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ABSTRACT
Min-max optimization of an objective function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ
is an important model for robustness in an adversarial setting,

with applications to many areas including optimization, economics,

and deep learning. In many applications 𝑓 may be nonconvex-

nonconcave, and finding a global min-max point may be compu-

tationally intractable. There is a long line of work that seeks com-

putationally tractable algorithms for alternatives to the min-max

optimization model. However, many of the alternative models have

solution points which are only guaranteed to exist under strong

assumptions on 𝑓 , such as convexity, monotonicity, or special prop-

erties of the starting point. We propose an optimization model, the

𝜀-greedy adversarial equilibrium, and show that it can serve as a

computationally tractable alternative to the min-max optimization

model. Roughly, we say that a point (𝑥⋆, 𝑦⋆) is an 𝜀-greedy adver-

sarial equilibrium if 𝑦⋆ is an 𝜀-approximate local maximum for

𝑓 (𝑥⋆, ⋅), and 𝑥⋆ is an 𝜀-approximate local minimum for a “greedy

approximation" to the functionmax𝑧 𝑓 (𝑥, 𝑧)which can be efficiently

estimated using second-order optimization algorithms. We prove

the existence of such a point for any smooth function which is

bounded and has Lipschitz Hessian. To prove existence, we intro-

duce an algorithm that converges from any starting point to an

𝜀-greedy adversarial equilibrium in a number of evaluations of

the function 𝑓 , the max-player’s gradient ∇𝑦 𝑓 (𝑥, 𝑦), and its Hes-

sian ∇2𝑦 𝑓 (𝑥, 𝑦), that is polynomial in the dimension 𝑑 , 1/𝜀, and the

bounds on 𝑓 and its Lipschitz constant.
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1 INTRODUCTION
Min-max optimization of functions 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ, where
𝑓 (𝑥, 𝑦) may be nonconvex and nonconcave in both 𝑥 and 𝑦, is an
important model for robustness which arises in optimization and

game theory [35] with recent applications in machine learning

such as generative adversarial networks (GANs) [16] and robust

training [25]. Specifically, in a min-max problem, one wishes to find

a global min-max point (𝑥⋆, 𝑦⋆) that is a solution to the following

optimization problem:

min
𝑥∈ℝ𝑑

max
𝑦∈ℝ𝑑

𝑓 (𝑥, 𝑦).

In other words,

𝑓 (𝑥⋆, 𝑦⋆) = max
𝑦∈ℝ𝑑

𝑓 (𝑥⋆, 𝑦) and

max
𝑦∈ℝ𝑑

𝑓 (𝑥⋆, 𝑦) = min
𝑥∈ℝ𝑑

max
𝑦∈ℝ𝑑

𝑓 (𝑥, 𝑦).

We consider the setting where 𝑓 is a 𝐶2
-smooth nonconvex- non-

concave function that is uniformly bounded by some 𝑏 > 0 with
𝐿-Lipschitz Hessian for some 𝐿 > 0, and we are given access to

oracles for 𝑓 , its gradient, and its Hessian. The setting where 𝑓 is
a bounded function with unconstrained domain arises in many

machine learning applications, including generative adversarial

networks (GANs).
1

In the unconstrained setting, a global min-max point may not

exist, even when 𝑓 is bounded above and below. However, in the

setting where 𝑓 is bounded, the extreme value theorem guarantees

that one can find a point where each player’s objective is very close

to its min-max optimal value. Namely, for every 𝜀 > 0 one can

always find a point (𝑥⋆, 𝑦⋆) such that

𝑓 (𝑥⋆, 𝑦⋆) ≥ max
𝑦∈ℝ𝑑

𝑓 (𝑥⋆, 𝑦) − 𝜀 and

max
𝑦∈ℝ𝑑

𝑓 (𝑥⋆, 𝑦) ≤ min
𝑥∈ℝ𝑑

max
𝑦∈ℝ𝑑

𝑓 (𝑥, 𝑦) + 𝜀

However, even in the special case of minimization, finding a point

whose function value is within a fixed 𝜀 > 0 of the minimum value

is hard. For instance, this problem is NP-hard in settings when the

objective function is given by a depth-2 neural network with mean-

squared error loss [27]; see also [6]. The problem of minimizing

a function or determining if it can achieve a minimum value of

0 remains hard when 𝑓 is uniformly 𝑏-bounded with 𝐿-Lipschitz
Hessian when one is given access to oracles for the gradient and

Hessian of 𝑓 , and requires a number of oracle queries which is

1
In GANs, the objective function value is bounded both above and below if one uses a

mean-squared-error loss [28]. For the cross-entropy loss [16], the objective function is

uniformly bounded above by 0 (but need not be bounded below).
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exponential in 𝑑 (see the arXiv version of our paper [26] for a de-

tailed discussion). Consequently, there has been interest in finding

computationally tractable alternatives to min-max optimization.

One popular alternative to min-max optimization is to consider

a model where the min- and max- players are only allowed to make

small “local" updates, rather than requiring each player to solve a

global optimization problem [2, 9, 10, 18]. A stationary point for

such a model, sometimes referred to as a local min-max point, is a

point where the min-player is unable to decrease the loss, and the

max-player is unable to increase the loss, if they are restricted to

local updates inside a ball of some small radius. More specifically,

for 𝜀, 𝛿 > 0, an (𝜀, 𝛿)-local min-max point (𝑥⋆, 𝑦⋆) is a point where
∀𝑥, 𝑦 ∈ ℝ𝑑 such that ‖𝑦 − 𝑦⋆‖ ≤ 𝛿 and ‖𝑥 − 𝑥⋆‖ ≤ 𝛿 ,

𝑓 (𝑥⋆, 𝑦⋆) ≥ 𝑓 (𝑥⋆, 𝑦) − 𝜀 and 𝑓 (𝑥⋆, 𝑦⋆) ≤ 𝑓 (𝑥, 𝑦⋆) + 𝜀.

One can also define a notion of (𝜀, 𝛿)-local minimum and maximum

point in a similar manner. In the “local" regime where 𝛿 < 𝑂(
√
𝜀), if

𝑓 ∈ [−1, 1]with𝑂(1)-Lipschitz gradient, any point which is an (𝜀, 𝛿)-
local minimum of the function 𝑓 with respect to the variable (𝑥, 𝑦),
or an (𝜀, 𝛿)-local maximum of 𝑓 with respect to (𝑥, 𝑦), will also be

a (Ω(𝜀), 𝑂(𝛿))-local min-max point of this function; thus, in this

regime the problem of finding local min-max points is equivalent

to the problem of finding a local minimum or maximum point.

Unfortunately, outside of the regime 𝛿 < 𝑂(
√
𝜀), local min-max

points may not exist even for functions 𝑓 where the value of 𝑓 ∈
[−1, 1] and 𝑓 is 𝑂(1)-Lipschitz with 𝑂(1)-Lipschitz gradient and

Hessian.
2
Thus, in the regime 𝛿 > Ω(

√
𝜀) local min-max points are

not guaranteed to exist, and, when 𝛿 < 𝑂(
√
𝜀) finding an (𝜀, 𝛿)-local

min-max point is not as interesting since it reduces to finding a

minimum (or maximum) point of 𝑓 .

1.1 Our Contributions
We depart from prior approaches and make a novel assumption

on the adversary (the max-player), namely, that the adversary is

computationally bounded. This is motivated from real-world appli-

cations where the adversary itself may be an algorithm. Roughly,

we show that when the adversary is restricted to computing a

greedy approximation to the global maximum max𝑧 𝑓 (𝑥, 𝑧), a type
of equilibrium –greedy adversarial equilibrium– always exists and

can be found efficiently for general 𝑓 in time polynomial in 𝑑, 𝑏, and
𝐿. This is in contrast to previous works which seek local min-max

points and make strong assumptions on 𝑓 , for instance assuming

that 𝑓 (𝑥, 𝑦) is concave in 𝑦 but possibly nonconvex in 𝑥 [33, 36],

that 𝑓 is sufficiently bilinear [1], or that the gradient of 𝑓 satisfies a
monotonicity property [14, 22].

Our greedy adversarial equilibrium builds on the second-order

notion of approximate local minimum introduced by [31].
3
Roughly,

a second-order (𝜀, 𝜃)-approximate local minimum of a function

𝜓 ∶ ℝ𝑑 → ℝ is a point 𝑥⋆ which satisfies the following second-

order conditions

‖∇𝜓 (𝑥⋆)‖ ≤ 𝜀 and 𝜆min(∇2𝜓 (𝑥⋆)) ≥ −𝜃.

2
For instance, the function 𝑓 (𝑥, 𝑦) B sin(𝑥 + 𝑦) has no (𝜀, 𝛿)-local min-max points

when
1
100 > 𝛿 >

√
𝜀 .

3
We often refer to this second-order approximate local minimum by approximate local

minimum.

[31] and other recent works [3–5, 8, 11, 19], have shown that one

can find an (𝜀, 𝜃)-approximate local minimum in time roughly

poly ( 1𝜀 , log 𝑑,
1
𝜃 , 𝑏, 𝐿) gradient evaluations.

In our model, the min-player is empowered to simulate updates

of the max-player by computing a tractable second-order approxi-

mation to the global max function max𝑧 𝑓 (𝑥, 𝑧), which we refer to

as the greedy max function 𝑔𝜀 (𝑥, 𝑦). Here, the parameter 𝜀 > 0 is a
measure of approximation. Ideally, we would like a point (𝑥⋆, 𝑦⋆)
to be a greedy adversarial equilibrium if 𝑦⋆ is a second-order ap-

proximate local maximum for 𝑓 (𝑥⋆, ⋅), and 𝑥⋆ is a second-order

approximate local minimum for 𝑔𝜀 (⋅, 𝑦⋆). However, the function
𝑔𝜀 (𝑥, 𝑦) that arises is hard to evaluate and also discontinuous. We

overcome these issues in part by “truncating" and “smoothing” 𝑔𝜀
by convolving it with a Gaussian 𝑁 (0, 𝜎2𝐼𝑑 ) for some 𝜎 > 0 to

obtain a smooth approximation 𝑆𝜀,𝜎 (⋅) to 𝑔𝜀 (⋅, 𝑦). This allows us to
apply the definition of approximate local minimum above to 𝑔𝜀 , and
to obtain our definition of (𝜀, 𝜎 )-greedy adversarial equilibrium; see

Definition 2.5.

Our main technical result is an algorithm which finds an (𝜀, 𝜎 )-
greedy adversarial equilibrium in a number of gradient, Hessian,

and function evaluations that is polynomial in
1
𝜀 ,

1
𝜎 , 𝑏, 𝐿, 𝑑 ; see

Theorem 3.1. In particular, providing such an algorithm proves the

existence of an approximate greedy adversarial equilibrium. Our

algorithm requires access to a zeroth-order oracle for the value of 𝑓 ,
and to oracles for the gradient ∇𝑦 𝑓 (𝑥, 𝑦) and Hessian ∇2𝑦 𝑓 (𝑥, 𝑦) for
the max-player variable 𝑦 , but not to oracles ∇𝑥 𝑓 (𝑥, 𝑦) and ∇2𝑥 𝑓 (𝑥, 𝑦)
for the min-player variable 𝑥 . Note that the polynomial dependence

on 𝑑 in our bounds comes from the fact that we do not assume that

the 𝑥-player has access to a gradient oracle ∇𝑥 𝑓 or Hessian oracle

∇2𝑥 𝑓 .

1.2 Discussion of Our Contributions
Computationally Bounded Adversaries. The main conceptual in-

sight in this paper is that we can obtain a model which is an efficient

alternative to min-max optimization by placing computational re-

strictions on the adversary. In comparison to models where each

player is restricted to local updates, this can allow the model to

be robust to a greater diversity of adversaries from a much larger

set of parameters 𝑦 than just the current value of 𝑦 namely, all the

values of 𝑦 reachable by the tractable approximation–while still

allowing for efficient algorithms for modeling the adversary (in par-

ticular, this can allow for more stable training of machine learning

algorithms). We note that analogous computationally bounded ad-

versaries can lead to useful models in many other settings including

coding theory [17, 23, 30] and cryptography [7, 15].

Results Hold for any Bounded and Lipschitz 𝑓 . Aside from the

bounded and Lipschitz assumptions, Theorem 3.1 does not make

any additional assumptions on 𝑓 . As mentioned earlier, prior results

which seek solutions to other alternative models to min-max opti-

mization (such as local min-max points), assume that either 𝑓 (𝑥, 𝑦)
is concave [33, 36] in 𝑦 , or monotone [14, 22], or sufficiently bilinear

[1]. Although there are other prior works which do not assume that

𝑓 is convex-concave or monotone, many of these works instead

assume that there exists a stationary point for their algorithm on

the function 𝑓 , and that their algorithm is initialized somewhere

in the region of attraction for this stationary point [2, 18, 29, 37].
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In contrast, Theorem 3.1 guarantees that our algorithm converges

from any initial point (𝑥, 𝑦).

Extension of Second-Order Local Minimum Definition to Discon-
tinuous Functions. To handle minimization of the discontinuous

greedy max function 𝑔𝜀 , when defining our greedy adversarial equi-

librium we introduce a second-order notion of approximate local

minimum which applies to discontinuous functions. This leads to

an algorithm which, in the special case when the objective func-

tion depends only on 𝑥 , reduces to a “derivative-free" minimization

algorithm, that is, it does not require access to derivatives of the

objective function. The novel techniques and definitions we develop

here for minimization of the greedy max function may be of interest

to other problems in discontinuous or derivative-free minimiza-

tion of non-convex objectives (for applications of derivative-free

methods to adversarial bandit convex optimization, see for instance

[12]).

Greedy Adversarial Equilibria Corresponds to Global Min-Max un-
der Strong Convexity/Concavity. If 𝑓 is 1-strongly convex- strongly

concave, then for 𝜀 > 0 and small enough 𝜎 , we show that at any

(𝜀, 𝜎 )-greedy adversarial equilibrium (𝑥⋆, 𝑦⋆) the duality gap satis-

fies

max
𝑦∈ℝ𝑑

𝑓 (𝑥⋆, 𝑦) − min
𝑥∈ℝ𝑑

𝑓 (𝑥, 𝑦⋆) ≤ 𝑂(𝜀2);

see the arXiv version of our paper [26] for a precise statement of

this result and its proof.

Applications to GANs. In a subsequent paper, [21] use a related

first-order version of our greedy adversarial equilibrium to ob-

tain an algorithm and show that it can enable more stable train-

ing of generative adversarial networks (GANs). Roughly speak-

ing, the first-order equilibrium in [21] is a point (𝑥⋆, 𝑦⋆) such that

‖∇𝑦 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀 and ‖∇𝑥 𝑔̂(𝑥⋆, 𝑦⋆)‖ ≤ 𝜀, where 𝑔̂ is a first-order

approximation to the greedy-max function. This means that, unlike

here, in [21] min-min points (points where both players are at a

local minimum) are included in the local equilibrium proposed.

Including second-order conditions for both the maximizing and

minimizing players in our Definition 2.5 allows us to ensure that

our definition excludes points which may be (approximate) min-

min points. The second-order conditions also end up making the

proofs in this paper significantly harder.

Difference between Constrained and Unconstrained Settings. Fi-
nally, we note that, in a subsequentwork, [10] prove PPAD-hardness

results for finding approximate local min-max points in the con-

strained setting. Their result does not have any implication to our

framework as we consider the unconstrained setting (domain is

ℝ𝑑 × ℝ𝑑 ).

1.3 Organization of the Paper
In Section 2, we present the definition of greedy adversarial equilib-

rium and in Section 3 we state our main result. Section 4 contains

a technical overview of our algorithm and proof. For additional

discussions about our definition of greedy adversarial equilibrium

and connections to previous notions see Section 5.

In Section 6 we give a full description of the algorithm. In Section

7 we present the proof of our main result, and the main lemmas

and propositions we use to prove our main result, along with short

summaries of their proofs; for the full proofs see the arXiv version

of our paper [26].

2 GREEDY ADVERSARIAL EQUILIBRIUM
Preliminaries. In the following, we say that a function is 𝐶2

smooth if its second derivatives are continuous on its domain.

𝜆max(𝐴) denotes the largest eigenvalue of any square matrix 𝐴, and
𝜆min(𝐴) is its smallest eigenvalue. ‖ ⋅ ‖ denotes the Euclidean 𝓁2
norm, and ‖𝐴‖op = sup𝑣≠0

𝑣⊤𝐴𝑣
‖𝑣‖2 the operator norm of any square

matrix 𝐴. We assume
4
that for some 𝑏, 𝐿 > 0, 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ is

𝑏-bounded, i.e., |𝑓 (𝑥, 𝑦)| ≤ 𝑏, and has 𝐿-Lipschitz Hessian:

‖∇2𝑓 (𝑥, 𝑦) − ∇2𝑓 (𝑥, 𝑦̃)‖op ≤ 𝐿
√
‖𝑥 − 𝑥‖2 + ‖𝑦 − 𝑦̃‖2.

We start by considering the special case of minimization. We say

that a point 𝑥⋆ ∈ ℝ𝑑 is an exact local minimum point of a function

𝜓 ∶ ℝ𝑑 → ℝ if there exists 𝛿 > 0 such that

𝜓 (𝑥⋆) ≤ 𝜓 (𝑥), ∀𝑥 ∈ ℝ𝑑 such that ‖𝑥 − 𝑥⋆‖ ≤ 𝛿. (1)

Unfortunately, even if the objective function 𝜓 ∶ ℝ𝑑 → ℝ is

bounded and Lipschitz, it is not always possible to find an exact

local minimum for 𝜓 in poly(𝑑) gradient evaluations (see the arXiv
version of our paper [26] for a detailed discussion).

On the other hand, suppose we just wanted to minimize a func-

tion 𝜓 , and we start from any point 𝑥 where

‖∇𝜓 (𝑥)‖ > 𝜀 or 𝜆min(∇2𝜓 (𝑥)) < −𝜃

for some 𝜀, 𝜃 > 0. Then we can always find a direction to travel

in along which either 𝜓 decreases rapidly at a rate of at least 𝜀,
or the second derivative of 𝜓 is less than −𝜃 (see Remark 2.2). By

searching in such a direction we can easily find a new point which

has a smaller value of 𝜓 using only local information about the

gradient and Hessian of 𝜓 . This means that we can keep decreasing

𝜓 until we reach a point where ‖∇𝜓 (𝑥)‖ ≤ 𝜀 and 𝜆min(∇2𝜓 (𝑥)) ≥ −𝜃 .
If 𝜓 is Lipschitz smooth and bounded, we will reach such a point in

polynomial time from any starting point [13, 31]. This fact, together

with the fact that any point which satisfies these conditions for

𝜀 = 𝜃 = 0 is also an exact local minimum, motivates the second-

order notion of an approximate local minimum of [31]. For any

𝜀, 𝜃 ≥ 0, say that a point 𝑥⋆ is an (𝜀, 𝜃)-approximate local minimum

for a 𝐶2
-smooth function 𝜓 ∶ ℝ𝑑 → ℝ if

‖∇𝜓 (𝑥⋆)‖ ≤ 𝜀 and 𝜆min(∇2𝜓 (𝑥⋆)) ≥ −𝜃. (2)

We say that 𝑥⋆ is an (𝜀, 𝜃)-approximate local maximum of 𝜓 if 𝑥⋆
is an (𝜀, 𝜃)-approximate localminimum of −𝜓 . We use two different

values of 𝜃 : when referring to an (𝜀, 𝜃)-approximate local maximum

on 𝑓 (𝑥, ⋅), we use 𝜃 =
√
𝐿𝜀 and, roughly, when defining an (𝜀, 𝜃)-

approximate local minimum on 𝑔𝜀 , we use 𝜃 =
√
𝜀. We explain these

choices of 𝜃 in Remark 2.2 .

Importantly, one can view the definition given by Inequality (2)

as being motivated by a class of second-order optimization algo-

rithms as, roughly speaking, a second-order optimization algorithm

4
We note that a uniform bound on a function and the Lipschitz constant of its Hessian

also implies a bound on the Lipschitz constants of the function and its gradient. Namely,

if 𝑓 is 𝑏-bounded with 𝐿-Lipschitz Hessian, it is also 𝐿1-Lipschitz with 𝐿1 ≤ 4𝑏2/3𝐿1/3

and has 𝐿2-Lipschitz gradient with 𝐿2 ≤ 2𝑏1/3𝐿2/3 . We say 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ is

𝐿1-Lipschitz if |𝑓 (𝑥, 𝑦) − 𝑓 (𝑥, 𝑦̃)| ≤ 𝐿1
√
‖𝑥 − 𝑥‖2 + ‖𝑦 − 𝑦̃‖2 , and that 𝑓 has 𝐿2-Lipschitz

gradient if ‖∇𝑓 (𝑥, 𝑦) − ∇𝑓 (𝑥, 𝑦̃)‖ ≤ 𝐿2
√
‖𝑥 − 𝑥‖2 + ‖𝑦 − 𝑦̃‖2 .
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can rapidly decrease the value of 𝜓 when starting from any point

which is not an approximate local minimum.

2.1 Greedy Path and Greedy Max
When defining a greedy path, we restrict themax-player to updating

𝑦 by traveling along continuous paths which start at the current

value of 𝑦 and along which either 𝑓 is increasing or the second

derivative of 𝑓 is positive.

Definition 2.1 (Greedy Path). Let 𝑥 ∈ ℝ𝑑 , and suppose a contin-
uous path 𝜑𝑡 ∶ [0, 𝜏 ] → ℝ𝑑 is differentiable except at a finite number
of points, and at the points where it is differentiable ‖‖‖

d
d𝑡 𝜑𝑡

‖‖‖ = 1 (i.e., the
path travels at unit speed). Then for any 𝜀 ≥ 0, we say 𝜑 is an 𝜀-greedy
path for 𝑓 (𝑥, ⋅) if at all points where 𝜑 is differentiable d

d𝑡 𝑓 (𝑥, 𝜑𝑡 ) ≥ −𝜀
and

d
d𝑡
𝑓 (𝑥, 𝜑𝑡 ) > 𝜀 or

d2

d𝑡2
𝑓 (𝑥, 𝜑𝑡 ) >

√
𝐿𝜀. (3)

Roughly speaking, when restricted to updates obtained from 𝜀-
greedy paths, the max-player will always be able to reach a point

which is a second-order (𝜀,
√
𝐿𝜀)-approximate local maximum for

𝑓 (𝑥, ⋅), although there may not be an 𝜀-greedy path which leads the

max-player to a global maximum.

To define an alternative to max𝑧 𝑓 (⋅, 𝑧), we consider the local

maximum point with the largest value of 𝑓 (𝑥, ⋅) attainable from

a given starting point 𝑦 by any 𝜀-greedy path. Towards this end,

we define the set 𝑆𝜀,𝑥,𝑦 ⊆ ℝ𝑑 of endpoints of 𝜀-greedy paths, for

any 𝑥, 𝑦 ∈ ℝ𝑑 and 𝜀 > 0. We say that a point 𝑧 ∈ 𝑆𝜀,𝑥,𝑦 if there is a

number 𝜏 ≥ 0 and a path 𝜑 ∶ [0, 𝜏 ] → ℝ𝑑 which is an 𝜀-greedy path
for 𝑓 (𝑥, ⋅), with initial point 𝜑0 = 𝑦 and endpoint 𝜑𝜏 = 𝑧. The greedy
max function 𝑔𝜀 (𝑥, 𝑦) is the maximum value of 𝑓 (𝑥, ⋅) attainable by
any 𝜀-greedy path in the set 𝑆𝜀,𝑥,𝑦 :

𝑔𝜀 (𝑥, 𝑦) B sup{𝑓 (𝑥, 𝑧) ∶ 𝑧 ∈ 𝑆𝜀,𝑥,𝑦}. (4)

Remark 2.2 ( Greedy Paths can Escape Saddle Points and

Local Minima). Equations (3) together ensure that for any 𝑦 where
either (i) the gradient ∇𝑦 𝑓 (𝑥, 𝑦) has magnitude greater than 𝜀 or (ii)
the eigenvalues of the Hessian ∇2𝑦 𝑓 (𝑥, 𝑦) are bounded below by −

√
𝐿𝜀,

there is always a unit-speed greedy path (with parameter 𝜀) starting
at 𝑦 which can increase the value of 𝑓 at an average rate 5 of at
least 1

2 𝜀 by traveling a distance of at most 1
2

√
𝜀√
𝐿 . Moreover, since one

such greedy path is always a straight line in the direction of either
the gradient ∇𝑦 𝑓 (𝑥, 𝑦) or the largest eigenvector of ∇2𝑦 𝑓 (𝑥, 𝑦), all one
needs to compute such a path is access to the gradient and Hessian of
𝑓 (𝑥, ⋅). This fact can also be viewed as a motivation for the definition
of approximate local maximum (Inequality (2)): roughly, any point
which does not satisfy both conditions (i) and (ii) (up to a constant
factor) is an approximate local maximum. Thus, starting from any
point 𝑦 which is not an approximate local maximum of 𝑓 (𝑥, ⋅) (with
parameters (𝜀,

√
𝐿𝜀)), there is always an easy-to-compute greedy path

(with parameter 𝜀) which allows one to increase the value of 𝑓 .

5
By “average rate" of at least

1
2 𝜀 we mean that the increase in 𝑓 divided by the length

of the path is ≥ 1
2 𝜀 .

2.2 Dealing with Discontinuities and Other
Difficulties of the Greedy Max Function

Unfortunately, even if 𝑓 is smooth, the greedymax functionmay not

be differentiable with respect to 𝑥 and may even be discontinuous

(see Example 2.4 for a simple example of a smooth function 𝑓 whose
greedy max function is discontinuous). This lack of smoothness

creates a problem, since the current definition of approximate local

minimum (Inequality (2)) only applies to 𝐶2
-smooth functions. To

solve this problem we would ideally like to smooth a discontinuous

function by convolution with a Gaussian (see Section 5.4 for further

discussion on why we use convolution for smoothing).

Another difficulty is that the value of 𝑔𝜀 (𝑥, 𝑦) may be intractable

to compute at some points (𝑥, 𝑦), since one may need to compute a

very large number
6
of 𝜀-greedy paths (possibly an infinite number

of paths), each with the same initial point 𝑦, before finding the

𝜀-greedy path with the largest value of 𝑓 . This is because, starting
from a point near a local minimum or saddle point, there may be

many directions to choose from which allow one to increase the

value of 𝑓 , and, depending on which direction one chooses, one may

end up at a different local maximum. Realistically, this means that

in general we cannot hope to give our algorithm access to the exact

value of 𝑔𝜀 . Our algorithm overcomes this by instead computing

a lower bound ℎ𝜀 for 𝑔𝜀 , and uses only access to this lower bound

to minimize 𝑔𝜀 (In Sections 4.2-4.4 of our technical overview we

show how this can be done by using some additional properties of

the greedy max function). To allow us to handle this more difficult

setting, we would like our notion of approximate local minimum to

satisfy the property that any point which is an exact local minimum,

is also an approximate local minimum under our definition.

Unfortunately, convolution can cause the local minima of a func-

tion to “shift"– a point which is a local minimum for a function

𝜓 ∶ ℝ𝑑 → ℝ may no longer be a local minimum for the convolved

version of 𝜓 (for instance, in Example 5.3, we show that this hap-

pens if we convolve the function 𝜓 (𝑥) = 𝑥 − 3𝑥𝟏(𝐱 ≤ 𝟎) + 𝟏(𝐱 ≤ 𝟎)
with a Gaussian 𝑁 (0, 𝜎2) for any 𝜎 > 0). To avoid this, we instead

consider a “truncated" version of 𝜓 , and convolve this function

with a Gaussian to obtain our smoothed version of 𝜓 (Definition

2.3).

Definition 2.3 (Approximate Local Minimum for Discon-

tinuous Functions). For any 𝜀, 𝜎 ≥ 0, we say that 𝑥⋆ is an (𝜀, 𝜎 )-
approximate local minimum for a uniformly bounded function 𝜓
if

‖∇𝑥(𝑥⋆)‖ ≤ 𝜀 and 𝜆min(∇2𝑥(𝑥⋆)) ≥ −
√
𝜀, (5)

where (𝑥) B 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [min(𝜓 (𝑥 + 𝜎𝜁 ), 𝜓 (𝑥⋆))] .

Example 2.4 (A Simple Example of a Discontinuous Greedy

Max Function). Consider the function

𝑓 (𝑥, 𝑦) = cos(𝑥 + 𝑦) sin(2𝑥 + 2𝑦) − 𝑒−𝑥
2
.

For any 0 < 𝜀 < 0.1, the greedy max function 𝑔𝜀 (𝑥, 𝑦) is discontinuous
at the (parallel) lines 𝑥 +𝑦 = −2.52 and 𝑥 +𝑦 = −0.62, with 𝑔𝜀 (𝑥, 𝑦) =
−𝑒−𝑥

2
in the region enclosed between the two lines and 𝑔𝜀 (𝑥, 𝑦) =

−𝑒−𝑥
2
+ 0.77 on each side of that region. Such examples are easy to

come by and extend to higher dimensions.

6
Even in the setting where 𝑓 is bounded with Lipschitz Hessian, the number of 𝜀-greedy
paths that share a given starting point may be infinite.
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f(x, y)
<latexit sha1_base64="DkD+wohCV9b6ZUH3ENBUgHsK5/k=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahgpTdKqi3ghePFewHtEvJptk2NpssSVYsS/+DFw+KePX/ePPfmLZ70NYHA4/3ZpiZF8ScaeO6305uZXVtfSO/Wdja3tndK+4fNLVMFKENIrlU7QBrypmgDcMMp+1YURwFnLaC0c3Ubz1SpZkU92YcUz/CA8FCRrCxUjMsP52NT3vFkltxZ0DLxMtICTLUe8Wvbl+SJKLCEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcAR1X46u3aCTqzSR6FUtoRBM/X3RIojrcdRYDsjbIZ60ZuK/3mdxIRXfspEnBgqyHxRmHBkJJq+jvpMUWL42BJMFLO3IjLEChNjAyrYELzFl5dJs1rxzivVu4tS7TqLIw9HcAxl8OASanALdWgAgQd4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/sc6OhQ==</latexit>

x
<latexit sha1_base64="x2YiyB9rf/fiZ1Tk15zATNuO/Qc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQb0FvHhMwDwgWcLspDcZMzu7zMyKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YhK81jem3GCfkQHkoecUWOl+lOvWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaVbK3kW5Ur8sVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw4L86787FozTnZzDH8gfP5A+TSjPc=</latexit>

y
<latexit sha1_base64="GG+Pm5uLlGCsh/rc6x+YJy9q43I=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoN4KXjy2YGuhDWWznbRrN5uwuxFK6C/w4kERr/4kb/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BCMb2f+wxMqzWN5byYJ+hEdSh5yRo2VmpN+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NApObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsazLgCpkRE0soU9zeStiIKsqMzaZkQ/CWX14l7VrVu6jWmpeV+k0eRxFO4BTOwYMrqMMdNKAFDBCe4RXenEfnxXl3PhatBSefOYY/cD5/AOZWjPg=</latexit>

Figure 1: In this example we have 𝑓 ∶ ℝ1 × ℝ1 → ℝ where 𝑓 (𝑥, 𝑦) =
1.2𝑒−(𝑥+𝑦+2)

2
+2𝑒−(𝑥+𝑦−2)

2
− 𝑒−𝑥

2
. This function has two (𝜀, 𝜎 )-greedy ad-

versarial equilibria (for 𝜀 = 0 and any 0 < 𝜎 ≤ 1
100 ), at the points (0, −2)

(white star) and (0, 2) (orange star). The greedy adversarial equilib-
rium at (0, 2) is also the unique global min-max point of 𝑓 . On the
other hand, 𝑓 has no local min-max points: there does not exist a
point (𝑥, 𝑦)where 𝑦 is a local maximum of 𝑓 (𝑥, ⋅) and 𝑥 is a local min-
imum of 𝑓 (⋅, 𝑦).

2.3 Greedy Adversarial Equilibrium
We say that (𝑥⋆, 𝑦⋆) is an (𝜀, 𝜎 )-greedy adversarial equilibrium of

a function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ with 𝐿-Lipschitz Hessian if 𝑦⋆ is

an (𝜀,
√
𝐿𝜀)-approximate local maximum of 𝑓 (𝑥⋆, ⋅) (in the sense of

Inequality (2)), and if 𝑥⋆ is an (𝜀,
√
𝜀)-approximate local minimum

of the (possibly) discontinuous function 𝑔𝜀 (⋅, 𝑦⋆) (in the sense of

Definition 2.3). See Figure 1 for an example of greedy adversarial

equilibria.

Definition 2.5 ( Greedy Adversarial Eqilibrium). For any
𝜀, 𝜎 ≥ 0, we say that (𝑥⋆, 𝑦⋆) ∈ ℝ𝑑 ×ℝ𝑑 is an (𝜀, 𝜎 )-greedy adversarial
equilibrium of a 𝐶2-smooth function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ with 𝐿-
Lipschitz Hessian, if we have

‖∇𝑦 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀 and 𝜆max(∇2𝑦 𝑓 (𝑥
⋆, 𝑦⋆)) ≤

√
𝐿𝜀, and (6)

‖∇𝑥𝑆(𝑥⋆)‖ ≤ 𝜀 and 𝜆min(∇2𝑥𝑆(𝑥
⋆)) ≥ −

√
𝜀, (7)

where 𝑆(𝑥) B 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [min(𝑔𝜀 (𝑥 + 𝜎𝜁 , 𝑦⋆), 𝑔𝜀 (𝑥⋆, 𝑦⋆))].

We can view the point (𝑥⋆, 𝑦⋆) in Definition 2.5 as a type of equilib-

rium. Namely, suppose that the max-player can only make updates

in the set 𝑆𝜀,𝑥,𝑦⋆ of points attainable by an 𝜀-greedy path initialized

at 𝑦⋆. Then under this constraint, the max-player cannot make any

update to 𝑦⋆ that will increase the value of 𝑓 (𝑥⋆, ⋅). Moreover, we

have that 𝑥⋆ is an (𝜀, 𝜎 )-approximate local minimum (in the sense

of Definition 2.3) of the function max𝑧 𝑓 (𝑥, 𝑧) if the maximum is

taken over the set 𝑆𝜀,𝑥,𝑦⋆ of updates available to the max-player.

A key feature of greedy adversarial equilibrium is that it empow-

ers the min-player to simulate the updates of the max-player via

a class of second-order optimization algorithms which we model

using greedy paths. This is in contrast to previous models, such

as the local min-max point considered in [2, 9, 18] or [20], which

restrict the min-player and max-player to making updates inside a

small ball.

3 MAIN RESULT
Theorem 3.1 (Main Result). Let 𝜀, 𝜎 > 0, with 𝜎 ≤ 1√

𝜀𝑑
, and

consider any 𝐶2-smooth uniformly bounded function 𝑓 ∶ ℝ𝑑 ×ℝ𝑑 →
ℝ with Lipschitz Hessian. Then there exists a point (𝑥⋆, 𝑦⋆) ∈ ℝ𝑑 ×ℝ𝑑
which is an (𝜀⋆, 𝜎 )-greedy adversarial equilibrium for 𝑓 , for some 𝜀⋆ ≤
𝜀. Moreover, there exists an algorithm which, given access to oracles
for the value of a 𝐶2-smooth function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → [−𝑏, 𝑏], and to
oracles for ∇𝑦 𝑓 and ∇2𝑦 𝑓 , where 𝑓 has 𝐿-Lipschitz Hessian for some
𝑏, 𝐿 > 0, and numbers 𝜀, 𝜎 ≥ 0, with probability at least 9

10 generates
a point (𝑥⋆, 𝑦⋆) ∈ ℝ𝑑 × ℝ𝑑 which is an (𝜀⋆, 𝜎 )-greedy adversarial
equilibrium for 𝑓 , for some 𝜀⋆ ≤ 𝜀. Moreover, this algorithm takes
a number of gradient, Hessian, and function evaluations which is
polynomial in 1

𝜀 , 𝑑, 𝑏, 𝐿,
1
𝜎 .

As noted earlier, our result does not require additional assumptions

on 𝑓 such as convexity or monotonicity [32, 33, 36] or sufficient

bilinearity [1]. Our algorithm also converges from any initial point.

This is in contrast to many previous works [2, 18, 20, 37], which

assume that there exists a stationary point for their algorithm on

the function 𝑓 , and that their algorithm is initialized somewhere

in the region of attraction for this stationary point. To the best of

our knowledge, greedy adversarial equilibrium is the first model

for optimization in the presence of an adversary which is both

guaranteed to exist and can be found efficiently in a general setting

where 𝑓 is 𝐶2
-smooth, bounded, and has Lipschitz Hessian. We

expect it to find further use in learning in the presence of adversarial

agents.

We note that we have not tried to optimize the order of the

polynomial running time bound in Theorem 3.1. Finally, the greedy

adversarial equilibrium our algorithm finds depends on the initial

point (𝑥0, 𝑦0). To find other greedy adversarial equilibria, one can

start from different initial points.

4 TECHNICAL OVERVIEW
In this section we give an overview of our algorithm and of the

proof of Theorem 3.1. In Section 6 we give a full description of the

algorithm. In Section 7 we present the main lemmas and proposi-

tions that we use to prove Theorem 3.1, along with short summaries

of their proofs; for the full proofs see the arXiv version of our paper

[26]. To simplify the exposition, we set 𝐿 = 𝑏 = 1, 0 < 𝜀 < 1, and
𝜎 = 1√

𝑑
. In particular, if 𝑓 is 1-bounded with 1-Lipschitz Hessian, it

is also 4-Lipschitz with 2-Lipschitz gradient.

4.1 An Efficiently Computable Second-Order
Local Approximation to max𝑧 𝑓 (𝑥, 𝑧)

Ideally, we would like our algorithm to be able to compute the

global maximummax𝑧 𝑓 (𝑥, 𝑧) at any point 𝑥 . However, since 𝑓 may

be nonconvex-nonconcave, finding the global maximum may be

intractable in our setting.

Instead, starting from some initial point 𝑧 ← 𝑦 , we use a second-
order maximization algorithm (Algorithm 1) to find an (𝜀,

√
𝜀)-

approximate local maximum of 𝑓 (𝑥, ⋅). At each step, we would like

our maximization algorithm to be able to rapidly decrease the value

of 𝑓 (𝑥, 𝑧) from any point 𝑧 that is not an (𝜀,
√
𝜀)-approximate local

maximum of 𝑓 (𝑥, ⋅), that is, if 𝑧 is such that either ‖∇𝑦 𝑓 (𝑥, 𝑧)‖ > 𝜀 or
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𝜆max(∇2𝑦 𝑓 (𝑥, 𝑧)) >
√
𝜀. Towards this end, if ‖∇𝑦 𝑓 (𝑥, 𝑧)‖ > 𝜀, we have

the max-player make an update

𝑧 ← 𝑧 + 𝜇1∇𝑦 𝑓 (𝑥, 𝑧)

for some step size 𝜇1 > 0. If we set

𝜇1 ≤
1
4
, (8)

we have that, since 𝑓 has 2-Lipschitz gradient,

∇𝑦 𝑓 (𝑥, 𝑝)⊤
∇𝑦 𝑓 (𝑥, 𝑧)
‖∇𝑦 𝑓 (𝑥, 𝑧)‖

≥
1
2
‖∇𝑦 𝑓 (𝑥, 𝑧)‖ >

1
2
𝜀

at every point 𝑝 on the line segment [𝑧, 𝑧 +𝜇1∇𝑦 𝑓 (𝑥, 𝑧)]. This means

that 𝑓 increases by at least
1
2 𝜀 × 𝜇1‖∇𝑦 𝑓 (𝑥, 𝑧)‖ >

1
2𝜇1𝜀

2
if the max-

player makes this update. On the other hand, if ‖∇𝑦 𝑓 (𝑥, 𝑧)‖ ≤ 𝜀 but
𝜆max(∇2𝑦 𝑓 (𝑥, 𝑧)) >

√
𝜀, we have the max-player make an update

𝑧 ← 𝑧 + 𝜇3a𝑣 in the direction of the largest eigenvector 𝑣 of

∇2𝑦 𝑓 (𝑥, 𝑧) (with ‖𝑣‖ = 1), for some step size 𝜇3 > 0, where the sign
a ∈ {−, 1, 1} is chosen such that (a𝑣)⊤∇𝑦 𝑓 ≥ 0. If we set

𝜇3 ≤
1
2
√
𝜀 (9)

we have that, since 𝑓 has 1-Lipschitz Hessian,

𝑣⊤∇2𝑦 𝑓 (𝑥, 𝑝)𝑣 >
1
2
√
𝜀

for every point 𝑝 on the line segment [𝑧, 𝑧+𝜇3a𝑣]. This means that 𝑓
increases by at least

1
2 (𝜇3)

2√𝜀 if the max-player makes this update.

Finally, if ‖∇𝑦 𝑓 (𝑥, 𝑧)‖ ≤ 𝜀 and 𝜆max(∇2𝑦 𝑓 (𝑥, 𝑧)) ≤
√
𝜀, our maximiza-

tion algorithm (Algorithm 1) has reached an (𝜀,
√
𝜀)-approximate

local maximum 𝑦′, and it returns this point 𝑦′.
The above discussion implies that the value of 𝑓 increases by at

least Δ B min( 12𝜇1𝜀
2, 12 (𝜇3)

2√𝜀) at each iteration. Since 𝑓 is also
1-bounded, and each step of our method requires 𝑂(1) oracle calls
to the gradient and Hessian of 𝑓 , and our method only stops once

it reaches an (𝜀,
√
𝜀)-approximate local maximum, it uses at most

𝑂( 1Δ ) oracle calls to find an (𝜀,
√
𝜀)-approximate local maximum 𝑦′

(Lemmas 7.1, 7.2). Thus, the value of 𝑓 at this (𝜀,
√
𝜀)-approximate

local maximum 𝑦′, which we denote by the function ℎ𝜀 ,

ℎ𝜀 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦′), (10)

gives us a local approximation for max𝑧 𝑓 (𝑥, 𝑧), which can be com-

puted in 𝑂( 1Δ ) oracle calls for the gradient, Hessian, and value of 𝑓 .
Moreover, as we explain in Remark 4.1, the steps of our optimization

method form an 𝜀-greedy path from 𝑦 to 𝑦′.

Remark 4.1 (Our Second-Order Maximization Algorithm

Computes an 𝜀-Greedy Path). We have shown that at each point 𝑝
on a line segment [𝑧, 𝑧′] connecting two consecutive steps 𝑧 and 𝑧′ of
our maximization algorithm, we have that either ∇𝑦 𝑓 (𝑥, 𝑝)⊤𝑢 > 1

2 𝜀 or
𝑢⊤∇2𝑦 𝑓 (𝑥, 𝑝)𝑢 > 1

2
√
𝜀, where 𝑢 is the unit vector 𝑢 = 𝑧′−𝑧

‖𝑧′−𝑧‖ . Therefore,
at any point on the unit-speed path 𝜑𝑡 made up of the line segments
connecting the consecutive steps of our algorithm, we have that either
d
d𝑡 𝑓 (𝑥, 𝜑𝑡 ) >

1
2 𝜀, or

d2
d𝑡2 𝑓 (𝑥, 𝜑𝑡 ) >

1
2
√
𝜀. This implies that the path

traced by our algorithm is a 1
2 𝜀-greedy path.

We show that, for a smaller choice of step sizes than required by
(8) and (9), namely for 𝜇1, 𝜇3 = poly ( 1

𝑑 , 𝜀), this path is 𝜀′-greedy
where |𝜀 −𝜀′| = poly ( 1

𝑑 , 𝜀). The fact that 𝜀
′ ≠ 𝜀 causes some technical

issues which we deal with in the full algorithm7 in Section 6 and in
our proof (Section 7). To improve readability, we ignore these issues in
this technical overview and assume that the path is 𝜀-greedy.

4.2 Finding a Point (𝑥⋆, 𝑦⋆)Which Is a Local
Min for ℎ𝜀(⋅, 𝑦⋆) and a Local Max for 𝑓 (𝑥⋆, ⋅)

Now that we have a subroutine for computing ℎ𝜀 , our next goal is
to find an (𝜀, 𝜎 )-approximate local minimum in the 𝑥 variable for

ℎ𝜀 . If we were able to compute the global maximum max𝑧 𝑓 (𝑥, 𝑧),
it would be enough for our algorithm to find a global minimizer

𝑥global for max𝑧 𝑓 (𝑥, 𝑧), and to then find a global maximizer 𝑦global
for 𝑓 (𝑥global, ⋅). Since max𝑧 𝑓 (𝑥, 𝑧) is only a function of 𝑥 , the point
(𝑥global, 𝑦global) would still be a global min-max point regardless

of which global maximizer 𝑦global we find. Here we encounter a
difficulty:

Obstacle 1: Since the function ℎ𝜀 (𝑥, 𝑦) is a local approximation for

max𝑧 𝑓 (𝑥, 𝑧), it depends both on 𝑥 and on the initial point 𝑦 . If our
algorithmwere to first find an (𝜀, 𝜎 )-approximate local minimum 𝑥⋆
for ℎ𝜀 (⋅, 𝑦), and then search for an (𝜀,

√
𝜀)-approximate local maxi-

mum 𝑦⋆ for 𝑓 (𝑥⋆, ⋅), the point 𝑥⋆ may not be an (𝜀, 𝜎 )-approximate

local minimum for ℎ𝜀 (⋅, 𝑦⋆) even though it is an (𝜀, 𝜎 )-approximate

local minimum for ℎ𝜀 (⋅, 𝑦). To get around this problem, we use a

different update rule for the min-player and max-player:

Idea 1: Alternate between a step where the min-player makes

an update 𝑤 to 𝑥 which decreases the value of ℎ𝜀 (⋅, 𝑦) by some

amount 𝛾1, and a step where the max-player uses the maximization

subroutine discussed in Section 4.1 (Algorithm 1), with initial point

𝑦 , to find a (𝜀,
√
𝜀)-approximate local maximum 𝑦′ for 𝑓 (𝑥, ⋅).

Since ℎ𝜀 is the value of 𝑓 at the (𝜀,
√
𝜀)-approximate local max-

imum 𝑦′, we therefore have that ℎ𝜀 (𝑤, 𝑦) = 𝑓 (𝑤, 𝑦′). Moreover,

since 𝑦′ is an (𝜀,
√
𝜀)-approximate local maximum for 𝑓 , and Al-

gorithm 1 stops whenever it reaches an (𝜀,
√
𝜀)-approximate local

maximum, 𝑦′ is a stationary point for Algorithm 1, which means

that 𝑓 (𝑤, 𝑦′) = ℎ𝜀 (𝑤, 𝑦′). Thus,

ℎ𝜀 (𝑤, 𝑦) = 𝑓 (𝑤, 𝑦′) = ℎ𝜀 (𝑤, 𝑦′). (11)

Moreover, since 𝑓 is 𝑏-bounded, and ℎ𝜀 (𝑥, 𝑦) is the value of 𝑓 (𝑥, ⋅)
at the approximate local maximum obtained by the maximization

subroutine in Section 4.1, ℎ𝜀 must also be 𝑏-bounded. Thus, since
the max-player’s update does not change the value of ℎ𝜀 (11), if
we can show that whenever 𝑥 is not an (𝜀, 𝜎 )-approximate local

minimum of 𝑓 (⋅, 𝑦) the min player can find an update to 𝑥 which

decreases the value of ℎ𝜀 (𝑥, 𝑦) by at least some fixed amount 𝛾1 > 0,
then we would have that the value of ℎ𝜀 decreases monotonically

at each iteration by at least 𝛾1. In that case, our algorithm would

have to converge after
2𝑏
𝛾1 iterations to a point (𝑥, 𝑦′) where 𝑥 is an

(𝜀, 𝜎 )-approximate local minimum for ℎ𝜀 (⋅, 𝑦′) and 𝑦′ is an (𝜀,
√
𝜀)-

approximate local maximum for 𝑓 (𝑥, ⋅).

4.3 Escaping “Saddle Points" of the
Discontinuous Function ℎ𝜀

Before we can apply Idea 1, we would like to find a way for the min-

player to find updates for 𝑥 which decrease the value of ℎ𝜀 (𝑥, 𝑦) by
7
In the full algorithm we deal with this issue by initially computing an 𝜀′-greedy path

for 𝜀′ = 𝜀
2 at the first iteration, and then slowly increasing 𝜀′ at each iteration.
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some amount at least 𝛾1 whenever the current value of 𝑥 is not an

(𝜀, 𝜎 )-approximate local minimum (in the sense of Definition 2.3).

However, since ℎ𝜀 is discontinuous we encounter a second obstacle:

Obstacle 2: Finding an (𝜀, 𝜎 )-approximate local minimum of ℎ𝜀
requires our algorithm to escape saddle points of the truncated and

smoothed function
8 𝑠(𝑤) = 𝔼𝜁∼𝑁 (0,𝐼𝑑 )[min(ℎ𝜀 (𝑤 + 𝜎𝜁 , 𝑦), ℎ𝜀 (𝑥, 𝑦))].

Ideally, we would like to run a “noisy" version of gradient descent,

which can allow us to escape saddle points (see e.g., [13]), but we

do not have access to the gradient of 𝑠.
To get around this problem, we compute a stochastic gradient

for 𝑠(𝑤) which can be computed without access to a gradient:

Idea 2: We use a stochastic gradient Γ(𝑤) for 𝑠(𝑤) which can be

computed with access only to the value of ℎ𝜀 ; roughly

Γ(𝑤) =
𝜁
𝜎
min (ℎ𝜀 (𝑤 + 𝜎𝜁 , 𝑦), ℎ𝜀 (𝑥, 𝑦)) (12)

where 𝜁 ∼ 𝑁 (0, 𝐼𝑑 ), and 𝔼[Γ(𝑤)] = 𝑠(𝑤) (see e.g. [12]). This allows
us to use a noisy version of stochastic gradient descent (SGD) to

escape saddle points of 𝑠(𝑤).
More specifically, starting at the initial point 𝑤 ← 𝑥 , each step

of this “noisy" SGD is given by

𝑤 ← 𝑤 − 𝜂Γ(𝑤) + 𝛼𝜉 (13)

where 𝜉 ∼ 𝑁 (0, 𝐼𝑑 ) and 𝜂, 𝛼 are hyperparameters . We then apply

concentration bounds for our stochastic gradient (Proposition 7.6)

to results about noisy SGD [19] to show that, whenever 𝑥 is not

an (𝜀, 𝜎 )-approximate local minimum for ℎ𝜀 (⋅, 𝑦), with high prob-

ability, this noisy SGD, with hyperparameters 𝜂, 𝛼 = poly ( 1
𝑑 , 𝜀),

can find an update for 𝑥 which decreases the value of ℎ𝜀 by at least

𝛾1 = poly ( 1
𝑑 , 𝜀) after  = poly (𝑑, 1𝜀 ) iterations of Equation (13)

(Proposition 7.8).

4.4 Using ℎ𝜀 to Minimize Greedy Max Function
Although we have shown how to find an (𝜀, 𝜎 )-approximate local

minimum of ℎ𝜀 (In the sense of Definition 2.3), our goal is to find an

(𝜀, 𝜎 )-approximate local minimum of the greedy max function 𝑔𝜀 .
For simplicity, let us start by supposing that we were able to find an

exact local minimum for ℎ𝜀 . Since 𝑔𝜀 (𝑥, 𝑦) is the maximum value of

𝑓 (𝑥, 𝑧) that is attainable at the endpoint 𝑧 of any 𝜀-greedy path that

starts at 𝑦, and, as we have shown in Remark 4.1, the steps of the

second-order optimization algorithm we use to compute ℎ𝜀 (𝑥, 𝑦)
form one such greedy path whose endpoint 𝑦′ determines the value

of ℎ𝜀 (Equation (10)), we have that (Proposition 7.4)

ℎ𝜀 (𝑥, 𝑦) ≤ 𝑔𝜀 (𝑥, 𝑦) ∀(𝑥, 𝑦) ∈ ℝ𝑑 × ℝ𝑑 . (14)

However, it is still not clear how ℎ𝜀 can help us find a local mini-

mizer for 𝑔𝜀 :

Obstacle 3: We want to minimize the greedy max function 𝑔𝜀 ,
but computing the value of 𝑔𝜀 may be intractable, and we only have

access to a lower bound ℎ𝜀 ≤ 𝑔𝜀 .
We would like to somehow use our ability to compute ℎ𝜀 to

find a local minimum of 𝑔𝜀 . Towards this end, we observe that

if any point 𝑦⋆ is an (𝜀,
√
𝜀)-approximate local maximum, then

the conditions from the definition of approximate local maximum,

8
We use a lowercase 𝑠 for the truncated and smoothed version of ℎ𝜀 to distinguish it

from the truncated and smoothed version of 𝑔𝜀 used in Definition 2.5.

‖∇𝑦 𝑓 (𝑥, 𝑦⋆)‖ ≤ 𝜀 and 𝜆min(∇2𝑓 (𝑥, 𝑦⋆)) ≤
√
𝜀, imply that there is no

unit speed path 𝜑 ∶ [0, 𝜏 ] → ℝ𝑑 starting at the point 𝜑0 = 𝑦⋆

for which
d
d𝑡 𝑓 (𝑥, 𝜑0) > 𝜀 or

d2
d𝑡2 𝑓 (𝑥, 𝜑𝑡 ) >

√
𝜀 on all 𝑡 ∈ (0, 𝜏 ]. This

means that, if 𝑦⋆ is an (𝜀,
√
𝜀)-approximate local maximum of 𝑓 (𝑥, ⋅),

then it is the only (𝜀,
√
𝜀)-approximate local maximum reachable by

any 𝜀-greedy path starting at 𝑦⋆. In other words, we have that,

ℎ𝜀 (𝑥, 𝑦⋆) = 𝑔𝜀 (𝑥, 𝑦⋆) (15)

whenever 𝑦⋆ is an (𝜀,
√
𝜀)-approximate local maximum for 𝑓 (𝑥, ⋅)

(Proposition 7.5). Together, (14) and (15) imply the following:

Idea 3: For any pair of points (𝑥⋆, 𝑦⋆) where 𝑦⋆ is an (𝜀,
√
𝜀)-

approximate local maximum for 𝑓 (𝑥⋆, ⋅), we have that if 𝑥⋆ is an

exact local minimum for ℎ𝜀 (⋅, 𝑦⋆) it must also be an exact local

minimum for 𝑔𝜀 (⋅, 𝑦⋆).
This is because, if 𝑥⋆ is an exact local minimum, then there is an

open ball 𝐵 containing 𝑥⋆ where ℎ𝜀 (𝑥⋆, 𝑦⋆) = min𝑤∈𝐵 ℎ𝜀 (𝑤, 𝑦⋆).
This implies that

𝑔𝜀 (𝑥⋆, 𝑦⋆)
(15)= ℎ𝜀 (𝑥⋆, 𝑦⋆) = min

𝑤∈𝐵
ℎ𝜀 (𝑤, 𝑦⋆)

(14)

≤ min
𝑤∈𝐵

𝑔𝜀 (𝑤, 𝑦⋆) (16)

and hence that 𝑥⋆ minimizes 𝑔𝜀 (⋅, 𝑦⋆) on the ball 𝐵.
Finally, we extend the result in Idea 3, which holds for exact local

minima, to a similar result (Lemma 7.3) that holds for approximate
local minima. We show that if, roughly, the variance of our sto-

chastic gradient Γ (Equation (12)) satisfies a poly( 1𝑑 , 𝜀) upper bound
(Proposition 7.6), then for any pair of points (𝑥⋆, 𝑦⋆) where 𝑦⋆
is an (𝜀,

√
𝜀)-approximate local maximum of 𝑓 (𝑥⋆, ⋅) (in the sense

of Equation (2)), if 𝑥⋆ is an (𝜀, 𝜎 )-approximate local minimum of

ℎ𝜀 (⋅, 𝑦⋆) then it is also an (𝜀, 𝜎 )-approximate local minimum for

𝑔𝜀 (⋅, 𝑦⋆) (in the sense of Definition 2.3). The proofs of Lemma 7.3

and Proposition 7.6 are technical and summarized in Section 7.

4.5 Showing Convergence to Greedy
Adversarial Equilibrium in poly (𝑑, 1𝜀 )
Oracle Calls

From Idea 1 we have that our algorithm terminates after 𝑂 (
1
𝛾1 ) it-

erations consisting of an update for the min-player and max-player,

if one can bound by some number 𝛾1 > 0 the amount by which

each update for the min-player decreases the value of ℎ𝜀 (𝑥, 𝑦).
From Idea 2 (Section 4.3) we have that, with high probability,

noisy SGD can allow the min-player to find an update which de-

creases the value of ℎ𝜀 by an amount 𝛾1 = poly ( 1
𝑑 , 𝜀), and that this

can be accomplished in  = poly (𝑑, 1𝜀 ) computations of ℎ𝜀 .
In Section 4.1, we show that our maximization subroutine can

compute the value of ℎ𝜀 in at most 𝑂 ( 1
Δ) oracle calls, where

Δ = min
{ 1

2𝜇1𝜀
2, 12 (𝜇3)

2√𝜀
}
. From Equations (8) and (9), roughly

speaking, we may set 𝜇1 = 1
4 and 𝜇3 = 1

2
√
𝜀. 9

This means that, with high probability, the number of oracle calls

until our algorithm terminates is 𝑂 (
1
Δ ×  × 1

𝛾1 ) = poly (𝑑, 1𝜀 ) .
Finally, from Idea 1 we also have that, if our algorithm terminates,

it returns a pair of points (𝑥⋆, 𝑦⋆)where 𝑥⋆ is an (𝜀, 𝜎 )-approximate

local minimum for ℎ𝜀 (⋅, 𝑦⋆) (in the sense of Definition 2.3) and 𝑦⋆

9
As mentioned in Remark 4.1, in the full algorithm we use somewhat smaller hyperpa-

rameter values 𝜇1 , 𝜇3 = poly( 1𝑑 , 𝜀) to ensure that the path computed by Algorithm 1 is

𝜀-greedy instead of
1
2 𝜀-greedy.
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is an (𝜀,
√
𝜀)-approximate local maximum for 𝑓 (𝑥⋆, ⋅) (in the sense

of Equation (2)).

Applying Idea 3 (or rather its extension to approximate local min-

ima), we have that 𝑥⋆ is an (𝜀, 𝜎 )-approximate local minimum for

ℎ𝜀 (⋅, 𝑦⋆), which implies that (𝑥⋆, 𝑦⋆) is a (𝜀, 𝜎 )-greedy adversarial

equilibrium. In other words, our algorithm returns an (𝜀, 𝜎 )-greedy
adversarial equilibrium after at most poly (𝑑, 1𝜀 ) oracle calls for the
gradient, Hessian, and value of 𝑓 .

4.6 Summary of Algorithm
The discussion in Sections 4.1-4.5 leads us to the following algorithm

(see Algorithm 2 for the full description). In addition to oracles for

𝑓 , ∇𝑦 𝑓 and ∇2𝑦 𝑓 , our algorithm also takes as input an initial point

(𝑥0, 𝑦0) in ℝ𝑑 × ℝ𝑑 , and parameters 𝜀, 𝜎 > 0 (recall we have set

𝜎 = 1√
𝑑
in this section).

10

(1) Starting at the initial point (𝑥0, 𝑦0), our algorithm first uses

the second-order optimization method described in Section

4.1 (Algorithm 1) to find a point 𝑦1 which is an (𝜀,
√
𝜀)-

approximate local maximum for 𝑓 (𝑥0, ⋅).
(2) Next, starting from iteration 𝑖 = 1, and setting 𝑥1 ← 𝑥0, our

algorithm uses noisy SGD (Equation (13))
11

to search for a

point 𝑥𝑖+1 for which,

ℎ𝜀 (𝑥𝑖+1, 𝑦𝑖) ≤ ℎ𝜀 (𝑥𝑖 , 𝑦𝑖) − 𝛾1, (17)

where 𝛾1 = poly( 1𝑑 , 𝜀) (Lines 21-37 of Algorithm 2). When

running noisy SGD, roughly speaking, our algorithm uses

the stochastic gradient Γ (the same stochastic gradient as in

Equation (12)),

Γ(𝑤) =
𝜁
𝜎
min (ℎ𝜀 (𝑤 + 𝜎𝜁 , 𝑦𝑖), ℎ𝜀 (𝑥𝑖 , 𝑦𝑖)) , (18)

where 𝜁 ∼ 𝑁 (0, 𝐼𝑑 ) and ℎ𝜀 is computed using the second-

order optimization method of Section 4.1 (Algorithm 1).

(3) If our algorithm is able to find an update 𝑥𝑖+1 which satisfies

Inequality (17), it uses Algorithm 1 to compute a point 𝑦𝑖+1,
which is an (𝜀,

√
𝜀)-approximate local maximum for 𝑓 (𝑥𝑖+1, ⋅),

sets 𝑖 ← 𝑖 + 1, and goes back to Step 2. Otherwise, if it

cannot find such an update, it concludes that 𝑥𝑖 is an (𝜀, 𝜎 )-
approximate local minimum for ℎ𝜀 (⋅, 𝑦𝑖), and, hence, that
(𝑥𝑖 , 𝑦𝑖) is a (𝜀, 𝜎 )-greedy adversarial equilibrium.

5 DISCUSSIONS AND LIMITATIONS
5.1 How Does Our Greedy Adversarial

Equilibrium Compare to Previous Models?
In previous papers different models which can be seen as alterna-

tives to min-max optimization have been considered in the non-

convex setting. A number of papers [2, 9, 18] consider the local

min-max point model (sometimes called a “local Nash" point or

“local saddle" point). Any point which is a local min-max point

is also a greedy adversarial equilibrium for small enough 𝜎 > 0
(Corollary 5.1; see the arXiv version of our paper a proof [26]).

Corollary 5.1. Suppose that for any 𝛿 > 0, (𝑥⋆, 𝑦⋆) is a (0, 𝛿)-
local min-max point of a 𝐶2-smooth function 𝑓 ∶ ℝ𝑑 ×ℝ𝑑 → ℝ, and
10
In the full description of the algorithm we set (𝑥0 , 𝑦0) = (0, 0) for simplicity.

11
In the full algorithm we combine noisy SGD with a a random hill-climbing method

(Lines 11-20 of Algorithm 2).

that there is a number 𝑏 > 0 such that |𝑓 (𝑥, 𝑦)| ≤ 𝑏 for all 𝑥, 𝑦 ∈ ℝ𝑑 .
Then for any 𝜀 > 0 there exists 𝜎⋆ > 0 such that for every 0 < 𝜎 ≤ 𝜎⋆
we have that (𝑥⋆, 𝑦⋆) is a (𝜀, 𝜎 )-greedy adversarial equilibrium of 𝑓 .

Since local min-max points are not guaranteed to exist in general,

previous algorithms which seek local min-max points oftentimes

make strong assumptions on the function 𝑓 . For instance, [1] show
that if 𝑓 has 1-Lipschitz gradient and satisfies a “sufficient bilin-

earity” condition– that is, roughly speaking, if the cross derivative

∇2𝑥𝑦 𝑓 (𝑥, 𝑦) has all its singular values greater than some 𝛾 > 2 at ev-
ery 𝑥, 𝑦 ∈ ℝ𝑑–then their algorithm reaches a point (𝑥⋆, 𝑦⋆) where
‖∇𝑥 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀 and ‖∇𝑦 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀 in 𝑂 (

1
𝛾 2 log

𝑀
𝜀 ) evalua-

tions of a Hessian-vector product of 𝑓 , where 𝑀 is the magnitude

of ∇𝑓 at the point where their algorithm is initialized.
12

In [20] the authors consider an alternative model to min-max

optimization which incorporates the fact that in min-max optimiza-

tion the min-player reveals her strategy before the max-player. In

their notion, both players are restricted to making updates in van-

ishingly small neighborhoods of the optimum point (although the

size of the neighborhood for the min-player is allowed to vanish at

a much faster rate than the neighborhood for the max-player). One

difference between our greedy adversarial equilibrium model and

the model considered in [20] is that in [20] the max-player is able to

compute a global maximum (albeit when restricted to a ball of van-

ishingly small radius), while in our greedy adversarial equilibrium

model the max-player is constrained to points reachable by a greedy

path of any length. That being said, our main result still holds if we

restrict the greedy path of the max-player to be proportional to the

updates made by the minimizing player (see Remark 5.2). Another

difference is that, while the solution point for the model in [20] is

not guaranteed to exist in a general nonconvex-nonconcave set-

ting, our main result (Theorem 3.1) guarantees that any uniformly

bounded function with Lipschitz Hessian has a greedy adversarial

equilibrium.

5.2 Applicability and Limitations of Our
Definition

The class of algorithms that our definition allows the players to use

includes a range of algorithms, e.g., gradient descent and negative

curvature descent [24, 34], which only take steps in directions

where the gradient or second derivative is above some threshold

value.

Moreover, one can expand our definition to allow the max-player

to also use randomized algorithms such as noisy gradient descent

[19], as long as the algorithm stops once an approximate local max-

imum is reached. For this class of algorithms, any point (𝑥⋆, 𝑦⋆)
which satisfies our original Definition 2.5 also is a greedy adversar-

ial equilibrium under this expanded definition. Roughly speaking,

this is because as long as the max-player is at a local maximum for

the function 𝑓 (𝑥⋆, ⋅), expanding the choice of algorithms available

to the max-player may increase the value of the greedy max func-

tion at points other than 𝑥⋆ but will not increase the value of the

12
Note that, since such algorithms’ dynamics should ideally not be attracted to minima

or maxima of 𝑓 , additional assumptions on 𝑓 are typically needed even to show conver-

gence to a first-order stationary point–that is, a point (𝑥⋆ , 𝑦⋆)where ‖∇𝑥 𝑓 (𝑥⋆ , 𝑦⋆)‖ ≤ 𝜀
and ‖∇𝑦 𝑓 (𝑥⋆ , 𝑦⋆)‖ ≤ 𝜀 .
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greedy max function at the current point 𝑥⋆. In other words, the

minimizing player will not have an incentive to deviate from 𝑥⋆ if

more algorithms are made available to the max-player.

On the other hand, if we allow the max-player to use algorithms

which do not stop at local maxima, for instance algorithms such as

simulated annealing, a solution (𝑥⋆, 𝑦⋆) which satisfies our current

definition may no longer be a solution in this expanded sense. This

is because, giving the max-player the option to use algorithms

which do not stop once a local maximum is reached may cause the

greedy max function to increase at 𝑥⋆ more than at neighboring

points, incentivizing the minimizing player to deviate from 𝑥⋆.

Remark 5.2. Theorem 3.1 still holds if we restrict the greedy path
to a ball whose radius is proportional to 𝜀, 𝐿1 and the distance ‖𝑥 −𝑥⋆‖
between 𝑥⋆ and the minimizing player’s update 𝑥 . This is because,
roughly speaking, any greedy path that leaves this ball would reach
a point 𝑦 for which the value of 𝑓 at (𝑥, 𝑦) is greater than the value
of 𝑓 at (𝑥⋆, 𝑦⋆). This implies that the truncated greedy max function
min(𝑔𝜀 (𝑥, 𝑦), 𝑔𝜀 (𝑥⋆, 𝑦⋆)) would have the exact same value regard-
less of whether we restrict the max-player to such a ball, and the
point (𝑥⋆, 𝑦⋆) guaranteed by Theorem 3.1 would therefore still satisfy
Definition 2.5.

5.3 The Necessity of Dealing with
Discontinuities in the Greedy Max Function

At first glance, it may seem that we can simply restrict ourselves to

considering functions 𝑓 (𝑥, 𝑦) for which the greedy max function

𝑔𝜀 (𝑥, 𝑦) is continuous. This would greatly simplify our proof, since

we could exclude “unstable" situations where the min-player pro-

poses a small change in 𝑥 which would then cause the max-player

to respond by making a large change in her strategy. A second

difficulty involving discontinuous greedy max functions is that,

since we allow our algorithm to start at any point, even greedy

max functions with discontinuities far from the greedy adversar-

ial equilibrium point(s) are challenging to analyze. Unfortunately,

even very simple functions 𝑓 (𝑥, 𝑦) oftentimes have discontinuous

greedy max functions 𝑔𝜀 (𝑥, 𝑦) (see Example 2.4). Excluding func-

tions where such discontinuities arise would greatly restrict the

applicability of our results, and a large part of our proof is devoted

to dealing with the possibility of discontinuities in the greedy max

function.

5.4 Additional Discussion of Approximate
Local Minimum for Discontinuous
Functions

When choosing our definition for approximate local minimum of

discontinuous functions, we would like this definition to be as close

as possible to the notion of approximate local minimum for 𝐶2
-

smooth functions (Inequality (2)). This allows us to more easily

relate our results to past work in the optimization literature. For

instance, in our proof, we would like to adapt results from [19]

about escaping saddle points in polynomial time to the setting of

discontinuous functions. However, we cannot expect our algorithm

to have direct access to the discontinuous function 𝑔𝜀 (⋅, 𝑦) we wish
to minimize. To allow us to handle this more difficult setting, we

would like our notion of approximate local minimum to satisfy the

property that any point which is an exact local minimum is also an

approximate local minimum under our definition.

To obtain a definition which applies to discontinuous functions

yet is as close as possible to the definition in (2), we would like

to approximate any discontinuous function 𝜓 with a 𝐶2
-smooth

function.When choosing which 𝐶2
-smooth approximation to use,

we would like it to satisfy the following three properties.

(1) 𝐶2-Smooth with Lipschitz Hessian.We would like each

function in our family of approximation functions to be 𝐶2
-

smooth with Lipschitz Hessian. This would allow us to apply

the definition of approximate local minimum for 𝐶2
-smooth

functions (Inequality (2)) to any function in this family.

(2) Shared Local Minima.We want our family of 𝐶2
-smooth

approximation functions to have the property that for any 𝑥⋆
which is an (exact) local minimum of the objective function

𝜓 , and any 𝜀 > 0, there is a function in this family such

that 𝑥⋆ is also an (𝜀,
√
𝜀)-approximate local minimum of this

𝐶2
-smooth function (in the sense of Inequality (2)).

(3) Easy to Compute. We want each function in our family of

approximation functions to be easily computed within some

error 𝜀 at any point 𝑥 in poly(𝑑, 1/𝜀, 𝑏) evaluations of 𝜓 .
Towards this end, we consider the family of functions  where we

convolve 𝜓 with a Gaussian density 𝑁 (0, 𝜎2𝐼𝑑 ) of some variance

𝜎2 and zero mean. That is, we consider functions of the form

𝜓𝜎 (𝑥) ∶= 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [𝜓 (𝑥 + 𝜎𝜁 )]

for some 𝜎 > 0. This family of functions is 𝐶2
-smooth and has

Lipschitz Hessian, which satisfies our first property (1). This is be-

cause a Gaussian density is 𝐶2
-smooth, and any function convolved

with a 𝐶2
-smooth function is also 𝐶2

-smooth. Moreover, if 𝜓 is

𝑏-bounded, then convolving 𝜓 with a Gaussian gives a 𝑏-bounded
function with the magnitude of its 𝑘’th-derivatives bounded by

2𝑏 times an upper bound on the 𝑘’th derivative of the standard

Gaussian density, that is, 2𝑏 × 1
𝜎2𝑘+1√2𝜋 for every 𝑘 > 0. In particular,

this means our smoothed function 𝜓𝜎 (𝑥) is also 𝑏-bounded, with
𝑏 × 1

𝜎7√2𝜋 -Lipschitz Hessian.

The family of functions  also has the advantage that, if 𝜓 is

𝑏-bounded, it can be computed within error 𝜀 in poly(𝑑, 1/𝜀, 𝑏) eval-
uations of 𝜓 with high probability if one uses a Monte-Carlo com-

putation of the expectation 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [𝜓 (𝑥 + 𝜎𝜁 )], which satisfies

our third property (3).

To satisfy our second property (2), wewould ideally like to ensure

that, for every exact local minimum 𝑥⋆ of 𝜓 , and every 𝜀 > 0, there
is a small enough 𝜎 > 0 such that 𝑥⋆ is an (𝜀,

√
𝜀)-approximate

local minimum (in the sense of Inequality (2)) of the smoothed

function 𝜓𝜎 = 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [𝜓 (𝑥 + 𝜎𝜁 )]. Unfortunately, smoothing 𝜓
by convolution alone does not directly allow us to satisfy property

(2). The following example illustrates this problem.

Example 5.3 (Convolution Can Shift Local Minima). Con-
sider the function 𝜓 ∶ ℝ → ℝ, where

𝜓 (𝑥) = 𝑥 − 3𝑥𝟏(𝐱 ≤ 𝟎) + 𝟏(𝐱 ≤ 𝟎).

This function is discontinuous at 𝑥 = 0, and has an exact local mini-
mum at the point 𝑥 = 0 (which also happens to be its global minimum
point). If we smooth 𝜓 by convolving it with a Gaussian distribution
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𝑁 (0, 𝜎2) for any 𝜎 > 0, we get the smooth function

𝜓𝜎 (𝑥) = 3𝜎
1

√
2𝜋

𝑒−
𝑥2
2𝜎2 − 𝑥 + 𝑥Φ(

1
𝜎
𝑥) + Φ(−

1
𝜎
𝑥) ,

where Φ(⋅) is the standard Gaussian cumulative distribution function.
This function is 𝐶2-smooth since Φ(⋅) is 𝐶2-smooth. However, for any
𝜎 > 0, the gradient at 𝑥 = 0 of the smoothed function is −1.5 − 1

𝜎
√
2𝜋 .

Thus, for any 𝜎 > 0, 𝑥 = 0 is not an approximate local minimum of
the smoothed function for any parameter 𝜀 ≤ 1.5.

In Example 5.3 the gradient of the smoothed function 𝜓𝜎 at 𝑥⋆ = 0
has magnitude at least 1.5 for any 𝜎 > 0 even though 𝑥⋆ = 0
is a local minimum of 𝜓 . To understand how this is possible, we

consider the following stochastic gradient (see e.g. [12]) for the

smoothed function 𝜓𝜎 :

∇𝜓𝜎 (𝑥) = 𝜎−1𝔼𝜁∼𝑁 (0,𝐼𝑑 )[(𝜓 (𝑥 + 𝜎𝜁 ) − 𝜓 (𝑥))𝜁 ]. (19)

One can obtain a non-zero gradient ∇𝜓𝜎 (𝑥) even if all of the sampled

points 𝑥 + 𝜎𝜁 in (19) give values 𝜓 (𝑥 + 𝜎𝜁 ) greater than 𝜓 (𝑥).
If 𝜓 were smooth, finding a small step 𝜎𝜁 which increases the

value of 𝜓 (by at least some amount proportional to the step size)

would imply that 𝜓 decreases in the direction −𝜎𝜁 . For smooth

objective functions one can therefore find a descent direction (a

direction in which 𝜓 decreases) simply by first finding an ascent

direction 𝜎𝜁 and then moving in the opposite direction −𝜎𝜁 . Un-
fortunately, this is not true for discontinuous functions, since if 𝜓
is discontinuous, it may be that 𝜓 (𝑥⋆ + 𝜎𝜁 ) > 𝜓 (𝑥⋆) does not imply

that 𝜓 (𝑥⋆ − 𝜎𝜁 ) < 𝜓 (𝑥⋆) no matter how small a step 𝜎𝜁 we take. In

other words, for discontinuous objective functions the presence of

an “ascent direction" along which the objective function increases

does not imply the existence of a “descent direction" along which

the objective function decreases. The only thing that matters when

determining whether a discontinuous function has a local minimum

at some point 𝑥⋆ is whether, in every ball containing 𝑥⋆, there are
points 𝑥⋆ + 𝜎𝜁 for which 𝜓 (𝑥⋆ + 𝜎𝜁 ) < 𝜓 (𝑥⋆).

To enable our definition of approximate local minimum to only

consider those directions which decrease the value of 𝜓 , when
determining whether a point 𝑥⋆ is an (approximate) local mini-

mum we instead consider the truncated function min(𝜓 (𝑥), 𝜓 (𝑥⋆)).
We then smooth this truncated function by convolving it with a

Gaussian, to obtain the following smoothed function of 𝑥 :

𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [min(𝜓 (𝑥 + 𝜎𝜁 ), 𝜓 (𝑥⋆))] .

This function has the property that it is both 𝐶2
-smooth and has

𝑏
𝜎7 -Lipschitz Hessian, since it is the convolution of a 𝑏-bounded
function 𝜓 with a Gaussian of variance 𝜎2.

This leads us to Definition 2.3, which says that 𝑥⋆ is an ap-

proximate local minimum “with smoothing 𝜎 " for a discontinuous
function 𝜓 , if 𝑥⋆ is an approximate local minimum of the smooth

function 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [min(𝜓 (𝑥 + 𝜎𝜁 ), 𝜓 (𝑥⋆))].

6 THE FULL ALGORITHM
In this section we present the full algorithm for computing a greedy

adversarial equilibrium (Algorithm 2), as well as an algorithm for

computing a greedy path (Algorithm 1) which Algorithm 2 uses as

a subroutine.

Algorithm 1: Computing a Greedy Path

Input: Oracles for the value of a function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ,
the gradient ∇𝑦 𝑓 and the Hessian ∇2𝑦 𝑓

Input: x, y0, 𝜀′
Hyperparameters: 𝛿, 𝜇1, 𝜇3, 𝜇4

1 Set 𝓁 ← 0, Stopy ← False

2 while Stopy = False do
3 if ‖∇𝑦 𝑓 (x, y𝓁 )‖ > 𝜀′ then
4 Set y𝓁+1 ← y𝓁 + 𝜇1∇𝑦 𝑓 (x, y𝓁 )
5 Set 𝓁 ← 𝓁 + 1
6 else
7 Compute an eigenvalue-eigenvector pair (𝜆, 𝑣) of

∇2𝑦 𝑓 (x, y𝓁 ), s.t. 𝜆 ≥ 𝜆max(∇2𝑦 𝑓 (x, y𝓁 )) − 𝜇4
8 if 𝜆 >

√
𝐿𝜀′ then

9 Set a = sign(∇𝑦 𝑓 (x, y𝓁 )⊤𝑣)
10 Set y𝓁+1 ← y𝓁 + 𝜇3a𝑣
11 Set 𝓁 ← 𝓁 + 1
12 else
13 Set Stopy = True

14 return yLocalMax ← y𝓁

7 PROOF OF THEOREM 3.1
7.1 Setting Constants and Notation
Since 𝑓 is a 𝑏-bounded 𝐶2

-smooth function with 𝐿-Lipschitz Hes-
sian, it is also 𝐿1-Lipschitz with 𝐿1 ≤ 4𝑏2/3𝐿1/3 and has 𝐿2-Lipschitz
gradient with 𝐿2 ≤ 2𝑏1/3𝐿2/3. From now on, we set 𝐿1 = 4𝑏2/3𝐿1/3 and
𝐿2 = 2𝑏1/3𝐿2/3. Without loss of generality, we may assume that 𝑏 ≥ 1
(since our goal is to prove that the number of gradient evaluations is

polynomial in
1
𝜀 , 𝑑, 𝑏, 𝐿,

1
𝜎 ). We set the following hyperparameters

and constants. While many of these parameters do not appear in

the proof summaries presented here, they do appear in the full

proofs which are presented in the arXiv version of our paper [26].

We include them here for completeness.

(1) 𝜔 B 10−3,
(2) 𝛾1 B 𝜖2.1𝜎16.6

104(1+𝑏3.1)𝑑0.6 log(𝑏𝑑𝜎𝜖) ,

(3) 𝛿 B 𝛾 21
8𝑏2 ,

(4) 𝜇1 B 𝛿 1
𝐿2(𝐿1+1) ,

(5) 𝜇3 B 1
7 min(

𝛿
√
𝜖√
𝐿 ,

𝜖√
𝐿 ),

(6) 𝜇4 B 1
7
√
𝛿𝐿𝜖,

(7) 𝜂 B 𝜎9

𝑏6𝑑2(1+10
𝑏𝑑

𝜎12𝜖2 )c log
9(𝑏𝑑

√
𝜎𝜖)

,

(8) 2 B c log(𝑏𝑑
√
𝜎𝜖)

𝜂
√
𝜖 ,

(9) 3 B 30𝑏
𝛾1 ,

(10) 4 B 6 log(
2𝑏
𝛾1𝜔) ,

(11) 𝛼 B 𝜂c log(𝑏𝑑
√
𝜎𝜖)

√
1 + 𝑏2𝑑2𝜎−2,

where c is a large enough universal constant.
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Algorithm 2: Computing a Greedy Adversarial Equilib-

rium

Input: Oracle for a function 𝑓 ∶ ℝ𝑑 × ℝ𝑑 → ℝ, and oracles

for the gradient ∇𝑦 𝑓 and Hessian ∇2𝑦 𝑓 . 𝜎, 𝜀 > 0
Hyperparamters: 𝜂, 𝛾1,2, 𝛿 ,3,4, 𝛼, 𝜀0

1 Initialize (𝑥0, 𝑦0) ← (0, 0)
2 Set 𝑥1 ← 𝑥0.
3 Run Algorithm 1 with inputs x ← 𝑥1, y0 ← 𝑦0, 𝜀 ← 𝜀,

𝜀′ ← 𝜀0(1 + 𝛿).
4 Set 𝑦1 ← yLocalMax to be the output yLocalMax of Alg. 1.

5 Set ℎ0 ← 𝑓 (𝑥1, 𝑦1)
6 Set Stop ← False, 𝑖 ← 0
7 while Stop = False do
8 Set 𝑖 ← 𝑖 + 1, NoProgress ← True,

9 Set 𝜀𝑖 ← 𝜀𝑖−1(1 + 𝛿)2

10 Set 𝑋0 ← 𝑥𝑖
11 for 𝑗 = 1 to 3 do
12 if NoProgress = True then
13 Set 𝜁𝑖𝑗 ∼ 𝑁 (0, 𝐼𝑑 )
14 Run Algorithm 1 with inputs x ← 𝑥𝑖 + 𝜎𝜁𝑖𝑗 ,

y0 ← 𝑦𝑖 , 𝜀 ← 𝜀, and 𝜀′ ← 𝜀𝑖(1 + 𝛿).
15 Set  ← yLocalMax to be the output yLocalMax of

Algorithm 1.

16 if 𝑓 (𝑥𝑖 + 𝜎𝜁𝑖𝑗 ,) ≤ 𝑓 (𝑥𝑖 , 𝑦𝑖) − 𝛾1 then
17 Set 𝑥𝑖+1 ← 𝑥𝑖 + 𝜎𝜁𝑖𝑗
18 Set 𝑦𝑖+1 ←  ,

19 Set ℎ0 ← 𝑓 (𝑥𝑖 , 𝑦𝑖)
20 Set 𝑖 ← 𝑖 + 1, NoProgress ← False,

21 for 𝑗 = 1 to 4 do
22 if NoProgress = True then
23 for 𝑘 = 1 to 2 do
24 Set 𝑢 ∼ 𝑁 (0, 𝐼𝑑 )
25 Run Algorithm 1 with inputs x ← 𝑋𝑘−1 + 𝜎𝑢,

y0 ← 𝑦𝑖 , 𝜀 ← 𝜀, 𝜀′ ← 𝜀𝑖(1 + 𝛿).
26 Set  ← yLocalMax to be the output

yLocalMax of Algorithm 1.

27 Set ℎ𝑘 = min(𝑓 (𝑋𝑘−1 + 𝜎𝑢,), 𝑓 (𝑥𝑖 , 𝑦𝑖))
28 Set Γ𝑘 = (ℎ𝑘 − ℎ𝑘−1) 1𝜎 𝑢
29 Set 𝜉 ∼ 𝑁 (0, 𝐼𝑑 ),
30 Set 𝑋𝑘 ← 𝑋𝑘−1 − 𝜂Γ𝑘 + 𝛼𝜉

31 Run Algorithm 1 with inputs x ← 𝑋𝑘 , y0 ← 𝑦𝑖 ,
𝜀 ← 𝜀, and 𝜀′ ← 𝜀𝑖(1 + 𝛿).

32 Set  ← yLocalMax to be the output yLocalMax of
Algorithm 1.

33 if 𝑓 (𝑋𝑘 ,) ≤ 𝑓 (𝑋0, 𝑦𝑖) − 𝛾1 then
34 Set 𝑥𝑖+1 ← 𝑋𝑘
35 Set 𝑦𝑖+1 ←  ,

36 Set ℎ0 ← 𝑓 (𝑥𝑖 , 𝑦𝑖),
37 Set 𝑖 ← 𝑖 + 1, NoProgress ← False

38 if NoProgress = True then
39 Set Stop = True

40 return 𝑖⋆ ← 𝑖, 𝜀⋆ ← 𝜀𝑖⋆ , and (𝑥⋆, 𝑦⋆) ← (𝑥𝑖⋆ , 𝑦𝑖⋆ )

In particular, we have set 𝛿 = 1
4𝑖2max

, where 𝑖max B
2𝑏
𝛾1 is an upper

bound on the number of iterations of the While loop in Algorithm

2. This ensures that (1 + 𝛿)𝑖 ≤ 2 for all 𝑖 ∈ [𝑖max].
In the following sections we let (𝑥𝑖 , 𝑦𝑖) denote the points (𝑥𝑖 , 𝑦𝑖)

at each iteration 𝑖 of the While loop in Algorithm 2, and we set

𝜀𝑖 B 𝜀0(1 + 𝛿)2𝑖 for all 𝑖 ∈ ℕ.

For any 𝜀◦ > 0, and any (𝑥, 𝑦) ∈ ℝ𝑑 × ℝ𝑑 , we define

ℎ𝜀◦ (𝑥, 𝑦) B 𝑓 (𝑥,), (20)

where  ← yLocalMax is the output of Algorithm 1 with inputs

x ← 𝑥 , y0 ← 𝑦 , and 𝜀′ ← (1 + 𝛿)𝜀◦.

7.2 Proof Outline
The proof of Theorem 3.1 has three main components:

(1) We start by showing that Algorithm 2 halts after 𝑖⋆ = 𝑂 (
𝑏
𝛾1 )

iterations, which allows us to bound the number of oracle

calls until Algorithm 2 halts (Lemma 7.1).

(2) We then show that the point (𝑥⋆, 𝑦⋆) returned by Algorithm
2 is an (𝜀⋆, 𝜎 )-greedy adversarial equilibrium for 𝑓 , for some

𝜀⋆ = 𝜀𝑖⋆ = 𝜀0 ≤ (1 + 𝛿)𝑂(𝑖
⋆) ≤ 𝜀.

Towards this end we first show that 𝑦⋆ is an (𝜀⋆,
√
𝐿𝜀⋆)-

approximate local maximum of 𝑓 (𝑥⋆, ⋅) (in the sense of the

definition in (2)) and therefore satisfies Inequalities (6) of

Definition 2.5.

(3) Next, we show that 𝑥⋆ is an (𝜀⋆, 𝜎 )-approximate local mini-

mum of 𝑔𝜀 (⋅, 𝑦⋆)) (in the sense of Definition 2.3), and there-

fore satisfies Inequalities (7) of Definition 2.5 (see the proof

in Section 7.6). Towards this end, we prove (in Lemma 7.3)

that to guarantee 𝑥⋆ is an (𝜀⋆, 𝜎 )-approximate local mini-

mum of 𝑔𝜀 (⋅, 𝑦⋆), it is sufficient to show that 𝑥⋆ is an (𝜀⋆, 𝜎 )-
approximate local minimum of ℎ𝜀 (⋅, 𝑦⋆) (Propositions 7.7 and
7.8), provided that we can also show that ℎ𝜀 and 𝑔𝜀 satisfy a

number of conditions. Namely, these conditions are:

(a) ℎ𝜀 (𝑥, 𝑦) ≤ 𝑔𝜀 (𝑥, 𝑦) for all (𝑥, 𝑦) ∈ ℝ𝑑 ×ℝ𝑑 (Proposition 7.4).

(b) ℎ𝜀 (𝑥⋆, 𝑦⋆) = 𝑔𝜀 (𝑥⋆, 𝑦⋆) (Proposition 7.5).

(c) A stochastic gradient for a smoothed version of ℎ𝜀 (defined
in Equation (23)) has a very small expected magnitude

(Proposition 7.6).

In the remainder of this section, we present the main lemmas and

propositions we use to prove Theorem 3.1, along with short sum-

maries of their proofs; for the full proofs see the arXiv version of

our paper [26]. We conclude the proof of Theorem 3.1 in Section

7.6.

7.3 Gradient, Function, and Hessian
Evaluations

Lemma 7.1 (Bounding the Number of Gradient, Hessian, and

Function Evaluations). Algorithm 2 terminates after at most 𝑖⋆ =
𝑂( 𝑏𝛾1 ) iterations, and thus takes atmost𝑂 (

𝑏
𝛾1 × (24 + 3) × 𝑏

𝜇1𝜇23𝐿 )
gradient, Hessian, and function evaluations.

proof (summary). First, we show that Algorithm 1 terminates

after 𝑂 (
𝑏

𝜇1𝜇23𝐿 )
oracle evaluations. Next we show the Algorithm 2
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terminates after at most 𝑂 (
𝑏
𝛾1 ) iterations of its “While" loop. Since

Algorithm 1 is called 3 +24 times at each iteration of Algorithm

2, running Algorithm 1 contributes 𝑂 (
𝑏
𝛾1 × (3 + 24) × 𝑏

𝜇1𝜇23𝐿 )
oracle calls to the cost of Algorithm 2. Since the other parts of the

While loop make at most 𝑂 (3 + 24) function evaluations, they

contribute no more that 𝑂( 𝑏𝛾1 × (3 + 24)) function evaluations

to the cost of Algorithm 2. Therefore, Algorithm 2 terminates after

at most 𝑂 (
𝑏
𝛾1 × (3 + 24) × 𝑏

𝜇1𝜇23𝐿 )
oracle calls. □

7.4 𝑦⋆ an Approximate Local Max of 𝑓 (𝑥⋆, ⋅)
Lemma 7.2 (Approximate Local Maximum in 𝑦). The output

yLocalMax of Algorithm 1 with inputs x, y0, 𝜀′ satisfies

‖∇𝑦 𝑓 (x, yLocalMax)‖ ≤ 𝜀′

and
𝜆max(∇2𝑦 𝑓 (x, yLocalMax)) ≤

√
𝐿𝜀′.

In particular, this implies that the output (𝑥⋆, 𝑦⋆) of Algorithm 2
satisfies

‖∇𝑦 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀𝑖⋆ , (21)

and
𝜆max(∇2𝑦 𝑓 (𝑥

⋆, 𝑦⋆)) ≤
√
𝐿𝜀𝑖⋆ . (22)

proof (summary). The proof uses the first-order stopping con-

dition (Line 3) and second-order stopping condition (Line 8) for

Algorithm 1 to show that the point reached by that Algorithm once

it stops is an (𝜀′,
√
𝐿𝜀′)-approximate local maximum of 𝑓 (x, ⋅) (in

the sense of Definition 2.3). □

7.5 𝑥⋆ an Approximate Local Min of 𝑔𝜀(⋅, 𝑦⋆)
We start by defining some functions which will be useful in showing

that 𝑥⋆ is an approximate local minimum of 𝑔𝜀 (⋅, 𝑦⋆).
For any 𝑥̂ ∈ ℝ𝑑 , 𝜀◦ > 0, let

g𝑥̂𝜀◦ (𝑥, 𝑦) B min(𝑔𝜀◦ (𝑥, 𝑦), 𝑔𝜀◦ (𝑥̂ , 𝑦)),

h𝑥̂𝜀◦ (𝑥, 𝑦) B min(ℎ𝜀◦ (𝑥, 𝑦), ℎ𝜀◦ (𝑥̂ , 𝑦)),

and

𝔤𝑥̂𝜀◦ ,𝜎 (𝑥, 𝑦) B 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [g
𝑥̂
𝜀◦ (𝑥 + 𝜎𝜁 , 𝑦)] ,

𝔥𝑥̂𝜀◦ ,𝜎 (𝑥, 𝑦) B 𝔼𝜁∼𝑁 (0,𝐼𝑑 ) [h
𝑥̂
𝜀◦ (𝑥 + 𝜎𝜁 , 𝑦)] .

Finally, for any 𝑥̂ ∈ ℝ𝑑 , 𝜀◦ > 0, define the stochastic gradient

 𝑥̂
𝜀◦ (𝑥, 𝑦) B

𝜁
𝜎
(h𝑥̂𝜀◦ (𝑥 + 𝜎𝜁 , 𝑦) − h𝑥̂𝜀◦ (𝑥, 𝑦)), (23)

where 𝜁 ∼ 𝑁 (0, 𝐼𝑑 ).

7.5.1 Showing That 𝑔𝜀 and ℎ𝜀 Have Shared Approximate Local Min-
ima. The following lemma allows us to guarantee that if we can

show that our algorithm returns a point (𝑥⋆, 𝑦⋆) where 𝑥⋆ is an

approximate local minimum for ℎ𝜀 (⋅, 𝑦⋆) for some 𝑦⋆ ∈ ℝ𝑑 , then 𝑥⋆
is also an approximate local minimum for the greedy max function

𝑔𝜀 (⋅, 𝑦⋆), provided that we can also show that ℎ𝜀 , 𝑔𝜀 , 𝑥⋆ and 𝑦⋆
satisfy certain conditions.

Lemma 7.3 (Shared Local Minima of 𝑔𝜀 and ℎ𝜀 ). Consider any
𝜀 > 0. Suppose that 𝜎 ≤ 1√

𝜀𝑑
and that for some point (𝑥⋆, 𝑦⋆) ∈

ℝ𝑑 × ℝ𝑑 we have

ℎ𝜀 (𝑥, 𝑦) ≤ 𝑔𝜀 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ ℝ𝑑 (lower bound), (24)

ℎ𝜀 (𝑥⋆, 𝑦⋆) = 𝑔𝜀 (𝑥⋆, 𝑦⋆) (fixed-point property), (25)

𝔼[‖𝑥⋆
𝜀 (𝑥⋆, 𝑦⋆)‖] ≤

1
8000

𝜎14𝜀1.5

𝑏2
(low SG), (26)

‖∇𝑥𝔥𝑥
⋆

𝜀,𝜎 (𝑥
⋆, 𝑦⋆)‖ ≤

𝜀2𝜎7

8000𝑏
(1st-order stationarity for 𝔥) , (27)

𝜆min(∇2𝑥𝔥
𝑥⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆)) ≥ −
√
𝜀
5

(2nd-order stationarity). (28)

Then

‖∇𝑥𝔤𝑥
⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆)‖ ≤ 𝜀 a𝑛𝑑 (29)

𝜆min(∇2𝑥𝔤
𝑥⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆)) ≥ −
√
𝜀. (30)

proof (summary). Proving Inequality (29): First, we use condi-
tions (24), (25), and (26) to show that

𝔼[|𝑔𝜀 (𝑥⋆, 𝑦⋆) − (min(𝑔𝜀 (𝑥⋆ + 𝜎𝜁 , 𝑦⋆), 𝑔𝜀 (𝑥⋆, 𝑦⋆))|] (31)

≤ 𝔼[|ℎ𝜀 (𝑥⋆, 𝑦⋆) − min(ℎ𝜀 (𝑥⋆ + 𝜎𝜁 , 𝑦⋆), ℎ𝜀 (𝑥⋆, 𝑦⋆)|]

≤
𝜎
√
𝑑
𝔼 [

‖‖‖‖
𝜁
𝜎
(min(ℎ𝜀 (𝑥⋆ + 𝜎𝜁 , 𝑦⋆), ℎ𝜀 (𝑥⋆, 𝑦⋆)) − ℎ𝜀 (𝑥⋆, 𝑦⋆)

‖‖‖‖]

≤ 𝑂(
𝜎
√
𝑑
×
𝜎14𝜀1.5

𝑏2 ) .

The first inequality holds by conditions (24) and (25), since the fact

that ℎ𝜀 is a lower bound for 𝑔𝜀 allows us to replace 𝑔𝜀 (𝑥⋆ + 𝜎𝜁 , 𝑦⋆)
on the LHS with ℎ𝜀 (𝑥⋆ + 𝜎𝜁 , 𝑦⋆) on the RHS. And (25) allows

us to replace 𝑔𝜀 (𝑥⋆, 𝑦⋆) with ℎ𝜀 (𝑥⋆, 𝑦⋆). The second inequality

holds by a concentration bound for Gaussians. The last inequality

follows directly from the condition (26), since the quantity inside the

expectation is just the magnitude of the stochastic gradient 𝑥⋆
𝜀 at

the point (𝑥⋆, 𝑦⋆). We then use (31) to show that ‖∇𝑥𝔤𝑥
⋆
𝜀,𝜎 (𝑥⋆, 𝑦⋆)‖ <

𝜀, which proves Inequality (29).

Proving Inequality (30) :We show (30) via a contradiction argu-

ment. Towards this end, we use Equation (29) to show that, if it

were true that (30) did not hold, that is, if

𝜆min(∇2𝑥𝔤
𝑥⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆)) < −
√
𝜀,

then there would be some vector 𝑣 and a number 𝑡 > 0 such that

𝔤𝑥
⋆
𝜀,𝜎 (𝑥

⋆ + 𝑡𝑣, 𝑦⋆) − 𝔤𝑥
⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆) ≤ −
9/2
4000

𝜎14𝜀1.5

𝑏2
. (32)

Moreover, we also show that (28) implies that

𝔥𝑥
⋆

𝜀,𝜎 (𝑥
⋆ + 𝑡𝑣, 𝑦⋆) − 𝔥𝑥

⋆
𝜀,𝜎 (𝑥

⋆, 𝑦⋆) ≥ −
1

4000
𝜎14𝜀1.5

𝑏2
. (33)

Next, we show that, since 𝑔𝜀 (𝑥⋆, 𝑦⋆) = ℎ𝜀 (𝑥⋆, 𝑦⋆), we have roughly
speaking that 𝔤𝑥

⋆
𝜀,𝜎 (𝑥⋆, 𝑦⋆) ≈ 𝔥𝑥

⋆
𝜀,𝜎 (𝑥⋆, 𝑦⋆). This fact, together with

(32) and (33) implies that

𝔤𝑥
⋆
𝜀,𝜎 (𝑥

⋆ + 𝑡𝑣, 𝑦⋆) < 𝔥𝑥
⋆

𝜀,𝜎 (𝑥
⋆ + 𝑡𝑣, 𝑦⋆). (34)

On the other hand, we use the fact that ℎ𝜀 (𝑥, 𝑦) < 𝑔𝜀 (𝑥, 𝑦) for all
𝑥, 𝑦 ∈ ℝ𝑑 × ℝ𝑑 to show that

𝔥𝑥
⋆

𝜀 (𝑥, 𝑦⋆) ≤ 𝔤𝑥
⋆
𝜀 (𝑥, 𝑦⋆) ∀𝑥 ∈ ℝ𝑑 . (35)
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Since (35) contradicts (34), we have that (30) holds by contradiction.

□

7.5.2 Properties of 𝑔𝜀 and ℎ𝜀 .

Proposition 7.4 (Greedy Max Lower Bound).

ℎ𝜀◦ (𝑥, 𝑦) ≤ 𝑔𝜀◦ (𝑥, 𝑦), ∀𝑥, 𝑦 ∈ ℝ𝑑 , ∀𝜀◦ > 0. (36)

proof (summary). First we show that the path traced by Algo-

rithm 1 with inputs x ← 𝑥 , y0 ← 𝑦, and 𝜀′ ← (1 + 𝛿)𝜀◦ is an
𝜀◦-greedy path with initial point 𝑦 . Since ℎ𝜀◦ (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦′), where
𝑦′ is the output of Algorithm 1 with the above-mentioned inputs,

and 𝑔𝜀◦ (𝑥, 𝑦) is the supremum of the value of 𝑓 at the endpoints of
all 𝜀◦-greedy paths which seek to maximize 𝑓 (𝑥, ⋅) from the starting

point 𝑦 , we must have that

ℎ𝜀◦ (𝑥, 𝑦) ≤ 𝑔𝜀◦ (𝑥, 𝑦), ∀𝑥, 𝑦 ∈ ℝ𝑑 , ∀𝜀◦ > 0. □

Proposition 7.5 (Fixed Point Property). Recall that 𝜀𝑖 = 𝜀0(1+
𝛿)2𝑖 , and consider the points (𝑥𝑖 , 𝑦𝑖) generated at each iteration 𝑖 of
the While loop in Algorithm 2. Then

ℎ𝜀𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝑔𝜀𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝑓 (𝑥𝑖 , 𝑦𝑖), ∀𝑖 ∈ ℕ. (37)

Proof. By Lemma 7.2 we have that

‖∇𝑦 𝑓 (𝑥𝑖 , 𝑦𝑖)‖ ≤ 𝜀𝑖 and 𝜆max(∇2𝑦 𝑓 (𝑥𝑖 , 𝑦𝑖)) ≤
√
𝐿𝜀𝑖 , (38)

since 𝑦𝑖 is generated by Algorithm 1 with inputs x ← 𝑥𝑖 , y0 ← 𝑦𝑖−1,
and 𝜀′ ≤ 𝜀𝑖−1(1 + 𝛿).

Inequality (38) implies that there is only one greedy path (with

parameter 𝜀𝑖) which seeks to maximize 𝑓 (𝑥𝑖 , ⋅) with starting point

𝑦𝑖 , namely, the path consisting of the single point 𝑦𝑖 . Therefore,

ℎ𝜀𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝑔𝜀𝑖 (𝑥𝑖 , 𝑦𝑖) = 𝑓 (𝑥𝑖 , 𝑦𝑖), ∀𝑖 ∈ ℕ. □

Proposition 7.6 (Low-Magnitude Stochastic Gradient).

With probability at least 1 − 𝜔 the stochastic gradient 𝜀𝑖⋆ at the
outputs (𝑥⋆, 𝑦⋆) of Algorithm 2 satisfies

𝔼 [
‖‖‖

𝑥⋆
𝜀𝑖⋆ (𝑥

⋆, 𝑦⋆)‖‖‖
||||
(𝑥⋆, 𝑦⋆)] ≤ 10𝑏𝛾1

√
𝑑𝜎−1 log

2
𝛾1
.

proof (summary). First we note that whenever Algorithm 2

outputs a point (𝑥𝑖⋆ , 𝑦𝑖⋆ ) = (𝑥⋆, 𝑦⋆), the stopping condition in Line

16 implies that we have that

𝑓 (𝑥⋆ + 𝜎𝜁 , 𝑦′) > 𝑓 (𝑥⋆, 𝑦⋆) − 𝛾1, (39)

with high probability, where 𝜁 ∼ 𝑁 (0, 𝐼𝑑 ) and 𝑦′ is the output of
Algorithm 1 with inputs 𝑥⋆, 𝑦⋆, 𝜀𝑖⋆ (1 + 𝛿).

We then use (39) together with the fact that 𝑓 (𝑥⋆ + 𝜎𝜁 , 𝑦′) =
ℎ𝜀𝑖⋆ (𝑥

⋆ + 𝜎𝜁 , 𝑦⋆) and that 𝑓 (𝑥⋆, 𝑦⋆) = ℎ𝜀𝑖⋆ (𝑥
⋆, 𝑦⋆) to show that

𝔼 [
‖‖‖

𝑥⋆
𝜀𝑖⋆ (𝑥

⋆, 𝑦⋆)‖‖‖
||(𝑥

⋆, 𝑦⋆)]

= 𝔼[
‖‖‖‖
𝜁
𝜎
(min(ℎ𝜀𝑖⋆ (𝑥

⋆ + 𝜎𝜁 , 𝑦⋆), ℎ𝜀𝑖⋆ (𝑥
⋆, 𝑦⋆))

− ℎ𝜀𝑖⋆ (𝑥
⋆, 𝑦⋆))‖‖

||||
(𝑥⋆, 𝑦⋆)]

≤ 10𝑏𝛾1
√
𝑑𝜎−1 log(2𝛾−11 ). □

7.5.3 Showing 𝑥⋆ is an Approximate Local Min of ℎ𝜀 (⋅, 𝑦⋆).

Proposition 7.7 (First-Order Stationary Condition).

ℙ(
‖‖‖∇𝑥𝔥

𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)‖‖‖ > 10𝑏𝛾1

√
𝑑
𝜎

log
2𝑏
𝛾1 )

≤ 𝜔. (40)

proof (summary). We use standard concentration bounds for

Gaussian random vectors, to show that the stochastic gradient

𝑥⋆
𝜀𝑖⋆ (𝑥

⋆, 𝑦⋆) is very close to the gradient ∇𝑥𝔥𝑥
⋆

𝜀𝑖⋆ ,𝜎 (𝑥
⋆, 𝑦⋆) of 𝔥 with

high probability. This fact, together with Proposition 7.6, implies

Inequality (40). □

Proposition 7.8 (Second-Order StationaryCondition). With
probability at least 1 − 2𝜔, we have that

𝜆min (∇
2
𝑥𝔥

𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)) ≥ −
1
5
√
𝜀𝑖⋆ . (41)

proof (summary). First we show that Γ𝑘 in Algorithm 2 is a

stochastic gradient for 𝔥
𝑥𝑖
𝜀𝑖 ,𝜎 (𝑋

𝑗
𝑘−1, 𝑦𝑖), that is,

𝔼[Γ𝑘] = ∇𝑥𝔥𝑥𝑖𝜀𝑖 ,𝜎 (𝑋
𝑗
𝑘−1, 𝑦𝑖) , (42)

and also show a concentration property for this stochastic gradient,

ℙ(
‖‖‖‖
Γ𝑘 − ∇𝑥𝔥𝑥𝑖𝜀𝑖 ,𝜎 (𝑋

𝑗
𝑘−1, 𝑦𝑖)

‖‖‖‖
≥ 𝑡) ≤ 2 exp

⎛
⎜
⎜
⎜
⎝

−
𝑡2

8(
2𝑏
√
𝑑

𝜎 )
2

⎞
⎟
⎟
⎟
⎠

∀𝑡 ≥ 0.

(43)

Since Γ𝑘 is a stochastic gradient with concentration properties for

a smooth function, we can apply results from [19] which, roughly

speaking, say that stochastic gradient descent with added Gaussian

noise can escape saddle points in polynomial time.

More specifically, Lemma 25 of [19], together with Equations

(42) and (43), imply that, if Algorithm 2 reaches a point 𝑥⋆ where it

can no longer decrease 𝔥𝑥
⋆

𝜀𝑖⋆ ,𝜎 (⋅, 𝑦
⋆), then w.h.p. 𝑥⋆ is an (𝜀𝑖⋆ ,

√𝜀𝑖⋆ )-
approximate local minimum for 𝔥𝑥

⋆
𝜀𝑖⋆ ,𝜎 (⋅, 𝑦

⋆) (in the sense of the

definition in (2)). This fact, together with Proposition 7.7, implies

Inequality (41). □

7.6 Concluding the Proof of Main Theorem
Proof of Theorem 3.1. Showing Convergence, and Bound-

ing the Number of Oracle Calls.
By Lemma 7.1, we have that Algorithm 2 terminates and outputs a

point (𝑥⋆, 𝑦⋆) ∈ ℝ𝑑 after

𝑂(
𝑏
𝛾1

× (24 + 3) ×
𝑏

𝜇1𝜇23𝐿)
= poly(

1
𝜀
, 𝑑, 𝑏, 𝐿,

1
𝜎 )

gradient, function, and Hessian evaluations. In particular, if 𝑏, 𝐿 ≥ 1
and if 𝜎, 𝜀 ≤ 1, the number of gradient, function, and Hessian

evaluations can be simplified to 𝑂 (
𝑑8𝐿2𝑏37
𝜖19𝜎132 ).

Showing 𝑥⋆ Is an Approximate Local Minimum for Greedy
Max Function.
By Proposition 7.4, we have that

ℎ𝜀𝑖⋆ (𝑥, 𝑦) ≤ 𝑔𝜀𝑖⋆ (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ ℝ𝑑 . (44)

By Proposition 7.5, we have that

ℎ𝜀𝑖⋆ (𝑥
⋆, 𝑦⋆) = 𝑔𝜀𝑖 (𝑥

⋆, 𝑦⋆) = 𝑓 (𝑥⋆, 𝑦⋆). (45)
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By Proposition 7.6 we have, with probability at least 1 − 𝜔, that

𝔼 [
‖‖‖

𝑥⋆
𝜀𝑖⋆ (𝑥

⋆, 𝑦⋆)‖‖‖
||(𝑥

⋆, 𝑦⋆)] ≤
1

8000
𝜎14𝜀1.5𝑖⋆
𝑏2

, (46)

since 𝛾1 = 𝜀2.1𝜎16.6

104(1+𝑏3.1)𝑑0.6 log(𝑏𝑑𝜎𝜀) .

By Proposition 7.7, with probability at least 1 − 𝜔, we have that

‖‖‖∇𝑥𝔥
𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)‖‖‖ ≤
𝜀2𝑖⋆
8000

𝜎7

𝑏
, (47)

since 𝛾1 = 𝜀2.1𝜎16.6

104(1+𝑏3.1)𝑑0.6 log(𝑏𝑑𝜎𝜀) .

By Proposition 7.8, with probability at least 1 − 2𝜔 we have

𝜆min(∇2𝑥𝔥
𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)) ≥ −
1
5
√
𝜀𝑖⋆ . (48)

Thus, by Lemma 7.3, (44)-(48) imply that, w.p. at least 1 − 4𝜔,

‖‖∇𝑥𝔤
𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)‖‖ ≤ 𝜀𝑖⋆ and 𝜆min(∇2𝑥𝔤
𝑥⋆
𝜀𝑖⋆ ,𝜎 (𝑥

⋆, 𝑦⋆)) ≥ −
√
𝜀𝑖⋆ .
(49)

Showing That 𝑦⋆ Is an Approximate Local Maximum for
𝑓 (𝑥⋆, ⋅).
We also have, by Lemma 7.2 that

‖∇𝑦 𝑓 (𝑥⋆, 𝑦⋆)‖ ≤ 𝜀𝑖⋆ and 𝜆max(∇2𝑦 𝑓 (𝑥
⋆, 𝑦⋆)) ≤

√
𝐿𝜀𝑖⋆ . (50)

Showing That (𝑥⋆, 𝑦⋆) Is a Greedy Adversarial Equilibrium
for 𝑓 .
Inequalities (49) and (50) together imply that, with probability at

least 1 − 4𝜔, the point (𝑥⋆, 𝑦⋆) is an (𝜀⋆, 𝜎 )-greedy adversarial equi-

librium, where 𝜀⋆ = 𝜀𝑖⋆ ≤ 𝜀. □
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