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ABSTRACT 

Flexible proteins serve vital roles in a multitude of biological processes. However, determining 

their full conformational ensembles is extremely difficult because this requires detailed knowledge 

about the heterogeneity of the protein's degrees of freedom. Label-based experiments such as 

DEER are very useful in studying flexible proteins, as they provide distributional data on 

heterogeneity. These experiments are typically performed separately, so information about 
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correlation between distributions is lost. We have developed a method to recover correlation 

information using non-equilibrium work estimates in molecular dynamics refinement. We tested 

this method on a simple model of an alternating-access transporter for which the true joint 

distributions are known, and it successfully recovered the true joint distribution. We also applied 

our method to the protein syntaxin-1a, where it discarded physically implausible conformations. 

Our method thus provides a way to recover correlation structure in separate experimental 

measurements of conformational ensembles and refines the resulting structural ensemble. 

TOC GRAPHICS  

  

KEYWORDS  

structure refinement, protein conformational ensembles, Double electron-electron resonance, 

molecular dynamics simulation, non-equilibrium thermodynamics 

TEXT 

Flexible protein structures are often determined using multiple spectroscopic measurements that 

are performed independently on different parts of the protein but considered jointly.1–4 These 

independent measurements are treated as uncorrelated, while in actuality there likely exists a 

Iterative estimation of joint distributions



 3 

correlation structure in conformation probability space. Here, we introduce a means to estimate 

the joint distributions including any correlation structure.  Such estimation is enabled by a 

stochastic resampling approach that estimates the free energy of restraining the protein to any 

individual conformation using non-equilibrium work measurements in simulations. 

Flexible proteins play a critical role in a wide variety of cellular processes, including flexible 

recognition events during infection and in signal transduction pathways. This flexibility is essential 

to biological function.5–12 Experimental methods that have traditionally been used to study the 

structural ensembles of biological systems, such as X-ray crystallography, tend to reduce the 

ensemble to just a few low energy states in order to achieve high-resolution structures.  Nuclear 

magnetic resonance (NMR) and other methods that yield ensemble-averaged data have been used 

to probe conformational heterogeneity with great success, but these experimental techniques are 

not optimal for separating conformations in highly heterogeneous ensembles.13–23 As awareness 

has increased of the fundamental role structural heterogeneity plays in biological function, new 

experimental methods have been developed to report more fully on very flexible ensembles. 

Methods such as double electron-electron resonance (DEER) spectroscopy and single molecule 

Förster resonance energy transfer (smFRET) provide distance distributions between labeled amino 

acids, and thus yield quantitative information on conformational populations in a sample.24–28 

These experimental methods have been successfully combined with computational work to study 

flexible ensembles,2,4,15,29,30 but they come with an important set of challenges, described below. 

Label-based experiments that yield distributional data are severely restricted in the number of 

labels that can be measured simultaneously, leading to two major limitations: since each 

distribution requires a separate, time-consuming experiment, the data tend to be sparse over atomic 

coordinates, and separately measured label sets do not provide information on the joint 
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distribution. Recent efforts have ameliorated the former limitation by optimizing label placement 

to ensure maximally informative measurements,1,31–33 but little progress has been made in handling 

the latter. Kurzbach and coworkers have successfully study correlated motion using paramagnetic 

relaxation enhancement measurements,34 but determining the correlation structure in full 

distributional data has remained elusive. Here we present a general method for inferring joint 

probability distributions from separately-acquired measurements. The method not only estimates 

the correlation structure of the experimental distributions, but also provides a direct way to infer 

the conformational ensemble of interest. 

We first lay out the theoretical basis for the approach, then apply the method to two example 

systems: a toy model of an alternating-access transporter and the soluble N-ethylmaleimide-

sensitive factor attachment receptor (SNARE) protein syntaxin-1a. In the case of the alternating 

transporter, where the joint distribution is known, we find that our method accurately reproduces 

the joint distribution and correctly estimates the true conformational ensemble. In the case of 

syntaxin, DEER data have been acquired, but the joint distribution is unknown. We find that EESM 

converges stably to a final estimate of the joint distribution which differs significantly from the 

convolution of the experimental distributions. The new joint distribution provides novel, testable 

structural data on the syntaxin that may be used to guide future experiments. Although we have 

chosen to demonstrate the approach using specific biological systems, the method will estimate 

joint probability distributions and conformational ensembles of any system for which 

distributional data can be obtained. 

Let us denote a set of separately measured probability distribution functions {p(Oi)}, where Oi is 

a random variable representing the observable of interest. In this convention, particular values of 

Oi are denoted oj
(i). In the applications presented later, each p(Oi) is a single DEER distribution and 
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Oi is the distance variable of the ith pair of labels. We wish to estimate not only the joint probability 

distribution p(O1, O2, … ON), but the conformational ensemble {X} which optimally reproduces 

the joint distribution. This inference problem can be stated in terms of conditional probabilities: 

what is the probability of an ensemble {X} given a set of distance variables, i.e., what is p({X} | O1, 

O2, … ON)? The joint probability distribution is proportional to the free energy difference of the 

desired ensemble from some (arbitrary) reference ensemble: 

𝑝 𝑋 𝑂$, 𝑂& …𝑂( ∝ 𝑒+,-.({1}|45,46…,47) 

If each random variable Oi can take on values {oj
(i)} with probability p(oj

(i)), then the probability 

of observing a particular conformation given a specific set of distances {oj=k
(1), …, oj=m

(N)} is 

trivially: 

𝑝 𝑥|𝑜;<=
$ , … , 𝑜;<>

(() ∝ 𝑒+,-.(?|@ABC
5 ,…,@ABD

(7) ) 

The challenge then lies in determining the free energy landscape DG as a function of the 

experimental observables. In some cases, it may be possibly to calculate this free energy 

analytically or via thermodynamic integration, but in general, it is prohibitively expensive to 

directly calculate the equilibrium free energy because of the large number of degrees of freedom 

and the slow relaxation timescales involved. Instead, the most robust and general method for 

calculating this free energy is via non-equilibrium sampling and use of the Jarzynski equality: 

𝑒+,-. = ⟨𝑒+,G⟩, where W is the work performed over non-equilibrium trajectory from the 

reference ensemble to the target ensemble.35 We detail below how to leverage the Jarzynski 

equality and the experimental data to estimate the free energy landscape. 

We previously developed a methodology, bias-resampling ensemble refinement (BRER), to 

incorporate distributional data into molecular dynamics (MD) simulation.2 The original method 
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assumes that all {p(Oi)} are independent, but a simple extension of this formalism enables 

estimation of the joint distribution. The original BRER method is an iterative approach as follows: 

1. randomly sample a conformation x from the current ensemble estimate {𝑋}. 

2. select a set of observables, 𝑜;<=
$ , … , 𝑜;<>

(() , via probability-weighted draws from the 

experimental distributions {p(Oi)}. 

3. run a biased MD simulation to constrain the conformation x such that all Oi = oj
(i). 

4. update the estimate {𝑋} with the final conformation x. 

The method is trivially parallelized by drawing multiple conformations {x} in a single iteration and 

applying the constraints to each {x}. 

To estimate the free energy of a set of conformations {x} given a set of observables {oj
(i)}, we 

can leverage the data from the biased MD runs of step (3). Because we use a simple linear biasing 

potential, it is trivial to calculate the work done on the ensemble to enforce the constraints. We can 

thus apply this simple linear bias to restrain the system to a single point in observable space, then 

use the nonequilibrium work to estimate equilibrium free energy differences via Jarzynski's 

equality. Specifically: 

𝑒+,-.(?|@ABC
5 ,…,@ABD

(7) ) = 𝑒+,G ?I→?|@ABC
5 ,…,@ABD

7

?I∈ 1I  

where {X’} is a reference ensemble, in this case the estimated equilibrium ensemble assuming 

uncorrelated observables. 

The general method for calculating both the joint distribution and the conformational ensemble 

from simulation, which we call Ensemble Estimation from Separate Measurements (EESM), can 

be summarized as follows: 

1. Draw a set of conformations {x’} from a reference ensemble. 

2. Select a set of specific observable values {oj
(i)} via stochastic draws from each p(oi). 
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range [qmin, qmax]. For a given channel width ℓ, all permitted values of q have equal energy, while 

those outside the permitted range have infinite energy. 

We can imagine performing three separate experiments on the transporter to try to estimate its 

conformational ensemble: one that measures the width of the channel midpoint ℓ, one that 

measures the distribution of the “inward-facing” mouth of the channel (D1 of Fig. 1A), and one 

that measures the ``outward-facing" mouth of the channel (D2 of Fig. 1A). The results of these 

hypothetical experiments are shown in Fig. 1B. Without any additional information, we would 

assume that the separately measured variables D1 and D2 are independent and we would estimate 

the joint probability distribution as shown in Fig. 2A. However, because of the constraints imposed 

on the channel, the true joint distribution is dramatically different (Fig. 2B). 

  

Figure 2: Variables D1 and D2 are correlated, and this correlation is critical to estimating 

the joint distribution. Plotted in (A) is the joint distribution if these two distance distributions 

from Fig. 1 were uncorrelated and in (B) is the true joint distribution.  The assumption that D1 and 

D2 are independent variables leads to an incorrect estimate of their joint distribution. 
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In order to estimate the true distribution from only the experimental observables, we performed 

500 aggregate iterations of EESM (details are provided in the Supplemental Materials). As the 

number of iterations increases, the estimate of the joint distribution approaches the true 

distribution. This is quantified via Jensen-Shannon divergence in Fig. 3A and illustrated as plots 

of the joint distribution in Fig. 3B. This simple but powerful example demonstrates that the method 

can indeed recover the correlation structure of separately measured distributions. 

Refinement of the SNARE protein syntaxin-1a presents a significantly more challenging 

problem because it requires knowledge of many more degrees of freedom. SNARE proteins drive 

neuronal vesicle fusion and thus synaptic neurotransmission.42–46 Syntaxin exhibits a complex 

open/closed conformational equilibrium believed to regulate SNARE complex assembly: “open” 

syntaxin is able to form SNARE complexes, but “closed” is not.47,48 The closed state has been 

characterized experimentally,49 but the open state ensemble remains underdetermined.50–52 Thus, 

refining the open state conformational ensemble would provide insight into the mechanism of 

SNARE complex assembly and the regulation of neurotransmission.  

We estimated the conformational ensemble of syntaxin using EESM and a set of three published 

DEER measurements. To obtain pair-wise distance distributions, DEER measurements must be 

obtained in a sequential fashion, meaning that information on the joint distribution is lost. A 

previously published estimate of the syntaxin ensemble assumes that the DEER distributions are 

independent;2 here, we refine the estimate further by explicitly calculating the joint distribution.  

We performed an aggregate of 1.3µs of molecular dynamics (MD) simulation and used EESM 

to estimate the joint probability distribution of the three DEER-derived distance distributions 

(projections of the joint space may be found in the Supplemental Material). EESM converges 

stably to a final estimate of the joint distribution over ten EESM iterations (Fig. 4A). This final 
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EESM estimate is quite different from the convolution of the experimental distributions (Fig. 4B). 

By subtracting the EESM distribution from the experimental convolution, we identified sets of 

structures that are significantly down-weighted by the EESM method. These are structures 

predicted to have high probability under the assumption that the experimental distributions are 

independent but have low probability after the EESM correction. In general, EESM may be used 

to identify up-weighted structures as well (Fig. S5), but in the case of syntaxin, the most down-

weighted structures provide the most biological insight. The maximally down-weighted structure 

is shown in Fig. 4B.  From inspection, this structure appears unlikely, as one of the major structural 

elements in syntaxin is disrupted. Specifically, we would not expect a low-energy conformation to 

have an unstructured backbone region that maintains contacts with the structured domain; instead, 

we expect complete dissociation of the end region (rendered in green in Fig. 4B) while maintaining 

some secondary structure (see Supplement for further discussion). The presence or absence of such 

a structure can be tested via systematically-designed DEER experiments1 or other methods such 

as cross-linking mass spectrometry.53 Thus, EESM produces testable hypotheses about the 

syntaxin conformational ensemble. 

We have developed a method, ensemble estimation from separate measurements, that can be 

used to infer the joint distribution of separately-acquired measurements and the conformational 

ensemble which optimally reproduces that distribution. The method was tested on a simplified 

model of an alternating-access transporter, where it efficiently yielded the true joint distribution 

and conformational ensemble a priori. We found that EESM converged to the correct distribution 

within relatively few iterations (Fig. 3), confirming that EESM can be used to calculate the 

correlation structure of separately-measured distributions.  





 13 

We used EESM to estimate the syntaxin ensemble from three separately-acquired DEER 

distributions. We evaluated the method based on two criteria: its convergence behavior and its 

ability to generate testable hypotheses. We found that EESM converges smoothly to a final 

estimate of the joint distribution that is distinct from the convolved distributions (Fig. 4A). Most 

importantly, the EESM-refined ensemble revealed structures that are predicted to have 

significantly lower probability in reality than one would have anticipated from the convolved 

distributions. These structures can be used immediately to design additional DEER experiments 

that would further refine the syntaxin ensemble. 

Spectroscopic measurements that provide pair-wise distributions are a rich source of 

experimental data on heterogeneous ensembles. However, the utility of these measurements has 

been limited by the need to introduce and measure each label pair separately. EESM enables 

inference of the correlation structure between these separate measurements, greatly improving our 

ability to leverage such experiments to refine complex, flexible conformational ensembles. 

Supporting Information.  

Methodological details, sensitivity analyses, and supporting figures. (PDF) 
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