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ABSTRACT: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from
October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general
circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed
during the 1979-2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The
simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their
multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal
autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a
large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the
wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents—Kara Seas and lagged
atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively
compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation-like
anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller am-
plitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could
be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
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1. Introduction (Serreze et al. 2009; Screen and Simmonds 2010; Cowtan
and Way 2013) and sea ice extent and thickness have sig-
nificantly decreased (Meehl et al. 2007; Serreze et al. 2007,
Stroeve et al. 2012). The Arctic sea ice decline has been
shown to exert strong impacts on local weather, ecosystem,
human communities, industrial activities, and polar com-

Denotes content that is immediately available upon publica- mercial shipping routes (e.g., Jung et al. 2016). The Arctic
tion as open access. warming and sea ice decline are expected to continue in
response to increasing greenhouse gas (GHG) concentra-
tion and multiple reinforcing feedbacks (Pithan and Mauritsen

The Arctic climate has experienced profound changes
over the past decades, as its surface air temperature has
risen 2-3 times faster than the global averaged temperature
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In contrast, the remote influence of Arctic sea ice changes
Corresponding author: Yu-Chiao Liang, yuchiaoliang@ntu.edutw  on the midlatitudes and the tropics remains controversial

DOI: 10.1175/JCLI-D-20-0578.1

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).
Unauthenticated | Downloaded 09/24/21 10:32 PM UTC


https://doi.org/10.1175/JCLI-D-20-0578.s1
https://doi.org/10.1175/JCLI-D-20-0578.s1
mailto:yuchiaoliang@ntu.edu.tw
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses

8420

(e.g., Cohen et al. 2014, 2020; Walsh 2014; Barnes and Screen
2015; Overland et al. 2016; Peings 2019; Blackport et al. 2019,
2020; Mori et al. 2019a,b; Screen and Blackport 2019). Indeed,
the retreat of the sea ice edge allows more heat and moisture to
enter the atmosphere in the high latitudes during boreal au-
tumn and winter and reduces the equator-to-pole temperature
gradient, which could weaken or shift the midlatitude jet
stream (e.g., Francis and Vavrus 2012; Deser et al. 2015;
Ronalds et al. 2018; Blackport et al. 2019; Blackport and
Screen 2020a). On the other hand, the prevailing tropical
warming in the middle and high troposphere associated with a
decline of the moist adiabatic lapse rate would increase the
equator-to-pole temperature gradient as the climate warms
(Bony et al. 2006), opposing the influences of Arctic sea ice
decline (e.g., Oudar et al. 2017; Blackport and Kushner 2017;
Sun et al. 2018). Such a tug-of-war and the influence of other
forcings make it hard to single out the impacts of Arctic sea ice
loss on the midlatitude atmospheric circulation using obser-
vational or reanalysis datasets alone. Despite this, by assuming
that the atmospheric response to the long-term sea ice loss is
the same as that to interannual pan-Arctic sea ice fluctuations
with identical spatial patterns, which could be more easily
singled out, Simon et al. (2020) provided an estimate of the
Arctic sea ice loss impacts on wintertime atmospheric circu-
lation based on observational and reanalysis datasets.

Because Arctic sea ice forcing (sea ice concentration or
thickness) can be specified, numerical experiments using at-
mospheric general circulation models (AGCMs) or coupled
global climate models (CGCMs) have been extensively used to
investigate the impacts of Arctic sea ice change (e.g., Peings
and Magnusdottir 2014; Sun et al. 2015; Zhang et al. 2018;
Ogawa et al. 2018; Smith et al. 2019; Liang et al. 2020). Most
AGCM and CGCM studies have been conducted by compar-
ing the differences in atmospheric state between high and low
(usually very low) sea ice conditions, but they found a full
spectrum of atmospheric circulation responses (Cohen et al.
2020). For example, several AGCM experiments, in which a
reduced Arctic sea ice extent was specified, gave rise to an
atmospheric circulation response resembling a negative Arctic
Oscillation (AO; also referred to as the northern annular mode;
Thompson and Wallace 1998)/North Atlantic Oscillation (NAO;
Barnston and Livezey 1987) pattern (e.g., Seierstad and Bader
2009; Peings and Magnusdottir 2014), while others presented a
weak or opposite response (e.g., Singarayer et al. 2006; Strey et al.
2010; Cassano et al. 2014; Screen et al. 2014). These inconsis-
tencies among modeling studies may reflect the large internal
atmospheric variability that can overshadow the effects of Arctic
sea ice forcing as the signal-to-noise ratio is small (Screen et al.
2014; Liang et al. 2020). Moreover, mean state biases among
models and different experimental designs may affect the sim-
ulated circulation response (e.g., Smith et al. 2017, 2019; Deser
et al. 2020).

The long-term trends of atmospheric responses due to Arctic
sea ice loss have been investigated by comparing ensemble
AGCM simulations with prescribed time-varying Arctic sea ice
concentration (SIC) and corresponding ones where the SIC
evolution was replaced by its climatological cycle, in some
cases using the same time-varying evolution of sea surface
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temperature (SST), greenhouse gases (GHGs), aerosol, and other
forcings [often called the Atmospheric Model Intercomparison
Project (AMIP)-style simulations] (e.g., Screen et al. 2014;
Perlwitz et al. 2015; Sun et al. 2016). If models behave suffi-
ciently linearly and enough ensemble members are available,
the differences of atmospheric trends between the former and
the latter should reflect the effects of the sea ice decline. These
studies suggested a large local near-surface influence of the
Arctic sea ice loss, but little impact on the large-scale atmo-
spheric circulation. However, they only used two different
AGCMs, so that the number of ensemble members was lim-
ited. Note that a larger multimodel ensemble was used by
Ogawa et al. (2018), but as they compared the response to the
time-varying SST evolution with that to the SST climatological
cycle while the same SIC evolution and transient forcings were
prescribed, the impact of sea ice loss could not be directly es-
timated. Hence, further assessment of the performance of the
state-of-the-art AGCMs in simulating the effects of Arctic sea
ice decline on the atmospheric circulation is needed.

Because it is difficult to single out the Arctic sea ice effects
on the long-term trends in observations, one can attempt to
establish model fidelity by comparing their response to inter-
annual SIC fluctuations to that estimated from observations,
using statistical methods. Indeed, because the long-term trends
can be largely removed before analysis, the influence of GHGs,
aerosols, and other slowly varying external forcings is likely
greatly reduced, and attribution of atmospheric circulation
fluctuations to interannual sea ice changes should be easier,
provided cause and effect can be distinguished despite large
internal atmospheric variability, and possible confounding factors
are taken into account (e.g., Simon et al. 2020).

Many previous studies have suggested an influence of prior
Arctic SIC anomalies, in particular over the Barents—Kara
(BK), Greenland, and Labrador Seas, on the observed atmo-
spheric circulation in the following winter. For example, using
lagged regression analysis to distinguish cause and effect,
Honda et al. (2009) found that SIC anomalies averaged along
the Siberian coast were followed by significant near-surface
cooling in Eurasia. This circulation feature was associated with
an intensified Siberian high and a negative NAO. Using lagged
maximum covariance analysis (MCA) to separate the atmo-
sphere driving sea ice (the stronger signal) from sea ice driving
the atmosphere (a weaker signal), Frankignoul et al. (2014)
found that an NAO-driven sea ice seesaw between the
Greenland-BK Seas and the Labrador Sea was influencing the
NAUO later in the season, in addition to an Aleutian-Icelandic
low seesaw-like response to SIC changes in the Bering and
Okhotsk Seas. Both signals seemed to be primarily driven
by SIC anomalies rather than by concomitant SST anomalies.
Lagged MCA was also used in Garcia-Serrano et al. (2015) to
show that a BK SIC reduction in November was followed by a
significant negative NAO signal in winter via a stratospheric
pathway, broadly similar to other studies using lagged regres-
sions (King et al. 2016; Nakamura et al. 2016; Yang et al. 2016;
Koenigk et al. 2016). On the other hand, Blackport et al.
(2019), using the turbulent heat flux to infer causality, found
only minimal influence of sea ice fluctuations on the midlati-
tude wintertime circulation at a one-month lag.
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Interannual SIC fluctuations are often synchronous with
significant anomalies associated with other forcing agents. The
snow cover, for example, may enhance (e.g., Furtado et al.
2016) or even dominate the SIC link with lagged atmospheric
circulation (e.g., Gastineau et al. 2017). Ural blocking during
boreal autumn can increase upward planetary wave propaga-
tion into the stratosphere, which weakens the stratospheric
polar vortex and affects the atmospheric circulation in the
following winter (Garfinkel et al. 2010). Peings (2019) argued
that, as Ural blocking also affects the BK SIC (e.g., Chen et al.
2018; Gong and Luo 2017; Luo et al. 2017), Ural blocking—
induced variability in autumn BK SIC and later atmospheric
circulation could be incorrectly interpreted as a BK SIC im-
pact on the atmospheric circulation. Other studies argued that,
as the atmospheric variability can drive SIC variations at mul-
tiple time scales, causality is questionable (e.g., Sorokina et al.
2016; Blackport et al. 2019; Peings 2019; Screen and Blackport
2019; Zappa et al. 2021). In addition, the sea ice—atmospheric
circulation linkage presents nonstationarity and intermittency
(Kolstad and Screen 2019; Siew et al. 2020). This suggests that
the influence of SIC variability on the atmospheric circulation
needs to be further clarified.

At least two empirical approaches have been used to address
the effects of the confounding factors and the issue of causality.
The first one is using causal effect networks to provide clear
causal directions across each component of variability. For
instance, Kretschmer et al. (2016) found that a low autumn BK
SIC was an important driver of the winter negative AO re-
sponse via tropospheric mechanisms, while Eurasian snow
cover had no clear link with the AO, but Siew et al. (2020)
found that the SIC influence is intermittent and often occurred
through a stratospheric pathway. The second approach, adopted
in this study, is using multiple lag regressions to statistically
separate contributions from each driver (e.g., Gastineau et al.
2017; Simon et al. 2020). As some studies have investigated the
possibility that GCMs could underestimate the SIC-driven
variability in the atmosphere (e.g., Honda et al. 2009; Mori
et al. 2014, 2019a,b), while other indicated that the simple
statistical relationships in observations overestimate the con-
nections (e.g., Blackport and Screen 2021), it is also of much
interest to establish with carefully designed experimental de-
signs whether or not the interannual relationship between SIC
and lagged atmospheric circulation can be adequately simu-
lated and singled out in AGCMs and CGCMs.

In this study, we use a coordinated set of multimodel his-
torical AGCM simulations performed in the Blue-Action Project
(http://blueaction.eu/) in order to enhance our understanding
on the SIC impacts and address the causality issues. These
experiments were designed to single out the influence of the
Arctic sea ice variations on the atmospheric circulation during
the 1979-2014 period, following a protocol developed by the
Blue-Action Project, which is similar to that used by Perlwitz
et al. (2015) and Sun et al. (2016), and recommended by Smith
et al. (2019). Nine state-of-the-art AGCMs were used, each con-
tributing 10-30 members for a total of 165 multimodel his-
torical simulations (see Liang et al. 2020). This larger AGCM
dataset than previously available is used in this study to in-
vestigate the impacts of observed Arctic sea ice variability,
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including long-term trends and interannual variability, with
a focus on the cold season (from October to the following
March) of the Northern Hemisphere. The manuscript is or-
ganized as follows. Datasets and analysis methods are de-
scribed in section 2. A series of comparisons between observed
and simulated trends and their link to Arctic sea ice loss are
presented in section 3. Covariability between Arctic SIC and
lagged atmospheric circulation with the effects of confounding
factors addressed is discussed in section 4 to inform the capa-
bility of AGCMs in simulating observed lagged relationships at
interannual time scales. We summarize and discuss the results
in section 5.

2. Datasets and methods
a. Coordinated multimodel AGCM experiments

This study uses nine AGCMs, listed in Table 1, to conduct
two sets of large-ensemble experiments during 1979-2014
following a protocol developed by the H2020 Blue-Action
Project. The first set of experiments is forced with daily time-
varying global SST, SIC, and CMIP6 radiative forcings (see the
seventh column in Table 1; Eyring et al. 2016; Haarsma et al.
2016) to include the effects of all observed forcings on the
atmospheric circulation. These experiments are AMIP-type
simulations. We call this set of experiments ALL to reflect that
it uses all observed forcings. The second set is identical to ALL
except that the daily time-varying SIC field for the Northern
Hemisphere is replaced by its daily climatological (1979-2014
average) values. We call this set of experiments SIC;,, to de-
note its Arctic sea ice forcing is replaced by climatological
values. The atmospheric circulation in SIC_y;,, therefore, is not
directly affected by Arctic sea ice variability, and the atmo-
spheric circulation response to Arctic sea ice variability can
be estimated from the multimodel ensemble mean (MMEM)
of ALL members minus the MMEM of SIC.;, members
(STMMEM hereafter), assuming additivity between the SIC-
driven changes and that driven by other forcings. All fields
are regridded to 1.25° (longitude) X 0.94° (latitude) horizontal
resolution before further analysis.

The SST and SIC boundary conditions used to force the
AGCMs during the 1979-2014 period are obtained from the
Met Office Hadley Centre Sea Ice and SST version 2.2.0.0
dataset (Kennedy et al. 2017), which was also used in the
CMIP6 HighResMIP protocol (Haarsma et al. 2016). To make
sure that the SST and SIC fields evolve consistently in SICjy,
and any unphysical SST or SIC values are removed, most
modeling groups performed an adjustment following Hurrell
et al. (2008), although its impacts on the atmospheric responses
are quite small [see section 2.1 of Liang et al. (2020) for discus-
sion]. Table 1 specifies whether this adjustment was implemented.

To minimize the effects of internal atmospheric variability,
each modeling group has conducted ensembles of 10-30 mem-
bers that differ only in their initial conditions for each model,
resulting in a total of 165 members (Table 1). Because the
EC-Earth3-NLeSC model only provides variables at the surface,
500-hPa, and 100-hPa levels due to their storage limitations, we
do not include the EC-Earth3-NLeSC 10-member results in the
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analyses at other levels or for vertical profiles. In other words,
only 155 members are used in those analyses. How many mem-
bers are used is specified in each figure caption. It is also noted that
not every modeling group strictly followed all the protocol re-
quirements (see Table 1). However, such departures are not ex-
pected to impact the results in any significant way [see comparison
and discussion in Liang et al. (2020)]. We take MMEM over
165 members to reduce the effect of internal atmospheric
variability (e.g., Deser et al. 2020) without applying any specific
weight for each member of different models when taking MMEM.

Reference
Gettelman et al. (2019)

Hourdin et al. (2020)
Bentsen et al. (2013);
Seland et al. (2020)
Daoscher et al. (2021)
Sun et al. (2012)
Cherchi et al. (2019)
Daoscher et al. (2021)
Stevens et al. (2013);
Miiller et al. (2018)
Walters et al. (2019)

b. Reanalysis datasets

In comparison to the simulated results, this study also uses
reanalysis datasets. Sea level pressure, air temperature, geo-
potential height, and atmospheric zonal wind fields from the
latest European Centre for Medium-Range Weather Forecasts
reanalysis (ERAS) during 1979-2014 (Hersbach et al. 2020).
To test robustness, we also analyzed four other reanalysis
products: ERA-Interim (Dee et al. 2011), Japanese 55-Year
Reanalysis (Kobayashi et al. 2015), Modern-Era Retrospective
analysis for Research and Applications version 2 (Gelaro et al.
2017), and National Center for Atmospheric Research—
Department of Energy Atmospheric Model Intercomparison
Project (AMIP-II) reanalysis (Kanamitsu et al. 2002). As we
find very similar results, we only present the ERAS results, al-
though a global mean cold bias is present in the lower strato-
sphere from 2000 to 2006 in the ERAS5 temperature (Simmons
et al. 2020). Weekly Northern Hemisphere continental snow
cover extent (SCE) from 1979 to 2017 is obtained from the
Rutgers University Global Snow Laboratory (Estilow et al.
2015) and aggregated into monthly data.

2006-13: CMIP5 RCP8.5

CMIP6 external forcing
HighResMIP

CMIP6
HighResMIP
CMIP6

CMIP6

1979-2005: CMIP5

historical;

HighResMIP
CMIP6
HighResMIP

Adjustment
of
SST/SIC
Yes
Yes
Yes
Yes
Yes
0
Yes
Yes
No

No. of ensemble
members
30
30
30
20
15
10
10
10
10

c. Trend analysis

The linear trends during 1979-2014 are calculated by a least
squares fit of the linear regression y; = a + bt;, where y; is the
variable of interest and #; is time. Their statistical significance is
determined by a two-sided Student’s ¢ test with a null hypothesis
that the slope b is zero. When the corresponding p value is less
than 0.05, we consider that the trend is significant at the 5%
significance level. The 95% confidence interval of the estimated
trend b in one single realization (e.g., ERAY) is given by

(top level)
70 (4.5 X 10"°hPa)

79 (0.01 hPa)

No. of vertical levels
32 (3.4hPa)

91 (0.01 hPa)
30 (2.2 hPa)
91 (0.01 hPa)
95 (0.01 hPa)
85 (85km)

boundary conditions [see Table 1 in Haarsma et al. (2016) for details].
30 (2hPa)

(lat X lon)
0.94° X 1.25° (~100 km)

LOCEAN-IPSL  1.26° X 2.5° (~150 km)
T255 (~80 km)
1.4° X 1.4°

Horizontal resolution
T511 (~40km)
T127 (~100km)

t1+095 o tl+095 T
5= X o 5= X o

= b+ ,
NG NG

0.94° X 1.25° (~100 km)
0.9° X 1.25° (~100 km)

0.83° X 0.55° (~60 km)

¢y

where f(110.9s)» is the (1 + 0.95)/2 quantile of the ¢ distribution
with degree of freedom n — 2, 0% is the residual standard de-
viation, and § is the root-mean-square difference of the time ¢;
from the time mean. A thorough derivation can be found in
section 8.3.7 of von Storch and Zwiers (1999).

For simulated fields, we present the trends of MMEM, ex-
cept for the histograms of the individual member trends (as
explicitly noted in the figure captions). Note that the MMEM
trends are likely more significant than their observational
counterparts, because the influence of internal atmospheric
variability is minimized in the former, while often dominating

Institution

CESM2-WACCM6 WHOI-NCAR

LMDZOR6

NERSC
DM
IAP
CMCC
MPI-M
UoS

Model name

TABLE 1. Summary of the AGCMs used in this study. The difference between the CMIP6 and HighResMIP external forcings is related to the anthropogenic aerosol forcing or land-use

EC-Earth3-NLeSC NLeSC

NorESM2-CAM6
ECHAMG6.3

EC-Earth3-DMI
CMCC-CM2-HR4
HadGEM3-GC3.1

1AP4.1
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in the latter. Note that we consider linear trends because they
are more easily comparable between datasets than quadratic
trends, even though the latter may slightly better represent
Arctic seaice loss (e.g., Dirkson et al. 2017). In the spatial maps
of trends, statistical significance may be overestimated if sim-
ply based on statistical tests at each grid point (hereafter ‘lo-
cal” significance; e.g., Livezey and Chen 1983; Wilks 2016).
The “field significance” approach (Wilks 2016), which con-
strains the false discovery rate (FDR) of the regression esti-
mates, is used to address this issue. We choose agpr = 0.1 to
achieve a global test level agiopa = 0.05, assuming a spatial
decorrelation scale of ~1.54 X 10°km, as estimated by the
spatial autocorrelation of the Northern Hemisphere geo-
potential height field at 500 hPa in Polyak (1996) [see Fig. 4 in
Wilks (2016)]. In the figures presented in this study, we use
black stippling to denote that the trend has field significance,
and use cyan stippling (or contour line) to indicate that the
trend is 5% significant locally.

d. Maximum covariance analysis

We use maximum covariance analysis (MCA) to examine
the lagged atmospheric circulation response to Arctic SIC
variability at interannual time scale. MCA applies singular
value decomposition (Bretherton et al. 1992) on the covariance
matrix of any two fields and retrieves modes of covariability
characterized by corresponding spatial patterns and associated
time series. Here the covariance matrix is calculated using
area-weighting for both SIC and SLP fields. We apply the
MCA approach of Garcia-Serrano et al. (2017) to SIC and sea
level pressure (SLP) anomaly fields and investigate the leading
modes of covariability when SIC leads by 1-6 months. The
spatial SIC patterns are obtained by regressions on the SIC
time series normalized by its standard deviation (i.e., homo-
geneous covariance map), and the SLP patterns by regression
on the same SIC time series (i.e., heterogeneous covariance
map). Using the heterogeneous maps for SLP avoids the lim-
itations pointed out by Zappa et al. (2021), while preserving
orthogonality (Czaja and Frankignoul 2002).

For ERAS or individual AGCM members, we obtain the
monthly SIC and SLP anomalies by subtracting their climato-
logical monthly mean for the 1979-2014 period and then re-
move quadratic trends in order to reduce long-term variations.
Here we remove the quadratic trend because the Arctic sea ice
loss in Northern Hemisphere autumn and winter in the past
decades shows an accelerating rate, which is closer to a qua-
dratic structure [see Dirkson et al. (2017) and Liang et al.
(2020) for discussions], although some MCA analyses have
shown that results are similar when removing instead a linear
or cubic trend (Garcia-Serrano et al. 2017). For MCA using
AGCM MMEM results, the same steps are applied to the
MMEM SLP to obtain MMEM SLP anomalies.

Each MCA mode is characterized by its squared covariance
(SC; the corresponding squared singular value of the covari-
ance matrix), a correlation coefficient (R) between the two
MCA time series, and a squared covariance fraction (SCF;
the percentage of explained squared covariance). SCF is in-
trinsically the same measure as SC, so we only discuss SC. To
assess the significance of SC and R, we repeat MCAs with 100
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random permutations in time dimension for SLP to obtain 100
realizations of SC and R reflecting the effect of internal vari-
ability as in previous studies (e.g., Gastineau et al. 2017). The
number of SC and R values that are larger than target SC and R
values provides an estimate of their level of significance.

e. Indices

In section 4, the Siberian snow index used is defined as the
SCE time series of the leading MCA mode between November
(December) SCE anomalies over northern Eurasia (0°-180°
and 40°-65°N) and December (February) SLP anomalies over
the North Atlantic-Eurasian domain (90°W—40°E, 20°-90°N),
following Gastineau et al. (2017). The North Atlantic SST in-
dex is similarly defined as the SST time series of the leading
MCA mode between SST anomalies over the North Atlantic
(90°W-0°, 10°S-60°N) and subsequent SLP anomalies over
the North Atlantic-Eurasian domain (90°W—-40°E, 20°-90°N),
which characterize the North Atlantic horseshoe (tripolar)
SST pattern (Czaja and Frankignoul 1999,2002). We define the
Ural blocking index with two metrics: 1) the number of days
with blocking occurring in the Ural sector (0°-80°E and 40°-
75°N) during the 1979-2014 period based on the blocking
definition by Scherrer et al. (2006), and 2) the area-averaged
Z500 anomalies over the eastern Europe and Ural sectors
(10°W-80°E, 45°-80°N) following Peings (2019). It is noted that
the thresholds in determining Ural blocking events for metric 1
and differences in geographic domain between the two metrics
may result in a discrepancy in the blocking time series based on
the two metrics. In section 4, we mainly show results using
metric 1, but also used metric 2 for comparison (shown later in
Fig. 13). The NAO index used in section 4 is obtained from
NOAA Climate Prediction Center based on the rotated EOF
method (Barnston and Livezey 1987).

f- Multiple regression analysis

To quantify relative importance of potential confounding
factors on wintertime atmospheric circulation using the indices
above mentioned, we use multivariate least squares regressions
in section 4 as in previous studies (e.g., Gastineau et al. 2017,
Simon et al. 2020). We address the multicollinearity with the
variance inflation factor (VIF; Kendall 1946). The VIFs in our
cases are at most 1.7, much smaller than 5, which is generally
considered a sign of severe multicollinearity (Judge et al. 1988).
The level of statistical significance is tested with 100 random
permutations of the atmospheric fields in time. The number
regression slope that exceeds the observed value in the per-
muted samples provides the p value. We do not test all lead-lag
relationships across all variables but only focus on specific timing
and variables with possible physical linkages, including Eurasian
SCE (Gastineau et al. 2017), North Atlantic SST (Czaja and
Frankignoul 2002), and Ural blocking (Peings 2019).

3. Long-term linear trends during the 1979-2014 period
a. Observed and simulated trends

As the accelerated Arctic warming is the dominant feature
of the Arctic sea ice decline in the past few decades, we first
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FIG. 1. (a) Linear trends of ERAS Arctic-averaged (65°-90°N) air temperature in each month. (b),(c) As in (a), but for ALL MMEM
and SI MMEM, respectively. The black contour lines in (a) represent climatological (1979-2014) Arctic-averaged ERAS air temperature
values (K), and in (b) and (c) climatological (1979-2014) Arctic-averaged ALL air temperature values (K). The black dots indicate field
significance, while the cyan dots local significance at 5% level. The ticks on the x axis indicate the middle of the month.

analyze the linear trend of air temperature 7 averaged over the ~ MMEM during 1979-2014. Consistent large warming trends in
polar cap domain (65°-90°N) during 1979-2014. The monthly ERAS and ALL MMEM SAT are found in the Arctic Siberian
evolution of the polar-cap T trends reveals warming trends in  sector and BK Seas in OND (Figs. 2a,c) and in the BK,
the lower troposphere in every month with the strongest trends ~ Labrador, and Okhotsk Seas in JFM (Figs. 2b,d), where large
from autumn to early spring in both ERAS and ALL MMEM  sea ice decline occurs (e.g., Onarheim et al. 2018). Furthermore,
(Figs. 1a,b). However, there are some differences. In April, a  the trends of Arctic-averaged SAT from ERAS5 and ALL
strong warming trend in lower troposphere occurs in ERAS5, MMEM (magenta and black vertical lines in Figs. 2e,f) exhibit
which is not seen in ALL MMEM, and from January to April similar amplitudes and are both significant at the 5% level,
large differences occur in middle and higher troposphere and  indicating a robust warming trend. We note that the width
stratosphere. The T trends associated with the Arctic sea ice  of 95% confidence intervals for the trends of ALL MMEM
loss are derived from SI MMEM T and they show the largest  (0.035Kyr~' for OND and 0.034 K yr~! for JEM; magenta shad-
warming patches in October-December (OND) and January—  ings in Figs. 2¢.f) are smaller than those of ERA5 (0.058 K yr !
March (JFM) (Fig. 1c). The OND warming trends are mostly ~ for OND and 0.065 K yr~! for JFM), but not as much as ex-
confined below the 850-hPa level, while the JFM warming pected from the reduced contribution of internal atmospheric
trends reach the middle troposphere up to the 500-hPa level.  variability in MMEMs, showing that other uncertainty con-
There is also a signal in the stratosphere, albeit not field sig-  tributes to the spread, such as the model (and/or scenario)
nificant. These results suggest that the Arctic sea ice changes uncertainty (e.g., Lehner et al. 2020). We calculate the OND
explain more than half of the simulated and observed near- and JFM trends of Arctic-averaged SAT from each ALL
surface temperature trends in the polar cap during boreal fall member (bars in Figs. 2e,f) and obtain a Gaussian-like dis-
and winter. Thus, we focus on the OND and JFM means in the  tribution of SAT trends, whose spread mostly overlaps with
following trend analyses. the 95% confidence intervals of the ERAS SAT trends (gray

We next compare the ERAS OND and JFM surface air  shadings in Figs. 2e.f), except for the largest positive values.
temperature (SAT) trends in the Northern Hemisphere The contribution of model uncertainty can be estimated by
domain (20°-90°N) with the corresponding trends of ALL  comparing the full range of SAT trend among the 165 ALL
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FIG. 2. ERAS SAT linear trends in (a) OND and (b) JFM. (c),(d) As in (a) and (b), but for the SAT trends of ALL MMEM (165
members). In (a)—(d), the cyan contour lines indicate the 5% local significance level, while the black dots indicate the field significance.
(e) The bars indicate the histogram of trends of OND Arctic (or polar cap, 65°-90°N)-averaged SAT from individual members of ALL.
The yellow bar means that the trends are significant at 5% level, while the blue bar indicates that the trends are not significant. The
magenta vertical line indicates the trend of OND Arctic-averaged SAT from ALL MMEM, while the vertical black line is the ERAS
trends. Use of solid vertical lines for these trends indicates that the trends are significant at 5% level. The gray and magenta shadings
denote the 95% trend confidence intervals of the trends of ERAS and ALL MMEM Arctic-averaged SATs. (f) As in (e), but for JFM

SAT trends.

members (0.068 Kyr~! for OND and 0.097 Kyr~! for JFM)
with the range of estimated model internal variability
(0.044 K yr~! for OND and 0.074 K yr ! for JEM), as obtained
from 165-member trends after removing each corresponding
model ensemble-mean trend. In the sense of explained por-
tion of uncertainty [i.e., 1 — (internal variability/model
uncertainty)®> X 100%], we can estimate the fraction of
model uncertainty for OND SAT to be about 58%—that is,
[1 — (0.044/0.068)*] X 100%—and that for JFM SAT about
42%, that is, [1 — (0.074/0.097)*] X 100%.

Outside the Arctic, the ERAS SAT trend patterns in the
North Pacific and Atlantic sectors are mostly significant and
realistically simulated by ALL MMEM, as expected from
prescribed SSTs. Over the continents, ALL MMEM indicates
a weak, but statistically significant warming trend, except in the
northwestern United States and western Canada (Figs. 2c¢,d).
In contrast, the trends over the continents in ERAS are mostly
not statistically significant (Figs. 2a,b), thus precluding a direct
comparison between ALL MMEM and ERAS. Nonetheless, it
should be noted that the warming trends in ERAS are significant

in a few continental regions, such as southern Europe, southeast
Asia, and the southern United States and northern Mexico.
The same analysis is performed on the ERAS and ALL
MMEM SLP fields to examine the trends in near-surface at-
mospheric circulation (Figs. 3a—d). The comparison is difficult
because the ERAS SLP trends are mostly not significant,
except locally for the positive trends over part of the North
Pacific that are likely due to SST changes. The ALL MMEM
SLP trends are not significant in JFM, but in OND SLP trends
are significantly negative over much of Eurasia and the Arctic,
and positive over the eastern North Pacific and northwestern
North America. The OND and JFM trends of the Arctic-
averaged SLP from each member of ALL present Gaussian-
like distributions with the trends centering around zero,
although the decreasing MMEM trend in OND is significant
at the 5% level (Figs. 3e,f). Their spread (the range of vertical
bars) is similar to the 95% confidence interval of the ERAS
SLP trends (the gray shading). The model uncertainties con-
tribute little in OND and even less in JFM, as the ranges of
estimated model internal variability (0.20hPayr ' for OND
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FI1G. 3. As in Fig. 2, but for SLP. In (e) and (f), use of solid (dashed) vertical lines indicates that the trends are (are not) significant at
5% level.

and 0.28 hPa yr ™! for JFM) largely accounts for the full ranges
of ALL members (0.23 hPayr™! for OND and 0.29 hPayr~!
for JFM). We can estimate the fraction of model uncertainty
for OND SLP to be about 24%—that is, [1 — (0.20/0.23)?] X
100%—and that for JFM SLP about 7%, that is, [1 —
(0.28/0.29)*] X 100%. The results indicate that, in single
model simulations and in ERAS, the forced SLP trends within
the Arctic are masked out by the internal atmospheric vari-
ability and too weak to be detected.

We also investigated the trends in the NAO, using for NAO
index based on the difference between area-averaged SLP
anomalies in the Azores (28°-20°W, 36°-40°N; southern red
box in Figs. Slc,d in the online supplemental material) and
Icelandic (25°-16°W, 63°~70°N; northern red box in Figs. Slc,d)
regions after removing the time means (Smith et al. 2020).
There is no significant NAO trend in ERAS or in the MMEM,
and the trend distribution shows a spread similar to that of
Arctic-averaged SLP trends (Figs. Sle,f).

In the lower stratosphere, the trends of the ERAS geo-
potential height at 50 hPa (Z50 hereafter) are not significant,
except locally in OND above the British Isles and in JFM over
central Eurasia (Figs. 4a,b). On the other hand, there is a
positive trend in most regions of the Northern Hemisphere
domain in the ALL MMEM in both OND and JFM, with
large amplitudes over the northern North Atlantic (Figs. 4c,d).

The OND and JFM Arctic-averaged trends of each ALL member
again show Gaussian-like distributions, and the spreads are largely
comparable to the 95% confidence intervals of ERAS (Figs. 4e.f).
Again, the contribution of model uncertainties is small as the full
ranges of ALL members (6.94myr~ ' for OND and 12.97 myr™!
for JFM) is only barely larger than that due to internal variability
(614myr~ ! for OND and 12.03myr ™! for JFM).

We finally examine the zonal-mean 7 trends considering
height-latitude distributions (Fig. 5). Both ERAS and ALL
MMEM T have significant warming trends in the troposphere
and cooling in the extrapolar stratosphere, which are expected
features of global warming. In much of the troposphere be-
tween 20° and 60°N, the trends of ALL MMEM T are stronger
than those of ERAS. The strongest lower-troposphere warm-
ing in the high latitudes is the signature of Arctic amplification
(e.g., Lee et al. 2008; Alder et al. 2011; Deser et al. 2015, 2016b).
It is noted that the Arctic warming trends in our simulations are
closer to those of ERAS than the warming trends presented in
Cohen et al. (2020), in which the warming center is slightly
displaced southward (see their Fig. 1c), perhaps because of
significantly fewer ensemble members. However, the AGCM
version and forcing applied also differ, which may also ex-
plain the discrepancies.

In summary, the temperature trends of ERAS and ALL
MMEM, which result from the combined influence of SIC,
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FIG. 4. Asin Fig. 2, but for geopotential height at 50 hPa (Z50). It is noted that only 155 members are used in Z50 ALL MMEM. In (e) and
(f), use of solid (dashed) vertical lines indicates that the trends are (are not) significant at 5% level.

SST, and radiative forcings, show overall consistent features, in
particular at high latitudes in the lower troposphere (Figs. 1, 2,
and 5). In contrast, the consistency of the trends for the dy-
namical variables between ERAS and ALL cannot be readily
assessed because the effects of internal atmospheric variability
dominate in ERAS.

b. Arctic sea ice influence on trends

Assuming that the atmospheric circulation response to
Arctic sea ice variability is sufficiently additive, ST MMEM
should best represent the response to Arctic sea ice changes,
including trends and variability at interannual and longer time
scales. In this section, we quantify the influence of Arctic sea
ice loss on the long-term trends.

Figures 6 and 7 show the trends of SI MMEM for SAT,
SLP, geopotential height at 500-hPa level (Z500 hereafter),
and zonal wind at 850-hPa level (U850 hereafter) in OND and
JFM, respectively. Strong SAT warming trends in OND and
JFM appear in regions of large Arctic sea ice edge retreat
and newly open waters, including the Labrador, Greenland, BK,
East Siberian—Chukchi, and Okhotsk Seas (Figs. 6a and 7a).
The similarity with the trends in Figs. 2a—d suggests that ERAS
and ALL MMEM warming trends in the Arctic are mostly
driven by sea ice changes. In both seasons, the warming trends
due to sea ice loss extend over northern Eurasia and North

America, but their magnitude is small, thus contributing little
to the continental warming trends in ALL MMEM. Consistent
with the strong warming trends near the sea ice edge, there are
strong negative SLP trends (Figs. 6b and 7b), likely as a result
of the near-surface atmospheric circulation response to local
heating that was also shown in previous modeling studies (e.g.,
Peings and Magnusdottir 2014; Deser et al. 2010).

Away from the local SLP response to the strong SAT
warming near the sea ice edges, there is no field significant SLP
trend in OND, except for a small decrease in northeastern
North America and northwestern Asia, and only locally
significant trends in Z500 or U850 (Figs. 6b—d). Conversely,
there is a field significant dynamical large-scale response to
Arctic sea ice loss in JFM, best seen in Z500 (Fig. 7c). The
trend has a negative AO-like pattern, particularly strong in
the North Atlantic sector, with significant increasing trends
over the Nordic seas, Greenland, northeast Asia, and northwestern
North America, and a decreasing trend over southeastern America,
western Europe, and the central Pacific. Correspondingly, the
U850 trends present a north-south dipolar structure (color
shadings in Fig. 7d) that tends to shift the climatological
Atlantic and Pacific jet (black contours in Fig. 7d) equator-
ward. The lower tropospheric zonal wind also decreases over
northern Siberia. Note that the signature of the negative AO-like
pattern also appears in the JFM SLP trends, but is masked by
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FIG. 5. Zonally averaged air temperature trends from 1000 to 10 hPa. The black contour lines represent the
corresponding climatological (1979-2014) zonally averaged air temperature (K) from (a),(b) ERAS and (c),(d)
ALL MMEM. The black dots indicate field significance, while cyan dots 5% local significance.

the local warming near the regions of sea ice retreat (Fig. 7b).
To quantify the trend uncertainties in SI MMEM, we further
calculate the SLP, Z500, and U850 trends averaged over North
Atlantic-northern Europe regions (red boxes in Figs. 7b—d)
where the changes are statistically significant. The SLP and Z500
increase at rates of 0.021 + 0.018 hPayr ' and 0.37 = 020 myr !,
respectively, whereas U850 decreases at a rate of —0.015 =
0.011ms ™ 'yr!, where the 95% confidence intervals are indi-
cated. These trends are small, however, implying a change of
0.76 = 0.65hPa, 13.3 = 7.2 m, and 0.54 = 0.40 m, respectively,
during the 36-yr period. Similarly, the JFM NAO index, as de-
fined above, only decreases at a rate of —0.014 + 0.031 hPayr ™!

(=044 = 034myr~ ! for the Z500 NAO index). In the strato-
sphere, there is no significant trend in OND (Figs. 8a,c), but sea
ice loss induces a small weakening of the polar vortex in JFM,
which is field significant over northeastern North America, as
illustrated at 50hPa (Figs. 8b,d). Hence, these trends confirm
that the Arctic sea ice decline affects, albeit weakly, the midlati-
tude atmospheric circulation in boreal winter.

The trends of zonally averaged 7" and zonal velocity com-
ponent U in height-latitude space confirm that the JFM near-
surface warming trends in high latitudes extend upward into
the stratosphere (Fig. 9b) and are consistent with negative U
trends centered around 60°N (Fig. 8d). This is likely as a result
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F1G. 6. OND trends from SIMMEM for (a) SAT, (b) SLP, (c) geopotential height at 500-hPa
level (Z500), and (d) zonal wind at 850-hPa level (U850). The cyan contour lines indicate the
5% local significance level, while the black dots denote the field significance. The black contour
lines in (d) represent climatological (1979-2014) OND ALL MMEM U850 (inm s~ '). The 165
members are used in (a) and (b), while 155 members are used in (c) and (d).

of thermal wind adjustment and the associated eddy-driven
response (e.g., Chemke et al. 2019; England et al. 2020; Hell
et al. 2020). Altogether, these features indicate a negative
tropospheric (Fig. 7c) and stratospheric (Fig. 8b) AO pattern.
In lower latitudes, positive U trends occur around 30°N in JFM
(Fig. 9d), which corresponds to an intensification of the sub-
tropical jet core. This may be caused by changes in the atmo-
spheric meridional overturning circulation induced by the
Arctic warming and subsequent modulations on 7 trends in the
lower latitudes (e.g., Deser et al. 2016b; Chemke et al. 2019;
England et al. 2020; Hell et al. 2020; He et al. 2020). In contrast,
in OND the warming 7T trends are confined to the high latitudes

below the 800-hPa level (Fig. 9a), while there is a small cooling
trend in the lower latitudes, as well as in the high-latitude
stratosphere. However, these trends are weak and lead to very
little change in the zonal wind (Fig. 9¢).

In summary, the SI MMEM results indicate that Arctic sea
ice loss robustly contributed to the Arctic warming over the
1979-2014 period, extending to the 500-hPa level and the
stratosphere during JFM. In this season, there is also a weak
trend resembling a weak negative AO-like pattern, with a
small southward shift of the midlatitude jet stream and a
slowdown of the stratospheric circulation. In OND, however,
there is no significant dynamical response to the sea ice loss.
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FIG. 7. As in Fig. 6, but for JFM. The red boxes outline the region 0°-20°E, 60°~70°N in (b),
30°W=20°E, 60°~75°N in (c), and 30°W-20°E, 50°-65°N in (d).

These responses are not retrieved in ALL MMEM (Figs. 2 and
3), indicating that they are masked out by other forcing
agents (e.g., SST).

4. Interannual variability during 1979-2014

In this section, we use MCA to examine the relationships
between Arctic sea ice and lagged atmospheric circulation
fluctuations with a focus on interannual (year-to-year) vari-
ability. Following observational evidence (e.g., Garcia-Serrano
et al. 2015, 2017), we primarily consider the North Atlantic—
Eurasian domain (30°W-120°E, 50°-90°N for SIC; 90°W-40°E,
20°-90°N for SLP). Note that using the Northern Hemisphere
domain (20°-90°N) for SLP in MCA gives similar results with
less statistical significance as expected from the inclusion of

unrelated remote signals in the SLP fields (Figs. S2-S4). SIC
fluctuations are largely driven by the atmosphere on the
monthly time scale (e.g., Frankignoul et al. 2014; Blackport
et al. 2019) and, as for the case of SST anomalies (e.g., Czaja
and Frankignoul 2002; Wills and Thompson 2018), simulta-
neous correlations generally reflect the atmospheric forcing of
the SIC anomalies. To exclude the atmospheric forcing, we
only examine the MCA when the atmospheric anomalies lag
the SIC anomalies. In view of the short time scale of the natural
atmospheric variability at sea level and in the midtroposphere
(negligible month-to-month persistence), lags of a month and
longer could better separate a possible atmospheric response
to changes in the surface conditions including SIC, SST, and
SCE from the direct atmospheric forcing of these changes, as in
numerous studies of SIC (or SST) influence on the atmospheric
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FIG. 8. OND trends from ST MMEM for (a) geopotential height at the 50-hPa level (Z50),
(c) zonal wind at the 50-hPa level (U50). (b),(d) As in (a) and (c), but for JFM Z50 and U50
trends respectively. The cyan contour lines indicate the 5% local significance level, while the
black dots denote the field significance. All 155 members are used.

circulation (e.g., Frankignoul et al. 2014; King et al. 2016;
Nakamura et al. 2016; Yang et al. 2016; Koenigk et al. 2016;
Garcia-Serrano et al. 2015, 2017). To further isolate the impact
of SIC from that of other surface conditions, an apparent SIC
impact, which might actually reflect the influence of concomi-
tant SST, SCE or stratospheric fluctuations, should be sepa-
rately quantified. Hence, possible confounding factors are also
examined.

Figures 10a and 10b show SC and R of the first MCA mode
for ERAS at varying lagged months from October to March.
The most significant MCA mode is for November SIC and
December SLP, with significant SC at 1% level and R at 8%
level. The November SIC spatial pattern presents a large SIC
reduction in the BK Seas (Fig. 10c), and the SLP anomalies one
month later have a negative NAO-like pattern in the North

Atlantic sector (Fig. 10d). This result is consistent with the
analyses by Garcia-Serrano et al. (2017). SC is also 2% sig-
nificant when the October SIC anomalies lead the January SLP
anomalies, albeit with slightly less significant R but similar
patterns. Performing the MCA with Z500 anomalies instead of
SLP anomalies gives very similar results and indicates that the
December atmospheric circulation anomalies are largely bar-
otropic in the North Atlantic sector. The signal extends to the
stratosphere where it resembles a negative AO (highly signif-
icant at 50 hPa; not shown). However, Gastineau et al. (2017)
found that a concomitant Siberian SCE increase in November
(likely synchronously driven by the same atmospheric fluctu-
ations that drove the SIC anomalies) also precedes a similar
negative NAO-like signal. The link with SCE is twice stronger
than with SIC, while November Ural blocking may have
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FIG. 9. The trends of ST MMEM (155 members) zonally averaged air temperature in (a) OND and (b) JFM.
(c),(d) As in (a) and (b), but for zonally averaged zonal winds. The black contour lines represent the corre-
sponding climatological mean (1979-2014). The black dots indicate field significance, while the cyan dots 5%

local significance.

negligible impact on these lag relations (their Fig. 13). Furthermore,
Czaja and Frankignoul (2002) showed that a North Atlantic
horseshoe pattern is also driving the NAO in early winter
[November-January (NDJ)]. Hence, our MCA between
November SIC and December SLP may be influenced by these
confounding factors. Regressing the November global Z500,
SST and SCE anomalies onto the November SIC MCA time
series illustrate concomitant signals and shows that an eastern
European Z500 increase, Siberian SCE increase, and a sig-
nificant cooling in the subtropical North Atlantic may have
indeed contributed to the relation between November SIC

and December SLP (Figs. 11a,b). To estimate relative con-
tributions, a multiple regression was performed using four re-
gressors: the November SIC MCA time series, the November
Siberian SCE index, the November North Atlantic SST in-
dex, and, for completeness, the November Ural blocking
index. Collinearity is very limited, with a VIF of 1.3 at most.
The results (not shown) indicate that although SIC still
leads a significant negative NAO-like signal, its amplitude
is about 3 times smaller than in Fig. 10d, which is domi-
nated by the combined influence of Siberian SCE and North
Atlantic SST.
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FIG. 10. (a) The squared covariance (SC) of the first MCA mode of covariability between observed SIC and
lagged ERAS SLP from October to following March (shading). The number indicates how many SCs generated by
random SLP chronology permutation for 100 times are larger than the SC obtained from the original SIC fields
without permutation (see section 2d). If the number is smaller than 10, indicating the 10% significance level, we
label it with an asterisk (*). (b) Asin (a), but for the correlation coefficients between MCA SIC and SLP time series.
(c) November SIC anomalies regressed onto normalized November SIC time series obtained by MCA on
November SIC-December SLP fields (i.e., heterogeneous SLP pattern). (d) December SLP anomalies regressed
onto normalized November SIC time series obtained by MCA on November SIC-December SLP fields (i.e., ho-
mogeneous SIC pattern). (e),(f) As in (c) and (d), but for December SIC and February SLP anomalies regressed
onto normalized December SIC time series obtained by MCA on December SIC-February SLP fields. The cyan
and magenta contour lines in (c)—(f) indicate 5% local significance level and field significance, respectively. The
green box in (d) delineates the region 60°~70°N, 30°W-0°.

Figure 10 also shows that there is a strong 2% significant SC
when the December SIC anomalies lead the February SLP
anomalies, although R is only 26 % significant. This MCA mode
shows that a SIC decrease in the Barents and Greenland Seas
precedes the occurrence of a negative NAO-like pattern
(Fig. 10e). The mode is also equivalent barotropic in the tro-
posphere (but insignificant in the stratosphere), with similar
statistical significance when based on Z500 anomalies. This mode
was discussed by Garcia-Serrano and Frankignoul (2016), who

mentioned that the NAO-like response may also be affected
by a concomitant North Atlantic SST tripolar anomaly, which
is seen in the SST regression map (Fig. 11d). Figure 11d also
shows that the December SIC decrease is accompanied by a
SCE increase in central Asia and decrease in central Europe,
which were found by Gastineau et al. (2017) to have a weakly
significant link with the February atmospheric circulation. A
concomitant statistically significant Z500 signal is also found in
the Ural blocking region (Fig. 11c), suggesting that December
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FIG. 11. Regressions of November Z500 (m), the concomitant SST (K) and snow cover extent (SCE; %)
anomalies onto the SIC MCA time series in (a),(b) November and (c),(d) December. The cyan and magenta
contour lines indicate 5% local significance level and field significance, respectively.

Ural blocking may be another confounding factor in analogy to
the results that Peings (2019) suggested for November Ural
blocking. To investigate the impacts of these possible con-
founding factors, we have performed a multiple regression with
four predictors, the December SIC MCA PC1, the December
SCE index, the North Atlantic SST index, and the December
Ural blocking index. The collinearity is again limited (VIF of
1.7 at most). Although each regressor precedes a significant
February SLP signal in the North Atlantic-Europe sector with
substantial amplitude, the patterns differ (Fig. 12). Indeed, the
SLP signal linked to December SIC most resembles a negative
NAO, while that linked to the North Atlantic SST tripolar
anomalies has similarity with a positive NAO with a southward
shift of anomaly centers, and with associated anticyclonic
anomalies over Scandinavia. Such a pattern is consistent with
Han et al. (2016), who showed opposite SST and SIC impacts
on the atmosphere in late winter. The SLP signal linked to
December Ural blocking occurs west of the British Isles and
does resemble the NAO. To quantify the influence of these
factors on the NAO, we have performed the multivariate re-
gression using the February NAO index as predictand. As
shown by the coefficient of determinations (R?) in Fig. 13a,
December SIC, SCE, and SST contribute comparatively (e.g.,
R? = 0.23 for SIC and 0.15 for SCE) to the NAO variability,
while December Ural blocking has a weaker influence. It
is noted that the explained NAO variance is substantially

increased when the four (or the first three) indices are used
together as predictors. Similar results are found when using
Peings’s (2019) area-averaged Z500 blocking index (Fig. 13b).
Since Peings (2019) suggested that November Ural blocking
influences the NAO, we also performed the multiple regression
using the November Ural blocking indices instead of the
December ones, but the influence on the NAO remained small
(not shown).

In summary, our MCA results between the December SIC
and February SLP is influenced by the concomitant SCE, SST,
and, to a much lesser extent, Ural blocking. Quantitatively, the
February signal that can be attributed to SIC change in our
multiple regression model is about 2.5 hPa over the Icelandic
region (area-averaged values over the green box in Fig. 12a.
This box is chosen to cover the northern center of action for
NAO), which accounts for 50% of that in the MCA results
(about 5hPa over the same green box).

We next perform the same MCA on ALL MMEM SLP
fields to assess if the MCA modes found in ERAS are repro-
duced in AGCM simulations with all forcings (Fig. 14). Even
though MMEM should be less affected by internal variability
than ERAS, there is no significant SC at 10% significance level.
The highest statistical significance for the SC (20%) is reached
in three cases for December SIC leading SLP, but in all the
cases a SIC decline in the BK Seas leads a positive NAO-like
SLP in March, opposite to the ERAS results (perhaps primarily
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FIG. 12. Multiple regression of the ERAS SLP anomalies in February onto the normalized (a) December SIC
MCA time series, (b) December Siberian snow cover index, (c) December North Atlantic SST index, and
(d) December Ural blocking index. The black and cyan stippling indicates 5% local significance level and field
significance, respectively. The green box in (a) delineates the region of 60°~70°N and 30°W-0°.

reflecting the influence of the concomitant SST tripolar anoma-
lies; see Fig. S5).

More significant MCA results are found using SI MMEM
(Fig. 15), very likely because the influence of interannual SST
and radiative forcing has been sufficiently reduced in SI
MMEM. The November SIC-December SLP is not statisti-
cally significant, perhaps because of the observed correlation
between the BK SIC and Eurasian SCE is not reproduced in
AMIP-type simulations. On the other hand, the December
SIC-February SLP MCA mode has high statistical significance
with 3% for SC and 0% for R (Figs. 15a,b). Its SIC and SLP
spatial patterns (Figs. 15c,d) largely resemble those of ERAS
(Figs. 10e,f and 12) with a large sea ice decline in the BK Seas,
albeit not in the Greenland Sea, and a negative NAO-like SLP
pattern. Similar negative NAO-like dipolar patterns, albeit
somewhat tilted, are also found in other MCA pairs, which
include the Greenland Sea SIC decline [e.g., January SIC-
February SLP (shown in Figs. 15e-f) and February SIC-March
SLP (not shown), where either SC or R is 10% significant].
These SI MMEM MCA modes thus resemble the December—
February mode in ERAS, but their SCs are one order of
magnitude smaller. The amplitude of the regressed SLP pat-
terns above the Icelandic region (e.g., area-averaged value
over the green box in Fig. 15d) is about 0.46 hPa, less than 20%
of the multivariate ERAS estimate (2.5 hPa). To investigate if
the smaller SLP values of AGCMs are sensitive to selected

region, we also consider the values averaged over a larger
spatial extent and obtain similar model underestimations: the
SI MMEM SLP value averaged over the northern domain
(60°-90°N, 90°W-0°) is about 0.47 hPa, smaller than the mul-
tivariate ERAS estimate that is 1.37 hPa; the ST MMEM SLP
value averaged over the southern domain (20°-50°N, 90°W-0°)
is about —0.05 hPa, smaller than the multivariate ERAS esti-
mate that is —0.37 hPa. These results suggest that the AGCMs
may underestimate the strength of SLP-SIC covariability.

5. Summary and discussion

This study uses two sets of coordinated AGCM experiments,
one with observed Arctic SIC prescribed during 1979-2014
and the other with climatological Arctic SIC, to examine the
impacts of Arctic sea ice on atmospheric circulation in the
Northern Hemisphere cold seasons (i.e., October to March).
We first compared the linear trends in the ALL MMEM (i.e.,
experiments with all the time-varying forcings, including SST,
SIC, greenhouse gases, aerosols, and solar radiation) to those
in ERAS. The warming SAT trends, which are large in regions
of Arctic sea ice loss, are consistent within the Arctic Circle in
terms of geographical pattern and magnitude between ALL
MMEM and ERAS. The Arctic warming trends in the lower
troposphere are also similar, suggesting that the AGCM sim-
ulations are realistic in the Arctic and the observed trends are
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FIG. 13. (a) R? values of multiple regression using the February
NAO index as predictand and December SIC PC1, December
North Atlantic SST index, December Siberian snow cover index,
and December Ural blocking index following the definition of
Scherrer et al. (2006) as predictors. ALL indicates the R* value
when all four indices are used in the multiple regression model. The
levels of statistical significance are indicated in the parentheses.
(b) As in (a), but for December Ural blocking following the defi-
nition of Peings (2019).

the forced signal driven by SST, SIC, and external radiative
forcing. Comparing to OND and JFM global mean warming
trends in ERAS (0.19 = 0.046 and 0.15 + 0.052K decade™")
and ALL MMEM (0.21 * 0.042 and 0.17 * 0.044 K decade 1),
the Arctic warming trends are about 4-5 times larger (0.98 =
0.29 and 0.61 + 0.33 K decade ™! for ERAS and 1.09 = 0.18 and
0.68 = 0.17K decade ™! for ALL MMEM), illustrative of the
Arctic amplification. We also show that the 95% confidence
interval reflects the effect of internal atmospheric variability
compared to model uncertainty, and that the spread of Arctic-
averaged SAT trend among members is comparable to the
estimated uncertainty in ERAS trends. In the North Pacific
and Atlantic sectors, the ERAS trend pattern is also realis-
tically simulated. Over the continents, however, the weak
warming trends (except in northwestern North America) in
ALL MMEM cannot be compared, as the SAT trends are not
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statistically significant in ERAS, except in a few small con-
tinental regions.

The comparison is more difficult for the trends of dynamical
variables such as SLP, geopotential height, and zonal wind in
the troposphere and stratosphere because the observed trends
are generally not statistically significant and reflect the large
internal atmospheric variability. As such, the forced trends in
the atmospheric circulation cannot be reliably estimated using
observations or a single AGCM simulation. The effects of in-
ternal variability are reduced in MMEM, and the SLP trends of
ALL MMEM within the Arctic present a significant SLP de-
crease in OND over the Arctic and much of Eurasia, and
positive trends over the eastern North Pacific and northwestern
North America. However, there is no field significant SLP
trend in JFM, suggesting that the SST, Arctic sea ice loss, and
external radiative forcing are more effective in driving near-
surface atmospheric circulations in autumn than in winter.
Noteworthy is that the spread of Arctic-averaged SLP trend
among members is comparable to the estimated uncertainty
in ERAS trends and largely due to internal variability, with
model uncertainty playing a much smaller role than for SAT.

The trends driven by the Arctic sea ice variability are singled
out in SI MMEM, quantified by the difference between the
MMEMs of ALL and SIC., (corresponding experiments
where the time-varying SIC is replaced by its mean seasonal
cycle). The ST MMEM shows that in OND and JFM the SAT
warming trends found in ALL MMEM and ERAS in regions of
sea ice decline are indeed mainly driven by sea ice loss, which
account for more than 50% of the warming trends in ALL
MMEM and ERAS. In both seasons, the warming trends
due to seaice loss extend over northern Eurasia and North
America in ST MMEM, but their magnitude is small, even
compared to ALL.

A strong local decrease dominates the SLP trends near the
sea ice edge, as expected from a thermodynamical response to
oceanic heat release, although it is somewhat masked in JFM
by a significant dynamical barotropic response that resembles a
negative AO-like circulation pattern and extends up to the
stratosphere, weakening the circulation there. Correspondingly,
sea ice loss induces a southward shift of the tropospheric jet
stream. These JFM circulation changes may be related to the
thermal wind adjustment to reduced meridional temperature
gradient, the associated eddy feedback and/or troposphere—
stratosphere coupling processes. These results support previ-
ous modeling studies that found a negative AO-like response
in winter to an Arctic sea ice reduction (e.g., Seierstad and
Bader 2009; Peings and Magnusdottir 2014). Our trend analysis
is also qualitatively consistent with the observational study of
Simon et al. (2020), which found that an Arctic sea ice loss
should drive a negative NAO-like signal in winter, but has
a negligible large-scale impact in autumn. However, in our
analysis, the winter trends in SI MMEM are substantially
smaller than those in Simon et al. (2020). For example, the
winter SLP over a North Atlantic-northern Europe region
increases at a rate of 0.21 + 0.18 hPa decade ' and Z500 in-
creases at a rate of 3.7 = 2.0m decade !, while in the obser-
vational estimates the Icelandic high could increase by as much
as5 + 4hPa decade ' for SLP and 60 + 40 m decade " for Z500.
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FIG. 14. (a),(b) Asin Figs. 10a and 10b, but for ALL MMEM (165 members) SLP. (c),(d) Asin Figs. 11cand 11d,
but for December SIC and March ALL MMEM SLP fields. (e),(f) As in (c) and(d), but for December SIC and

February ALL MMEM SLP fields.

Although these observational estimates are upper bounds as
they are based on perpetual winter conditions and assumption
of linearity, they are much larger than in the MMEM. It is
noted that these trend estimates are much larger than observed
(Fig. 3; see also Blackport and Screen 2020b), but observed
trends should also be influenced by SST changes and external
forcings.

This discrepancy led us to investigate whether the AGCMs
can represent the impact of Arctic sea ice variability on the
cold season atmospheric circulation at interannual time scale.
Such influence in observations has been extensively docu-
mented in the literature (e.g., Frankignoul et al. 2014; King
et al. 2016; Nakamura et al. 2016; Yang et al. 2016; Koenigk
et al. 2016; Garcia-Serrano et al. 2015, 2017; and many others)
and was more robustly characterized in Simon et al. (2020). For
this purpose, MCA is used between detrended SIC anomalies
and lagged SLP anomalies in the North Atlantic—-Europe sector,

and it is compared with ERAS counterparts during the same
1979-2014 period. As in the studies above mentioned, we
considered relation between SIC and the atmosphere lagging
by at least one month, which should suffice to separate a pos-
sible atmospheric response to SIC changes from the direct at-
mospheric forcing of these changes (e.g., Frankignoul et al.
2014; Gastineau and Frankignoul 2015; Blackport et al. 2019;
Screen and Blackport 2019; Blackport and Screen 2020b), in
view of the short memory time scale of the internal atmospheric
variability in the middle and lower troposphere. Possible con-
founding influence were also examined using multiple regression
since, for example, Gastineau et al. (2017) showed that con-
comitant Siberian SCE anomalies had a similar but larger in-
fluence on the observed early winter atmospheric circulation
compared to the response to the BK Seas SIC. Simon et al.
(2020) found similar results for the atmospheric response in
December to interannual SIC variability, but a SIC influence
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FI1G. 15. (a),(b) Asin Figs. 10a and 10b, but for SIMMEM SLP. (c),(d) As in Figs. 10c and 10d, but for December
SIC and February STMMEM SLP fields. (e),(f) Asin (c) and (d), but for January SIC and February STMMEM SLP
fields. The green box in (d) delineates the region 60°-70°N, 30°W-0°.

on the NAO later in winter was not significantly affected by
concomitant SST or SCE variability. Also, Peings (2019) sug-
gested that an apparent SIC impact on the winter atmospheric
circulation might arise from prior Ural blocking variability
influencing both the BK SIC and the stratosphere, which in
turn affected the NAO throughout the winter (see also Luo
et al. 2016, 2018).

The most significant mode of lag covariability in ERAS is
between November SIC and the following December SLP,
which is manifested as sea ice decline over the BK Seas
preceding a negative NAO-like pattern. However, the negative
NAO signal was found to be dominated by the influence of
confounding factors, namely concomitant Siberian SCE anoma-
lies, consistent with Gastineau et al. (2017), and North Atlantic
SST anomalies, as in Czaja and Frankignoul (1999, 2002),
which were presumably in part driven by the same atmospheric
fluctuations as the BK SIC anomalies. On the other hand,

November Ural blocking had negligible influence. In contrast
to ERAS, no significant corresponding MCA mode was found
between November SIC and the following December SLP in
either ALL MMEM or SIMMEM, perhaps in part because the
interannual snow cover changes in the AGCMs are essentially
independent of the prescribed SIC variations.

Consistent with Garcia-Serrano and Frankignoul (2016)
and many others, another significant MCA mode was found
in ERAS, showing that a SIC decrease in the Barents and
Greenland Seas in December precedes the occurrence of a
negative NAO-like pattern in February. The mode is equiva-
lent barotropic but without significant signature in the strato-
sphere. The possible influence of concomitant SCE and SST
anomalies was also investigated, along with that of December
Ural blocking. Multiple regression analysis showed that December
BK SIC, North Atlantic SST, and Siberian SCE anomalies
significantly contributed to SLP in February, with the pattern
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linked to SIC most resembling the negative NAO, while that
linked to SST had the opposite sign, consistent with Han et al.
(2016). In contrast, the contribution from December (or
November) Ural blocking to the NAO was smaller. Based on
multiple regression, December SIC, Siberian snow cover and
North Atlantic SST contributed substantially to the February
NAO, and the signal that could be attributed to BK SIC
in ERAS reached an amplitude of about 2.5hPa near the
Icelandic region, about 50% of that suggested by the lagged
MCA between SIC and SLP.

In ALL MMEM, there was no 10% significant mode be-
tween SIC and SLP in the same North Atlantic-Europe sector,
and the only MCA mode that reaches the 20% significance
level (December BK SIC leading March SLP) had an opposite
polarity in SLP to the ERAS one, possibly reflecting interan-
nual North Atlantic SST tripolar forcing. On the other hand, a
significant MCA mode emerges in late winter when using SI
MMEM, with consistent SIC and SLP spatial patterns with
ERAS. The most significant MCA mode is a SIC decrease in
the BK Seas in December preceding a negative NAO-like
signal in February, but there were also similar modes, albeit
less significant, showing that a SIC decrease in the BK and
Greenland Seas during January precedes a negative NAO-like
SLP signal in February or March. However, the SLP amplitude
in STMMEM only reaches 0.5 hPa near the Icelandic region (or
northern part of North Atlantic), which is only about 20% of
our ERAS estimate based on multiple regression model.

In summary, a negative NAO-like response to Arctic sea ice
loss is found in SI MMEM during mid-to-late winter when
considering both the trends and the interannual variability.
This is broadly consistent with observation-based estimates,
but the response to interannual SIC fluctuations is much weaker
in AGCMs than in the reanalysis data, suggesting that the
AGCMs might underestimate the response. Different AGCM
background states, insufficient physics and parameterizations of
turbulence, missing effects of leads on the ocean—-atmosphere
heat exchange (Marcq and Weiss 2012; Davy 2018), cloud mi-
crophysics (Screen et al. 2018), or sea ice configuration such as
constant sea ice thickness in AGCMs (Lang et al. 2017), could
be responsible for this underestimation. We do not find an
indication that the spatial resolution could be a factor, since
EC-Earth3-NLeSC and HadGEM3-GC3.1, with nominal 40-
or 60-km horizontal resolutions that are higher than the other
AGCMs, do not seem to behave differently from the other
AGCMs, but other high-resolution models should be considered
before ruling out the influence of spatial resolution.

The lack of active atmosphere—ocean coupling in AGCMs
has been argued to play some roles in the weakness of the
Arctic-midlatitude linkages at longer time scales (e.g., Deser
et al. 2015, 2016a). Although Garcia-Serrano et al. (2017) ob-
tained lagged MCA results in coupled simulations rather
comparable to observed ones, albeit with a smaller response
amplitude, a growing body of studies with CGCMs show larger
atmospheric circulation variation associated with Arctic sea ice
changes (e.g., Blackport et al. 2019; Blackport and Screen
2020a,b, 2021; Cohen et al. 2020; Dai and Song 2020). More
efforts are needed to investigate the role of atmosphere—ocean
coupling, which could be done by comparing uncoupled and
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coupled simulations from the Polar Amplification Model
Intercomparison Project (Smith et al. 2019) or multimodel
large ensemble datasets (Deser et al. 2020). We also note that
the weak response hinted at here could resonate with the so-
called signal-to-noise paradox, in which the state-of-the-art
climate models generally have much lower predicted vari-
ability (maybe relating to forced variability this study focuses
on) than the observed one (Scaife and Smith 2018).

Finally, our suggestion that AGCMs underestimate the at-
mospheric response to Arctic sea ice changes must be viewed
with caution since it relies on the analysis of 35 years of
satellite-based SIC observations and their relation to the at-
mosphere, which is a relatively short period. Hence, it cannot
be excluded that the results are intervened by the large internal
atmospheric variability (e.g., Blackport and Screen 2021).
Also, they may not be representative of earlier periods, since
Kolstad and Screen (2019) suggested that the recent BK SIC-
NAO relationship in observations is particularly high over the
course of twentieth century. Conducting GCM experiments
with SIC, albeit less accurate, and other forcings from earlier
periods (thus with different background states and potential
nonstationarity of the confounding factors) or applying causal
effect network (e.g., Rehder et al. 2020) to observations with
longer record period could help assess if AGCMs indeed un-
derestimate the atmospheric response to Arctic SIC changes.
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