 2.1 (RAYLEIGH TRIANGLE). For an integer n > 1,

a Rayleigh triangle is a triangular array of real numbers R =
(Ri,j)1<i<j<n satisfying the interlacing relations

Rij > Rij-1 2 Rit1,j foralll1 <i<j<n. 4)

The vector Re j = (R1,j, ..., Rj,j) € R/ is called the jth row, and
Re,n € R" is called the top row. If we fix Re , we can regard the
numbersR; j, j < n — 1 as coordinates of a point in Re(n-1/2,

Note that the indexing for the Rayleigh triangle is different from
that of matrix notation: the top row is indexed by n.

DEFINITION 2.2 (GELFAND-TSETLIN POLYTOPE). Given a vector
A eR™ withAy > -+ > Ay, the Gelfand-Tsetlin polytope GT (1) is
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the convex polytope in R(n-1)/2 consisting of all Rayleigh triangles
with top row equal to A.

Thus, GT(4) is the polytope cut out by the interlacing inequalities
(6), with Re n = A fixed. In other words, the following system of n
equalities and n X (n — 1) inequalities determines GT(A):

Rin=Aiforalll1 <i<n,

®)
Rij—Rij-12 OandRi,j_l —Rit1,j 2 Oforalll1 <i<j<n. (6)
Note that if all of the entries of A are distinct, then GT(A) is full-
dimensional in R™n=1)/2 (with coordinates R; j for 1 < i < j <
n—1), and every inequality given by (6) above is essential. However
if entries of A coincide, then some of the inequalities of (6) become
equalities, and GT(2) lies in some affine subspace of R""~1)/2_In
particular, if Ay = Ap11 = -+ = Ag then for any R € GT(A) we
have that R; j = Ap for all i, j such that p < i < g+ j — n. On the
other hand, every inequality of (6) not associated to such a fixed
entry R; j is essential. Using this observation, for any fixed A it is
straightforward to determine the affine subspace in which GT(1)
has non-empty interior.
The following is then a corollary of a classical result of linear
algebra known as the Cauchy-Rayleigh interlacing theorem.

PROPOSITION 2.1 (INTERLACING AND RAYLEIGH TRIANGLES).
Given an n X n Hermitian matrix X, denote by X[k] its kth lead-
ing principal submatrix (that is, the k X k submatrix in the upper
left corner of X). Let Ay j = -+ 2 Ay i be the eigenvalues (which

are real) of X[k]. Then the eigenvalues (A} )1<j<k<n Of the leading
submatrices of X form a Rayleigh triangle, which we write as R(X).

We now need a few definitions.

DEFINITION 2.3 (TYPE VECTOR). The type vector of R is defined by
n n—1
type(R) = (Ri,1. Riz +Roz = Rits s D Rin = > Rion-a)-
i=1 j=1

IfR = R(X) for some Hermitian X, then type(R) = (X11, . -
is the diagonal of X.

-+ Xnn)

DEFINITION 2.4 (ORBITS OF U(n)). Given a vector A € R™ as above,
write A = diag(1) and let Op = {UAU™* | U € U(n)} be the unitary
conjugation orbit of A. Let up be the uniform probability measure
on Oy, i.e., the unique probability measure on Oy that is invariant
under the conjugation action of U(n).

It can be shown that the image R(Op) is GT(A). In fact, the following
stronger result is true: the uniform measure on Op maps to the
uniform measure on GT(1); see e.g. [2, 29, 30, 38].

PROPOSITION 2.2 (PUSHFORWARD OF HAAR MEASURE). The push-
forward of the Haar measure jix on Op by the map R is the uniform
probability measure on GT(4).

Note that in the above result, the pushforward distribution is a
restriction of the Lebesgue measure on the affine span of GT(X),
which is the minimal affine subspace of RA(n-1/2 containing GT(A).
This distinction only matters when not all A; are distinct, since in
this case GT(A) has dimension less than n(n—1)/2 so that its volume
in the ambient space R™"~1/2 g zero.

Proposition 2.2 allows us to prove the following crucial fact
that the image of an exponential density on a unitary orbit is an
exponential density on the GT polytope.
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THEOREM 2.3 (PusHFORWARD OF THE HCIZ DENsITY). IfY =
diag(y) for some real vector y, then the pushforward of the measure
e<Y’X>dyA(X) through the map R is

R [e VX dup(X)] = Vol(GT (1))~ Le W yPeP) gp,
where dP denotes the Lebesgue measure on the affine span of GT ().

Proor. First note that (Xi1,...,Xpn) = type(R(X)), as men-
tioned in Definition 2.3. Thus, we have

(V,X) = 3 yiXii = (y, type(R(X)).
i=1

The result then follows from the fact that the pushforward of yip
through R is uniform on GT(A) by Proposition 2.2. |

Finally, to prove the correctness of our sampling algorithm, we will
need to describe the set of Hermitian matrices that map to a given
Rayleigh triangle under R.

DEFINITION 2.5 (FIBER OVER A RAYLEIGH TRIANGLE). Given R €
GT(A), the fiber of the map R over R is the set R"I(R) = {X €
Op | R(X) =R}.

The fiber R™!(R) is a compact subset of Ox. The uniform proba-
bility measure on R™1(R) is characterized by the property that if
X is uniformly distributed in R=1(R), then for 1 < k < n, X[k] is
uniformly distributed on the compact manifold H(X[k — 1]; R, 1)
of k X k Hermitian matrices with eigenvalues R, ;. and leading
(k — 1) X (k — 1) submatrix equal to X[k — 1]. We will show below
in Lemma 4.10 that H(X[k — 1]; R, k) is a product of spheres.
Before moving on, we formally define the notions of distance
between distributions which are relevant to our main results.

DEFINITION 2.6 (NOTIONS OF DISTANCE BETWEEN DISTRIBU-
TIONS). Given two distributions (i.e., Borel probability measures) y1, v
onS C R", we define the total variation distance between y and v
as || — vlltv := supgcg |u(S) — v(S)|. When p, v have continuous
density functions f, g respectively (with respect to the same base mea-
sure) on S, we further define the infinity divergence between y and

v as Deo(pt|v) := log sup, cs %.

3 TECHNICAL OVERVIEW

In this section, we give an overview of the algorithms and the proof
of our main results (Theorems 1.3 and 1.4), leaving the full details to
Sections 4 and 5. Here we will emphasize the important ideas and
and concepts from the various parts of the proof without going into
too much detail. For the interested reader, we will provide links to
other relevant sections of the full proof throughout this overview.

Throughout, A and Y will always be n X n real diagonal matrices.
The unitary orbit Oy is defined as the set of all matrices UAU*
obtained by conjugating A by any unitary matrix. The measure
dpa(X) is the unitarily-invariant probability measure on Op, which
means that

/ FOO dpn(X) = / FUXU™) dup(X)
OA OA

for all integrable functions f and all unitary matrices U € U(n). The
goal of our algorithms is to return a sample X from the unitary orbit
O, such that the distribution of X is proportional to e ¥.X0g 1A (X).
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3.1 The Uniform Case

Let us first consider a simple case, when Y = 0. In this case the
distribution we want to sample from is precisely the unitarily invari-
ant (uniform) distribution on Op. Unitary invariance implies that
sampling X from this distribution on Oy is equivalent to sampling
U from the Haar probability measure on U(n) and taking UAU* as
our sample in Op. Sampling U from the Haar probability measure
on U(n) then has a classical solution: Inductively sample orthogonal
unit vectors uy, uy, . . ., up from C" by projecting and normalizing
random Gaussian vectors. We can then construct a random matrix
U € U(n) by setting u1, ug, . . ., up as the columns of U. This shows
that sampling from O, in the case of Y = 0 has a simple, intuitive
solution.

Difficulty in Extending the Algorithm for the Uniform Case. For
general Y however, the situation quickly becomes more complicated.
The first observation is that unitary invariance is immediately lost,
since generically we have

(VX)) o ((Y.UXU").

This means the method used for Y = 0 breaks down, as there is no
clear way to generalize the above simple algorithm to exponential
weightings of the Haar measure. This is even true in the most
basic case when Oy is the set of rank-one projections (when A =
diag(1,0,...,0)), and the difficulty in this case was already realized
in several previous works [8, 18, 22].

Even though the density is not unitarily invariant, there is still
significant symmetry coming from the structure of the orbit Op.
This symmetry leads to the HCIZ integral formula (Theorem 1.1),
which gives an efficiently computable formula for the partition
function of the HCIZ density. (It should be noted that the proof of
this formula is highly non-trivial: Harish-Chandra’s original proof
from 1957 can be viewed as a starting point for much of the modern
theory of quantum integrable systems [13, 26].) Typically, such an
explicit formula for the partition function can be translated into
an algorithm for sampling, but it is not clear how to do this for the
unitary orbit Oj.

3.2 Searching for Self-Reducibility

In the world of discrete distributions, the seminal work of [17] gives
a general way to sample from a distribution using an oracle for the
associated partition function. The key property needed to utilize
their results is that the distribution needs to be self-reducible. A
problem is said to be self-reducible if, roughly speaking, a problem
instance with input size n can be efficiently reduced to another
instance of the same problem with input size n — 1.

As an example of where the ability to compute the partition
function can lead to an efficient sampling algorithm, consider the
case of sampling matchings from a graph. To uniformly sample a
matching, one can first choose an edge e in the graph and then
compute the number k. of matchings that contain e, and the number
I, of matchings that do not contain e. The edge e is then included
in the output matching with probability k./le, and the original
problem can be reduced to finding a perfect matching in the smaller
graph obtained by removing the vertices joined by e. To sample
non-uniform matchings, the values of k. and [, are replaced by
evaluations of the partition function.
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In our world of continuous distributions on unitary orbits, it is
not obvious how to perform a self-reduction similar to that of the
discrete world, even though we have a formula for the partition
function. The obstacle is that self-reducibility depends on preserv-
ing the original problem structure: we must reduce to an instance
of the same problem, but with smaller input.

One approach towards this is to iteratively sample the individual
entries or columns of the matrix, and then to interpret the remaining
entries of the matrix as a smaller instance of the original problem
conditioned on the previously selected entries. The issue with this
approach is that the entries of a matrix X in the unitary orbit Op are
highly correlated due to the algebraic constraint that X = UAU*
for some UU™ = I. This means that the problem of sampling from
a given distribution on the orbit conditional on one or more matrix
entries is a priori very different from the original problem, and
much more complicated.

There is an alternative way to view a matrix X € O,: in terms of
its eigenvalues. The eigenvalues and eigenvectors together deter-
mine the matrix X completely. Further, one can (almost) recover the
eigenvectors of X using the eigenvalues of the principal submatrices
of X (see [36]). When eigenvalues are distinct, one finds

1721 () = (X))
[z (LX) = (X))

where 1;(X) is the it" largest eigenvalue of X, X} is the principal
submatrix of X with the k! row and column removed, and v; is
the eigenvector corresponding to A;(X). That is, with the extra
information of the eigenvalues of the principal submatrices of X,
one can determine the eigenvectors of X up to the (complex) sign
of the entries.

This is a good sign for us, as it hints at some inductive structure
in the eigenvalues of X. Can we now understand this relationship
between the eigenvectors and eigenvalues of principal submatrices
in some recursive manner? As a matter of fact, by considering the
matrix X in terms of all of its leading principal submatrices, we are
able to prove a similar result (see Section 4.4). And not only that,
but it turns out that this eigenvector information is sufficient for
our purposes.

2
lvi,j|” =

Self-Reducibility in the Space of Eigenvalues. This suggests a nat-
ural self-reducible structure for the unitary orbit Op via the prin-
cipal submatrices. The Rayleigh map R (Definition 2.1) maps a
matrix X € Op to the length—(n;rl) vector of the eigenvalues of
all the leading principal minors of X. These eigenvalues are orga-
nized in the form of a triangle called the Rayleigh triangle, denoted
R(X) = (Ri,j)1<i<j<n WhereR; j is the ith largest eigenvalue of the
top left j X j principal submatrix. (Note that Re , are the eigenvalues
of A, and counter to matrix indexing intuition, we refer to R  is
the top row of the Rayleigh triangle.) Organizing eigenvalues into
a triangle like this then makes the self-reducible structure clear:
fixing the top n — k + 1 rows of the triangle, Re p,. .. 2 Re ks and
leaving the bottom k rows free gives a lower-dimensional space of
Rayleigh triangles that corresponds precisely to the U(k)-orbit of
the k X k matrix diag(R, f)-.

We now have a self-reducible way to view the elements X € Op
in terms of their eigenvalues, but how does this help us to sample
from Op? By the Cauchy-Rayleigh interlacing theorem, for all
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X € Oy the Rayleigh triangle R(X) is a element of a polytope in
R("2) cut out by the inequalities

Ri’j > Ri’jfl > RH]J for all valid i, j.

In fact the converse is also true: the image R(O, ) is the whole poly-
tope cut out by these inequalities, called the Gelfand-Tsetlin (GT)
polytope and denoted GT(A) where A is the vector of eigenvalues of
A. What is special about the Rayleigh map R is then that it projects
the uniform measure dyy on Oy to the Lebesgue (uniform) measure
on the GT polytope. This leaves a few questions.

(1) How does the Rayleigh map R project the HCIZ density

from the unitary orbit to GT(1)?

(2) How do we sample from the corresponding distribution on

the GT polytope?

(3) How do we transfer that sample back to the unitary orbit?
The answers here are reasonable: for (1) the Rayleigh map projects
the exponential HCIZ density to an exponential density on the GT
polytope (see Theorem 2.3), for (2) we can use powerful tools ([23]
and [3]) to sample from this exponential density on a polytope
cut out by polynomially many inequalities, and for (3) we have
algorithms that utilize the symmetry of the orbit Oy and the HCIZ
density (see Section 4.1). For the understanding of the reader, we
first demonstrate this explicitly in the case of rank-one projections.

3.3 The Case of Rank-One Projections

Let us now look at the simplest choice of A: the case where A is the
diagonal matrix with entries 1, 0,0, . . ., 0. This means that O, is the
set of Hermitian positive semidefinite (PSD) rank-one projections.
In this case, each leading principal submatrix of a given X € Op has
at most one non-zero eigenvalue. Thus, the entries of the Rayleigh
triangle of X are all zero except for Ry, for which we have

1=Ryn2>2Ryn-12--2Ry1 20.

This means that the GT polytope in this case is isomorphic to a
simplex by considering the values of Ry, — Ri,n-1, ..., R1,2 = R1,1,
and Ry, 1, which sum to 1. Since the principal submatrices are all
rank at most 1, these differences are the differences of the traces
of the submatrices of X, which are precisely equal to the diagonal
entries of X. Hence the map diag(X), which picks out the diagonal
entries of X, is equivalent to the Rayleigh map R in this case, and the
image diag(O, ) is the standard simplex A, Therefore diag(X) maps
the uniform measure pp(X) to the Lebesgue (uniform) measure
on Ap, and we can determine the measure on the GT polytope
corresponding to the HCIZ density via

diag

X gy (X) = 48 g (x) — e g,

where y is the vector of diagonal entries of Y (which is itself a
diagonal matrix). This suggests a method for sampling from our
distribution e{¥-X >d;1 A(X) on Op when Y is diagonal:

(1) Sample x from A, according to the distribution e(¥-*) dx
where y = diag(Y).
(2) Convert x into a rank-one PSD projection X € Oy.
This sampling problem is a special case of sampling from a log-
concave density on a convex polytope, and there is a significant
body of work which is geared towards coming up with algorithms
for this general problem. In particular, to obtain a algorithm which
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gives the TV distance bound promised by Theorem 1.3, we can
appeal to Corollary 1.2 of [23]. To obtain an algorithm which gives
the infinity divergence bound promised by Theorem 1.4, we appeal
to Lemma 6.5 of the arXiv version of [3]. Since our function is
log-linear, to use these results we just need to establish bounds on
the outer and inner radius of the polytope (the simplex in this case)
and the Lipschitz constant of the exponent. This is trivial in the
case of the simplex, but it is also straightforward for the case of a
general GT polytope; see Section 4.3.

However, we still need to convert x into a rank-one PSD projec-
tion X € Oy in a way which is compatible with our exponentially
weighted distribution on Op. Towards this, we first observe that
the set of all X for which diag(X) = x is given by

)

Second, for diagonal Y the density eY-X) does not depend on the
choice of 61, ..., 0;,. Therefore if we restrict our distribution on
O, to the subset diag_l(x), we obtain the uniform distribution.
This means we can convert x into a rank-one PSD projection by
uniformly randomly sampling elf . elfn independently from
the unit circle and setting X := vv* where

v* = (e_ie1 VX1, . .,e_ie'l\/xn).

Combining these two steps—sampling from the simplex and then
transferring that sample to Op—gives us an algorithm for sampling
from Oy according to our exponentially weighted density.

What remains is then to show that our bounds between the sam-
pled and target distributions on the simplex (either TV distance or
infinity divergence) transfer back to the respective distributions on
Op. In this case, the algorithm to transfer a sample from the simplex
to a sample from O, is very simple and explicit, as demonstrated
above. In particular, given a point x of the simplex, we can sample
exactly from the target (uniform) distribution on the associated
fiber of x in O. This means that transferring from the simplex to
O accumulates no extra error between the sampled and target
distributions. Therefore the TV distance and infinity divergence
bounds between the sampled and target distributions on Oy are
exactly equal to the bounds achieved on the simplex A, (see Ap-
pendix A of the arXiv version [20] for more details). Thus we have
achieved our desired error bounds for the sampled distribution on
Op, completing the proof of the main results in the rank-one case.

diag™1(x) = {X € Oy : X = v0*, v* = (e 70 yx1, ..

Obstacles to Extending to General A. Unfortunately, extending
this algorithm beyond the rank-one case immediately runs into
issues. First, we need to know how the HCIZ density on a general
orbit Op transfers to the GT polytope through the Rayleigh map. In
the case of rank-one projections, we obtained a log-linear density
which was crucial to our sampling error bounds, and we need to
be able to emulate this in the general case.

Beyond this, converting a sample from the GT polytope back
to the unitary orbit is now more complicated. In the case of rank-
one projections, determining the fiber diag™(x) = R~!(x) was
straightforward and led to a simple method for sampling an element
of the orbit O,. For general A, the fiber R~1(x) does not have such
a clear description. We will need to study further the relationship
between the unitary orbit Op and the corresponding GT polytope
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to understand how to generalize the sampling technique used for
rank-one projections.

3.4 Moving to the GT Polytope in the Case of
General A

In the case of general A, we can utilize the same overarching al-
gorithm that was used in the rank-one case: sample from the GT
polytope, and then transfer back to the unitary orbit. The first
question we need to answer is what the distribution on the GT
polytope should look like. We know that the Rayleigh map trans-
fers the uniform distribution dpua(X) on the unitary orbit to the
uniform distribution on the polytope, but what about the distribu-
tion e<Y’X>dyA(X)?
Since Y is diagonal we can write

e<Y’X>d,uA(X) — e(y,diag(X))duA(X)’

where y = diag(Y). In the rank-one case, the Rayleigh map R was
equivalent to the diag(X) map, and this meant that the projected
measure was given by ¢{%-¥) dx. To handle the general case, we need
a map which takes a Rayleigh triangle R € GT(A) to the diagonal
vector of the corresponding X € O,. This is precisely the type(R)
map (Definition 2.3), which computes differences of the traces of
the successive principal submatrices:

n n-1
type(R) = (Rl,l, Ri2+Rp2—Ryq, ..., ZRi,n - ZRj,n—1)~
i=1 i=1

This definition implies type(R) = diag(X) whenever R = R(X).
With this, we can more precisely state our sampling algorithm at a
high level.
(1) Sample a Rayleigh triangle R = (R;, j) from the associated GT
polytope according to the distribution e ¥-YP¢(R)) 4R where
y = diag(Y).
(2) Convert R into an element X € Oy of the unitary orbit.
As in the simplex case, we can use the powerful tools of [23] and
[3] to sample from the log-linear density on the GT polytope (see
Section 4.3 for more details). However, we still must convert this
into a sample from the HCIZ density on the orbit Op.

3.5 From the GT Polytope back to the Unitary
Orbit

Supposing we have a sample R distributed according to the log-
linear density on the GT polytope, the final step is to convert R
into a sample from the unitary orbit Ox. In the case of the simplex,
this was easy because it is easy to describe the fiber diag™!(x) as
well as the uniform distribution on this fiber. In the case of the GT
polytope and the Rayleigh map however, determining R ~!(R) and
the associated distribution is more complicated.

Fortunately though, we can break the problem down into more
manageable pieces corresponding to the row-by-row self-reducible
structure discussed above. Observe that for any k we can identify
U(k — 1) with the subgroup of U(k) consisting of unitary matrices
that have a 1 in the bottom right corner and zeros in all other
positions of the last row and column. Inducting on this observation,
we obtain inclusions

U(1) > UR) — --- = U(n-1) = U(n),
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and these inclusions correspond precisely to sub-triangles of our
sampled Rayleigh triangle R (the bottom 1,2,...,n — 1,n rows of
the triangle respectively).

This allows us to induct on the rank of the unitary group. As-
suming that we have an (n — 1) X (n — 1) matrix sample X, from
the U(n — 1) orbit associated to the bottom n — 1 rows of R, we just
need to sample an X € Op which has Xj as its top-left principal
submatrix. That is, given such an Xy, we need to sample some

Xo U] € OA.

4

X=1.
v

To sample such an X, first note that the top row of R (that is, the
eigenvalues of A) determines the trace of X, which specifies deter-
ministically the value of c. This leads to a crucial observation: all
possible values of the matrix X have the same diagonal entries, and
hence our density function e{Y-X) is constant since Y is a diagonal
matrix. This means that we may sample X uniformly from the set
of all X with the above block form.

Having made this observation, we now describe in detail how to
sample such a matrix X (see Section 4.4).

The Case of Distinct Eigenvalues. We first demonstrate how to do
this in a simplified case: when Xj is a diagonal matrix with distinct
eigenvalues. In this case, we make the following easy observation
for U € U(n) where v, w are any vectors:

Xo v Xo w

i0; ei@,,)

o ¢ w ] & U = diag(e

This immediately gives rise to an algorithm for sampling X of the
above block form:

(1) Construct any X € Ox.

(2) Sample €1, .. On yniformly and independently from the

unit circle.

(3) Defining U := diag(eiel, ...,ei%) our sample is UXU™.
What remains to be done then is to construct some X € Oy, which
is equivalent to constructing a valid value of v. To this end, we use
the special form of X to write down its characteristic polynomial.
Letting Xo = diag(R1,n-1, - - . » Rn—1,n—1), we want to choose v such

/)

ﬁ(r ~ ) = det (tI - [jfsz
i=1

n-1
=(t-o] [¢-Rin-0+
i=1

i
.,e

%
c

n—1
D toil? [ ] = Rjn-1)-
i=1 j#i
Since the values of R, ;-1 are distinct, we obtain n — 1 equations
by plugging in t = Ry ,,_; for each value of k € {1,...,n-1}:
n
[ [®nt =20 = ol | | Riesnot = Rin-).
i=1 ik
“?:1(Rk,n—l_li)

ik (Rie, n-1—Ri,n-1)”
formula for a choice of v so long as this ratio of products is non-

negative. In fact, it is always non-negative because the values of
Ae and R, ;1 are interlacing by the Cauchy-Rayleigh theorem. By
choosing vy > 0 which satisfy the above equalities, we have con-
structed a valid X from our orbit, and applying the above algorithm
gives the desired sample of Oj.

This then implies |vg|> = which gives us a
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The General Case. Handling the cases of non-distinct eigenvalues
and non-diagonal X is then straightforward. First, if X, is diagonal
with non-distinct ordered eigenvalues, the set of unitary matrices
which preserves the block form of X becomes larger:

distinct: UXU* € Oy © U € U(1) x U(1) x --- x U(1)
non-distinct: UXU* € Oy & U € U(my) X - - - x U(myp) x U(1),
where mp,my, ..., my are the multiplicities of the eigenvalues of
Xo. That is, we need to replace step 2 of the above algorithm with

(2) Sample unitary matrices Uy, .. ., Up, Up+1 uniformly from
U(my),...,U(mp), U(1) respectively.
Algorithms to sample uniformly from unitary groups are well-
known and were discussed above.
Finally, handling the non-diagonal case is even easier. Letting
Up € U(n — 1) be such that UpXoU; = Dy is diagonal, we reduce to
the previous cases by considering

[Uo O]X[Ug‘ O]Z[UOXOU(;‘
0 1

0 1 (Doo)*
We then first sample a matrix X’ by applying the above algorithm
to the right-hand side matrix above, since Dy is diagonal. We then
obtain our desired sample via the inverse conjugation by Up:

Uy 0] ¥ [UO 0] .

0 1 0 1
Combining all of this then yields an algorithm which constructs a
matrix X in the unitary orbit Oy from the given Rayleigh triangle
R in the GT polytope.

_| Do

Uov]
~ |[Uov)*

c

Upv
Cc

X =

Sampling Error Bounds. The last thing we must do is show that
our bounds between the sampled and target distributions on the GT
polytope (either TV distance or infinity divergence) transfer back
to the respective distributions on Op. In the case of the simplex,
the exact bounds transferred from the simplex to the orbit because
we were able to exactly sample from the fibers R~1(x) for any x in
the simplex. Specifically, sampling from the fiber boiled down to
sampling uniformly from a torus.

In the general case, we saw above that this torus sampling in the
case of the simplex is replaced by an inductive sampling of unitary
matrices from the uniform (Haar) distribution. There is a simple
exact algorithm for sampling Haar-distributed unitary matrices,
as discussed in Section 3.1. Therefore the same argument applies
to the general case as applied to the case of rank-one projections
and the simplex. Specifically, the bounds we achieve between the
sampled and target distributions on the GT polytope transfer back
exactly to the respective distributions on the orbit Oy.

This concludes the overview of the proofs of Theorems 1.3 and
1.4. To summarize, we first considered the pushforward measure of
the HCIZ distribution on a unitary orbit O through the Rayleigh
map R onto the GT polytope GT(4). This gave a density function
on the GT polytope that was a log-linear function of the type vector.
We then sampled a Rayleigh triangle R € GT(A) according to this
density using very general techniques for sampling from log-linear
distributions on convex polytopes. Finally, we converted this sample
R € GT(A) into a sample from the orbit O by inductively sampling
k x k matrices according to the bottom k rows of R. We refer the
reader to Sections 4 and 5 for the remaining details of the proof.
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4 THE SAMPLING ALGORITHMS OF
THEOREMS 1.3 AND 1.4

In this section, we describe the main steps of the algorithms claimed
in Theorems 1.3 and 1.4. We then prove that the steps produce the
correct output and determine the number of arithmetic operations
they require. We will mostly treat the two algorithms together,
since they differ only in the procedure used to sample from the
Gelfand-Tsetlin polytope.

REMARK 4.1. Throughout we assume that we can exactly unitarily
diagonalize Hermitian matrices for convenience. That said, the algo-
rithms given in [31] approximate the eigenvalues and eigenvectors of
a Hermitian n x n matrix H within relative error 2~LH in a number
of arithmetic operations which is polynomial in n and log Ly, where
Ly is the number of bits required to represent H. To use this result,
there is some extra error accounting which is required. In our case this
can be handled, and we omit the details.

Further, under this assumption we may also assume that the matrix
Y which appears in the exponent of our density function eY>X) i not
diagonal but just Hermitian with eigenvaluesyy, . . ., yn. Indeed if Y =
U -diag(y)-U*, then the fact that up(X) is unitarily invariant implies
e X0 dyp (X) = e{diagW).UXUD g (X)) = e(diagWh XD gy, (X). Af-
ter sampling X according to this distribution on Op, we then simply
conjugate X by U to obtain a sample from the original target distri-
bution on Oy.

4.1 Description of the Algorithms
Formally, the input and output of the algorithms are as follows.

e Input:

(1) Avector A = (Aq,...,Ap) e R", with Ay > --- > A,,.

(2) Avectory = (y1,...,yn) € R?, withy; > --- > y,.
Write A = diag(1), Y = diag(y).

e Output: An n X n Hermitian matrix with eigenvalues A,
distributed according to dv(X) e<Y’X>dyA(X) on Oy.

At a high level, both algorithms then consist of the following steps.

(1) Reduce sampling from O, to sampling from GT(A).
Construct a membership oracle for GT(1) and an evalua-
tion oracle for the correct exponential density on GT(A).

(2) Sample a Rayleigh triangle from GT(1). Sample a
Rayleigh triangle P = (P; r)1 <k <j<n from the density pro-
portional to e{%:tYPeP)) on the polytope GT(A).

(3) Sample from the fiber over P. Sample a uniformly random
matrix S from the fiber R™1(P) = {X € O, | R(X) = P}.

(4) Output S.

We now describe Steps 1 and 3 in detail, and we also discuss the
algorithms we cite and invoke for Step 2. In Section 5, we then
complete the proofs of Theorems 1.3 and 1.4. Before describing the
steps, we give one result which demonstrates that the steps of the
above algorithm sample correctly from the orbit under the assump-
tion that, in Step 2, we are able to sample exactly from the desired
distribution with no error. We refer the reader to Appendix A of
the arXiv version [20] for the straightforward details on handling
the case where the distribution on GT(A) only approximates the
target distribution.
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PROPOSITION 4.2 (CORRECTNESS OF THE IDEAL ALGORITHM). Let P
be a random Rayleigh triangle distributed according to the distribution
given by the density proportional to e ¥-YPe(P)) on GT (1), and let S be
a uniform random element of R™(P). Then S is distributed according
to the measure v(X) o« e<Y’X>d,uA(X) on Op.

Proor. By Theorem 2.3, the density function e{Y-X) is constant
on the fibers of R, since e{VsX) = o (ystype(R(X))) Using Theorem
2.3 again, the statement then follows immediately from the disinte-
gration theorem for probability measures; see [5]. |

4.2 Step 1: Reduce Sampling from the Orbit to
Sampling from the GT Polytope

In this section we describe the algorithm for constructing mem-
bership and evaluation oracles for the (unnormalized) exponential
density function on the polytope GT(A).

Recall the following system of n equalities and n X (n — 1) in-
equalities which determine if a Rayleigh triangle P is an element of
GT(A) (see Equations 5 and 6):

Pipn=Aforalll1 <i<n,
Pij—Pij-1>20and P;j 1 —Piy;j>0foralll1 <i<j<n
Note that whenever some of the values of ; are actually equal,
some of the inequalities will become equalities. In particular, if
Ap = Ap+1 = +++ = Aq then for any P € GT(1) we have that
P;,j = Ap foralli, jsuchthatp < i < g+j—n. Using this observation,
for any fixed A it is straightforward to determine the ambient affine

space in which GT(X) has non-empty interior.

The unnormalized density function on the polytope is then also
easily described. Given a real vector y, Theorem 2.3 implies that
the density function on GT(1) that we want to sample from is
proportional to

fo(P) = e(-type(P))
Recall from Definition 2.3 that type(P) € R" is defined by

Kk k-1
type(P)i := Zpi,k - Z Pjk-1-
i=1 =1

Using this definition, we can write down the exponent of fj as a
linear functional on P. We first have
k
Z Pik
i=1

Notice that for fixed y and A, we have that y, - [Z;’zl /Ii] is a
constant in P. Therefore we can push this part of the exponent into
the normalization factor. (For other entries of P; ; that are fixed by
equalities in the A vector, this can also be done.) We now define
a triangle of values via yﬁj =yj-—yjrrforl <i<j<n-1

n

S

i=1

n-1
(y, type(P)) = yn - [ + D Uk~ Yk -
k=1

With this, we want to sample from a density function on GT (1)
proportional to

fpy= WP It SN ()
where the top row of P is ignored. In particular, this means that
the density function we want to sample from on GT(4) is in fact
log-linear. Note further that shifting y by a multiple of the all-ones
vector does not change the value of y®. Therefore we may assume
that y; > 0 > yp if desired.

with
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The above discussion then implies the following algorithmic
guarantees for construction and running of the oracles.

LEMMA 4.3 (MEMBERSHIP AND EXACT EVALUATION ORACLES).
There exists an algorithm such that, given n € N, A € R", and
y € R™, outputs a membership oracle for GT(A) and an evaluation
oracle for f(P) = e ¥-YP¢(P)) The number of arithmetic operations
required to run this algorithm is polynomial in n and the number
of bits required to represent y and A. Further, the number of arith-
metic operations required to then run these oracles with input P is
polynomial in the number of bits needed to represent A, y, and P.

4.3 Step 2: Sample a Rayleigh Triangle from
the GT Polytope

To sample a Rayleigh triangle P € GT(A) according to the log-linear
density discussed above, we appeal to powerful tools for sampling
from log-concave and log-Lipschitz densities on convex polytopes.
Here we discuss two particular ways to do this, in terms of TV
distance error and in terms of infinity divergence error.

Sampling from GT(A) with TV Distance Error. To sample from
a distribution within TV distance ¢ from the target exponential
density on GT(1), we appeal to a result of Lovéasz and Vempala.?

THEOREM 4.4 (FoLLows FROM COROLLARY 1.2 OF [23]; SEE ALSO
SEcTION 2.1 OF [24]). Let K C R¥ be a convex polytope, and for
¢ € RY let yp denote the distribution on K defined by the density
function proportional to fp(x) = e‘6-X) There is an algorithm that,
given a membership oracle for K, a vector £ € R?, a point xy € K,
an outer radius R of K, an inner radius r of K, and a & > 0, samples
from a distribution fiy on K with the property that

e = pelirv < €.
The algorithm makes poly(d, log ||£||, log %, log %) calls to the mem-
bership and evaluation oracles. ’

Given the membership and evaluation oracles from Step 1 of the
algorithm above, we can apply this result to sample from GT(A).
Beyond the oracles, we also need the starting point xp and outer
and inner balls for GT(A), which we discuss below.

Sampling from GT(A) with Infinity Divergence Error. To achieve
the infinity divergence bound claimed in Theorem 1.4, we use a
result of Bassily, Smith, and Thakurta. We state a simplified version
of this result here for the convenience of the reader. Note that the
dependence on log % appears because of the need to first put GT(1)
in isotropic position; see Section 3.2 of the arXiv version of [3].

THEOREM 4.5 ([3], SEE LEMMA 6.5). Let K ¢ R¥ be a convex
polytope, and for € € R? let yi; denote the distribution on K defined
by the density function proportional to fp(x) := e{&-*)_ There is an
algorithm that, given a membership oracle for K, a vector € € R%, an
outer radius R of K, an inner radiusr of K, and a & > 0, samples from
a distribution [ip on K with the property that Doo(fig||pte) < €. The
algorithm makes poly(d, ||£|, R, log %, %) calls to the membership
and evaluation oracles. )
2Theprmtement that we invoke here is not explicitly stated in their papers,

but follows readily from the cited results and has been confirmed to us in personal
correspondence [37].
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Given the membership and evaluation oracles from Step 1 of the
algorithm above, we can apply this result to sample from GT(A).
Beyond the oracles, we also need the outer and inner balls for GT(A),
which we discuss below.

Before moving on, we note the main distinction between Theo-
rems 4.5 and 4.4 above. That is, Theorem 4.5 achieves a stronger
notion of approximation of the target exponential density at the
cost of a larger number of oracle calls. Specifically, the number of
oracle calls in Theorem 4.5 depends polynomially on ||£||, R, and %,
whereas in Theorem 4.4 these dependencies are polylogarithmic.
We leave it as an open problem whether or not one can achieve
infinity divergence error of ¢ in poly(d, log ||€||, log %, log %) oracle
calls.

Extra Inputs Required for the Polytope Sampling Algorithms. As
discussed above, we also need to be able to compute some extra
data to apply the above polytope sampling algorithms to the tar-
get exponential density function on GT(X). Specifically, we need a
starting point Py for the algorithm, an outer radius R, and an inner
radius r. We give this data in the following three lemmas. Note
that by using a simpler argument than that of Lemma 4.8, one can
achieve a worse bound on r which is good enough for our purposes;
see Remark 4.9 below. For the proofs of these lemmas, see the arXiv
version [20].

LEMMA 4.6 (STARTING POINT FOR SAMPLING FROM GT(A)). There
is an algorithm that, given A € R", samples uniformly from the
polytope GT(X). The number of arithmetic operations required to
run this algorithm is polynomial in the number of bits required to
represent A.

LEMMA 4.7 (OUTER BALL FOR GT(Q)). The polytope GT(]) is con-
tained by a ball of radius R = \n - (11 — Ay).

LEMMA 4.8 (INNER BALL FOR GT(1)). Let q > 0 be the minimal
integer such that A; = % for some integers p1, . . ., pn. The polytope
GT(A), considered as a subset of its affine span, contains a ball of
radiusr = —

Zq'

8n

REMARK 4.9. One can obtain a cheaper bound on the radius r of a
small ball contained in GT(A), by defining P € GT(A) inductively by
simply choosing P; j to be the midpoint between P; j+1 and Piy1,j+1
for all valid i, j. Using this as the center of a small ball, one obtains
a bound of r > m. Since the number of arithmetic operations
required by our algorithms depends polylogarithmically on %, this
bound would be enough for our purposes.

4.4 Step 3: Sample a Uniformly Random Matrix
from the Fiber

Once we have sampled P, it remains to sample a matrix S uniformly
at random from the fiber R=1(P). The uniform distribution on the
fiber is defined by the property that if X is uniformly distributed
in R~1(P), then for 1 < k < n, X[k] is uniformly distributed on the
compact manifold H(X[k — 1]; P, ) of k X k Hermitian matrices
with eigenvalues P, j and leading (k — 1) X (k — 1) submatrix equal
to X[k — 1]. Equivalently, the uniform measure on R~!(P) is the
disintegration (via the Rayleigh map) of the uniform measure on
Oa, in the sense of [5]. We construct a uniform sample S € R~1(P)
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using an inductive procedure, successively sampling the last row
and column of each leading submatrix S[k]. We first define S[1]
to be the 1 X 1 matrix [Py,1], and we then sample each submatrix
S[k], for 1 < k < n, such that S[k] is uniformly distributed on

H(S[k—1]; P, k). Explicitly, we sample S[k] given S[k—1] as follows.

Sampling Procedure for S[k] given S[k — 1] and P, :

(1) Diagonalize S[k—1]: Compute a unitary matrix U € U(k—1)
such that U* - S[k — 1] - U is diagonal.

(2) Compute the new diagonal entry of S[k]: Write

S[k —1] Uv]

®

Slk] = [ Uv)* c

where v € CF~! and ¢ € R are to be determined. Since the
diagonal entries of S[k] are just the type vector of R(S[k]),
we can compute

k k-1
NI Yo
i=1 j=1

Compute the magnitudes of the new off-diagonal en-
tries of S[k]: It remains to sample v uniformly at random
from the set of vectors in C¥~1 such that the matrix S[k]
in (8) has spectrum P, ;. We prove below in Lemma 4.10
that this can be done using the following procedure. Let
81 > +++ > O be the distinct entries of P, ;_;, where §; has
multiplicity n;, so that ny + - - - + n;, = k — 1. The interlacing
relations (6) imply that each value §; occurs in P, ;. with
multiplicity at least n; — 1. Let (y1, . . ., gm+1) be the vector
obtained by removing n; — 1 entries equal to §; from P, ,
for each i. Then define

®)

Hm“(c?z 1)
5

I j#i(8i = 8

The interlacing relations guarantee that the quantity under
the square root above is non-negative, so that r; is well de-
fined. As shown below, the vector v is distributed uniformly
on a product of complex spheres of radii ry, . . ., .
Sample the phases of the new off-diagonal entries of
S[k]: For each i = 1,...,m, we then sample the n; coordi-
nates

ri =

©

: ; ni
(vl+z;;i n;j Un,-+2}-;% n,-) eC
uniformly at random from the sphere of radius r; in C"i.
This last step can be accomplished by well-known methods;
see e.g. [28].

Output: Finally, after iteratively sampling all of the leading sub-
matrices, we output S = S[n].

Correctness and Number of Operations of the Iterative Algorithm.
We now prove that the above algorithm samples from the correct
distribution on the fiber ﬂ_l(P) of P, and then we bound the number
of operations the algorithm requires.

LEMMA 4.10 (SAMPLING FROM THE FIBER OVER P: CORRECTNESS).
The above algorithm, given a Rayleigh triangle P € GT(A), returns a
uniform random element of the fiber R™1(P) = {S € Op : R(S) = P}.
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ProoF. Again we write H(S[k — 1]; P, ) for the set of k X k
Hermitian matrices with eigenvalues P, ;. and (k — 1)th leading
submatrix equal to S[k — 1]. It only remains to show that H(S[k —
1]; P, ) is a product of spheres as described above. Specifically, let
U € U(k — 1) be a unitary matrix diagonalizing S[k — 1], so that
U* - S[k —1] - U = diag(P, y_1). We will show

Uv .
] ‘ Z |v{)+2, 1 = riZ,Vl},

©)

HSTE-1; Pog) = { [T

where we necessarily have

k k-1
¢= D Pik= ) Pk
i=1 j=1

due the the fact that the diagonal of any Hermitian matrix X is
equal to type(R(X)). Write D = diag(P, ;). To establish (9), we
must show that a matrix of the form

i (| I

0 1 0
has eigenvalues P,  if and only if Z?:ll |vl+2;3
1,..., m. We prove this by writing the characteristic polynomial of
S in two different ways. First, if S has eigenvalues P, j then

0

1 (Uv)* c

=[]

2 _ 2 P
nj| =r;fori=

k
det(tI - §) = l_l(t ~Pip). (10)
i=1

On the other hand, we must have
tI - D

v*

v
t—c|’

det(tI — S) = det (tI— [[i v ) = det[
vt ¢

and expanding along the last row and column we find that this

equals

t-of Je-opm

Jj=1

m n;
- Z (Z |Un1+---+n,-_1+f|2)
i=1 \¢=1
We have S € H(S[k — 1]; P, ) exactly when (10) equals (11). Equat-
ing these two expressions for the characteristic polynomial and
recalling that interlacing of P, x and P, j_; implies that P, j con-
tains the value §; with multiplicity at least n; — 1 for all i, we can
divide through both sides by (¢t — 6;)™ ! for all i to obtain

m+1

n(t—uz)—(t—C)]_[(t—M

nj
( |Un1+ +n_ 1+t’| )

Note that both sides of (12) are monic polynomials of degree m + 1,
and

(11)
(=8 Je-opm.

J#i

(12)

m

-2

[ Je~a.

Jj#i

m+1
C—szk_ZP,k 1—2#: 25

implies the coeflicients of t™*1 and t™ on both sides are equal.
Therefore the polynomials in (12) are equal if and only if they
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are equal at m distinct points. Evaluating both sides at t = §; for
i =1,...,m, we find that they are equal exactly when

nj
2 2
v i = rs
Dot P =1
=1

fori =1,...,m, which is the desired result. | ]

LEMMA 4.11 (SAMPLING FROM THE FIBER OVER P: NUMBER OF OP-
ERATIONS). The number of arithmetic operations the above algorithm
requires to sample uniformly from the fiber R=1(P) is polynomial in
the number of bits required to represent the entries of P.

ProoF. To determine the number of arithmetic operations re-
quired by this part of the algorithm, we first determine the number
of operations for each of the steps described above. Step 1 amounts
to unitarily diagonalizing a Hermitian matrix H = U*DU, and this
can be done in a number of operations which is polynomial in the
size of the matrix k and the bit complexity of the entries of the
matrix H. (We will discuss below the bit complexity of H.) Step 2 in-
volves basic matrix operations with U and elements of the Rayleigh
triangle P, which again depends polynomially on k and the bit
complexity of H and P. Step 3 does basic arithmetic on the entries
of P, requiring a number of operations which is polynomial in k
and the bit complexity of the entries of the Rayleigh triangle P. Step
4 requires sampling of elements of the unit sphere and multiplying
those samples by the magnitudes computed in step 3, and this also
can be done in a number of operations which is polynomial in k
and the bit complexity of the entries of P.

The whole iterative process to construct S = S[n] then requires n
iterations of the above 4 steps, where the output to each iteration is
S[k] and the input to each iteration is the Rayleigh triangle P along
with the output S[k — 1] of the previous iteration. Note that steps 2,
3, and 4 only refer to the entries of P and not to the output of the
previous iteration. The new entries of S[k] constructed from steps
2, 3, and 4 then require poly(n, Lp) bits to represent, where Lp is
the number of bits needed to represent the entries of P. Thus in
each iteration we add new entries, with bit complexity poly(n, Lp),
to S[k — 1] to construct the output S[k]. The unitary diagonalization
of S[k — 1] in step 1 then requires a number of operations which is
polynomial in the number of bits needed to represent the entries
of S[k — 1]. And since we are only adding new entries to S[k — 1]
to construct S[k] (not changing previously constructed entries),
after each iteration the entries of S[k] require poly(n, Lp) bits to
represent. After all n iterations, the algorithm has sampled S = S[n]
in a number of arithmetic operations that is polynomial in n and in
the number of bits required to represent the entries of P. |

5 PROOFS OF THEOREMS 1.3 AND 1.4

In this section, we complete the proofs of Theorems 1.3 and 1.4 using
the results of the previous section. We first prove correctness of the
algorithms, and then we prove bounds on the required number of
arithmetic operations.

5.1 Correctness

For Theorem 1.3, we want to show that the algorithm from the
previous section samples from Oy according to the exponential
density proportional to e(V-X >dyA(X ). Recall that the algorithm
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consists of two main steps: sampling P from GT(A) (called Step
2 above), and then sampling from the fiber R~!(P) (called Step 3
above). To sample from GT(A), we use one of two algorithms: the
algorithm given by Theorem 4.4 for TV distance error claimed in
Theorem 1.3, or the algorithm given by Theorem 4.5 for infinity
divergence error claimed in Theorem 1.4. These algorithms require
a membership oracle for GT(A) (given by Lemma 4.3), a vector £
and an evaluation oracle for the target density g(P) « e{&F) on
GT(4) (also given by Lemma 4.3), a starting point for the algorithm
(given by Lemma 4.6), and outer and inner balls for GT(1) (given
by Lemmas 4.7 and 4.8 respectively).

Once we have our sample P from GT(A), we use it to sample
uniformly from the fiber R~1(P) via Lemma 4.10. The last thing
we need to prove then is that, by sampling from GT(A) and then
from the corresponding fiber, we are in fact sampling from Op
according to the exponential density proportional to eV XD dpn (X)
as claimed. For this, we handle the cases of Theorems 1.3 and 1.4
separately.

Correctness for Theorem 1.3. Let v be the target distribution on
GT(4) associated to the unnormalized density function f(P) =
e(v-pe(P)) Equation 7 shows that f(P) = (" P) and thus we
can apply Theorem 4.4 to f to sample P from GT(A) according to a
distribution v for which ||V — vty < &.

Now given P in GT(4), Lemma 4.10 then says that the algorithm
of Section 4.4 samples uniformly from the fiber of P. By standard
arguments, the uniform distribution on the fiber R~!(P) is the
disintegrated measure of the target distribution on Oy, and the
overall algorithm samples from Op according to a distribution
which is within TV distance error ¢ of the target. (See Appendix
A in the arXiv version [20] for more discussion of these standard
arguments, and see also Proposition 4.2 for a similar result in the
ideal case.) This completes the proof of correctness of the algorithm
of Theorem 1.3.

Correctness for Theorem 1.4. Let v be the target distribution on
GT(A) associated to the unnormalized density function f(P) =
e(v-ype(P)) Equation 7 shows that f(P) = e P and thus we
can apply Theorem 4.5 to f to sample P from GT(A) according to a
distribution v for which Do (V||v) < &.

Given P in GT(A), Lemma 4.10 then says that the algorithm of
Section 4.4 samples uniformly from the fiber of P. As above, the uni-
form distribution on the fiber R~!(P) is the disintegrated measure
of the target distribution on Oy, and the overall algorithm samples
from Op according to a distribution which is within infinity diver-
gence error ¢ of the target. (See Appendix A in the arXiv version
[20] for more discussion, and see also Proposition 4.2 for a similar
result in the ideal case.) This completes the proof of correctness of
the algorithm of Theorem 1.4.

5.2 Number of Operations

We now determine the number of arithmetic operations required of
the algorithms of Theorems 1.3 and 1.4. For both algorithms we are
givenn € N, 1 € R", y € R", and a desired error bound ¢ > 0. As
described in Section 4.1, we need to (1) construct the membership
oracles, (2) use them to sample P from the polytope GT(1), and (3)
then sample uniformly from the fiber R~1(P) over P. Steps 1 and 3
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are exactly the same for both algorithms. Lemma 4.3 implies the
necessary oracles can be constructed using a number of operations
which is polynomial in n and in the number of bits required to
represent y and A. Lemma 4.11 implies we can sample from the fiber
over P in a number of operations which is polynomial in n and in
the number of bits required to represent P. We now discuss the
number of arithmetic operations required of the algorithms used
to sample P from GT(A).

Recall from Section 4.2 that the target distribution on GT(1) is
given by a density proportional to

A .
F(P) = e Phwithy? i= yj — yjua.
From this we achieve the bound

g™ 11 < (1 = yn)-
Further, we also have the outer and inner balls for GT(A) via Lemmas
4.7 and 4.8, given as

R=+n-(A1-A,) and = =38n%q,

where g > 0 is an integer such that A; = 2 for some integers
P1s - - -, Pn- We now use these bounds in order to finish the analysis

of the algorithms.

Number of Operations for Theorem 1.3. For Theorem 1.3, we ap-
ply Theorem 4.4 as described above which implies we can sample
from a distribution on GT (1) within TV distance error ¢ of the tar-
get distribution in poly(n, log %, log(y1 — yn), log(A1 — An), Ly, L))
calls to the membership and evaluation oracles, where Ly and L)
are the number of bits required to represent y and A respectively.
Since log(y; — yn) and log(A; — A,,) are bounded above by L, and
L respectively, we have that the above sampling can be done in
poly(n,log %, Ly, Ly) calls to the membership and evaluation ora-
cles. The bits then required to represent the sample P from GT(1)
can then be no larger than the number of oracle calls. Combining
this with Lemma 4.3 and the above discussion implies the num-
ber of arithmetic operations required to run the algorithm claimed
by Theorem 1.3 is polynomial in n, log %, and the number of bits
needed to represent y and A. Since the number of bits needed to
represent y (or A) is at least n, we can drop the explicit dependence
on n.

Number of Operations for Theorem 1.4. For Theorem 1.4, we ap-
ply Theorem 4.5 as described above which implies we can sample
from a distribution on GT(A) within infinity divergence error ¢ of
the target distribution in poly(y; — yn, A1 — An, %, Ly, Ly) calls to
the membership and evaluation oracles, where Ly and L, are the
number of bits required to represent y and A respectively. As above,
the bits then required to represent the sample P from GT(A) can
then be no larger than the number of oracle calls. Combining this
with Lemma 4.3 and the above discussion implies the number of
arithmetic operations required to run the algorithm claimed by
Theorem 1.4 is polynomial in y; — yn, A1 — A, % and the number
of bits needed to represent y and A. »
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6 DIFFERENTIALLY PRIVATE RANK-k
APPROXIMATION

We consider the problem of differentially private low-rank approx-
imation. In the low-rank approximation problem, we are given a
d X d real positive semidefinite (PSD) matrix A and 1 < k < n, and
the goal is to output the space spanned by the top k eigenvectors of
A. Let Py denote the set of d X d rank-k Hermitian PSD projection
matrices, considered as a subset of the space of complex Hermitian
matrices. It is easy to see that

k
max (P, A) = i\
max (P.A) Zl vi
where y; > -+ > y; > 0 are the eigenvalues of A.

Differential Privacy. Let U be the universe of users. For each
u € U, we have a vector v, € RY such that ||vy|lz < 1. Given a
dataset D € U, define A := Y, ep vy v},

DEFINITION 6.1. Given an e > 0 and a set R, a randomized mecha-
nism M : R%4 — R is said to be (¢, 0)-differentially private if for all
S C R and for all D, D’ C U such that the symmetric set difference
DAD’ has cardinality 2, one has

Pr[M(A) € S] < e Pr[M(A") € S].
Here A:= Y ,cpvuvy, and A’ :== 3, cpr vy v;,.

In our setting, R is the space of d X d and rank-k Hermitian matrices.
We now copy Theorem 1.5 from the introduction, which we prove
in this section.

THEOREM 6.1 (DIFFERENTIALLY PRIVATE LOW-RANK APPROXIMA-
TION). There is a randomized algorithm that, given a positive semi-
definite d X d matrix A and its eigenvalues y; > --- > yq4, an in-
teger1 < k < d, and an € > 0, outputs a rank-k d X d Hermitian
projection P that is (¢, 0)-differentially private. Moreover, there is a
universal constant C > 0 such that, if there is a § > 0 satisfying
Z{;l yi=C- % -log %, then we have:

k
Ep[(AP)] 2 (1-08) ) yi.
i=1

The number of arithmetic operations required by this algorithm is
polynomial in % Y1 — Yd4, and the number of bits needed to represent

Y-

This result generalizes a Hermitian version of Theorem 1.1 of [18],
where the above result is given in the case of k = 1 for real sym-
metric rank-one matrices. Specifically their Theorem 1.1 gives an
algorithm which outputs an (¢, 0)-differentially private real unit vec-
tor v for which the expected value of v Av = (A, vv ") is bounded
below by (1 — §)y; whenever y; > Q(% - log %) They then use
the rank-one case to prove a somewhat similar result in the general
rank-k case, which we state now. The main difference here is that
their Theorem 1.2 stated below outputs a real symmetric positive
semidefinite matrix which approximates A, while our Theorem
6.1 above outputs a Hermitian projection P which projects onto a
k-dimensional subspace for which (A, P) approximates the sum of
the top k eigenvalues of A.
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THEOREM 6.2 (THEOREM 1.2 OF [18]). Let A be ad X d real sym-
metric positive semidefinite matrix with eigenvaluesy; > -+ > yq.
There exists an (e, 0)-differentially private polynomial-time algorithm
for computing a matrix Ay of rank at most k so that ||A — Ag|l2 <

3
Yk+1 + Oy1 as long asy; > Q(%)

We now compare the respective utility bounds for the two differen-
tially private rank-k mechanisms. For their mechanism the “utility”
can be described by the error term §y;, which is bounded below by

3

dk
Sy1 > Q—|.
n (555)

For our mechanism the “utility” can be described by the error term
o Zi.c:l vi, which is bounded below by

k
dk 1
i=1

Since ¢ is assumed to be small, our rank-k mechanism improves
upon the utility (error bound) of the rank-k mechanism from [18].

The Proof of Theorem 6.1. We now prove Theorem 6.1 by com-
bining the exponential mechanism framework due to [25] with
Theorem 1.4. Given a ¢ > 0, we define M’ = M’(A) to be the
mechanism which is given by the sampling algorithm of Theorem
1.4 with A being the vector that has k ones and d — k zeros, y be-
ing the eigenvalues of A multiplied by 55, and & = £. Therefore
M’ = M’(A) outputs a sample from a distribution ¥/, on the set of
n X n rank-k PSD projections which is within infinity divergence
error § of the distribution v/, given by the density e o (diag(y).P)

Next we diagonalize A to determine the unitary matrix U for
which A = U - diag(y) - U*. With this, we define M = M(A) to be
the mechanism which is given by sampling P from M’(A) and then
outputting UPU™. Since (A,UPU*) = (U - diag(y) - U*,UPU*) =
(diag(y), P) and Py is unitarily invariant, we have that M outputs
a sample from a distribution V4 on the set of n X n rank-k PSD
projections which is within infinity divergence error 5 of the target
distribution v4 given by the density eic (AP),

Now suppose o is an upper bound on the following “sensitivity”
of the function (A, P):

sup sup [(A, P) — (A", P},
AA P

where A, A’ are such that
A =A- vlv;( + vzvz

for some ||v1]|2, ||vz]l2 < 1 and P is a rank-k PSD projection matrix.
Then Lemma 6.3 says that we can choose ¢ = 1, and with this
Lemma 6.4 implies that M is (e, 0)-differentially private.

The number of arithmetic operations required for this algorithm
then can be bounded by applying Theorem 1.4 directly with our
specified inputs. The number of operation required in Theorem
1.4 is polynomial in d, A1 — A4, y1 — yg4, % and the number of bits
required to represent A and y. In our case, A is a vector of 0’s and
1’s, and y = y is the sequence of eigenvalues of A. Therefore the
number of arithmetic operations required to run the algorithm is
polynomial in % ¥1—Y4, and the number of bits needed to represent
y (which is at least d).
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6.1 Correctness: Privacy Guarantee

The privacy guarantee given below in Lemma 6.4 requires the
following lemma on the sensitivity of the function (A, P). For the
proofs of these lemmas, see the arXiv version [20].

LEMMA 6.3 (SENSITIVITY). Forall A, A" PSD with A’ = A—v1v] +
vV} for some vy, vy such that ||vi |2, [|vzllz < 1 and for all rank-k

PSD projection matrices P, we have that |(A,P) — (A’,P)| <1 =: 0.

LEMMA 6.4 (PRIVACY VIA THE EXPONENTIAL MECHANISM). For
o = 1, the mechanism M is (¢, 0)-differentially private.

6.2 The Utility Bound

The utility bound given below in Lemma 6.6 requires the following
lemma on the covering number for the orbit P. See the arXiv
version [20] for the proof of Lemma 6.5.

LEMMA 6.5 (COVERING NUMBER FOR Py). Let Py denote the set
of d X d rank-k Hermitian PSD projection matrices, considered as
a subset of the space of Hermitian matrices equipped with the £

operator norm. For any { > 0, the number of balls centered in Py of
2dk
f)

1+3
¢
LEMMA 6.6 (UTILITY BOUND). The rank-k exponential mechanism,
given a d X d Hermitian positive definite matrix A with eigenvalues
Y1 =y2 >+ 2> yq, outputs ad X d rank-k Hermitian PSD projection
P such that

radius { required to cover the set Py is at most (

k
Ep[(AP)] 2 (1-8) ) v
i=1

as long as Z’le yvizC- % -log % for small § > 0 and an absolute
constant C > 0.

L

Proor. We first define “good” and “bad” sets via

k

Z}’i

i=1

G:={P€Pk:(A,P>Z(1—§)

B:= {Pe?k:(A,P>s(l—5)

Let Py be the projection associated to the top k eigenvectors of A,
and define Ag := APy so that the top k eigenpairs of A agree with
that of A and the rest of the eigenvalues are 0. Now fix any P € Py
such that ||P— Pyl < % where || - ||2 denotes the £2 operator norm.
Since the £2 operator norm is the co-norm on the singular values,
we can apply Holder’s inequality to get

<A3P> 2 <A07P> = <A07P0> - <A0’P0 _P>

k k k
)
> ;Yi_”PO_PHZiZ;Yi > (1—5);%’-

That is, every P € . contained in the ball of radius g about Py is
also contained in G.

Letting pj. be the unitarily invariant probability measure on
P, the covering number lemma (Lemma 6.5) implies there is
some ball Bs/5(P’) centered at P’ € P of radius % is such that
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He(Bsj2(P)) = (1+ 16_6)_2dk' By unitary invariance of yj, we have
1k(G) = p(Bs/2(Po)) = pi(Bs j2(P"))

> o~2dklog(1+%) 5 ,~C'-dklog &

for some absolute C’ > 2 whenever § is small. Now let
fa(p) = ez AP)
denote the unnormalized probability density function of the expo-

nential mechanism, and let Z be the normalization constant. Then
whenever Zi-czl yi > 8C"- % -log % we have

P[P € B] _ pk(B) maxpep fa®)
FIP €G] ™ 1(G) - minpeg L Aép)

1.e50=0)35 v
- e—C’-dklog% _eg(l—%)z‘,fﬂ Yi
¢—2C'-dklog ¥

S k
e% _7)Zi:1 Yi

e—C’~dk log %

_ —C'-dklog

1
S,

S 1
o~C'-dklog

For C’ > 2 and § > 0 small, a basic computation then yields

k
Ep[(A.P)] 2 (1-6) ) 1.
i=1
(See the arXiv version [20] for the full computation.)

ACKNOWLEDGEMENTS

This research was supported in part by NSF CCF-1908347, NSF
DMS-1714187, and JST CREST program JPMJCR18T6. Funded in
part by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy — The
Berlin Mathematics Research Center MATH+ (EXC-2046/1, project
ID: 390685689). We would like to thank Ainesh Bakshi, Anay Mehro-
tra, Kunal Talwar, Abhradeep Thakurta, Enayat Ullah, and Oren
Mangoubi for useful discussions.

REFERENCES

[1] William Band and James L. Park. 1976. New information-theoretic foundations
for quantum statistics. Foundations of Physics 6, 3 (01 June 1976), 249-262.
https://doi.org/10.1007/BF00708800

Yu. Baryshnikov. 2001. GUEs and queues. Probab. Theory Relat. Fields 119 (2001),
256-274.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. 2014. Private empirical
risk minimization: Efficient algorithms and tight error bounds. In 2014 IEEE 55th
Annual Symposium on Foundations of Computer Science. IEEE, 464-473.

D. V. Boulatov and V. A. Kazakov. 1987. The Ising model on a random planar
lattice: The structure of the phase transition and the exact critical exponents.
Physics Letters B 186 (1987), 379-384.

Joseph T. Chang and David Pollard. 1997. Conditioning as disintegration. Statis-
tica Neerlandica 51, 3 (1997), 287-317.

Kamalika Chaudhuri, Anand Sarwate, and Kaushik Sinha. 2012. Near-optimal
Differentially Private Principal Components. In Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 989-997. http://papers.nips.cc/paper/4565-near-
optimal-differentially-private-principal-components.pdf

Yasuko Chikuse. 2003. Concentrated matrix Langevin distributions. Journal
of Multivariate Analysis 85, 2 (2003), 375 — 394. https://doi.org/10.1016/S0047-
259X(02)00065-9

Y. Chikuse. 2012. Statistics on Special Manifolds. Springer New York. https:
//books.google.com/books?id=7IX1BWAAQBA]

P. Di Francesco, P. Ginsparg, and J. Zinn-Justin. 1995. 2D gravity and random
matrices. Physics Reports 254 (1995), 1-133. http://arxiv.org/abs/hep-th/9306153.
B. Eynard. 2004. A short note about Morozov’s formula. Service de Physique
Théorique de Saclay, report no. SPHT-T04-077. https://arxiv.org/abs/math-ph/
0406063.

(2]

[3

(4]

(5]

l6

=

[7

[

(9]

[10]

1397

(1]

[12]

[13

[15

[16

(17]

(18

(19]

[20

[21

[22

[23

[24

[25]

™
2

[27]
(28]

[29]

(30]

™
=

[32

(33]

(34

Jonathan Leake, Colin McSwiggen, and Nisheeth K. Vishnoi

B. Eynard and A. Prats Ferrer. 2006. 2-matrix versus complex matrix model,
integrals over the unitary group as triangular integrals. Commun. Math. Phys.
264 (2006), 115-144. https://arxiv.org/abs/hep-th/0502041.

A. Guionnet. 2004. Large deviations and stochastic calculus for large random
matrices. Probability Surveys 1 (2004), 72-172.  https://arxiv.org/abs/math/
0409277.

Harish-Chandra. 1957. Differential Operators on a Semisimple Lie Algebra.
American Journal of Mathematics 79, 1 (1957), 87-120. http://www.jstor.org/
stable/2372387

C. Itzykson and J.-B. Zuber. 1980. The planar approximation. I. J. Math. Phys. 21
(1980), 411-421.

Edwin T. Jaynes. 1957. Information theory and statistical mechanics. Physical
Review 106 (May 1957), 620-630. https://doi.org/10.1103/PhysRev.106.620
Edwin T. Jaynes. 1957. Information theory and statistical mechanics. II. Physical
Review 108 (Oct. 1957), 171-190. https://doi.org/10.1103/PhysRev.108.171
Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random Generation
of Combinatorial Structures from a Uniform Distribution. Theor. Comput. Sci. 43
(1986), 169-188. https://doi.org/10.1016/0304-3975(86)90174-X

Michael Kapralov and Kunal Talwar. 2013. On Differentially Private Low Rank
Approximation. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (New Orleans, Louisiana) (SODA ’13). Society for
Industrial and Applied Mathematics, USA, 1395aA51414.

V. A. Kazakov. 1986. Ising model on a dynamical planar random lattice: Exact
solution. Physics Letters A 119 (1986), 140-144.

Jonathan Leake, Colin McSwiggen, and Nisheeth K. Vishnoi. 2020. Sampling
Matrices from Harish-Chandra-Itzykson-Zuber Densities with Applications to
Quantum Inference and Differential Privacy. https://arxiv.org/abs/2011.05417.
Jonathan Leake and Nisheeth K. Vishnoi. 2020. On the Computability of Contin-
uous Maximum Entropy Distributions: Adjoint Orbits of Lie Groups. In arXiv
2011.01851.

Jonathan Leake and Nisheeth K. Vishnoi. 2020. On the Computability of Con-
tinuous Maximum Entropy Distributions with Applications. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing (Chicago, IL,
USA) (STOC 2020). Association for Computing Machinery, New York, NY, USA,
9304A5943. https://doi.org/10.1145/3357713.3384302

Laszl6 Lovasz and Santosh Vempala. 2006. Fast algorithms for logconcave func-
tions: Sampling, rounding, integration and optimization. In 2006 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’06). IEEE, 57-68.
Laszl6 Lovasz and Santosh Vempala. 2006. Simulated annealing in convex bodies
and an O*(n*) volume algorithm. J. Comput. System Sci. 72, 2 (2006), 392-417.
F. McSherry and K. Talwar. 2007. Mechanism Design via Differential Privacy.
In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07).
94-103. https://doi.org/10.1109/FOCS.2007.66

C. McSwiggen. 2018. The Harish-Chandra integral: An introduction with exam-
ples. https://arxiv.org/abs/1806.11155.

A. Morozov. 1992. Pair correlator in the Itzykson-Zuber integral. Modern Physics
Letters A 7 (1992), 3503-3507. https://arxiv.org/abs/hep-th/9209074.

M. E. Muller. 1959. A Note on a Method for Generating Points Uniformly on
N-Dimensional Spheres. Comm. Assoc. Comput. Mach. 2 (1959), 19-20.

Yu. A. Neretin. 2003. Rayleigh triangles and non-matrix interpolation of matrix
beta integrals. Sbornik: Mathematics 194, 4 (April 2003), 515-540. https://doi.
org/10.1070/sm2003v194n04abeh000727

N. O’Connell. 2014. Whittaker functions and related stochastic processes. MSRI
Publications: Random Matrix Theory, Interacting Particle Systems and Integrable
Systems 65 (2014), 385-409.

Victor Y. Pan and Zhao Q. Chen. 1999. The complexity of the matrix eigenproblem.
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing.
507-516.

A. Prats Ferrer, B. Eynard, P. Di Francesco, and J.-B. Zuber. 2007. Correlation
functions of Harish-Chandra integrals over the orthogonal and the symplectic
groups. Journal of Statistical Physics 129 (2007), 885-935. https://arxiv.org/abs/
math-ph/0610049.

S. L. Shatashvili. 1993. Correlation functions in the Itzykson-Zuber model.
Communications in Mathematical Physics 154 (1993), 421-432. https://arxiv.org/
abs/hep-th/9209083.

Paul B. Slater. 1991. Relations between the barycentric and von Neumann
entropies of a density matrix. Physics Letters A 159, 8 (1991), 411 - 414.
https://doi.org/10.1016/0375-9601(91)90371-E

Terrence Tao. 2013. The Harish-Chandra-Itzykson-Zuber integral for-
mula. https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-
zuber-integral-formula/.

Terrence Tao. 2019. Eigenvectors from eigenvalues. https://terrytao.wordpress.
com/2019/08/13/eigenvectors-from-eigenvalues/.

Santosh Vempala. [n.d.]. Personal communication.

J.-B. Zuber. 2020. On the minor problem and branching coefficients.
//arxiv.org/abs/2006.03006.

https:


https://doi.org/10.1007/BF00708800
http://papers.nips.cc/paper/4565-near-optimal-differentially-private-principal-components.pdf
http://papers.nips.cc/paper/4565-near-optimal-differentially-private-principal-components.pdf
https://doi.org/10.1016/S0047-259X(02)00065-9
https://doi.org/10.1016/S0047-259X(02)00065-9
https://books.google.com/books?id=7lX1BwAAQBAJ
https://books.google.com/books?id=7lX1BwAAQBAJ
http://arxiv.org/abs/hep-th/9306153
https://arxiv.org/abs/math-ph/0406063
https://arxiv.org/abs/math-ph/0406063
https://arxiv.org/abs/hep-th/0502041
https://arxiv.org/abs/math/0409277
https://arxiv.org/abs/math/0409277
http://www.jstor.org/stable/2372387
http://www.jstor.org/stable/2372387
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.108.171
https://doi.org/10.1016/0304-3975(86)90174-X
https://arxiv.org/abs/2011.05417
https://doi.org/10.1145/3357713.3384302
https://doi.org/10.1109/FOCS.2007.66
https://arxiv.org/abs/1806.11155
https://arxiv.org/abs/hep-th/9209074
https://doi.org/10.1070/sm2003v194n04abeh000727
https://doi.org/10.1070/sm2003v194n04abeh000727
https://arxiv.org/abs/math-ph/0610049
https://arxiv.org/abs/math-ph/0610049
https://arxiv.org/abs/hep-th/9209083
https://arxiv.org/abs/hep-th/9209083
https://doi.org/10.1016/0375-9601(91)90371-E
https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/
https://terrytao.wordpress.com/2013/02/08/the-harish-chandra-itzykson-zuber-integral-formula/
https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/
https://terrytao.wordpress.com/2019/08/13/eigenvectors-from-eigenvalues/
https://arxiv.org/abs/2006.03006
https://arxiv.org/abs/2006.03006

	Abstract
	1 Introduction
	2 Rayleigh Triangles and Gelfand–Tsetlin Polytopes
	3 Technical Overview
	3.1 The Uniform Case
	3.2 Searching for Self-Reducibility
	3.3 The Case of Rank-One Projections
	3.4 Moving to the GT Polytope in the Case of General 
	3.5 From the GT Polytope back to the Unitary Orbit

	4 The Sampling Algorithms of Theorems 1.3 and 1.4
	4.1 Description of the Algorithms
	4.2 Step 1: Reduce Sampling from the Orbit to Sampling from the GT Polytope
	4.3 Step 2: Sample a Rayleigh Triangle from the GT Polytope
	4.4 Step 3: Sample a Uniformly Random Matrix from the Fiber

	5 Proofs of Theorems 1.3 and 1.4
	5.1 Correctness
	5.2 Number of Operations

	6 Differentially Private Rank-k Approximation
	6.1 Correctness: Privacy Guarantee
	6.2 The Utility Bound

	References

