Greedy Adversarial Equilibrium: An Efficient Alternative to
Nonconvex-Nonconcave Min-Max Optimization

Oren Mangoubi
Worcester Polytechnic Institute
USA

ABSTRACT

Min-max optimization of an objective function f : R¢ x R? — R
is an important model for robustness in an adversarial setting,
with applications to many areas including optimization, economics,
and deep learning. In many applications f may be nonconvex-
nonconcave, and finding a global min-max point may be compu-
tationally intractable. There is a long line of work that seeks com-
putationally tractable algorithms for alternatives to the min-max
optimization model. However, many of the alternative models have
solution points which are only guaranteed to exist under strong
assumptions on f, such as convexity, monotonicity, or special prop-
erties of the starting point. We propose an optimization model, the
e-greedy adversarial equilibrium, and show that it can serve as a
computationally tractable alternative to the min-max optimization
model. Roughly, we say that a point (x*, y*) is an e-greedy adver-
sarial equilibrium if y* is an e-approximate local maximum for
f(x*,-), and x* is an e-approximate local minimum for a “greedy
approximation” to the function max; f(x, z) which can be efficiently
estimated using second-order optimization algorithms. We prove
the existence of such a point for any smooth function which is
bounded and has Lipschitz Hessian. To prove existence, we intro-
duce an algorithm that converges from any starting point to an
e-greedy adversarial equilibrium in a number of evaluations of
the function f, the max-player’s gradient Vf(x, y), and its Hes-
sian Vi f(x,y), that is polynomial in the dimension d, 1/¢, and the
bounds on f and its Lipschitz constant.

CCS CONCEPTS

« Theory of computation — Nonconvex optimization; « Com-
puting methodologies — Machine learning algorithms.

KEYWORDS
min-max optimization, nonconvex optimization

ACM Reference Format:

Oren Mangoubi and Nisheeth K. Vishnoi. 2021. Greedy Adversarial Equi-
librium: An Efficient Alternative to Nonconvex-Nonconcave Min-Max Op-
timization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing (STOC °21), June 21-25, 2021, Virtual, Italy. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3406325.3451097

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC °21, June 21-25, 2021, Virtual, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8053-9/21/06...$15.00
https://doi.org/10.1145/3406325.3451097

896

Nisheeth K. Vishnoi
Yale University
USA

1 INTRODUCTION

Min-max optimization of functions f : RY x R — R, where
f(x, y) may be nonconvex and nonconcave in both x and y, is an
important model for robustness which arises in optimization and
game theory [35] with recent applications in machine learning
such as generative adversarial networks (GANs) [16] and robust
training [25]. Specifically, in a min-max problem, one wishes to find
a global min-max point (x*, y*) that is a solution to the following
optimization problem:

min max f(x, y).
x€RY yeR4

In other words,
f(x*,y") = max f(x*,y) and
y€eR4

max f(x*,y) = min max f(x, y).

yeRd x€R4 yeR4
We consider the setting where f is a C2-smooth nonconvex- non-
concave function that is uniformly bounded by some b > 0 with
L-Lipschitz Hessian for some L > 0, and we are given access to
oracles for f, its gradient, and its Hessian. The setting where f is
a bounded function with unconstrained domain arises in many
machine learning applications, including generative adversarial
networks (GANs).!

In the unconstrained setting, a global min-max point may not
exist, even when f is bounded above and below. However, in the
setting where f is bounded, the extreme value theorem guarantees
that one can find a point where each player’s objective is very close
to its min-max optimal value. Namely, for every ¢ > 0 one can
always find a point (x*, y*) such that

f(x*,y*) = max f(x*,y) - ¢ and
yeR4

max f(x*,y) < min max f(x,y) + €
yeRd x€RY yeR4

However, even in the special case of minimization, finding a point
whose function value is within a fixed ¢ > 0 of the minimum value
is hard. For instance, this problem is NP-hard in settings when the
objective function is given by a depth-2 neural network with mean-
squared error loss [27]; see also [6]. The problem of minimizing
a function or determining if it can achieve a minimum value of
0 remains hard when f is uniformly b-bounded with L-Lipschitz
Hessian when one is given access to oracles for the gradient and
Hessian of f, and requires a number of oracle queries which is

'In GANs, the objective function value is bounded both above and below if one uses a
mean-squared-error loss [28]. For the cross-entropy loss [16], the objective function is
uniformly bounded above by 0 (but need not be bounded below).

https://doi.org/10.1145/3406325.3451097
https://doi.org/10.1145/3406325.3451097

STOC ’21, June 21-25, 2021, Virtual, Italy

exponential in d (see the arXiv version of our paper [26] for a de-
tailed discussion). Consequently, there has been interest in finding
computationally tractable alternatives to min-max optimization.

One popular alternative to min-max optimization is to consider
a model where the min- and max- players are only allowed to make
small “local" updates, rather than requiring each player to solve a
global optimization problem [2, 9, 10, 18]. A stationary point for
such a model, sometimes referred to as a local min-max point, is a
point where the min-player is unable to decrease the loss, and the
max-player is unable to increase the loss, if they are restricted to
local updates inside a ball of some small radius. More specifically,
for &, > 0, an (¢, §)-local min-max point (x*, y*) is a point where
Vx,y € R? such that |y - y*| < § and |x - x*| = &,

f&y) = f(x"y)-¢ and f(x*.y") < f(x,y") + e

One can also define a notion of (¢, §)-local minimum and maximum
point in a similar manner. In the “local" regime where § < O(/¢), if
f € [-1,1] with O(1)-Lipschitz gradient, any point which is an (¢, §)-
local minimum of the function f with respect to the variable (x, y),
or an (¢, §)-local maximum of f with respect to (x, y), will also be
a (Q(¢), O(8))-local min-max point of this function; thus, in this
regime the problem of finding local min-max points is equivalent
to the problem of finding a local minimum or maximum point.
Unfortunately, outside of the regime § < O(4/¢), local min-max
points may not exist even for functions f where the value of f €
[-1,1] and f is O(1)-Lipschitz with O(1)-Lipschitz gradient and
Hessian.? Thus, in the regime § > Q(/¢) local min-max points are
not guaranteed to exist, and, when § < O(/¢) finding an (¢, §)-local
min-max point is not as interesting since it reduces to finding a
minimum (or maximum) point of f.

1.1 Our Contributions

We depart from prior approaches and make a novel assumption
on the adversary (the max-player), namely, that the adversary is
computationally bounded. This is motivated from real-world appli-
cations where the adversary itself may be an algorithm. Roughly,
we show that when the adversary is restricted to computing a
greedy approximation to the global maximum max; f(x, z), a type
of equilibrium —greedy adversarial equilibrium— always exists and
can be found efficiently for general f in time polynomial in d, b, and
L. This is in contrast to previous works which seek local min-max
points and make strong assumptions on f, for instance assuming
that f(x, y) is concave in y but possibly nonconvex in x [33, 36],
that f is sufficiently bilinear [1], or that the gradient of f satisfies a
monotonicity property [14, 22].

Our greedy adversarial equilibrium builds on the second-order
notion of approximate local minimum introduced by [31].3 Roughly,
a second-order (¢, §)-approximate local minimum of a function
(/88 R? —» Risa point x* which satisfies the following second-
order conditions

[VP(e*)] < & and Apin(V29(x")) = -6.

ZFor instance, the function f(x, y) := sin(x + y) has no (¢, §)-local min-max points
when ﬁ >5> e

3We often refer to this second-order approximate local minimum by approximate local
minimum.

897

Oren Mangoubi and Nisheeth K. Vishnoi

[31] and other recent works [3-5, 8, 11, 19], have shown that one
can find an (e, §)-approximate local minimum in time roughly
poly (%, logd, %, b, L) gradient evaluations.

In our model, the min-player is empowered to simulate updates
of the max-player by computing a tractable second-order approxi-
mation to the global max function max; f(x, z), which we refer to
as the greedy max function g¢(x, y). Here, the parameter ¢ > 0 is a
measure of approximation. Ideally, we would like a point (x*, y*)
to be a greedy adversarial equilibrium if y* is a second-order ap-
proximate local maximum for f(x*,-), and x* is a second-order
approximate local minimum for g.(-, y*). However, the function
ge(x,) that arises is hard to evaluate and also discontinuous. We
overcome these issues in part by “truncating” and “smoothing” g,
by convolving it with a Gaussian N(0, 62I;) for some ¢ > 0 to
obtain a smooth approximation S, 5(-) to g(-, y). This allows us to
apply the definition of approximate local minimum above to g, and
to obtain our definition of (¢, o)-greedy adversarial equilibrium; see
Definition 2.5.

Our main technical result is an algorithm which finds an (e, 0)-
greedy adversarial equilibrium in a number of gradient, Hessian,
and function evaluations that is polynomial in %, %, b,L,d; see
Theorem 3.1. In particular, providing such an algorithm proves the
existence of an approximate greedy adversarial equilibrium. Our
algorithm requires access to a zeroth-order oracle for the value of f,
and to oracles for the gradient V,f(x, y) and Hessian Vi, f(x,y) for

the max-player variable y, but not to oracles V. f(x, y) and V2 f(x, y)
for the min-player variable x. Note that the polynomial dependence
on d in our bounds comes from the fact that we do not assume that
the x-player has access to a gradient oracle Vf or Hessian oracle

V2f.

1.2 Discussion of Our Contributions

Computationally Bounded Adversaries. The main conceptual in-
sight in this paper is that we can obtain a model which is an efficient
alternative to min-max optimization by placing computational re-
strictions on the adversary. In comparison to models where each
player is restricted to local updates, this can allow the model to
be robust to a greater diversity of adversaries from a much larger
set of parameters y than just the current value of y namely, all the
values of y reachable by the tractable approximation-while still
allowing for efficient algorithms for modeling the adversary (in par-
ticular, this can allow for more stable training of machine learning
algorithms). We note that analogous computationally bounded ad-
versaries can lead to useful models in many other settings including
coding theory [17, 23, 30] and cryptography [7, 15].

Results Hold for any Bounded and Lipschitz f. Aside from the
bounded and Lipschitz assumptions, Theorem 3.1 does not make
any additional assumptions on f. As mentioned earlier, prior results
which seek solutions to other alternative models to min-max opti-
mization (such as local min-max points), assume that either f(x, y)
is concave [33, 36] in y, or monotone [14, 22], or sufficiently bilinear
[1]. Although there are other prior works which do not assume that
f is convex-concave or monotone, many of these works instead
assume that there exists a stationary point for their algorithm on
the function f, and that their algorithm is initialized somewhere
in the region of attraction for this stationary point [2, 18, 29, 37].

Greedy Adversarial Equilibrium

In contrast, Theorem 3.1 guarantees that our algorithm converges
from any initial point (x, y).

Extension of Second-Order Local Minimum Definition to Discon-
tinuous Functions. To handle minimization of the discontinuous
greedy max function g, when defining our greedy adversarial equi-
librium we introduce a second-order notion of approximate local
minimum which applies to discontinuous functions. This leads to
an algorithm which, in the special case when the objective func-
tion depends only on x, reduces to a “derivative-free" minimization
algorithm, that is, it does not require access to derivatives of the
objective function. The novel techniques and definitions we develop
here for minimization of the greedy max function may be of interest
to other problems in discontinuous or derivative-free minimiza-
tion of non-convex objectives (for applications of derivative-free
methods to adversarial bandit convex optimization, see for instance

[12]).

Greedy Adversarial Equilibria Corresponds to Global Min-Max un-
der Strong Convexity/Concavity. If f is 1-strongly convex- strongly
concave, then for ¢ > 0 and small enough o, we show that at any
(&, 0)-greedy adversarial equilibrium (x*, y*) the duality gap satis-
fies

max f(x*, y) - min f(x, y*) = O(e%);
yeR? x€R4

see the arXiv version of our paper [26] for a precise statement of
this result and its proof.

Applications to GANs. In a subsequent paper, [21] use a related
first-order version of our greedy adversarial equilibrium to ob-
tain an algorithm and show that it can enable more stable train-
ing of generative adversarial networks (GANs). Roughly speak-
ing, the first-order equilibrium in [21] is a point (x*, y*) such that
IVyf(x*,) = € and |[Vxg(x*, y*)| < & where § is a first-order
approximation to the greedy-max function. This means that, unlike
here, in [21] min-min points (points where both players are at a
local minimum) are included in the local equilibrium proposed.
Including second-order conditions for both the maximizing and
minimizing players in our Definition 2.5 allows us to ensure that
our definition excludes points which may be (approximate) min-
min points. The second-order conditions also end up making the
proofs in this paper significantly harder.

Difference between Constrained and Unconstrained Settings. Fi-
nally, we note that, in a subsequent work, [10] prove PPAD-hardness
results for finding approximate local min-max points in the con-
strained setting. Their result does not have any implication to our
framework as we consider the unconstrained setting (domain is
RY x]Rd).

1.3 Organization of the Paper

In Section 2, we present the definition of greedy adversarial equilib-
rium and in Section 3 we state our main result. Section 4 contains
a technical overview of our algorithm and proof. For additional
discussions about our definition of greedy adversarial equilibrium
and connections to previous notions see Section 5.

In Section 6 we give a full description of the algorithm. In Section
7 we present the proof of our main result, and the main lemmas
and propositions we use to prove our main result, along with short

898

STOC ’21, June 21-25, 2021, Virtual, Italy

summaries of their proofs; for the full proofs see the arXiv version
of our paper [26].

2 GREEDY ADVERSARIAL EQUILIBRIUM

Preliminaries. In the following, we say that a function is C?
smooth if its second derivatives are continuous on its domain.
Amax(A) denotes the largest eigenvalue of any square matrix A, and
Amin(A) is its smallest eigenvalue. | - | denotes the Euclidean ¢,

-
norm, and |Alop = sup . UHT“?;U the operator norm of any square

matrix A. We assume? that for some b, L > 0,f: R xRY — Ris
b-bounded, i.e., |f(x, y)| = b, and has L-Lipschitz Hessian:

V£ 3) = VA Z Dlop = Ll = &2 + |y - 1
We start by considering the special case of minimization. We say
that a point x* € R? is an exact local minimum point of a function
/28 R? — R if there exists § > 0 such that

Y(x*) = Y(x), vx € R? such that |x - x*| < 6. (1)

Unfortunately, even if the objective function ¥ : RY — R is
bounded and Lipschitz, it is not always possible to find an exact
local minimum for ¢ in poly(d) gradient evaluations (see the arXiv
version of our paper [26] for a detailed discussion).

On the other hand, suppose we just wanted to minimize a func-
tion ¥, and we start from any point x where

VY| > & or Amin(V2§(x)) < -0

for some ¢, 0 > 0. Then we can always find a direction to travel
in along which either i/ decreases rapidly at a rate of at least ¢,
or the second derivative of ¢ is less than -0 (see Remark 2.2). By
searching in such a direction we can easily find a new point which
has a smaller value of ¢ using only local information about the
gradient and Hessian of /. This means that we can keep decreasing
1 until we reach a point where |[Vi/(x)| = £ and Ayn (V2 (x)) = -6.
If ¢ is Lipschitz smooth and bounded, we will reach such a point in
polynomial time from any starting point [13, 31]. This fact, together
with the fact that any point which satisfies these conditions for
e = 6 = 01is also an exact local minimum, motivates the second-
order notion of an approximate local minimum of [31]. For any
&, 0 = 0, say that a point x* is an (¢, §)-approximate local minimum
for a C2-smooth function ¢ : R? — Rif

Vg <e and Amin(V?9(x*)) = -0. @)

We say that x* is an (¢, 0)-approximate local maximum of ¢ if x*
is an (¢, 0)-approximate local minimum of - /. We use two different
values of 6: when referring to an (¢, 6)-approximate local maximum
on f(x,), we use 0 = \[Le and, roughly, when defining an (¢, 6)-
approximate local minimum on g, we use 6 = \/e. We explain these
choices of 6 in Remark 2.2 .

Importantly, one can view the definition given by Inequality (2)
as being motivated by a class of second-order optimization algo-
rithms as, roughly speaking, a second-order optimization algorithm

4We note that a uniform bound on a function and the Lipschitz constant of its Hessian
also implies a bound on the Lipschitz constants of the function and its gradient. Namely,
if f is b-bounded with L-Lipschitz Hessian, it is also L;-Lipschitz with L, < 4b%*L"3
and has Ly-Lipschitz gradient with Ly < 2b"*L%3. We say f : R? xRY — R is

Ly-Lipschitz if [f(x, y) - f(%, §))| = L1+/|x - X|?> + |y - 7|, and that f has L,-Lipschitz
gradient if [Vf(x, y) - Vf(&,)| < La\lx - %* + |y - 31*.

STOC ’21, June 21-25, 2021, Virtual, Italy

can rapidly decrease the value of ¢ when starting from any point
which is not an approximate local minimum.

2.1 Greedy Path and Greedy Max

When defining a greedy path, we restrict the max-player to updating
y by traveling along continuous paths which start at the current
value of y and along which either f is increasing or the second
derivative of f is positive.

DEFINITION 2.1 (GREEDY PaTH). Let x € R%, and suppose a contin-
uous path ¢; : [0, 7] — R? is differentiable except at a finite number
of points, and at the points where it is differentiable H % WH =1 (ie, the
path travels at unit speed). Then for any € = 0, we say ¢ is an e-greedy
path for f(x, -) if at all points where ¢ is differentiable %f(x Q1) = —¢
and

or
dt

2
(00 > ¢ o =Te. ©
Roughly speaking, when restricted to updates obtained from e-
greedy paths, the max-player will always be able to reach a point
which is a second-order (e, /Le)-approximate local maximum for
f(x,-), although there may not be an e-greedy path which leads the
max-player to a global maximum.

To define an alternative to max; f(-, z), we consider the local
maximum point with the largest value of f(x,) attainable from
a given starting point y by any e-greedy path. Towards this end,
we define the set S;) < R? of endpoints of ¢-greedy paths, for
any x,y € R? and & > 0. We say that a point z € S; xy if there is a
number 7 > 0 andapath ¢ : [0, 7] — R? which is an e-greedy path
for f(x, -), with initial point ¢ = y and endpoint ¢; = z. The greedy
max function gq(x, y) is the maximum value of f(x, -) attainable by
any e-greedy path in the set S¢ x,y:

8e(x, y) = sup{f(x,2) : 2 € Sexy}. ©

REMARK 2.2 (GREEDY PATHS CAN ESCAPE SADDLE POINTS AND
LocAaL MINIMA). Equations (3) together ensure that for any y where
either (i) the gradient V', f(x, y) has magnitude greater than ¢ or (ii)
the eigenvalues of the Hessian Vif(x, y) are bounded below by - Lz,
there is always a unit-speed greedy path (with parameter ¢) starting
at y which can increase the value of f at an average rate ® of at
least %5 by traveling a distance of at most %ii Moreover, since one
such greedy path is always a straight line in the direction of either
the gradient V,,f(x, y) or the largest eigenvector ofVif(x, y), all one
needs to compute such a path is access to the gradient and Hessian of
f(x,-). This fact can also be viewed as a motivation for the definition
of approximate local maximum (Inequality (2)): roughly, any point
which does not satisfy both conditions (i) and (ii) (up to a constant
factor) is an approximate local maximum. Thus, starting from any
point y which is not an approximate local maximum of f(x,-) (with
parameters (¢, \[L¢)), there is always an easy-to-compute greedy path
(with parameter ¢) which allows one to increase the value of f.

By “average rate" of at least %e we mean that the increase in f divided by the length
of the path is > %s.

899

Oren Mangoubi and Nisheeth K. Vishnoi

2.2 Dealing with Discontinuities and Other
Difficulties of the Greedy Max Function

Unfortunately, even if f is smooth, the greedy max function may not
be differentiable with respect to x and may even be discontinuous
(see Example 2.4 for a simple example of a smooth function f whose
greedy max function is discontinuous). This lack of smoothness
creates a problem, since the current definition of approximate local
minimum (Inequality (2)) only applies to C2-smooth functions. To
solve this problem we would ideally like to smooth a discontinuous
function by convolution with a Gaussian (see Section 5.4 for further
discussion on why we use convolution for smoothing).

Another difficulty is that the value of g.(x, y) may be intractable
to compute at some points (x, y), since one may need to compute a
very large number® of e-greedy paths (possibly an infinite number
of paths), each with the same initial point y, before finding the
e-greedy path with the largest value of f. This is because, starting
from a point near a local minimum or saddle point, there may be
many directions to choose from which allow one to increase the
value of f, and, depending on which direction one chooses, one may
end up at a different local maximum. Realistically, this means that
in general we cannot hope to give our algorithm access to the exact
value of g,. Our algorithm overcomes this by instead computing
a lower bound A, for g, and uses only access to this lower bound
to minimize g, (In Sections 4.2-4.4 of our technical overview we
show how this can be done by using some additional properties of
the greedy max function). To allow us to handle this more difficult
setting, we would like our notion of approximate local minimum to
satisfy the property that any point which is an exact local minimum,
is also an approximate local minimum under our definition.

Unfortunately, convolution can cause the local minima of a func-
tion to “shift"- a point which is a local minimum for a function
¥ : R? — R may no longer be a local minimum for the convolved
version of ¢ (for instance, in Example 5.3, we show that this hap-
pens if we convolve the function §/(x) = x - 3x1(x < 0) + 1(x < 0)
with a Gaussian N(0, 62) for any ¢ > 0). To avoid this, we instead
consider a “truncated" version of i, and convolve this function
with a Gaussian to obtain our smoothed version of i (Definition
2.3).

DEFINITION 2.3 (APPROXIMATE LOCAL MINIMUM FOR DISCON-
TINUOUS FUNCTIONS). Forany ¢, o = 0, we say that x* is an (¢, 0)-
approximate local minimum for a uniformly bounded function
if

VoSG e and Amn(VAS(x") = -E
where S(x) = Ey_no,1,) [min(y(x +), y(x*))].

EXAMPLE 2.4 (A SIMPLE EXAMPLE OF A DISCONTINUOUS GREEDY
Max FuncTION). Consider the function

®)

f(x,y) = cos(x + y) sin(2x + 2y) - e

Forany0 < ¢ < 0.1, the greedy max function g.(x, y) is discontinuous
at the (parallel) lines x + y = -2.52 and x + y = —0.62, with g.(x, y) =

2
—e~* in the region enclosed between the two lines and g.(x,y) =

—eX" +0.77 on each side of that region. Such examples are easy to

come by and extend to higher dimensions.

®Even in the setting where f is bounded with Lipschitz Hessian, the number of -greedy
paths that share a given starting point may be infinite.

Greedy Adversarial Equilibrium

Figure 1: In this example we have f : R! x R! — R where f(x, y) =
1.2¢ 942 4 2e-(+y-2° _ o=x* This function has two (¢, 0)-greedy ad-
versarial equilibria (for ¢ = 0and any 0 < 0 < ﬁ), at the points (0, -2)
(white star) and (0, 2) (orange star). The greedy adversarial equilib-
rium at (0, 2) is also the unique global min-max point of f. On the
other hand, f has no local min-max points: there does not exist a
point (x, y) where y is a local maximum of f(x, -) and x is a local min-
imum of f(-, y).

2.3 Greedy Adversarial Equilibrium

We say that (x*, y*) is an (¢, 0)-greedy adversarial equilibrium of
a function f : R? x R4 — R with L-Lipschitz Hessian if y* is
an (e, VLe)-approximate local maximum of f(x*,-) (in the sense of
Inequality (2)), and if x* is an (e, \/¢)-approximate local minimum
of the (possibly) discontinuous function g¢(-, y*) (in the sense of
Definition 2.3). See Figure 1 for an example of greedy adversarial
equilibria.

DEFINITION 2.5 (GREEDY ADVERSARIAL EQUILIBRIUM). For any
€,0 20, wesaythat (x*,y*) € R4xR? isan (e, o)-greedy adversarial
equilibrium of a C%-smooth function f : R x R? — R with L-
Lipschitz Hessian, if we have

||Vyf(X*>y*)H <¢ and Amax(vif(x*,y*)) < \/E, and 6)
[VeS(x™)| < ¢ and Amin(ViS(x*)) > /g, 7)

where S(x) := Eg_no,1,) [min(ge(x + 67, y*), ge(x*, y™))].

We can view the point (x*, y*) in Definition 2.5 as a type of equilib-
rium. Namely, suppose that the max-player can only make updates
in the set Sy + of points attainable by an e-greedy path initialized
at y*. Then under this constraint, the max-player cannot make any
update to y* that will increase the value of f(x*, -). Moreover, we
have that x* is an (¢, o)-approximate local minimum (in the sense
of Definition 2.3) of the function max; f(x, z) if the maximum is
taken over the set Sy of updates available to the max-player.

A key feature of greedy adversarial equilibrium is that it empow-
ers the min-player to simulate the updates of the max-player via
a class of second-order optimization algorithms which we model
using greedy paths. This is in contrast to previous models, such
as the local min-max point considered in [2, 9, 18] or [20], which
restrict the min-player and max-player to making updates inside a
small ball.

900

STOC ’21, June 21-25, 2021, Virtual, Italy

3 MAIN RESULT
THEOREM 3.1 (MAIN RESULT). Let ¢,0 > 0, with o < ﬁ and

consider any C2-smooth uniformly bounded function f : R4 xR¢ —
R with Lipschitz Hessian. Then there exists a point (x*, y*) € R%xR?
which is an (¢*, o)-greedy adversarial equilibrium for f, for some ¢* <
€. Moreover, there exists an algorithm which, given access to oracles
for the value of a C%-smooth function f : R? xR¢ — [-b, b], and to
oracles for Vyf and V?,f where f has L-Lipschitz Hessian for some
b,L > 0, and numbers ¢, o = 0, with probability at least 1—90 generates
a point (x*,y*) € R% x RY which is an (¢*, 0)-greedy adversarial
equilibrium for f, for some ¢* < ¢. Moreover, this algorithm takes
a number of gradient, Hessian, and function evaluations which is
polynomial in %, d,b,L, %

<

As noted earlier, our result does not require additional assumptions
on f such as convexity or monotonicity [32, 33, 36] or sufficient
bilinearity [1]. Our algorithm also converges from any initial point.
This is in contrast to many previous works [2, 18, 20, 37], which
assume that there exists a stationary point for their algorithm on
the function f, and that their algorithm is initialized somewhere
in the region of attraction for this stationary point. To the best of
our knowledge, greedy adversarial equilibrium is the first model
for optimization in the presence of an adversary which is both
guaranteed to exist and can be found efficiently in a general setting
where f is C2-smooth, bounded, and has Lipschitz Hessian. We
expect it to find further use in learning in the presence of adversarial
agents.

We note that we have not tried to optimize the order of the
polynomial running time bound in Theorem 3.1. Finally, the greedy
adversarial equilibrium our algorithm finds depends on the initial
point (xo, yo)- To find other greedy adversarial equilibria, one can
start from different initial points.

4 TECHNICAL OVERVIEW

In this section we give an overview of our algorithm and of the
proof of Theorem 3.1. In Section 6 we give a full description of the
algorithm. In Section 7 we present the main lemmas and proposi-
tions that we use to prove Theorem 3.1, along with short summaries
of their proofs; for the full proofs see the arXiv version of our paper
[26]. To simplify the exposition, we set L = b =1,0 < ¢ < 1, and
o= ﬁ In particular, if f is 1-bounded with 1-Lipschitz Hessian, it
is also 4-Lipschitz with 2-Lipschitz gradient.

4.1 An Efficiently Computable Second-Order
Local Approximation to max, f(x, z)

Ideally, we would like our algorithm to be able to compute the
global maximum max; f(x, z) at any point x. However, since f may
be nonconvex-nonconcave, finding the global maximum may be
intractable in our setting.

Instead, starting from some initial point z «— y, we use a second-
order maximization algorithm (Algorithm 1) to find an (e, \f¢)-
approximate local maximum of f(x, -). At each step, we would like
our maximization algorithm to be able to rapidly decrease the value
of f(x, z) from any point z that is not an (¢, /¢)-approximate local
maximum of f(x,), that is, if z is such that either [V, f(x, z)| > € or

STOC ’21, June 21-25, 2021, Virtual, Italy

Amax(Vi f(x,2)) > Je. Towards this end, if [V,,f(x, z)] > ¢, we have
the max-player make an update

z — z+mVyf(x,z)

for some step size p1 > 0. If we set

; ®)
we have that, since f has 2-Lipschitz gradient,

Vyf(x, z) 1 1
e = Bl > e

IVyf(x.2)] -~ 2 2

at every point p on the line segment [z, z + 1V f(x, z)]. This means

=

N

Vyf(x, p)

that f increases by at least %e x i |Vyf(x, z)| > %,ulez if the max-
player makes this update. On the other hand, if |V, f(x, z)] < & but
AmaX(Vi f(x,z)) > &, we have the max-player make an update
z < z + jav in the direction of the largest eigenvector v of
Vif(x, z) (with |o| = 1), for some step size y3 > 0, where the sign
a € {-,1,1} is chosen such that (aU)TVyf > 0. If we set

1
II3S§\E

we have that, since f has 1-Lipschitz Hessian,

©

1
UTVif(x, p)v > 2 Je

for every point p on the line segment [z, z+p3av]. This means that f
increases by at least %(}13)2 € if the max-player makes this update.
Finally, if [V, f(x, z)| < € and Amax(v§ f(x, 2)) = /¢, our maximiza-
tion algorithm (Algorithm 1) has reached an (¢, \/¢)-approximate
local maximum y’, and it returns this point y’.

The above discussion implies that the value of f increases by at
least A = min(%ylsz, %(y3)2 J¢) at each iteration. Since f is also
1-bounded, and each step of our method requires O(1) oracle calls
to the gradient and Hessian of f, and our method only stops once
it reaches an (¢, \/¢)-approximate local maximum, it uses at most
o(%) oracle calls to find an (e, /¢)-approximate local maximum y’
(Lemmas 7.1, 7.2). Thus, the value of f at this (¢, /¢)-approximate
local maximum y/ , which we denote by the function h,,

he(x,y) = f(x.), (10)

gives us a local approximation for max; f(x, z), which can be com-
puted in O(%) oracle calls for the gradient, Hessian, and value of f.
Moreover, as we explain in Remark 4.1, the steps of our optimization
method form an e-greedy path from y to y’.

REMARK 4.1 (OUR SECOND-ORDER MAXIMIZATION ALGORITHM
COMPUTES AN ¢-GREEDY PATH). We have shown that at each point p
on a line segment [z, z’] connecting two consecutive steps z and z’ of
our maximization algorithm, we have that either V,f(x, p)u> %é‘ or
uTvif(x, p)u > 3 /€, where u is the unit vector u = ﬁ Therefore,
at any point on the unit-speed path ¢; made up of the line segments
connecting the consecutive steps of our algorithm, we have that either
%f(x, o) > %8, or &d—:zf(x o) > %\/E This implies that the path
traced by our algorithm is a %s—greedy path.

We show that, for a smaller choice of step sizes than required by
(8) and (9), namely for p1, u3 = poly (%, s), this path is ¢’ -greedy
where |e-¢’| = poly (% e). The fact that ¢’ # ¢ causes some technical

901

Oren Mangoubi and Nisheeth K. Vishnoi

issues which we deal with in the full algorithm” in Section 6 and in
our proof (Section 7). To improve readability, we ignore these issues in
this technical overview and assume that the path is e-greedy.

4.2 Finding a Point (x*, y*) Which Is a Local
Min for h.(-, y*) and a Local Max for f(x*,-)

Now that we have a subroutine for computing ., our next goal is
to find an (¢, 0)-approximate local minimum in the x variable for
he. If we were able to compute the global maximum max; f(x, z),
it would be enough for our algorithm to find a global minimizer
Xglobal for max; f(x, z), and to then find a global maximizer ygiobal
for f(xglobals -)- Since max; f(x, z) is only a function of x, the point
(%global> Yglobal) Would still be a global min-max point regardless
of which global maximizer Y15ba1 We find. Here we encounter a
difficulty:

Obstacle 1: Since the function h.(x, y) is a local approximation for
max; f(x, z), it depends both on x and on the initial point y. If our
algorithm were to first find an (¢, o)-approximate local minimum x*
for h.(-, y), and then search for an (¢, \/¢)-approximate local maxi-
mum y* for f(x*,), the point x* may not be an (¢, o)-approximate
local minimum for h,(-, y*) even though it is an (¢, o)-approximate
local minimum for h.(:, y). To get around this problem, we use a
different update rule for the min-player and max-player:

Idea 1: Alternate between a step where the min-player makes
an update w to x which decreases the value of h.(-, y) by some
amount y1, and a step where the max-player uses the maximization
subroutine discussed in Section 4.1 (Algorithm 1), with initial point
y, to find a (e, \/¢)-approximate local maximum y’ for f(x, -).

Since h; is the value of f at the (¢, \/¢)-approximate local max-
imum y’, we therefore have that h.(w,y) = f(w, y’). Moreover,
since y’ is an (¢, \/¢)-approximate local maximum for f, and Al-
gorithm 1 stops whenever it reaches an (¢, \/¢)-approximate local
maximum, y’ is a stationary point for Algorithm 1, which means
that f(w,y’) = he(w,y’). Thus,

he(w, y) = f(w, y') = he(w, ¥). (11)
Moreover, since f is b-bounded, and h(x, y) is the value of f(x,)
at the approximate local maximum obtained by the maximization
subroutine in Section 4.1, h, must also be b-bounded. Thus, since
the max-player’s update does not change the value of h, (11), if
we can show that whenever x is not an (¢, 0)-approximate local
minimum of f(:, y) the min player can find an update to x which
decreases the value of h.(x, y) by at least some fixed amount y; > 0,
then we would have that the value of h, decreases monotonically
at each iteration by at least y;. In that case, our algorithm would
have to converge after z?fz iterations to a point (x, y’) where x is an
(¢, 0)-approximate local minimum for h.(-, ") and y’ is an (e, /¢)-
approximate local maximum for f(x, -).

4.3 Escaping “Saddle Points" of the
Discontinuous Function £,

Before we can apply Idea 1, we would like to find a way for the min-
player to find updates for x which decrease the value of h.(x, y) by

7In the full algorithm we deal with this issue by initially computing an ¢’-greedy path
for ¢’ = § at the first iteration, and then slowly increasing &’ at each iteration.

Greedy Adversarial Equilibrium

some amount at least y; whenever the current value of x is not an
(&, 0)-approximate local minimum (in the sense of Definition 2.3).
However, since h, is discontinuous we encounter a second obstacle:

Obstacle 2: Finding an (¢, o)-approximate local minimum of A,
requires our algorithm to escape saddle points of the truncated and
smoothed function® s(w) =]E§~N(O,Id)[min(hg(w +00,y), he(x, ¥))]-
Ideally, we would like to run a “noisy" version of gradient descent,
which can allow us to escape saddle points (see e.g., [13]), but we
do not have access to the gradient of s.

To get around this problem, we compute a stochastic gradient
for s(w) which can be computed without access to a gradient:

Idea 2: We use a stochastic gradient I'(w) for s(w) which can be
computed with access only to the value of h,; roughly

I

I(w) = , min (he(w + 00,), he(x, y)) (12)

where { ~ N(0,I;), and E[T'(w)] = s(w) (see e.g. [12]). This allows
us to use a noisy version of stochastic gradient descent (SGD) to
escape saddle points of s(w).

More specifically, starting at the initial point w «<— x, each step
of this “noisy" SGD is given by

(13)
where ¢ ~ N(0,1;) and 7, a are hyperparameters . We then apply
concentration bounds for our stochastic gradient (Proposition 7.6)
to results about noisy SGD [19] to show that, whenever x is not
an (¢, o)-approximate local minimum for h.(:, y), with high prob-
ability, this noisy SGD, with hyperparameters 5, @ = poly (% 8),
can find an update for x which decreases the value of h, by at least
y1 = poly (%, e) after 7 = poly (d, %) iterations of Equation (13)
(Proposition 7.8).

w— w-nl(w)+al

4.4 Using h, to Minimize Greedy Max Function

Although we have shown how to find an (¢, o)-approximate local
minimum of h, (In the sense of Definition 2.3), our goal is to find an
(¢, 0)-approximate local minimum of the greedy max function g,.
For simplicity, let us start by supposing that we were able to find an
exact local minimum for h,. Since g.(x, y) is the maximum value of
f(x, z) that is attainable at the endpoint z of any e-greedy path that
starts at y, and, as we have shown in Remark 4.1, the steps of the
second-order optimization algorithm we use to compute h(x, y)
form one such greedy path whose endpoint y’ determines the value
of h, (Equation (10)), we have that (Proposition 7.4)

he(x,) < ge(x,y) ¥(x,y) € R xRY. (14)

However, it is still not clear how h, can help us find a local mini-
mizer for g;:

Obstacle 3: We want to minimize the greedy max function g,
but computing the value of g, may be intractable, and we only have
access to a lower bound h; < g.

We would like to somehow use our ability to compute h; to
find a local minimum of g,. Towards this end, we observe that
if any point y* is an (¢, \/¢)-approximate local maximum, then
the conditions from the definition of approximate local maximum,

8We use a lowercase s for the truncated and smoothed version of h, to distinguish it
from the truncated and smoothed version of g, used in Definition 2.5.

902

STOC ’21, June 21-25, 2021, Virtual, Italy

IVyf(x, y*)| < € and Amin(V2f(x, ¥*)) < e, imply that there is no
unit speed path ¢ : [0,7] — RY starting at the point ¢y = y*
for which %f(x, @) > € or g—;f(x, @) > Jeonall t € (0, 7]. This
means that, if y* is an (e, \/¢)-approximate local maximum of f(x, -),
then it is the only (¢, y/¢)-approximate local maximum reachable by
any ¢e-greedy path starting at y*. In other words, we have that,

he(x,y™) = ge(x, y") (15)
whenever y* is an (¢, \/¢)-approximate local maximum for f(x,-)
(Proposition 7.5). Together, (14) and (15) imply the following:

Idea 3: For any pair of points (x*, y*) where y* is an (¢, J/¢)-
approximate local maximum for f(x*,), we have that if x* is an
exact local minimum for h.(-, y*) it must also be an exact local
minimum for g(-, y*).

This is because, if x* is an exact local minimum, then there is an
open ball B containing x* where h.(x*, y*) = minyep he(w, y*).
This implies that

* * 15 * * . * (14) . *
g,y D h(x*, y*) = min he(w, y*) 'S min go(w, y*) (16)
w€B WwEB

and hence that x* minimizes g.(-, y*) on the ball B.

Finally, we extend the result in Idea 3, which holds for exact local
minima, to a similar result (Lemma 7.3) that holds for approximate
local minima. We show that if, roughly, the variance of our sto-
chastic gradient I (Equation (12)) satisfies a poly(%, €) upper bound
(Proposition 7.6), then for any pair of points (x*, y*) where y*
is an (¢, \[¢)-approximate local maximum of f(x*,) (in the sense
of Equation (2)), if x* is an (¢, 0)-approximate local minimum of
he(, y™*) then it is also an (¢, 0)-approximate local minimum for
g¢(-, y*) (in the sense of Definition 2.3). The proofs of Lemma 7.3
and Proposition 7.6 are technical and summarized in Section 7.

4.5 Showing Convergence to Greedy
Adversarial Equilibrium in poly (d, %)
Oracle Calls

From Idea 1 we have that our algorithm terminates after O (%) it-

erations consisting of an update for the min-player and max-player,
if one can bound by some number y; > 0 the amount by which
each update for the min-player decreases the value of h.(x, y).

From Idea 2 (Section 4.3) we have that, with high probability,
noisy SGD can allow the min-player to find an update which de-
creases the value of A, by an amount y; = poly (% s), and that this
can be accomplished in T = poly (d, %) computations of h,.

In Section 4.1, we show that our maximization subroutine can
compute the value of h, in at most O (é) oracle calls, where
A = min { %yl €, %(,u3)2 \/E} From Equations (8) and (9), roughly
speaking, we may set y = % and y3 = % Je.?

This means that, with high probability, the number of oracle calls
until our algorithm terminates is O (% x T x %) = poly (d, %) .
Finally, from Idea 1 we also have that, if our algorithm terminates,
it returns a pair of points (x*, y*) where x* is an (¢, o)-approximate
local minimum for h.(-, y*) (in the sense of Definition 2.3) and y*
% As mentioned in Remark 4.1, in the full algorithm we use somewhat smaller hyperpa-

rameter values 1, i3 = poly(%, ¢) to ensure that the path computed by Algorithm 1 is
e-greedy instead of %g-greedy.

STOC ’21, June 21-25, 2021, Virtual, Italy

is an (¢, y/¢)-approximate local maximum for f(x*,-) (in the sense
of Equation (2)).

Applying Idea 3 (or rather its extension to approximate local min-
ima), we have that x* is an (¢, o)-approximate local minimum for
he(-, y*), which implies that (x*, y*) is a (¢, 0)-greedy adversarial
equilibrium. In other words, our algorithm returns an (e, o)-greedy
adversarial equilibrium after at most poly (d , %) oracle calls for the
gradient, Hessian, and value of f.

4.6 Summary of Algorithm

The discussion in Sections 4.1-4.5 leads us to the following algorithm
(see Algorithm 2 for the full description). In addition to oracles for
f>Vyf and Vi, f, our algorithm also takes as input an initial point

(x0, yo) in R x]Rd, and parameters ¢,0 > 0 (recall we have set

_ 1 . . 10
o=;in this section).

(1) Starting at the initial point (xo, o), our algorithm first uses
the second-order optimization method described in Section
4.1 (Algorithm 1) to find a point y; which is an (e, J¢)-
approximate local maximum for f(xp, -).

Next, starting from iteration i = 1, and setting x; «— xp, our
algorithm uses noisy SGD (Equation (13))!! to search for a
point x;,1 for which,

he(xis1, yi) < he(xi, yi) = y1, (17)
where y; = poly(%, ¢) (Lines 21-37 of Algorithm 2). When
running noisy SGD, roughly speaking, our algorithm uses
the stochastic gradient I' (the same stochastic gradient as in
Equation (12)),

¢

I'(w) = = (18)

where { ~ N(0,I;) and h, is computed using the second-
order optimization method of Section 4.1 (Algorithm 1).

If our algorithm is able to find an update x;.1 which satisfies
Inequality (17), it uses Algorithm 1 to compute a point y;.1,
which is an (¢, \/¢)-approximate local maximum for f(xj.1, -),
sets i < i+ 1, and goes back to Step 2. Otherwise, if it
cannot find such an update, it concludes that x; is an (¢, 0)-
approximate local minimum for h.(:, y;), and, hence, that
(xi, yi) is a (&, 0)-greedy adversarial equilibrium.

min (he(w + o, ¥i), he(xi, 1)),

®)

5 DISCUSSIONS AND LIMITATIONS

5.1 How Does Our Greedy Adversarial
Equilibrium Compare to Previous Models?

In previous papers different models which can be seen as alterna-
tives to min-max optimization have been considered in the non-
convex setting. A number of papers [2, 9, 18] consider the local
min-max point model (sometimes called a “local Nash" point or
“local saddle" point). Any point which is a local min-max point
is also a greedy adversarial equilibrium for small enough ¢ > 0
(Corollary 5.1; see the arXiv version of our paper a proof [26]).

COROLLARY 5.1. Suppose that for any § > 0, (x*,y*) is a (0, §)-
local min-max point of a C?-smooth function f R?xRY — R, and

197n the full description of the algorithm we set (xo, yo) = (0, 0) for simplicity.
11 the full algorithm we combine noisy SGD with a a random hill-climbing method
(Lines 11-20 of Algorithm 2).

903

Oren Mangoubi and Nisheeth K. Vishnoi

that there is a number b > 0 such that |f(x, y)| < b for all x,y € R%.
Then for any € > 0 there exists c* > 0 such that for every0 < o < ¢*
we have that (x*, y*) is a (¢, 0)-greedy adversarial equilibrium of f.

Since local min-max points are not guaranteed to exist in general,
previous algorithms which seek local min-max points oftentimes
make strong assumptions on the function f. For instance, [1] show
that if f has 1-Lipschitz gradient and satisfies a “sufficient bilin-
earity” condition- that is, roughly speaking, if the cross derivative
Viy f(x, y) has all its singular values greater than some y > 2 at ev-
ery x,y € R?—then their algorithm reaches a point (x*, y*) where
IVif(x*,y")| = € and |V, f(x*,y*)| < ein O (% log %) evalua-
tions of a Hessian-vector product of f, where M is the magnitude
of Vf at the point where their algorithm is initialized.'?

In [20] the authors consider an alternative model to min-max
optimization which incorporates the fact that in min-max optimiza-
tion the min-player reveals her strategy before the max-player. In
their notion, both players are restricted to making updates in van-
ishingly small neighborhoods of the optimum point (although the
size of the neighborhood for the min-player is allowed to vanish at
a much faster rate than the neighborhood for the max-player). One
difference between our greedy adversarial equilibrium model and
the model considered in [20] is that in [20] the max-player is able to
compute a global maximum (albeit when restricted to a ball of van-
ishingly small radius), while in our greedy adversarial equilibrium
model the max-player is constrained to points reachable by a greedy
path of any length. That being said, our main result still holds if we
restrict the greedy path of the max-player to be proportional to the
updates made by the minimizing player (see Remark 5.2). Another
difference is that, while the solution point for the model in [20] is
not guaranteed to exist in a general nonconvex-nonconcave set-
ting, our main result (Theorem 3.1) guarantees that any uniformly
bounded function with Lipschitz Hessian has a greedy adversarial
equilibrium.

5.2 Applicability and Limitations of Our
Definition

The class of algorithms that our definition allows the players to use
includes a range of algorithms, e.g., gradient descent and negative
curvature descent [24, 34], which only take steps in directions
where the gradient or second derivative is above some threshold
value.

Moreover, one can expand our definition to allow the max-player
to also use randomized algorithms such as noisy gradient descent
[19], as long as the algorithm stops once an approximate local max-
imum is reached. For this class of algorithms, any point (x*, y*)
which satisfies our original Definition 2.5 also is a greedy adversar-
ial equilibrium under this expanded definition. Roughly speaking,
this is because as long as the max-player is at a local maximum for
the function f(x*,-), expanding the choice of algorithms available
to the max-player may increase the value of the greedy max func-
tion at points other than x* but will not increase the value of the

12Note that, since such algorithms’ dynamics should ideally not be attracted to minima
or maxima of f, additional assumptions on f are typically needed even to show conver-
gence to a first-order stationary point-that is, a point (x*, y*) where |V, f(x*, y*)| < ¢
and [Vyf(x*, y*)| < e

Greedy Adversarial Equilibrium

greedy max function at the current point x*. In other words, the
minimizing player will not have an incentive to deviate from x* if
more algorithms are made available to the max-player.

On the other hand, if we allow the max-player to use algorithms
which do not stop at local maxima, for instance algorithms such as
simulated annealing, a solution (x*, y*) which satisfies our current
definition may no longer be a solution in this expanded sense. This
is because, giving the max-player the option to use algorithms
which do not stop once a local maximum is reached may cause the
greedy max function to increase at x* more than at neighboring
points, incentivizing the minimizing player to deviate from x*.

REMARK 5.2. Theorem 3.1 still holds if we restrict the greedy path
to a ball whose radius is proportional to ¢, L1 and the distance |x - x*|
between x* and the minimizing player’s update x. This is because,
roughly speaking, any greedy path that leaves this ball would reach
a point y for which the value of f at (x, y) is greater than the value
of f at (x*, y™). This implies that the truncated greedy max function
min(ge(x, y), ge(x*, y*)) would have the exact same value regard-
less of whether we restrict the max-player to such a ball, and the
point (x*, y*) guaranteed by Theorem 3.1 would therefore still satisfy
Definition 2.5.

5.3 The Necessity of Dealing with
Discontinuities in the Greedy Max Function

At first glance, it may seem that we can simply restrict ourselves to
considering functions f(x, y) for which the greedy max function
ge(x, y) is continuous. This would greatly simplify our proof, since
we could exclude “unstable" situations where the min-player pro-
poses a small change in x which would then cause the max-player
to respond by making a large change in her strategy. A second
difficulty involving discontinuous greedy max functions is that,
since we allow our algorithm to start at any point, even greedy
max functions with discontinuities far from the greedy adversar-
ial equilibrium point(s) are challenging to analyze. Unfortunately,
even very simple functions f(x, y) oftentimes have discontinuous
greedy max functions gg(x, y) (see Example 2.4). Excluding func-
tions where such discontinuities arise would greatly restrict the
applicability of our results, and a large part of our proof is devoted
to dealing with the possibility of discontinuities in the greedy max
function.

5.4 Additional Discussion of Approximate
Local Minimum for Discontinuous
Functions

When choosing our definition for approximate local minimum of
discontinuous functions, we would like this definition to be as close
as possible to the notion of approximate local minimum for C2-
smooth functions (Inequality (2)). This allows us to more easily
relate our results to past work in the optimization literature. For
instance, in our proof, we would like to adapt results from [19]
about escaping saddle points in polynomial time to the setting of
discontinuous functions. However, we cannot expect our algorithm
to have direct access to the discontinuous function g.(-, y) we wish
to minimize. To allow us to handle this more difficult setting, we
would like our notion of approximate local minimum to satisfy the

904

STOC ’21, June 21-25, 2021, Virtual, Italy

property that any point which is an exact local minimum is also an
approximate local minimum under our definition.

To obtain a definition which applies to discontinuous functions
yet is as close as possible to the definition in (2), we would like
to approximate any discontinuous function ¢ with a C2-smooth
functionWhen choosing which C?-smooth approximation to use,
we would like it to satisfy the following three properties.

(1) C%-Smooth with Lipschitz Hessian. We would like each
function in our family of approximation functions to be C2-
smooth with Lipschitz Hessian. This would allow us to apply
the definition of approximate local minimum for C2-smooth
functions (Inequality (2)) to any function in this family.
Shared Local Minima.We want our family of C2-smooth
approximation functions to have the property that for any x*
which is an (exact) local minimum of the objective function
Y, and any ¢ > 0, there is a function in this family such
that x* is also an (¢, y/¢)-approximate local minimum of this
C2%-smooth function (in the sense of Inequality (2)).

Easy to Compute. We want each function in our family of
approximation functions to be easily computed within some
error ¢ at any point x in poly(d, Ve, b) evaluations of .

Towards this end, we consider the family of functions 7 where we
convolve i with a Gaussian density N(0, 6%I;) of some variance
% and zero mean. That is, we consider functions of the form

Yo (x) = Erono,1y) [Y(x + 00)]

for some ¢ > 0. This family of functions is C2-smooth and has
Lipschitz Hessian, which satisfies our first property (1). This is be-
cause a Gaussian density is C2-smooth, and any function convolved
with a C2-smooth function is also C?-smooth. Moreover, if 1 is
b-bounded, then convolving with a Gaussian gives a b-bounded
function with the magnitude of its k’th-derivatives bounded by
2b times an upper bound on the k’th derivative of the standard
Gaussian density, that is, 2bx m for every k > 0. In particular,
this means our smoothed function ¥;(x) is also b-bounded, with
b x ﬁm—hpschitz Hessian.

The family of functions F also has the advantage that, if ¢ is
b-bounded, it can be computed within error ¢ in poly(d, Ve, b) eval-
uations of ¢ with high probability if one uses a Monte-Carlo com-
putation of the expectation E;_nyo 1) [¥/(x + 0{)], which satisfies
our third property (3).

To satisfy our second property (2), we would ideally like to ensure
that, for every exact local minimum x* of i, and every ¢ > 0, there
is a small enough o > 0 such that x* is an (¢, \/¢)-approximate
local minimum (in the sense of Inequality (2)) of the smoothed
function Y5 = Ey_no,1,) [¥(x + 0{)]. Unfortunately, smoothing ¢
by convolution alone does not directly allow us to satisfy property
(2). The following example illustrates this problem.

ExAMmPLE 5.3 (ConvOoLUTION CAN SHIFT LocaL MiNIMA). Con-
sider the function y : R — R, where

Y(x) = x-3x1(x =< 0) + 1(x = 0).

This function is discontinuous at x = 0, and has an exact local mini-
mum at the point x = 0 (which also happens to be its global minimum
point). If we smooth by convolving it with a Gaussian distribution

STOC ’21, June 21-25, 2021, Virtual, Italy

N(0, o) for any o > 0, we get the smooth function

2
VYo (x) = 30%[;7 -x+xd (éx) +® (—%x) ,
where ®(-) is the standard Gaussian cumulative distribution function.
This function is C2-smooth since ®(-) is C2-smooth. However, for any
o > 0, the gradient at x = 0 of the smoothed function is =1.5 — a\;ﬁ‘
Thus, for any o > 0, x = 0 is not an approximate local minimum of
the smoothed function for any parameter ¢ < 1.5.

In Example 5.3 the gradient of the smoothed function ¥; at x* = 0
has magnitude at least 1.5 for any ¢ > 0 even though x* = 0
is a local minimum of ¢. To understand how this is possible, we
consider the following stochastic gradient (see e.g. [12]) for the
smoothed function g:

Vo (x) = 0 By no.1 (Y (x + 00) = Y(0)){]- (19)

One can obtain a non-zero gradient Vi/;(x) even if all of the sampled
points x + o in (19) give values ¥/(x + o{) greater than (x).

If ¢ were smooth, finding a small step o{ which increases the
value of ¢ (by at least some amount proportional to the step size)
would imply that ¢ decreases in the direction —¢{. For smooth
objective functions one can therefore find a descent direction (a
direction in which ¢ decreases) simply by first finding an ascent
direction o{ and then moving in the opposite direction -o . Un-
fortunately, this is not true for discontinuous functions, since if
is discontinuous, it may be that (x* + o{) > /(x*) does not imply
that ¢(x* - 0{) < ¥(x*) no matter how small a step o{ we take. In
other words, for discontinuous objective functions the presence of
an “ascent direction” along which the objective function increases
does not imply the existence of a “descent direction” along which
the objective function decreases. The only thing that matters when
determining whether a discontinuous function has a local minimum
at some point x* is whether, in every ball containing x*, there are
points x* + o for which ¥(x* + o{) < (x*).

To enable our definition of approximate local minimum to only
consider those directions which decrease the value of ¥, when
determining whether a point x* is an (approximate) local mini-
mum we instead consider the truncated function min(y(x), ¥(x*)).
We then smooth this truncated function by convolving it with a
Gaussian, to obtain the following smoothed function of x:

Ez-Noy) [min(¥(x + 0), y(x™))] -

This function has the property that it is both C?-smooth and has
%—Lipschitz Hessian, since it is the convolution of a b-bounded
function ¢ with a Gaussian of variance 2.

This leads us to Definition 2.3, which says that x* is an ap-
proximate local minimum “with smoothing ¢" for a discontinuous
function ¢, if x* is an approximate local minimum of the smooth

function E;.y(q,1,) [min(y/(x + 60), (x*))].

6 THE FULL ALGORITHM

In this section we present the full algorithm for computing a greedy
adversarial equilibrium (Algorithm 2), as well as an algorithm for
computing a greedy path (Algorithm 1) which Algorithm 2 uses as
a subroutine.

905

Oren Mangoubi and Nisheeth K. Vishnoi

Algorithm 1: Computing a Greedy Path

Input: Oracles for the value of a function f : R¢ xR? — R,
the gradient V) f and the Hessian V?, S
Input: x, yo, ¢
Hyperparameters: §, 1, i3, ji4
1 Set £ «— 0, Stopy «— False
2 while Stopy = False do

3 if ||Vyf(x,yf)H > ¢/ then

4 Set yf*l «— yf + uVyf(x, y)

5 Set{ «— ¢+1

6 else

7 Compute an eigenvalue-eigenvector pair (4, v) of
VEF(,¥"), st A = Amax(V5f(x y5)) - pa

8 if A > {/L¢’ then

9 Seta = sign(Vyf(x,y[)-r V)

10 Set y'*1 «— y? + j3av

11 Setf «— £ +1

12 else

13 L Set Stopy = True

s
14 return yygcalMax <— Y

7 PROOF OF THEOREM 3.1

7.1 Setting Constants and Notation

Since f is a b-bounded C2-smooth function with L-Lipschitz Hes-
sian, it is also L;-Lipschitz with L; < 4b™ L and has Ly -Lipschitz
gradient with Ly < 26" %, From now on, we set L; = 4b**L"* and
Ly = 2b" L% Without loss of generality, we may assume that b > 1
(since our goal is to prove that the number of gradient evaluations is
polynomial in %, d,bL, é). We set the following hyperparameters
and constants. While many of these parameters do not appear in
the proof summaries presented here, they do appear in the full
proofs which are presented in the arXiv version of our paper [26].
We include them here for completeness.

(1) w:=1073,
2.1 _16.6
@ 1 = [EEE e eghdoe
2
(3) &= ¢,
— 1
@) m =Sy
(s
(5) ps = %mln T‘f%)
(6) pa = 1 /OLe,
7) n:= o’ ,
@ n b6d2(1+1ogﬁd€2)clogg(bdm)
._ clog(bd Jae)
(8) e 30b U\/; ’
) 13 = o
— 2b
(10) Iy = 6log(hw>,
(11) @ := nclog(bd Joe)V1 + b2d2572,

where c is a large enough universal constant.

Greedy Adversarial Equilibrium

Algorithm 2: Computing a Greedy Adversarial Equilib-
rium

[

©w

'S

o

o

=

10
11
12
13

14

15

16
17
18
19

20

21

22
23
24

25

26

27

28

29

30

31

32

33
34
35
36

37

38
39

Input: Oracle for a function f : RY x R¢ — R, and oracles
for the gradient V,f and Hessian Vi .0,e>0
Hyperparamters: 7,7y, 12,6, 13,14, 2, &
Initialize (xp, yo) «— (0, 0)
Set x1 «— xp.
Run Algorithm 1 with inputs x «— x, yO — o, £ &,
e «— g(1+6).
Set y1 «— YLocalMax t0 be the output yr caivax of Alg. 1.
Set h® «— f(x1, 1)
Set Stop «— False, i« 0
while Stop = False do
Seti«— i+1, NoProgress «— True,
Set & «— £i_1(1 + 6)?
Set X «— x;j
forj=1toI3do
if NoProgress = True then
Set gij ~ N(O,Id)
Run Algorithm 1 with inputs x «— x; + 6{jj,
y0 — yi, e g, and ¢ «— &(1 +9).
Set ¥ «— YLocalMax to be the output yyocaimax Of
Algorithm 1.
if f(x; + 03, V) < f(xi, yi) - 1 then
Set xj41 < x; + 0
Set yis1 — Y,
Set h® «— f(xi, yi)

Seti«— i+1, NoProgress «— False,

forj=1to1y do

if NoProgress = True then

fork=1toI,do

Set u ~ N(0,1)

Run Algorithm 1 with inputs x «<— Xj._; + ou,
Y — yi e — g & — g(1+6).

Set Y «— Y ocalMax t0 be the output
YLocalMax Of Algorithm 1.

Set hK = min(f(Xj_y + ow, V), f(xi, 1))

Set T = (h* - hF 1) 1u

Set & ~ N(0, I),

Set X «— Xj_1 — L'y + a&

Run Algorithm 1 with inputs x «— X, Y0 — Vis
£« ¢ and ¢ « g(1 + 9).
Set V «— YLocalMax t0 be the output yy gcalmax Of
Algorithm 1.
if f(Xk, V) = f(Xo, i) - y1 then
Set xj41 «— Xi
Set yiv1 — Y,
Set h® — f(xi, yi),

Seti«—i+1, NoProgress «— False

if NoProgress = True then
L Set Stop = True

40 return i* «— i, " — ¢, and (x*, y*) — (x+, yi*)

906

STOC ’21, June 21-25, 2021, Virtual, Italy

m,where Imax = %’
bound on the number of iterations of the While loop in Algorithm
2. This ensures that (1 + 8)! < 2 for all i € [imayx]-

In the following sections we let (x;, y;) denote the points (x;, y;)
at each iteration i of the While loop in Algorithm 2, and we set
& = g1+ 8)% forall i € N.

For any ¢° > 0, and any (x, y) € RY x IRd, we define
he(x,y) = f(x, D),

where YV <«— y[ocalMax 1S the output of Algorithm 1 with inputs
x«—x,y0 <« y,and ¢ «— (1 +).

1

In particular, we have set § = is an upper

(20)

7.2 Proof Outline

The proof of Theorem 3.1 has three main components:

(1) We start by showing that Algorithm 2 halts after i* = O (%)
iterations, which allows us to bound the number of oracle
calls until Algorithm 2 halts (Lemma 7.1).

We then show that the point (x*, y*) returned by Algorithm
2 is an (¢*, 0)-greedy adversarial equilibrium for f, for some

()

x o(i*)

e =g =g <(1+0) < e

Towards this end we first show that y* is an (¢*, VLe*)-
approximate local maximum of f(x*,) (in the sense of the
definition in (2)) and therefore satisfies Inequalities (6) of
Definition 2.5.
Next, we show that x* is an (¢*,)-approximate local mini-
mum of g.(-, ¥*)) (in the sense of Definition 2.3), and there-
fore satisfies Inequalities (7) of Definition 2.5 (see the proof
in Section 7.6). Towards this end, we prove (in Lemma 7.3)
that to guarantee x* is an (¢*, o)-approximate local mini-
mum of g.(-, "), it is sufficient to show that x* is an (¢*, 0)-
approximate local minimum of h (-, y*) (Propositions 7.7 and
7.8), provided that we can also show that h, and g, satisfy a
number of conditions. Namely, these conditions are:
(@) he(x,y) = ge(x, y) forall (x, y) € RY xR4 (Proposition 7.4).
(b) he(x*,y*) = ge(x*, y*) (Proposition 7.5).
(c) A stochastic gradient for a smoothed version of h, (defined
in Equation (23)) has a very small expected magnitude
(Proposition 7.6).

In the remainder of this section, we present the main lemmas and
propositions we use to prove Theorem 3.1, along with short sum-
maries of their proofs; for the full proofs see the arXiv version of
our paper [26]. We conclude the proof of Theorem 3.1 in Section
7.6.

7.3 Gradient, Function, and Hessian
Evaluations

LEMMA 7.1 (BOUNDING THE NUMBER OF GRADIENT, HESSIAN, AND
FuncTION EVALUATIONS). Algorithm 2 terminates after at most i* =

b . b b
O(W) iterations, and thus takes at most O (H x (Iy14 + I3) % 8T)

gradient, Hessian, and function evaluations.

PROOF (SUMMARY). First, we show that Algorithm 1 terminates

after O (L) oracle evaluations. Next we show the Algorithm 2

mpsL

STOC ’21, June 21-25, 2021, Virtual, Italy

terminates after at most O (y—l’l) iterations of its “While" loop. Since
Algorithm 1 is called 73 + I514 times at each iteration of Algorithm
2, running Algorithm 1 contributes O (% x (I3 + Iy14) ﬁ)
oracle calls to the cost of Algorithm 2. Since the other parts of the
While loop make at most O (I3 + T314) function evaluations, they
contribute no more that O(i1 x (I3 + I514)) function evaluations
to the cost of Algorithm 2. Therefore, Algorithm 2 terminates after

b b
at most O (W x (I3 + I214) x L

) oracle calls. O

7.4 y* an Approximate Local Max of f(x*,-)

LEMMA 7.2 (APPROXIMATE LOCAL MAXIMUM IN y). The output
YLocalMax Of Algorithm 1 with inputs x,y°, ¢ satisfies

||Vyf(x, YLocalMax)" = 5/

and

Amax(V§/f(X, YLocalMax)) < \L€’.

In particular, this implies that the output (x*,y*) of Algorithm 2
satisfies

IVyf (™. v < e, (21)

and

Anax(Vaf(x*, y*)) < \[Léje. (22)

PROOF (SUMMARY). The proof uses the first-order stopping con-
dition (Line 3) and second-order stopping condition (Line 8) for
Algorithm 1 to show that the point reached by that Algorithm once
it stops is an (¢/, VLe’)-approximate local maximum of f(x,) (in
the sense of Definition 2.3). o

7.5 x* an Approximate Local Min of g.(-, y*)
We start by defining some functions which will be useful in showing
that x* is an approximate local minimum of g(-, y*).
For any x € R%, & > 0, let
g (x.y) = min(ge (x,). ge (£,).
he(x, y) = min(he (x, y), he (£,),

and

8% o(,9) = Eznou) [gfo (x+ag, y)] ,

b: o(x.9) = B¢ NGy [hﬁ (x+0a¢, y)] :
Finally, for any € R?, ¢° > 0, define the stochastic gradient

MGy = Shieraly -nEeey), @)

where ¢ ~ N(0, I).

7.5.1 Showing That g, and h, Have Shared Approximate Local Min-
ima. The following lemma allows us to guarantee that if we can
show that our algorithm returns a point (x*, y*) where x* is an
approximate local minimum for h(-, y*) for some y* € R4, then x*
is also an approximate local minimum for the greedy max function
g¢(,y*), provided that we can also show that h,, g., x* and y*
satisfy certain conditions.

907

Oren Mangoubi and Nisheeth K. Vishnoi

LEMMA 7.3 (SHARED LocAL MINIMA OF g; AND h;). Consider any
e > 0. Suppose that ¢ < —— and that for some point (x*,y*) €

Jed

R x R? we have
he(x,y) = ge(x,y) Vx,y € R4 (lower bound), (24)
he(x*,y") = ge(x™, ") (fixed-point property), (25)

N 1 gl4gls
E T (x*y)N s — 2
4 "y = oo T (lowSG), (26)
. o7
IVxb} o (x*, y")| < 20005 (1st-order stationarity forh), (27)
20Xt fox x \/E . .
Amin(Vibz o (x*, y™)) = -y (2nd-order stationarity). (28)
Then

IVxgXo(x*,y") < ¢ and (29)
Anin(V382,(x*, %) = - Ve. (30)

PROOF (SUMMARY). Proving Inequality (29): First, we use condi-
tions (24), (25), and (26) to show that

E[|ge(x*, ¥") - (min(ge(x* + 00, ™), ge(x*, y"))I]
s E[Jhe(x™, y*) - min(he(x* + 00, y*), he(x*, y™)I]

(31)
“E E(minmg(x* 0y N he(xt) ~ ey
o 0'1461'5)

<0 (7 x b2
The first inequality holds by conditions (24) and (25), since the fact
that h, is a lower bound for g, allows us to replace g.(x* + o, y*)
on the LHS with h,(x* + o{,y*) on the RHS. And (25) allows
us to replace g.(x*, y*) with h.(x*, y*). The second inequality
holds by a concentration bound for Gaussians. The last inequality
follows directly from the condition (26), since the quantity inside the
expectation is just the magnitude of the stochastic gradient H} " at
the point (x*, y*). We then use (31) to show that Hvxgﬁ:,(x*, vl <
¢, which proves Inequality (29).

Proving Inequality (30) : We show (30) via a contradiction argu-
ment. Towards this end, we use Equation (29) to show that, if it
were true that (30) did not hold, that is, if

Anin(V282 5 (x*, y*)) < — Ve,

then there would be some vector v and a number ¢ > 0 such that

IA

* * * * * _x 92 01451'5
O (™ + 10, y") —ar ,(x*,y") < ~2000 B2 (32)
Moreover, we also show that (28) implies that
* * * * * _* 1 0-1481'5
bro(x™ + 10,) - b (x*, y") 2 " 2000 B2 (33)

Next, we show that, since g.(x*, y*) = h(x*, y*), we have roughly
speaking that gﬁ;(x*, y*) = ;‘,;(x", ¥*). This fact, together with
(32) and (33) implies that

gz;(x* +to,y") < bi;(x* +to, y*). (34)
On the other hand, we use the fact that h.(x, y) < g:(x, y) for all
X,y € R4 x R? to show that

b (x,y*) = 6F (xy*) vxeR9 (35)

Greedy Adversarial Equilibrium

Since (35) contradicts (34), we have that (30) holds by contradiction.

m]
7.5.2 Properties of g, and h,.
PROPOSITION 7.4 (GREEDY MAX LOWER BOUND).
he(x,y) s ge(x,y). vx,y €R%LVE 0. (36)

PROOF (SUMMARY). First we show that the path traced by Algo-
rithm 1 with inputs x <« x, y* < y, and ¢/ « (1 +)¢ is an
£°-greedy path with initial point y. Since k. (x, y) = f(x, y’), where
3y’ is the output of Algorithm 1 with the above-mentioned inputs,
and g (x, y) is the supremum of the value of f at the endpoints of
all e”-greedy paths which seek to maximize f(x, -) from the starting
point y, we must have that

he(x,y) < geo(x,), Vx,y €]Rd, ve® > 0. m]

PRrOPOSITION 7.5 (FIXED POINT PROPERTY). Recall that ¢; = &(1+
8)?, and consider the points (x;, y;) generated at each iteration i of
the While loop in Algorithm 2. Then

he(xi, yi) = 8e(xi, yi) = f(xi. y1), VieN. (37)
ProoOF. By Lemma 7.2 we have that
VyfGei yi)l < & and Amax(V5f(xi, 1)) < /Léi, (38)

since y; is generated by Algorithm 1 with inputs x <— x;, y° < y;_1,
and ¢’ < g_1(1 + §).

Inequality (38) implies that there is only one greedy path (with
parameter ¢;) which seeks to maximize f(x;, -) with starting point
yi, namely, the path consisting of the single point y;. Therefore,

fxi, y1),

PROPOSITION 7.6 (LOW-MAGNITUDE STOCHASTIC GRADIENT).
With probability at least 1 - w the stochastic gradient H, at the
outputs (x*, y*) of Algorithm 2 satisfies

vie N. m]

he (xi, yi) = ge;(xis yi)

N 2
E [HH;‘ (x*,y*)H (x*,y*)] < 10by; Vdo tlog "
! 1
PROOF (SUMMARY). First we note that whenever Algorithm 2
outputs a point (xj+, yj+) = (x*, y*), the stopping condition in Line
16 implies that we have that
f(X*+O-§:y/)>f(X*’y*)_Y1’ (39)
with high probability, where { ~ N(0,1;) and 3’ is the output of
Algorithm 1 with inputs x*, y*, & (1 + §).
We then use (39) together with the fact that f(x* + ¢,y’) =
he, (x* + 0f,y*) and that f(x*,y*) = he,. (x*, y*) to show that

B[vl o)

=]E[Hg(min(hgi, (< + 0L y") e (X7, y7))

= hee (x*, ")

< 10by; Vdo Hog(2yh).

(x*, y*)}

908

STOC ’21, June 21-25, 2021, Virtual, Italy

7.5.3 Showing x* is an Approximate Local Min of h.(-, y*).

PROPOSITION 7.7 (FIRST-ORDER STATIONARY CONDITION).

lP(2”>sw

n
PROOF (SUMMARY). We use standard concentration bounds for
Gaussian random vectors, to show that the stochastic gradient
Hg: (x*, y*) is very close to the gradient Vxl)g: o(x*, y") of h with
high probability. This fact, together with Proposition 7.6, implies
Inequality (40). O

fo)fi*’(,(x*, v

> 10by1ﬁ log (40)
o

PROPOSITION 7.8 (SECOND-ORDER STATIONARY CONDITION). With
probability at least 1 — 2w, we have that

* * _x 1
hmin (V2B (5", 31)) =~ V.

PROOF (SUMMARY). First we show that I'y in Algorithm 2 is a

(41)

stochastic gradient for I)fi",(,(Xi_l, i), that is,

EIe] = Vbio (X p).

and also show a concentration property for this stochastic gradient,

(42)

2
vVt = 0.

P (v (500)

> < -_——
> t) < 2exp 5 (M)Z
o

(43)
Since I'y. is a stochastic gradient with concentration properties for
a smooth function, we can apply results from [19] which, roughly
speaking, say that stochastic gradient descent with added Gaussian
noise can escape saddle points in polynomial time.

More specifically, Lemma 25 of [19], together with Equations
(42) and (43), imply that, if Algorithm 2 reaches a point x* where it
can no longer decrease b?,. oY), then whp. x* is an (g;+, J&+)-
approximate local minimum for bg:)o(-, ¥*) (in the sense of the
definition in (2)). This fact, together with Proposition 7.7, implies
Inequality (41). O

7.6 Concluding the Proof of Main Theorem

Proor oF THEOREM 3.1. Showing Convergence, and Bound-
ing the Number of Oracle Calls.
By Lemma 7.1, we have that Algorithm 2 terminates and outputs a

point (x*, y*) € R? after
1 1
- poly (-.d.b1,)
ﬂlﬂ%L) POY\e o

gradient, function, and Hessian evaluations. In particular, if b, L = 1

and if 0,¢ =< 1, the number of gradient, function, and Hessian
A312b37)

e95132

b
(0] <7 X (IzI4 + Zg) X
n

evaluations can be simplified to O (

Showing x* Is an Approximate Local Minimum for Greedy
Max Function.
By Proposition 7.4, we have that

he.(x,y) < ge (x,) Vx,y € R4, (44)
By Proposition 7.5, we have that
hew (27, 97) = ge,(x™, ¥7) = f(x™, 7). (45)

STOC ’21, June 21-25, 2021, Virtual, Italy

By Proposition 7.6 we have, with probability at least 1 - w, that

1 0'1481-1;5

S (46)

|
. _ £215166
SINCE V1 = 1031+ 531)d"6 log(bdoe) "
By Proposition 7.7, with probability at least 1 — w, we have that

"y)] = 8000

- R

\Y/ x*, < 24— 47

Vb2 o 3] = s (47)

. _ £215166
SINCE V1 = 103(1+531)d%6 log(bdoe) "
By Proposition 7.8, with probability at least 1 — 2w we have
. 1
Amin(vibé.,cr(x*) y*)) Z = & (48)

5
Thus, by Lemma 7.3, (44)-(48) imply that, w.p. at least 1 - 4w,

"ng?l,,, ,a(x*>y*)H < g+ and /’lmin(vgzcgz*,a(x‘,y*)) > - fer.
(49)

Showing That y* Is an Approximate Local Maximum for
")
We also have, by Lemma 7.2 that

IVyf(x*,y") < & and Amax(V3f(x*,y") = JLew. (50)

Showing That (x*, y*) Is a Greedy Adversarial Equilibrium
for f.

Inequalities (49) and (50) together imply that, with probability at
least 1 - 4w, the point (x*, y*) is an (¢*, 0)-greedy adversarial equi-

librium, where ¢* = ¢« < e. O

ACKNOWLEDGMENTS
This research was supported in part by NSF CCF-1908347.

REFERENCES

[1] Jacob Abernethy, Kevin A Lai, and Andre Wibisono. 2019. Last-iterate conver-
gence rates for min-max optimization. arXiv preprint arXiv:1906.02027 (2019).
Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann.
2019. Local Saddle Point Optimization: A Curvature Exploitation Approach. In
The 22nd International Conference on Artificial Intelligence and Statistics. 486—495.
Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu
Ma. 2017. Finding approximate local minima faster than gradient descent. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing.
1195-1199.

Zeyuan Allen-Zhu. 2018. Natasha 2: Faster non-convex optimization than SGD.
In Advances in Neural Information Processing Systems. 2675-2686.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and
Karthik Sridharan. 2020. Second-order information in non-convex stochastic
optimization: Power and limitations. In Conference on Learning Theory. PMLR,
242-299.

Avrim Blum and Ronald L Rivest. 1989. Training a 3-node neural network is
NP-complete. In Advances in Neural Information Processing Systems. 494-501.
Ran Canetti. 2000. Security and composition of multiparty cryptographic proto-
cols. Journal of CRYPTOLOGY 13, 1 (2000), 143-202.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. 2018. Accelerated
methods for nonconvex optimization. SIAM Journal on Optimization 28, 2 (2018),
1751-1772.

Constantinos Daskalakis and Ioannis Panageas. 2018. The limit points of (opti-
mistic) gradient descent in min-max optimization. In Advances in Neural Infor-
mation Processing Systems. 9236-9246.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. 2021. The
Complexity of Constrained Min-Max Optimization. In ACM SIGACT Symposium
on Theory of Computing (STOC 2021).

C Fang, CJ Li, Z Lin, and T Zhang. 2018. Near-optimal non-convex optimiza-
tion via stochastic path integrated differential estimator. Advances in Neural
Information Processing Systems 31 (2018), 689.

[2

[

(3]

[10]

(11

909

[12

)
=

[21

[22

[23

[24

&
S

[26

[27]

[28

[29]

'S
=

[31

(32]

[33

[34

@
i

[36

[37

Oren Mangoubi and Nisheeth K. Vishnoi

Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. 2005.
Online convex optimization in the bandit setting: gradient descent without a
gradient. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics, 385-394.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. 2015. Escaping from saddle
points—online stochastic gradient for tensor decomposition. In Conference on
Learning Theory. 797-842.

Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vincent, and Simon Lacoste-
Julien. 2019. A variational inequality perspective on generative adversarial
networks. In International Conference on Learning Representations (ICLR 2019).
Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of
computer and system sciences 28, 2 (1984), 270-299.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in Neural Information Processing Systems. 2672-2680.

V. Guruswami and A. Smith. 2010. Codes for Computationally Simple Channels:
Explicit Constructions with Optimal Rate. In 2010 IEEE 51st Annual Symposium
on Foundations of Computer Science. 723-732.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local Nash equilibrium. In Advances in Neural Information Processing Systems.
6626-6637.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. 2019.
On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and
Saddle Points. arXiv preprint arXiv:1902.04811 (2019).

Chi Jin, Praneeth Netrapalli, and Michael I. Jordan. 2020. What is Local Optimality
in Nonconvex-Nonconcave Minimax Optimization?. In ICML 2020. International
Machine Learning Society (IMLS).

Vijay Keswani, Oren Mangoubi, Sushant Sachdeva, and Nisheeth K. Vishnoi. 2020.
GANs with First-Order Greedy Discriminators. arXiv preprint arXiv:2006.12376
(2020).

Qihang Lin, Mingrui Liu, Hassan Rafique, and Tianbao Yang. 2018. Solving
weakly-convex-weakly-concave saddle-point problems as weakly-monotone
variational inequality. arXiv preprint arXiv:1810.10207 (2018).

Richard J Lipton. 1994. A new approach to information theory. In Annual Sym-
posium on Theoretical Aspects of Computer Science. Springer, 699-708.

Mingrui Liu, Zhe Li, Xiaoyu Wang, Jinfeng Yi, and Tianbao Yang. 2018. Adaptive
negative curvature descent with applications in non-convex optimization. In
Advances in Neural Information Processing Systems. 4853-4862.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks.
ICLR (2018).

Oren Mangoubi and Nisheeth K Vishnoi. 2020. Greedy Adversarial Equilibrium:
An Efficient Alternative to Nonconvex-Nonconcave Min-Max Optimization. arXiv
preprint arXiv:2006.12363 (2020).

Pasin Manurangsi and Daniel Reichman. 2018. The computational complexity of
training ReLU(s). arXiv preprint arXiv:1810.04207 (2018).

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. 2017. Least squares generative adversarial networks. In Proceedings
of the IEEE International Conference on Computer Vision. 2794-2802.

Eric V Mazumdar, Michael I Jordan, and S Shankar Sastry. 2019. On finding local
nash equilibria (and only local nash equilibria) in zero-sum games. arXiv preprint
arXiv:1901.00838 (2019).

Silvio Micali, Chris Peikert, Madhu Sudan, and David A Wilson. 2005. Optimal er-
ror correction against computationally bounded noise. In Theory of Cryptography
Conference. Springer, 1-16.

Yurii Nesterov and Boris T Polyak. 2006. Cubic regularization of Newton method
and its global performance. Mathematical Programming 108, 1 (2006), 177-205.
Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam
Razaviyayn. 2019. Solving a class of non-convex min-max games using iterative
first order methods. In Advances in Neural Information Processing Systems. 14934~
14942.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. 2018. Non-convex
min-max optimization: Provable algorithms and applications in machine learning.
arXiv preprint arXiv:1810.02060 (2018).

Sashank Reddi, Manzil Zaheer, Suvrit Sra, Barnabas Poczos, Francis Bach, Ruslan
Salakhutdinov, and Alex Smola. 2018. A Generic Approach for Escaping Saddle
points. In International Conference on Artificial Intelligence and Statistics. 1233—
1242.

Maurice Sion and Philip Wolfe. 1957. On a game without a value. Contributions
to the theory of games 3 (1957), 299-306.

Kiran Koshy Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong
Oh. 2019. Efficient Algorithms for Smooth Minimax Optimization. NeurIPS
(2019).

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. 2020. On Solving Minimax
Optimization Locally: A Follow-the-Ridge Approach. In International Conference
on Learning Representations.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Discussion of Our Contributions
	1.3 Organization of the Paper

	2 Greedy adversarial equilibrium
	2.1 Greedy Path and Greedy Max
	2.2 Dealing with Discontinuities and Other Difficulties of the Greedy Max Function
	2.3 Greedy Adversarial Equilibrium

	3 Main result
	4 Technical overview
	4.1 An Efficiently Computable Second-Order Local Approximation to maxz f(x,z)
	4.2 Finding a Point (x, y) Which Is a Local Min for h(, y) and a Local Max for f(x,)
	4.3 Escaping ``Saddle Points" of the Discontinuous Function h
	4.4 Using h to Minimize Greedy Max Function
	4.5 Showing Convergence to Greedy Adversarial Equilibrium in poly(d, 1) Oracle Calls
	4.6 Summary of Algorithm

	5 Discussions and limitations
	5.1 How Does Our Greedy Adversarial Equilibrium Compare to Previous Models?
	5.2 Applicability and Limitations of Our Definition
	5.3 The Necessity of Dealing with Discontinuities in the Greedy Max Function
	5.4 Additional Discussion of Approximate Local Minimum for Discontinuous Functions

	6 The full algorithm
	7 Proof of Theorem 3.1
	7.1 Setting Constants and Notation
	7.2 Proof Outline
	7.3 Gradient, Function, and Hessian Evaluations
	7.4 y an Approximate Local Max of f(x,)
	7.5 x an Approximate Local Min of g(, y)
	7.6 Concluding the Proof of Main Theorem

	Acknowledgments
	References

