15 JANUARY 2021 LIANG ET AL. 787

Autumn Arctic Pacific Sea Ice Dipole as a Source of Predictability for Subsequent
Spring Barents Sea Ice Condition

YU-CHIAO LIANG,? YOUNG-OH KWON,? AND CLAUDE FRANKIGNOUL™®

#Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
® Sorbonne Université, UPMC/CNRS/IRD/MNHN, LOCEAN/IPSL, Paris, France

(Manuscript received 12 March 2020, in final form 31 August 2020)

ABSTRACT: This study uses observational and reanalysis datasets in 1980-2016 to show a close connection between a
boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following
spring. The September-October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April-
May BS sea ice variations (r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic
uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear
regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have sig-
nificant prediction skills with 0.54-0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice
retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by
preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly
driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat
transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggested to involve positive
stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The mi-
gration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation-like pattern in the
troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.
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1. Introduction Arctic sea ice declining trend during boreal winter and spring
(Onarheim et al. 2015, 2018), and it has experienced strong
natural fluctuations at interannual, decadal, and longer time
scales in the past decades (Onarheim and Arthun 2017). Many
studies showed that the BS sea ice variability has likely exerted
profound impacts on local weather and climate (Kohnemann
et al. 2017; Pedersen and Christensen 2019), ecosystem
(Dalpadado et al. 2014), Arctic commercial shipping (Eicken
2013; Smith and Stephenson 2013; Melia et al. 2016; Pizzolato
et al. 2016; Laliberté et al. 2016), fishery activities (Hollowed
et al. 2013; Haug et al. 2017), and natural resource extraction
(Jung et al. 2016). Extensive studies also argued that BS sea ice
change could have far-reaching influences on weather and
climate in lower latitudes via altering large-scale atmospheric
circulations in a way that resembles the North Atlantic
Oscillation (NAO) (e.g., Cohen et al. 2014; Kim et al. 2014;
Opverland et al. 2015; Garcia-Serrano et al. 2015; Kretschmer
et al. 2016; Sorokina et al. 2016; Screen 2017; Zhang et al. 2019;
and many others), although this topic has been controversial
(e.g., Overland et al. 2016; Screen et al. 2018; Blackport et al.
2019; Cohen et al. 2020; Peings 2019; Blackport and Screen
2020; Dai and Song 2020; Liang et al. 2020). Therefore, im-
proving our understanding of the processes affecting the seaice
variability in the BS and developing an accurate BS sea ice
prediction system may benefit environments and socioeco-
nomics both locally and remotely.

Using an operational sea ice prediction system, Bushuk et al.
(2017) found that detrended Barents—Kara sea ice prediction
can be skillful at 5-11-month lead time in winter, while summer
Corresponding author: Yu-Chiao Liang, littleyuchiao@gmail.com  and autumn counterparts is only skillful at lead times less than

The loss of Arctic sea ice since the late 1970s has been ob-
served by routine satellite missions (Stroeve and Notz 2018). It
is one of the most robust features accompanying the anthro-
pogenic warming in the late twentieth century (Meehl et al.
2007; Serreze et al. 2007) and is projected to exacerbate in the
future (Overland and Wang 2013; Stroeve et al. 2012). On top
of the apparent decreasing trend, the Arctic sea ice exhibits
strong natural variability (Kay et al. 2011; Notz and Marotzke
2012; Stroeve et al. 2012). Multiple mechanisms have been
investigated to understand the origin of the sea ice variability.
Some studies attributed it to atmospheric dynamical and ra-
diative drivers (e.g., Kay et al. 2008; Graversen et al. 2011;
Herbaut et al. 2015; Urrego-Blanco et al. 2019), while others
emphasized the roles of oceanic and sea ice processes (e.g.,
Shimada et al. 2006; Yeager et al. 2015; Zhang 2015; Arthun
et al. 2017; Oldenburg et al. 2018) and their interactions (e.g.,
Nakanowatari et al. 2014; Krikken and Hazeleger 2015). The
interplay of natural variability and decreasing trend leads to
spatial heterogeneity of the sea ice variability (Close et al.
2015; Zhang 2015; Lee et al. 2017; Onarheim and Arthun 2017).

One of the sea ice loss hotspots lies within the Barents Sea
(BS). Its sea ice loss contributes the largest portion to the pan-
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3 months. The local sea ice reemergence associated with pre-
ceding subsurface ocean temperature anomalies was identified
as a source of winter Barents—Kara sea ice predictability, as
reported in other studies (Bushuk et al. 2015; Bushuk and
Giannakis 2017; Bushuk et al. 2019a). Using perfect model sea
ice prediction systems, some studies reported that the skillful
Barents—Kara sea ice prediction can be traced further back to
1.5-2.5 years (e.g., Day et al. 2014; Bushuk et al. 2019b). The
difference between operational and perfect model sea ice
prediction indicates that there is room for prediction skill im-
provement. Furthermore, Bushuk et al. (2015) showed that the
sea ice anomalies in the Barents—Kara Seas are correlated with
those in the Bering Sea when the latter leads the former by a
few months to about 1 year. Hence, inclusion of preceding sea
ice information in the Arctic Pacific sector may improve the
regional sea ice seasonal prediction in the BS.

In this study, we aim to explore a new source in the Arctic
Pacific sector of springtime BS sea ice predictability and ex-
amine the underlying mechanism using observational and re-
analysis datasets during 1980-2016. Data and analysis methods
used in this study are described in section 2. In section 3, we
identify the preceding sea ice variations in the Arctic Pacific
sector, manifested as a dipolar structure, relating to the BS sea
ice variability in the following spring, and use an empirical
model to address this potential source of prediction skill of the
springtime BS sea ice condition. A series of analyses are then
performed to determine the drivers of the autumn sea ice di-
pole and of the spring BS sea ice anomalies. Finally, we in-
vestigate the possible linking processes in establishing this
regional sea ice relationship. A summary and discussion are
provided in section 4.

2. Datasets and analysis methods
a. Observational and reanalysis datasets

Monthly mean sea ice concentration (SIC) and sea surface
temperature (SST) during 1980-2016 are obtained from the
Hadley Centre Sea Ice and Sea Surface Temperature
(HadISST) dataset with a horizontal resolution of 1° X 1°
(Rayner et al. 2003). We also use the SIC dataset from the
National Snow and Ice Data Center (NSIDC; Peng et al. 2013),
which provides very similar results as the correlation between
corresponding sea ice indices is always higher than 0.95. Hence,
we only show results using the HadISST SIC data.

Monthly and daily zonal and meridional winds, geopotential
height, total cloud cover, and atmospheric surface heat fluxes,
including latent heat, sensible heat, shortwave, and longwave,
are obtained from the European Centre for Medium-Range
Weather Forecasts (ERA-Interim) from 1980 to 2016 (Dee
et al. 2011), regridded to the horizontal resolution of 1° X 1°.

The sea ice thickness (SIT), sea ice velocity (zonal
and meridional components), sea ice (thickness) advection
[V - (uh)], ocean-to-sea ice heat flux used to melt sea ice, and
subsurface oceanic temperature and velocity are obtained
from the Pan-Arctic Ice Ocean Modeling and Assimilation
System (PIOMAS; Zhang and Rothrock 2003). Because the
temporal coverage of subsurface oceanic fields (from the
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surface to 60-m depth) ends in 2015, we only analyze the period
of 1980-2015 when using PIOMAS reanalysis data. The sea ice
advection and ocean-to-sea ice heat flux are obtained in units
of meters per second (ms~'), representing how much sea ice
thickness the heat flux or mass advection can grow or melt
(J. Zhang 2020, personal communication). To convert these
values to corresponding values in watts per square meter
(Wm™2) in order to more directly compare with air—-sea heat
fluxes, we multiply the above unit by sea ice density
(920kg m™>) and latent heat of sea ice (0.334Jkg™!). As the
PIOMAS is based on a hindcast simulation of an ocean—sea ice
coupled model with satellite-based sea ice concentration data
assimilated, the ocean-to-sea ice heat flux is actually a repre-
sentation of the net surface heat flux out of the ocean at each
grid. Strictly speaking, it corresponds to the ocean-to-sea ice
heat flux only for the portion of each grid covered by the sea ice
plus the ocean-to-atmosphere heat flux for the sea ice-free
surface area. Therefore, we estimate the ocean-to-sea ice heat
flux by multiplying the SIC by the PIOMAS surface heat flux at
each grid point, and the ocean-to-atmosphere heat flux by
multiplying it by one minus SIC. For consistency with the
surface heat fluxes provided by ER A-Interim, which is positive
downward, we change their sign to obtain the sea ice-to-ocean
and atmosphere-to-ocean surface heat fluxes from PIOMAS
data. It should be noted that the sea ice temperature can be
lower than the freezing point, and the amount of sea ice may
not immediately decrease or increase when gaining or losing
heat fluxes from atmosphere or ocean due to small but finite
heat capacity of sea ice. This effect only affects our interpre-
tation minimally. However, the PIOMAS dataset does not
provide sea ice temperature or the amount of heat used for
phase change of seawater near the freezing point, so accurate
estimates cannot be made here.

The monthly climatology in the 1980-2010 period is re-
moved from all fields to retrieve the anomalies. We also re-
move quadratic trends to isolate interannual variability from
the effect of the global warming and nonlinear Arctic sea ice
decline (Close et al. 2015). Similar results can be derived based
on the variables after removing linear trends. In the following
analyses, bimonthly anomalies are considered.

b. Indices

This study uses two sea ice indices to characterize the tem-
poral evolution and strength of the regional SIC anomalies.
The Arctic Pacific dipole sea ice index is defined as the area-
weighted SIC anomalies averaged over the East Siberian—
Laptev Seas (145°-178°E, 68°~78°N; western magenta box in
Fig. 1a) and divided by their standard deviation minus those
over the Beaufort—-Chukchi Seas (177°-144°W, 68°-78°N;
eastern magenta box in Fig. 1a) similarly divided by their
standard deviation. It is noted that the value of sea ice dipole
index does not change significantly without standardization.
The BS sea ice index is defined as the area-weighted SIC
anomalies averaged over the Barents Sea (40°-60°E, 68°-78°N;
green box in Fig. 1a).

The monthly NAO index is obtained from National Oceanic
and Atmospheric Administration’s (NOAA'’s) Climate Prediction
Center, and determined as the leading rotated empirical orthogonal
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FIG. 1. (a) SO(—1) SIC anomalies regressed onto the AM BS sea ice index. The black stippling indicates the significant regression
coefficients at 5% level, while the cyan stippling informs the field significance. The green box denotes the BS region (40°-60°E and 68°—
78°N), where the BS sea ice index is defined. The western and eastern magenta boxes represent the East Siberian-Laptev Seas (115°—
178°E, 68°~78°N) and the Chukchi-Beaufort Seas (177°-144°W, 68°~78°N), where the Arctic Pacific dipole sea ice index is defined.
(b) SO(—1) SIC anomalies regressed onto the SO(—1) dipole sea ice index. (c) AM SIC anomalies regressed onto the SO(—1) dipole sea
ice index. (d) Time series of the SO(—1) Arctic Pacific dipole and AM BS sea ice indices during 1980-2016.

function (EOF) mode of geopotential height anomalies at 500-hPa
level in the Northern Hemisphere (20°-90°N) (Barnston and
Livezey 1987). All indices are standardized by removing their mean
and dividing by their standard deviation before regression analysis.

c¢. Linear prediction model and cross-validation

To examine the predictability of spring BS sea ice condition,
an empirical forecast model is constructed using univariate or
multivariate linear regression (Dunstone et al. 2016; Wang
et al. 2017). We train the models with the take-N-year-out
cross-validation method (Wang et al. 2017) to exclude the
predictand and predictor time series from the prediction
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period. When N = 12, for example, the predictand and pre-
dictor time series are divided into segments with consecutive
12-yr data. We remove the first segment and train the models
with the remaining portion of the time series. The resultant
regression coefficients are then used to predict the value in the
first 12 years. We repeat the same procedure but exclude the
successive segments to obtain the cross-validated predicted
time series in the whole analysis period. We only show pre-
dicted results with N = 12, but N = 3 and 6 yield similar results
and slightly higher forecast skills. The forecast skill is measured
by the anomaly correlation coefficient between the original and
the predicted time series.
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d. Statistical significance

The statistical significance for the correlations and regres-
sions is assessed based on the two-sided Student’s ¢ test. The
effect of serial correlation is taken into account by using an
effective sample size (ESS) given as

R
=N *
ESS = No— RR 1)

where N is the length of time series, and R, and R, are the lag-1
autocorrelations of time series x and y, respectively
(Bretherton et al. 1999). To make the estimate more stable and
consistent, we calculate the lag-1 autocorrelations using the full
data length.

The statistical significance of regression maps could be
overinterpreted simply based on local statistical tests at each
grid point (Livezey and Chen 1983; Wilks 2016). To address
this issue, we adopt the “field significance” approach (Wilks
2016) that controls the false discovery rate (FDR). We choose
appr = 0.1 to achieve global test level agjopa = 0.05, assuming a
spatial decorrelation scale of ~1.5 X 10°km in the longitude—
latitude domain (see Fig. 4 in Wilks 2016) and in the time-height
domain (D. S. Wilks 2019, personal communication).

e. Horizontal ocean heat flux

When investigating the physical processes leading to the BS
SIC anomalies, we calculate the horizontal ocean heat flux into
the BS domain following Lee et al. (2004). Their reformulation
of horizontal heat flux aims to separate the effect of internal
heat redistribution, which does not contribute to the total heat
content, from that of external heat sources or sinks. The zonal
heat flux at the western interface of a rectangular box domain
at a specific time step ¢, for example, is written as

Cppo” tu(t,y,Z)[T (t,y,2) = T, ()] dydz
= (u(t,y,2)T*(t,y,2)), @)

where C, is the specific heat of seawater (3850J kg ' K1), p,
is the density of seawater (1025 kg m ™), u is the zonal velocity,
T is the ocean temperature, T, is the volume-averaged (over
the BS domain) ocean temperature, 7% = T — T,,, and the ()
operator indicates Cyp, [ () dydz.

To examine the relative contributions of anomalous circu-
lation and temperature, we decompose the zonal heat flux into
four terms:

(uT*y = @T*) + (uT*) + WT*) + (W'T¥), 3)

where X means the time-averaged value of variable X, and
X' =X — X. The four terms correspond to mean temperature
difference carried out by mean zonal flow ( T*), anomalous
temperature difference carried out by mean zonal flow (@7+'),
mean temperature difference carried out by anomalous zonal
flow (1'T*), and anomalous temperature difference carried out
by anomalous zonal flow (u/T*'). Similar formulation can be
applied to the meridional heat flux (replacing zonal velocity u by
meridional velocity v) at the northern interface of the domain.
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f- Removal of tropical Pacific variability

Because the tropical Pacific variability, including El Nifio—
Southern Oscillation, is one of the dominant sources of vari-
ability in the extratropical atmospheric circulations (e.g., Yeh
et al. 2018; Domeisen et al. 2019), we remove the teleconnec-
tion effects from all fields. The tropical Pacific variabilities are
represented by the three leading EOFs of the monthly SST
anomalies in the tropical domain (100°E-100°W, 15°S-15°N),
and their influence is removed by linear regression onto the
corresponding principal components, assuming that the tropi-
cal Pacific modes lead the extratropical atmospheric and sea
ice fields by 1 month. The regressions are calculated separately
for positive and negative values of the principal components to
account for the asymmetric responses to El Nifio-type warm-
ing and La Nifa-type cooling. Note that similar results are
obtained without removing the tropical teleconnections. For
example, the correlation coefficients between the two sea ice
indices are 0.714 and 0.705, respectively, with and without
tropical Pacific variability modes removed. This indicates that
the tropical Pacific variability does not influence much the
relationships discussed in this study.

3. Results

a. The predictability of the spring Barents Sea sea ice
condition

The seasonal evolution of the BS SIC shows that large seaice
extents are formed during boreal late winter and early spring
(i.e., January-May), whereas its largest interannual variability
(6.5%), measured by the standard deviation, occurs in April-
May (AM) (not shown). Hence, we investigate the sea ice
variability throughout the Arctic that may lend potential pre-
dictability to the AM BS sea ice. The largest remote linkage
is found with the Arctic Pacific sea ice in the preceding
September—October [hereafter SO(—1)]. Lag regression of the
bimonthly-averaged SO(—1) SIC anomalies over the Arctic
domain onto the AM BS sea ice index shows a significant di-
polar SIC anomalies in the Arctic Pacific sector (Fig. 1a). The
dipolar structure is characterized by positive anomalies in
the East Siberian-Laptev Seas and negative anomalies in the
Chukchi-Beaufort Seas, indicating that a sea ice increase in the
former region and decrease in the later region precede AM BS
sea ice increase by as much as 7 months. We also present the
SO(—1) SIC anomalies regressed onto the SO(—1) sea ice
dipole index to illustrate the dipolar structure (Fig. 1b).
Reversely, AM SIC anomalies regressed onto SO(—1) dipole
sea ice index show large positive SIC anomalies in the BS
(Fig. 1c), confirming that springtime BS SIC anomalies indeed
relate to preceding autumn sea ice dipole anomalies. We also
find very similar temporal evolutions of the two sea ice indices
during 1980-2016 (Fig. 1d) and their correlation is as high as
0.71, indicating that ~50% of BS sea ice variability can be
explained by the SO(—1) sea ice dipole variability.

The correlation between the two sea ice indices at various
lead-lag times is presented as a correlation matrix in Fig. 2.
Indeed, the 7-month connection between BS and Arctic Pacific
sea ice dipole variabilities is the strongest (r = 0.71) as shown
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FIG. 2. (a) Lead-lag correlation coefficients between the bi-
monthly mean BS sea ice index and the Arctic Pacific dipole sea ice
index. The month for the BS sea ice index is indicated on the x axis.
The negative (positive) number on the y axis represents how many
months the Arctic Pacific dipole sea ice index leads (lags) the BS
sea ice index. Open circles and filled circles denote that the cor-
relation coefficients are significant at the 5% and 1% levels, re-
spectively. The highest correlation is indicated by cyan filled circle.
(b) As in (a), but for lead-lag autocorrelation coefficients for the
BS sea ice index.

by the 7-month lag correlation (cyan filled circle in Fig. 2). The
correlations remain significant 2-3 months before and after
AM, implying that the development and decay of BS sea ice
also relate to the SO(—1) Arctic Pacific sea ice dipole. The
autocorrelation matrix of AM BS sea ice index (Fig. 2b) shows
significant correlations up to 4-5 months before (i.e., the neg-
ative lag on the y axis), corresponding to preceding winter
months, without overlap with the preceding autumn months
when the cross-correlation with the Arctic Pacific sea ice dipole
peaks. It also shows that the autumn BS SIC anomalies have
limited persistence that does not extend to the following winter
and spring months. The persistence of the BS SIC anomalies
exhibits strong seasonality and the largest persistence is found
starting from December—January for the following 5-6 months.

The high correlation between the AM BS sea ice index and
the SO(—1) Arctic Pacific dipole sea ice index suggests that part
of the predictability for the springtime BS sea ice condition may
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come from the previous autumn Arctic Pacific sea ice dipole. An
empirical forecast model is constructed based on linear regres-
sion (section 2c¢). The prediction of the AM BS sea ice condition
based on the SO(—1) Arctic Pacific dipole sea ice index alone
captures the evolution of the AM BS sea ice index (green line in
Fig. 3a) with the overall anomaly correlation coefficient (ACC)
between predicted and original BS sea ice index as high as 0.70
during 1980-2016.

To examine how the prediction skill evolves during our
analysis period, we calculate the ACC between the predicted
BS sea ice index and the original index with a sliding 12-yr
window (magenta line in Fig. 3b). Adding the January-
February (JF) NAO as a predictor (for reasons discussed in
section 3d) increases the ACC, especially during the last 12-yr
period (cyan line in Fig. 3b). The ACCs range between 0.54 and
0.85, with the highest values occurring during the first and last
few 12-yr periods and the lowest ones from the mid-1990s to
mid-2000s. Considering the cross validation, the ACC for the
last 12-yr period, 0.84, can be considered as a true prediction
skill in a strict sense, since it is based only on the data points
from preceding years. Note that using JF NAO as the only
predictor strongly reduces the prediction skill (the ACC is
about 0.3 over the whole period, and about 0.6 in the first few
12-yr period and much lower afterward).

To inform the spatial distribution of the prediction skill, the
ACC is given at each grid point within and nearby the BS
(Figs. 3c,d). The high ACCs are located close to the Severny—
Yuzhny Islands and Russian coastal regions, becoming weaker
westward and northward. The highest ACC within the BS
domain is 0.76 (0.77 with JF NAO information included), while
only two grid points present negative ACCs, and both are small
and not statistically significant at the 5% level. The average of
ACC values within the BS domain is 0.40 (0.39 with JF NAO
information included), which is lower than the ACC of the BS
sea ice index because of uncorrelated variability in the western
portion of the BS.

b. The physical interpretation of the autumn Pacific Arctic
sea ice dipole anomalies

Although the autumn sea ice dipole anomalies lend pre-
dictability for the subsequent spring BS sea ice anomalies, we
do not find a very high correlation (r = 0.46) between the two
poles of the SO(—1) sea ice dipole. This raises a question
whether the sea ice dipole anomalies represent a physical
variability pattern or the dipolar structure is simply a statistical
artifact, although a similar autumn sea ice dipole was reported
in a seasonal sea ice prediction study of Bushuk et al. (2015),
and manifested as a SIC footprint in one sea ice reemergence
mechanism and likely relating to Arctic atmospheric circula-
tion (see their Fig. 15). In this section, we intend to illustrate
that the autumn sea ice dipole anomalies have both statistical
and physical meaning, and result from several key physical
processes.

To verify whether the SO(—1) sea ice dipole anomalies can
be identified using standard statistical tools, we perform an
EOF analysis of the SO(—1) SIC anomalies in the Arctic
Pacific sector. The third leading EOF mode (hereafter EOF3),
explaining 12% of the total variance, presents the SIC dipolar
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(a) Linear Regression Predictions for AM BS SIC Index
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FI1G. 3. (a) The original (green line) and predicted AM BS sea ice indices using the SO(—1) Arctic Pacific dipole
sea ice index alone (magenta line) and the SO(—1) Arctic Pacific dipole sea ice index and the JF NAO index (cyan
line), with take-12-yr-out cross-validation. (b) The anomaly correlation coefficient (ACC) prediction skill with
12-yr sliding window. The filled circles denote that the prediction skills are significant at the 1% level. (c) The map
of ACC prediction skill using SO(—1) dipole sea ice index during 1980-2016. (d) As in (c), but including JF NAO
information. The black stippling indicates the significant regression coefficients at the 5% level, while the cyan
stippling informs the field significance. The green box denotes the BS region (40°~60°E and 68°~78°N), where the BS

sea ice index is defined.

structure and its principal component (hereafter PC3) is highly
correlated with the SO(—1) SIC dipole index (r = 0.84) and the
AM BS SIC index (r = 0.70) (not shown). Therefore, the EOF3
can also represent the autumn SIC dipole and the PC3 char-
acterizes its temporal variability. However, the EOF3 is not the
leading EOF mode and it is not statistically separable from the
second EOF according to North’s rule (North et al. 1982).
Hence, we prefer to use the SO(—1) SIC dipole index. To also
demonstrate that dipolar SIC anomalies indeed occur in our
analysis period of 1980-2016, we conduct case studies based on

Brought to you by MBL/WHOI Library | Unauthenticated | Downloaded 12/23/20 08:02 PM UTC

the strength of the sea ice dipole index (magenta line Fig. 1c)
and present the SO(—1) SIC anomalies in 1998 and 1991
(Figs. 4a,c), which represent the sea ice dipolar anomalies in its
positive and its negative phase, respectively. Importantly, the
two cases are followed by BS sea ice anomalies in AM
(Figs. 4b,d), reflecting the strong relationship between the
autumn sea ice dipole anomalies and subsequent spring sea ice
anomalies in the BS identified in section 3a. Similar positive
and negative sea ice dipole cases with various strength are
identified in other years. This indicates that the sea ice dipole
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FIG. 4. (a) September—October averaged SIC anomalies in 1998.
(b) April-May averaged SIC anomalies in 1999. (c) September—
October averaged SIC anomalies in 1991. (d) April-May averaged
SIC anomalies in 1992. The green box denotes the BS region (40°-
60°E, 68°-78°N), where the BS sea ice index is defined, whereas the
western and eastern magenta boxes represent the Arctic Pacific sea
ice dipole index regions.

anomalies not only occasionally emerge during past decades,
but also with different phases.

Next, we perform regression analysis onto the SO(—1) sea
ice dipole index with up to four months lead time [i.e., back
to MJ(—1)] to examine the evolutions of the physical proper-
ties and potential drivers of the sea ice dipole anomalies.
Regressed SIC anomalies from MJ(—1) to SO(—1) (first col-
umn in Fig. 5) indicate that the sea ice dipole anomalies start
to emerge as early as JJ(—1), albeit with weaker magnitude
and a shifted spatial pattern. The negative anomalies in the
Beaufort-Chukchi Seas (i.e., eastern magenta box) first appear
in the Beaufort Sea in MJ(—1) and expand westward into the
Chukchi Sea, becoming stronger as time evolves, while the
positive anomalies emerge in the East Siberian—Laptev Seas
(i.e., western magenta box) in JJ(—1) and intensify until
SO(—1). Regressed SIT and SST anomalies (second and third
columns in Fig. 5) correspond well with the SIC anomalies
evolution. The consistent evolution of SIC, SIT, and SST sug-
gests that the spring-to-autumn SST and SIT sea ice re-
emergence mechanisms (Bushuk et al. 2015; 2017) is not
involved in the development of the autumn sea ice dipole.
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We proceed to analyze the regressed heat fluxes from the
atmosphere into the ocean or sea ice (from ERA-Interim)
and those from the sea ice into the ocean (from PIOMAS),
and sea ice mass convergence by lateral advection (also from
PIOMAS), all of which can physically contribute to sea ice
growth or retreat. Their regression maps clearly show that
the atmospheric heat fluxes (fourth column in Fig. 5) are the
dominant driver of the sea ice dipole anomalies. Starting
from MJ(—1) to JA(—1), the negative atmospheric heat flux
anomalies over the East Siberian-Laptev Seas indicate less
heating from atmosphere, leading to sea ice increase, while
the positive heat flux anomalies in the east of the Beaufort
Sea melt more sea ice. These spatial patterns correspond
well to the SIC dipole anomalies from MJ(—1) to JA(—1).
When the sea ice dipole anomalies become mature, in
AS(—1), the dipolar atmospheric heat flux anomalies dis-
appear and then flip sign in SO(—1), becoming a response to
the sea ice dipole anomalies. It is noted that no strong re-
gressed sea ice-to-ocean heat fluxes (fifth column in Fig. 5)
occur from MJ(—1) to JA(—1), indicating almost no heat
exchange between sea ice and the ocean. In other words,
most of the atmospheric heat fluxes are used to melt or grow
the sea ice, rather than penetrating into the ocean. The re-
gressions of the sea ice velocity and advection do not show
coherent anomalies that would drive the seaice dipole (sixth
column in Fig. 5), although there are some localized im-
pacts, e.g., the negative advection anomalies (i.e., diver-
gence of sea ice mass) in part of the eastern box from JJ(—1)
to AS (—1).

The decomposition of atmospheric heat fluxes into their
turbulent (sensible plus latent), longwave, and shortwave ra-
diative components (Fig. 6) shows that persistent shortwave
dipolar anomalies from MJ(—1) to SO(—1) plays the dominant
role in forcing the sea ice dipole anomalies (fourth column in
Fig. 6). Strong shortwave dipolar anomalies appear in MJ(—1)
and JJ(—1), and weaken afterward. They are largely related
to changes in total cloud cover (fifth column in Fig. 6). More
cloud cover over the East Siberian-Laptev Seas reduces
incoming solar radiation, and vice versa over the Beaufort
Sea in JJ(—1). Additionally, the positive sea ice—albedo
feedback mechanism (Winton 2006; Serreze and Barry
2011; Screen et al. 2012) seems at play, in which more in-
coming shortwave melts more sea ice and produces more
open, darker waters, resulting in more shortwave absorp-
tion in the ocean and more sea ice melting in subsequent
months, and vice versa for less incoming shortwave. On the
other hand, significant turbulent and longwave heat fluxes
do not appear in the sea ice dipole region until JA(—1), but
they gradually intensify after JA(—1) when the sea ice di-
pole becomes mature. This can be interpreted as a response
to the sea ice dipole because less sea ice cover implies more
open water that favors heat release into the atmosphere via
turbulent and longwave fluxes, and vice versa for more sea
ice cover.

In summary, we find that the Arctic Pacific sea ice dipole
anomalies indeed occurred throughout the past decades,
seemingly primarily driven by anomalous shortwave radiation
related to Arctic cloud cover variability.
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FIG. 5. Regression maps onto the SO(—1) dipole sea ice index from MJ(—1) to SO(—1) for anomalous (first column) SIC, (second
column) SIT, (third column) SST, (fourth column) atmospheric net surface heat flux (positive downward, from ERA-Interim reanalysis
dataset), (fifth column) sea ice-to-ocean heat flux (positive downward, from PIOMAS), and (sixth column) sea ice velocity (arrows, from
PIOMAS dataset) and convergence of sea ice via lateral advection (from PIOMAS dataset). The regression coefficients within the
magenta contour lines are significant at the 5% level, while the cyan contour lines inform the field significance. The regression coefficients
of sea ice velocity, determined by the significance of either zonal or meridional or both components with 5% significance, are colored in
magenta. The western and eastern magenta boxes represent the Arctic Pacific dipole sea ice index regions.

c. The physical interpretation of the spring Barents Sea sea
ice anomalies

We now perform similar regression analyses onto the AM
BS sea ice index to investigate the potential drivers of the
spring BS sea ice anomalies. Consistent evolutions of SIC, SIT,
and SST anomalies (first three columns in Fig. 7) again suggest
that SST or sea ice reemergence is not involved. Instead, the
AM BS sea ice anomalies are primarily driven by the heat
fluxes (fourth and fifth columns in Fig. 7). Increased heat
flux since D(—1)J from the sea ice into the ocean (positive
values in fifth column in Fig. 7), in other words reduced heat
used to melt the sea ice, favors BS sea ice growth. On the
other hand, there is increased atmospheric heat flux into the
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BS (positive values in fourth column in Fig. 7), part of which
could be used to melt sea ice. The sea ice advection (sixth
column in Fig. 7), in contrast, shows a west—east dipolar
anomalies within the BS, which neither corresponds well to
the overall positive BS sea ice anomalies nor contributes to
BS sea ice increase in terms of the BS-averaged anomalies.
This implies that the growing anomalous BS sea ice extent
during winter to spring likely results from the competition
between atmospheric and oceanic heat fluxes used to melt or
grow the sea ice.

To investigate the oceanic processes that contribute to the
increase of BS sea ice, we next perform a heat budget analysis
over the BS ocean domain bounded by land to the south and
east, and by 60m at the bottom, the deepest level that the
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FIG. 6. Regression maps onto the SO(—1) dipole sea ice index from MJ(—1) to SO(—1) for (first column) the atmospheric net surface heat
flux, (second column) the turbulent (sensible + latent) heat flux component, (third column) the longwave radiative component, (fourth
column) the shortwave radiative component, and (fifth column) the total cloud cover. All the components are from the ERA-Interim
reanalysis dataset. The regression coefficients within the magenta contour lines are significant at the 5% level, while the cyan contour lines
inform the field significance. The western and eastern magenta boxes represent the Arctic Pacific dipole sea ice index regions.

PIOMAS dataset provides. The formulation of the ocean heat
budget can be written as

oT
p C ” m dxdydz = (uT*) + WT*)

+ JJ O tacedXdy + R, (4)
BS

where C, is the specific heat of seawater (3850 J kg 'K, po
is the density of seawater (1025kgm ™), T,, is the seawater
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temperature averaged over the control volume, (u7*) and
(vT*) are the ocean lateral heat fluxes, Qgygace 1S the net heat
flux at the surface with positive value downward into the ocean
(the Qgurtace includes both the atmosphere—ocean heat fluxes in
the ice-free region and sea ice-to-ocean heat fluxes in sea ice—
covered region), and R is the residual term including other
processes, and x, y, and z denote longitudinal, latitudinal, and
vertical directions respectively. In the ocean model producing
the PIOMAS product (i.e., the Parallel Ocean Program version
2), when the ocean is at the freezing temperature (i.e., —1.8°C)
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FIG.7. Asin Fig. 5, but for the regressions onto AM BS sea ice index. The green box denotes the BS region (40°-60°E, 68°~78°N), where the
BS sea ice index is defined.

and if additional heat loss occurs due to the air—sea fluxes over
the sea ice free region or ocean lateral/vertical fluxes, the ocean
temperature stays at —1.8°C and the sea ice grows (the interior
sea ice temperature can decrease to some extent, but the sea ice
bottom temperature is kept at —1.8°C). In such a situation, the
temperature tendency term [i.e., p,Cp [[[s(0Tm/31) dxdydz]
on the left-hand side of Eq. (4) equals zero, which is maintained
by the balance between the sea ice-to-ocean heat flux (included
in the [[Osurtace dxdy) and the sum of the other two terms on
the right-hand side of Eq. (4).

Figure 8a shows the regression of each heat budget term
onto the AM BS sea ice index from ON(—1) to AM. After JF,
the negative temperature tendencies (red line in Fig. 8a) are
mainly sustained by the combined cooling effects of lateral
heat fluxes (black line in Fig. 8a) and residual term (magenta
line in Fig. 8a), while counteracted by the net heat fluxes from
the surface (cyan line in Fig. 8a). In AM, the drop of the net
surface heat flux anomalies, persistent negative lateral heat
fluxes, and enhanced residual together lead to stronger cooling
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temperature tendency that provides cold ocean conditions,
favoring sea ice growth. If we assume the lateral heat flux
anomalies below 60 m to be largely consistent with those above
the 60-m depth, given the overall barotropic eastward Atlantic
inflow and the Norwegian Coastal Current on this continental
shelf with maximum bottom depth of ~300 m (Skagseth et al.
2008; Smedsrud et al. 2010), the residual may reflect the up-
welling of negative ocean temperature anomalies from below,
also a consequence of reduced lateral heat transport. However,
we cannot investigate the vertical heat exchange and other
processes resulting in the cooling effect of the residual term
because 60-m level is the deepest in PIOMAS dataset, and no
vertical velocity field is provided.

We next examine the regressed lateral ocean heat flux in the
upper 60 m and ocean-to-sea ice heat flux (Fig. 8b). Note that
the net surface heat flux into the ocean [Qgyrtace in Fig. 8a and
Eq. (4)] is decomposed into the atmosphere-to-ocean heat flux
and sea ice-to-ocean heat flux (as explained in section 2a). The
latter is then multiplied by —1 to infer ocean-to-sea ice heat
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(b) Regressed Zonal Heat Flux over
Western Side of Barents Sea
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FIG. 8. (a) Regression coefficients of each heat budget term averaged over the BS domain from ON(—1) to AM
onto the AM BS sea ice index, using PIOMAS dataset. The black line denotes lateral heat flux convergence ((u7*)
plus (uT*)), the cyan line the net surface heat flux (positive downward), the red line the temperature tendency, and
the magenta line the residual term. (b) Asin (a), but for ocean zonal heat fluxes through the western face of the BS
domain. The black line denotes the total ocean zonal heat flux (uT*), the yellow line (T*'), the green line (u/'T%),
the magenta line (u'T*'), and the cyan line the ocean-to-sea ice heat flux (positive upward). The regression coef-

ficients within filled circles are significant at the 5% level.

flux anomalies (cyan line in Fig. 8b). The lateral ocean heat flux
anomalies are dominated by the zonal heat flux (u7*) anom-
alies, while the meridional component is negligible (not
shown). The regressed total zonal heat flux (u7*) anomaly
through the western face of the BS region at 40°E brings less
heat into the BS from late autumn to spring, during which the
positive BS SIC anomalies gradually increase (black line in
Fig. 8b). Furthermore, the evolution of total zonal heat flux
anomalies is similar to that of the ocean-to-sea ice heat flux
anomalies averaged over the BS (cf. black and cyan lines in
Fig. 8b), although the amplitude of latter is smaller. The results
suggest that reduced horizonal ocean heat carried into the BS
by ocean currents in the upper 60 m alone can account for the
reduced amount of heat used to melt the sea ice and cooler ocean
conditions that favors sea ice growth above while the atmospheric
heat input into the ocean is mostly balanced by the residual, likely
the ocean contribution from deeper levels (Fig. 8a).

Further decomposition following Eq. (3) shows that the
mean temperature difference carried out by anomalous zonal
flow ((w'T%*), green line in Fig. 8b) and the anomalous tem-
perature difference carried out by mean zonal flow (({@7*'),
yellow line in Fig. 8b) each contributes to about 50% of the
total zonal heat flux, whereas the anomalous temperature
difference carried out by anomalous zonal flow ((&/T*'), ma-
genta line in Fig. 8b) contributes little. It is interesting that
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(uT*') and (' T*) play roughly equal roles in producing the BS
cooling. This indicates that thermodynamical (temperature
change solely) and dynamical (ocean current change solely)
processes are equally important. The former could be associ-
ated with the relatively colder ocean temperature in the region
to the west of the BS, which is produced by atmospheric heat
flux loss (see fourth column in Fig. 7). The cooling effect of
(W'T%) is directly related to the reduced ocean currents, which
are likely driven by the atmospheric wind changes, as shown by
the regression of JF geopotential height anomalies at 1000 hPa
onto the AM BS sea ice index (bottom right panel in Fig. 9).
Indeed, the positive geopotential height anomalies extending
from southeast of Greenland to the BS favor anomalous
easterlies (blowing westward) that weaken the prevailing
eastward ocean current entering the BS (possibly due to re-
sultant negative wind stress curl).

d. Dynamical linkage between the two Arctic regions

In this section, we investigate the possible dynamical linkage
between the sea ice anomalies in the two Arctic regions in
order to understand the underlying mechanism that gives rise
to 7-month lagged relationship. Regressions of the sea ice
velocity fields in lead-lag conditions onto both sea ice indices
do not show any persistent, significant trans-Arctic oceanic
pathway (not shown). Therefore, direct sea ice mass transport
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F1G. 9. Geopotential height anomalies at 1000, 500, and 100 hPa from SO(—1) to JF regressed onto the AM BS sea ice index. The
geopotential height fields are normalized by the spatiotemporal standard deviation at each level before regression. The magenta contour
lines indicate that the regression coefficients are significant at the 5% level, while the cyan contour lines inform the field significances.

from the Pacific Arctic sector to the BS via an oceanic pathway
seems unlikely. In addition, sea ice reemergence is not found in
the BS SIT and SST evolutions (Fig. 7). Instead, the JF re-
gression map of the near-surface geopotential height anomaly
(bottom right panel in Fig. 9) sheds light on a possibility that an
atmospheric pathway may be involved in linking the sea ice
anomalies in the two subArctic regions.

We thus calculate the regressions onto the AM BS sea ice
index of the geopotential height (hereafter Z) anomalies at
1000, 500 (representing the middle troposphere), and 100 hPa
(representing the lower stratosphere) backward from SO(—1)
to JF. Figure 9 shows that a positive anomaly appears in the
central Arctic at all levels in SO(—1) and persists until JF. As
winter approaches, the positive Z anomalies at 100 hPa be-
come elongated and are tilted from the East Siberian Sea to-
ward Greenland, while the near-surface Z anomalies become
weaker but with their center of action tending to follow the
migration of Z anomalies above. In JF, the near-surface Z
anomalies in the North Atlantic become stronger as those in
the middle troposphere and lower stratosphere, possibly re-
flecting the downward propagation of stratospheric circulation
anomalies in winter (e.g., Baldwin and Dunkerton 1999). The
near-surface Z anomaly pattern in JF resembles the negative
NAO pattern in the North Atlantic sector. A similar NAO-like
tropospheric response to stratospheric circulation anomalies
was also identified in previous studies (e.g., Baldwin and
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Dunkerton 1999, 2001; Thompson et al. 2002; Scaife et al. 2005;
Kolstad et al. 2010; Charlton-Perez et al. 2013). The negative
NAO-like pattern in JF reduces the prevailing westerlies in the
North Atlantic sector, especially over the Nordic seas and BS
regions, which leads to reduced ocean heat transport into the
BS as discussed in section 3c. Hence, the dynamical coupling
between troposphere and stratosphere could provide an at-
mospheric pathway in linking the two sea ice anomalies.
Previous studies have shown that the stratospheric cir-
culation anomalies can persist from autumn to winter, and
could propagate downward to affect tropospheric circula-
tions in late winter (e.g., Thompson and Wallace 1998;
Baldwin and Dunkerton 1999, 2001; Sigmond et al. 2013;
Kidston et al. 2015; Scaife et al. 2016) and subsequent
spring BS sea ice extent (e.g., Smith et al. 2018). To illustrate
that such a persistent stratosphere—troposphere signal is in-
volved in linking the two regional sea ice anomalies, we show
the daily evolution of the normalized (at each level) polar cap
Z anomalies averaged over 0°-360° and 70°-90°N from lower
troposphere (1000 hPa) to middle stratosphere (1hPa), re-
gressed onto the AM BS sea ice index (Fig. 10a). These
anomalies are averaged with a sliding 61-day window to be
consistent with bimonthly-averaged fields. Significant positive
height anomalies start to emerge in the lower troposphere
(from 1000 to ~700 hPa) in AS(—1). They then intensify and
extend upward into the stratosphere (~10hPa), slowing down
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FIG. 10. (a) Polar cap (averaged over 0°-360° and 70°-90°N) daily geopotential height
anomalies regressed onto the AM BS sea ice index. The 61-day running averages and nor-
malization by the temporal standard deviation at each level are applied before calculating the
regression. (b) As in (a), but regressed onto the SO(—1) dipole sea ice index. The regression
coefficients within the black contour lines are significant at the 5% level, while the cyan contour
lines inform the field significance. (c) The SO(—1) vertical W, and zonal W, wave activity flux
anomalies regressed onto the SO(—1) dipole sea ice index. The vertical W, and zonal W,
anomalies are averaged over the 68°-78°N latitudinal band. For better illustration, W, are
multiplied by a factor of 100. The black arrows indicate the wave activity flux regressions are
significant at the 5% level. The two magenta thick lines denote the Arctic Pacific dipole area.

the stratospheric circulation (not shown) and resulting in
positive Z anomalies as shown in Fig. 10a. In the stratosphere
these anomalies persist well into ON(—1) and D(—1)J, but the
zonally averaged anomalies become weaker in the lower tro-
posphere (from 1000 to ~700 hPa) around ND(—1). InD(—1)J
and JF, the positive polar cap height anomalies tend to prop-
agate downward toward the lower troposphere, and they become
weak and insignificant thereafter. The anomalous circulations in

zonal-mean metric are consistent with the spatial regression maps
in Fig. 9.

sea ice index (not shown) than when they are regressed on
the AM BS sea ice index (Fig. 9), which leads to weaker
area-averaged values. Nonetheless, the persistent strato-
spheric circulation anomalies since SO(—1) and seemingly
downward propagation of the Z anomalies after ND(—1)
are also found in Fig. 10b, which supports that stratospheric
processes are involved in linking the two regional sea ice
anomalies.

Many previous studies have suggested that the Arctic sea ice
anomalies could enhance the upward propagation of planetary
waves into the stratosphere and affect the stratospheric circu-
lation (e.g., Jaiser et al. 2012; Kim et al. 2014; Peings and
Magnusdottir 2014; Kretschmer et al. 2016; Nakamura et al.
2016). Others have shown that the planetary waves propagat-

The regression of the polar cap Z anomalies onto the
SO(—1) dipole sea ice index (Fig. 10b) indicates consistent, but
generally weaker signals, in particular below 200hPa from
SO(—1) to ND(—1). This is mainly due to the smaller extent

and the larger spatial inhomogeneity of the positive Z
anomalies inside the polar cap regressed on the SO(—1) dipole
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ing into the stratosphere can cause a slowdown of the strato-
spheric polar vortex (e.g., Karpetchko and Nikulin 2004;
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Polvani and Waugh 2004; Kidston et al. 2015). Hence, to in-
vestigate if the sea ice dipole anomalies are related to such
processes, we examine the SO(—1) vertical and horizontal
wave activity flux (W, and W) anomalies, calculated following
Takaya and Nakamura (2001), regressed onto the SO(—1) di-
pole. Significant upward W, anomalies indeed appear above
the western part of the Arctic Pacific sea ice dipole region and
extend from the surface to the stratosphere, while the W,
anomalies present an overall noisy pattern elsewhere
(Fig. 10c). Similar results are found in the regression of W, onto
the dipole in ON(—1), but with weaker strength and less sig-
nificance as the amplitude of sea ice dipole anomalies becomes
smaller in ON(—1) (not shown). The near-surface temperature
gradient associated with the dipolar sea ice anomalies could be the
forcing mechanism, but further dynamical analyses and numerical
experiments are needed to confirm the underlying mechanism
and establish how these vertical wave fluxes interact with the
stratospheric circulation in late autumn and early winter.

4. Summary and discussion

This study finds that the springtime BS sea ice anomalies are
closely related to the autumn Arctic Pacific sea ice dipole
anomalies in the previous year. Correlation analysis reveals
that ~50% of AM BS sea ice variability can be explained by
SO(—1) Arctic Pacific sea ice dipole variations, informing a
new source of BS sea ice predictability with 7-month lead time.
Indeed, a cross-validated linear regression method using the
autumn Arctic Pacific sea ice dipole indicates high prediction
skills, with 0.54-0.85 ACCs, for the subsequent springtime BS
sea ice condition. The result suggests that inclusion of the
Arctic Pacific sea ice dipole information at 7-month lead time
could improve springtime BS sea ice seasonal forecast skill.
The prediction skills are high particularly in subperiods before
the mid-1990s and after the mid-2000s, but weaker in subpe-
riods centering on the late 1990s. The reasons why the pre-
diction skills experience nonstationary changes require further
investigation and need to be considered in the regional BS sea
ice prediction system.

We have performed case studies and regression analysis to
understand the physical meaning of autumn sea ice dipole
anomalies in the Arctic Pacific sector. Persistent shortwave
radiative anomalies from late spring to early autumn, possibly
related to cloud cover variability, are shown to be the major
driver of the autumn sea ice dipole anomalies, which reflects
the studies on the effect of preceding Arctic cloud on autumn
seaice variation (e.g., Kay and Gettelman 2009; Cox et al. 2016;
Huang et al. 2019). Meanwhile, the shortwave-albedo feed-
back could enhance the persistence of the sea ice dipole
anomalies. Previous studies suggested that Arctic sea ice var-
iability may be affected by large-scale teleconnections (e.g.,
Screen and Francis 2016; Zhang et al. 2020). However, we find
no evidence that similar teleconnections from outside the
Arctic could force the dipole sea ice anomalies, nor do we find
persistent concomitant snow and SST anomalies in any other
regions of the Northern Hemisphere (even in the tropical
Pacific) from MJ(—1) to SO(—1) (not shown). Therefore, the
essential driver of the sea ice dipole, which effectively affects
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the Arctic cloud cover, does not result from forced large-
scale teleconnections. On the other hand, the oceanic heat
transport from the Bering Strait into the Arctic Ocean may
not contribute to the sea ice dipole variability either. We
indeed found that the ocean-to-sea ice heat flux anomalies
are very small preceding the autumn sea ice dipole.
However, the stratospheric circulation anomalies in spring
have been shown to be able to affect tropospheric circulation
and drive Arctic Pacific sea ice dipole anomalies (Kelleher
et al. 2020). As such, whether the sea ice dipole anomalies
can be treated as a physical identity requires a further
comprehensive understanding on the role of these potential
physical processes play.

We further show that atmospheric circulation anomalies
extending from the North Atlantic sector to the Nordic seas
play important roles in driving lateral ocean heat transport
changes that affect the BS sea ice extent. The relationship
between BS sea ice extent and lateral ocean heat flux carried
out by anomalous ocean currents is consistent with previous
findings (e.g., Yeager et al. 2015; Zhang 2015; Arthun et al.
2017; Lien et al. 2017; Oldenburg et al. 2018). Although these
studies were aiming for the BS sea ice predictability at longer
time scales, it would be interesting to apply a similar approach
to understand whether or not inclusion of the ocean dynamics
and its variability could improve the BS sea ice condition at
seasonal time scale. Our analyses further show that the
physical processes linking the two Arctic regions involve an
atmospheric pathway that extends the autumn sea ice dipole
influence to the winter and leads to a negative NAO-like
signal in the troposphere via stratosphere-troposphere cou-
pling. The anomalous tropospheric circulation then reduces
the horizontal ocean heat fluxes into the BS region during
winter and early spring, resulting in a cooler ocean condition
and increased BS sea ice extent. Since the winter NAO seems
to play a key role in linking sea ice in the two regions, we also
included NAO information in our empirical prediction model
(cyan line in Fig. 3a). The prediction skill is then slightly
enhanced in most of the 12-yr intervals selected in the anal-
ysis period (magenta line in Fig. 3b). It is noted that a pre-
vious study also emphasized the roles of winter stratosphere—
troposphere coupling and subsequent tropospheric NAO
anomalies in predicting following spring BS sea ice condition
(Smith et al. 2018). Our results support their findings and
extend the spring BS sea ice predictability further back to
previous autumn.

It has been suggested that the BS sea ice changes may in-
teract with nearby Ural blocking systems to form a positive
feedback that reinforces the BS sea ice anomalies (e.g., Luo
et al. 2016a,b, 2018). Based on regressed sea level pressure in
early spring (not shown), we indeed find that negative sea level
pressure anomalies with a center of action south of Novaya
Zemlya Island and north of the Ural Mountains (approxi-
mately at 65°N, 60°E) emerge when the BS sea ice anomalies
are intensified after AM. The resultant northerly wind anom-
alies in the BS region may additionally contribute to the growth
of sea ice and the maximum sea ice anomalies found in AM.

Finally, the finding of this study is based on regression and
correlation analysis. However, correlation does not necessarily
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imply causality. Hence the inferred dynamical processes for
linking the two SIC anomalies remain somewhat speculative,
albeit physically plausible, and they require further analysis. In
future studies, we anticipate using advanced statistical tools,
such as causal network analysis (Runge et al. 2015), which
was applied to explore the causal link between the Arctic
Oscillation and Barents—Kara sea ice extent (Kretschmer et al.
2016). A hierarchy of carefully designed regional and global
climate model simulations will also be considered to test the
dynamical linkage presented in this study.
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