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Abstract—Full-duplex (FD) wireless and phased arrays are
both promising techniques that can significantly improve data
rates in future wireless networks. However, integrating FD with
transmit (Tx) and receive (Rx) phased arrays is extremely
challenging, due to the large number of self-interference (SI)
channels. Previous work relies on either RF canceller hardware
or on analog/digital Tx beamforming (TxBF) to achieve SI
cancellation (SIC). However, Rx beamforming (RxBF) and the
data rate gain introduced by FD nodes employing beamforming
have not been considered yet. We study FD phased arrays with
joint TxBF and RxBF with the objective of achieving improved
FD data rates. The key idea is to carefully select the TxBF and
RxBF weights to achieve wideband RF SIC in the spatial domain
with minimal TxBF and RxBF gain losses. Essentially, TxBF
and RxBF are repurposed, thereby not requiring specialized RF
canceller circuitry. We formulate the corresponding optimization
problem and develop an iterative algorithm to obtain an approx-
imate solution with provable performance guarantees. Using SI
channel measurements and datasets, we extensively evaluate the
performance of the proposed approach in different use cases
under various network settings. The results show that an FD
phased array with 9/36/72 elements can cancel the total SI power
to below the noise floor with sum TxBF and RxBF gain losses
of 10.6/7.2/6.9 dB, even at Tx power level of 30 dBm. Moreover,
the corresponding FD rate gains are at least 1.33/1.66/1.68x.

Index Terms—TFull-duplex wireless; Phased array; Beamform-
ing; Wideband self-interference cancellation; Optimization

I. INTRODUCTION

Full-duplex (FD) wireless — simultaneous transmission and
reception on the same frequency — has the potential to double
the throughput and reduce latency, thereby has attracted signif-
icant attention [2], [3]. The fundamental challenge associated
with FD wireless is the vast amount of self-interference (SI)
leaking from the transmitter (Tx) into the receiver (Rx), which
needs to be canceled to successfully recover the desired
signal. Recent work has demonstrated practical levels of SI
cancellation (SIC) at the antenna interface, RF/analog, and
digital baseband [4]-[8].

Another important technology is Tx (resp. Rx) phased
arrays which can substantially enhance the communication
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Fig. 1: Example network scenarios where a base station (BS) is
equipped with an N-element TxRx phased array, employing Tx and
Rx beamforming. Considered use cases: (i) BS-User: uplink-downlink
(UL-DL) transmission between the BS and a user in HD (orange) or
FD (blue) mode, and (ii) BS-BS: bidirectional transmission between
two BSs in HD (beamforming in dark/light green in alternate time
slots) or FD (simultaneous beamforming in dark/light green) mode.

range through analog Tx beamforming (TxBF) (resp. Rx
beamforming (RxBF)), a technique for directional signal trans-
mission (resp. reception) utilizing spatial selectivity [9], [10].
TxBF/RxBF can provide significantly increased Tx/Rx signal
power at the same link distance, or enhanced link distance at
the same signal-to-noise ratio (SNR).

Although combining FD with phased arrays can provide sig-
nificantly improved data rates, it poses numerous challenges.
First, in an N-element FD phased array (see Fig. 1), N?
SI channels between every pair of Tx and Rx elements need
to be canceled in the RF domain. Techniques using circuits
(e.g., [11]) or alternating antenna placements (e.g., [12]) to
achieve wideband RF SIC do not directly apply to an FD
phased array. This is due to the fact that RF cancellers are ex-
pensive while the cancellation via antenna placements usually
requires at least twice as many antennas. Accordingly, both
techniques cannot scale to large phased arrays. gain of N [10],
the total SI power can also potentially add up constructively
by a factor of IV 2 Therefore, innovative solutions are needed
to achieve FD operation in phased arrays.

In this paper, we show that by carefully selecting the Tx and
Rx analog beamforming weights (a.k.a., beamformers), an FD
phased array can simultaneously achieve wideband RF SIC
with minimal TxBF and RxBF gain losses, and improved FD
rate gains. In other words, TxBF and RxBF can be repurposed
to support wideband RF SIC with minimal performance degra-
dation and without using any specialized canceller hardware.
A key insight of our approach is that in multi-antenna systems,
the spatial domain (i.e., across Tx and Rx elements) represents
another dimension in which RF SIC can be achieved. The
advantage of this approach is manifold: the RF SIC based on
joint TxBF and RxBF (i) is wideband since the SI channels
between every pair of Tx and Rx elements experience similar



delays, (ii) does not require specialized RF SIC circuitry or
hardware, thus reducing the system complexity and total power
consumption, (iii) is achieved before the digital domain, which
largely reduces the analog-to-digital converter (ADC) dynamic
range and power consumption, and (iv) will benefit from large-
scale antenna arrays where a large number of TxBF and RxBF
weights can be modified.

We consider network scenarios as depicted in Fig. 1, where
a BS is an N-element, single-stream, FD phased array (see
Fig. 3(a)). We consider two use cases where an FD BS
communicates with: (i) a single-antenna user which is HD-
or FD-capable (the BS-User case), or (ii) with another FD BS
(the BS-BS case), and derive the data rate gain resulting from
using FD. Specifically, the FD link objective is to maximize
the FD data rate gains by optimizing the FD Tx and Rx
beamformers with minimal TxBF and RxBF gain losses. We
demonstrate the FD rate gains introduced by FD phased arrays
employing TxBF and RxBF in various network settings. Based
on the Argos FD channel measurements [13], [14], we show
that in the BS-User case, a 36-element FD phased array with
Tx power of 20dBm can achieve maximum FD rate gains of
1.27/1.60/1.72x with 0/15/30dB link SNR values, and with
TxBF and RxBF gain losses of only 3.1 dB.

Based on the FD link objective, we formulate an opti-
mization problem to jointly determine the optimal FD Tx
and Rx beamformers. Due to its non-convexity and analytical
intractability, we present a relaxed optimization problem and
show that it achieves high accuracy. We then present two
alternative convex optimization problems by leveraging the
structural properties of the SI channel matrix and its coupling
with the Tx and Rx beamformers. We develop an iterative
algorithm that efficiently solves the alternative optimization
problems with provable performance guarantees.

We numerically evaluate the network performance and
the corresponding FD rate gains when using the iterative
algorithm, based on SI channel measurements and datasets.
Extensive evaluations are conducted under different network
scenarios and a wide range of number of antennas, antenna
array geometries, and Tx power levels. Specifically, the results
show that an FD phased array with 9/36/72 elements can
cancel the total SI power to below the noise floor with
sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at
Tx power level of 30dBm (note that the conventional HD
TxBF and RxBF can provide sum TxBF and RxBF gains of
19.1/30.1/37.1 dB). Moreover, the FD rate gains in the BS-
User case are at least 1.33/1.66/1.68x with N = 9/36/72.
The FD rate gains in the BS-BS case are at least 1.53x with
N > 36 in all considered SNR regimes. We also demonstrate
the efficiency of the developed iterative algorithm.

To summarize, the main contributions of this paper are: (i)
an FD phased array model that employs joint TxBF and RxBF
for simultaneously achieving wideband RF SIC and high FD
rate gains, (ii) an efficient iterative algorithm for obtaining
the FD Tx and Rx beamformers with provable performance
guarantees, and (iii) extensive evaluation of the proposed
approach using realistic SI channel measurements and datasets.

The rest of the paper is organized as follows. We dis-
cuss related work in Section II, and provide background on

phased arrays in Section III. In Section IV, we present the
FD phased array model and FD link objective, followed by
motivating examples in Section V. In Section VI, we present
the optimization problems and the iterative algorithm. We
evaluate the performance via measurement-based simulations
in Section VII and conclude in Section VIII.

II. RELATED WORK

Recent work focused on the design and implementation
of FD radios and systems, either using off-the-shelf compo-
nents [4], [5], [15] or based on integrated circuits (ICs) [3],
[7], [8] (see the review in [2] and references therein). For
single-antenna FD, a pair of Tx and Rx antennas with proper
separation, or a shared antenna interface using a circulator,
have been used. Moreover, a single-antenna open-access FD
radio design has been integrated in the ORBIT wireless
testbed [16] to allow the community to experiment with FD
wireless. In this case, RF SIC is achieved by an additional
cancellation circuitry. FD MIMO radio implementations have
been presented in [11], [12], where up to 3 Tx/Rx antennas are
considered and RF SIC is achieved using either RF cancellers
or through alternating antenna placements.

At the higher layers, FD rate gain with single-antenna FD
radios has been studied analytically at the link-level [17], and
experimentally at the link- and network-level [8]. Moreover,
recent work explores medium access control and scheduling in
FD networks [18]-[22] as well as FD relays [23]-[26]. FD also
facilitates different applications including improved PHY layer
security [27], neighbor discovery [28], and localization [29].

Most relevant to our work are [23], [24], [30]-[32]. In
particular, [30] considers an FD multi-user MIMO downlink
channel with separate Tx and Rx antennas and applies only
digital TxBF to achieve RF SIC. JointNull is proposed in [31]
as an SIC architecture with a varying number of analog can-
cellers, where the antenna configuration and transmit precoder
are optimized to achieve maximized FD rates. This differs
from our approach, which is based on joint analog TxBF and
RxBF and results in lower power consumption. RF SIC in
the spatial domain has also been considered for FD MIMO
relays [23], [24]. On the other hand, in [32], narrowband RF
SIC is achieved via only analog TxBF for small-scale (i.e., 8
elements) phased arrays with separate Tx and Rx antennas.
Our previous work [33] focuses on IC implementations of an
8-element FD phased array. However, the optimization of the
TxBF and RxBF for an FD phased array with varying numbers
of antennas and geometries, and the corresponding FD rate
gains in different network scenarios have not be addressed.

To the best of our knowledge, this is the first fundamental
study of an FD phased array employing joint TxBF and RxBF
to achieve wideband RF SIC and FD rate gains. We believe
that the proposed approach is beneficial to other problems re-
lated to multi-antenna systems applying different beamforming
techniques (e.g., hybrid analog/digital beamforming [34]) at
different frequencies (e.g., millimeter-wave bands [35]).

III. BACKGROUND ON PHASED ARRAYS

In this section, we follow [10] and provide background on
phased arrays and beamforming in the half-duplex setting.
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Fig. 2: (a) An example N-element rectangular antenna array in a
spherical coordinate system, (b) block diagrams of N-element Tx
(top) and Rx (bottom) phased arrays in the HD setting.

Beamforming is a technique that uses an antenna phased array
to achieve directional signal transmission or reception. For
completeness, we describe Tx and Rx phased arrays, and
Tx and Rx beamforming (TxBF and RxBF). We provide an
overview of the steering vector and Tx/Rx arrays, followed by
the important characteristics of beamforming including array
factor, beam pattern, and beamforming gain.

Steering Vector. Denote by /N the number of antennas in
the array (see Fig. 2(a)). A spherical coordinate system is
considered where the azimuth and elevation angles are denoted
by ¢ and 6, respectively. Let s,,(¢,0) be the relevant phase
delay experienced by a plane wave as it departs/reaches the
h Tx/Rx element in the spatial direction of (¢, #). Consider
an example N-element rectangular antenna array with N,
rows and N, columns (N, - N, = N), where the antennas
are indexed as shown in Fig. 2(a). Assuming half-wavelength
spacing between adjacent antennas, s,(¢,) for the n™ ele-
ment at location (ng,n,), where n = (ny — 1)N,y + ny, is

3n(¢7 9) — ej7r[(n¢—1) cos 8 cos ¢p+(ny,—1) cos@sin¢], Vi, n,.

The steering vector in the direction of (¢, ) is then given
by s(¢,0) = [sn(9,0)] € CV, which depends on the antenna
array geometry.

Transmit (Tx) and Receive (Rx) Arrays, and Analog Beam-
former. As illustrated in Fig. 2(b), in an N-element single-
stream Tx array with total Tx power of F;, each Tx element
consists of a fixed gain power amplifier (PA), a variable gain
attenuator (ATT), and a voltage variable phase shifter (PS) that
can be controlled by a digital-to-analog converter. We assume
that the Tx array has a total maximum Tx power of P, after the
PAs. Symmetrically, in an N-element single-stream Rx array,
each Rx element consists of a fixed gain low noise amplifier
(LNA), a variable gain attenuator, and a voltage variable phase
shifter.Denote by P, the noise floor of a single Rx element.
Then, the Rx array has an array noise floor of N - Py due
to the aggregated noise from all Rx elements. We assume the
followings: (i) with an ideal power splitter and identical PAs,
each Tx element has a maximum Tx power of P;/N, and (ii)
the LNA of each Rx element has a unit gain of 1.

An analog beamformer is the set of complex-valued weights
applied to each element relative to that of the first element.
Specifically, denote the weight applied to the n™ Tx (resp. Rx)
element by w,, = |wy,| - €<%~ (resp. v, = |v,| - €/4¥") with
amplitude |w,| (resp. |v,|) and phase Zw, (resp. Zv,). In

particular, |w,,|?, |v,|? < 1 represent the variable gain on the

th Tx/Rx element controlled by the attenuator. Zw,,, Zv, €
[, 7] represent the phase on the n™ Tx/Rx element con-
trolled by the phase shifter. The vectors w = [w,] € C¥
and v = [v,] € CV are called the Tx and Rx (analog)
beamformers, respectively.

Array Factor, Beam Pattern, and Beamforming Gain. An
analog beamformer features (N — 1) complex-valued degrees
of freedom (DoF), which are the reconfigurable parameters in
an N-element phased array. These DoF are typically config-
ured to alter the beam pattern (see Fig. 2(b)) to enhance the
signal directivity and/or to suppress interference by construct-
ing nulls. The far-field Tx and Rx array factors in the direction
of (¢,0), which quantify the effect of combining weighted
transmitting Tx and receiving Rx elements, are given by [10]

A6,0) = Y01 (5u(6,0) - wn) =57 (6,60) - w € C,
A,0) = X0l (50(6,0) - va) =T (6,0) - v € C.
The far-field Tx and Rx beam patterns are defined as
Et(d)ae) = ‘At(¢7 )‘2 |S ( 9) : W‘27
Ei(¢,0) = |A(¢,0)]* = [sT(¢,0) - v[*.

The Tx beamforming (TxBF) gain (resp. Rx beamforming
(RxBF) gain) is defined as the power gain of the Tx (resp.
Rx) signal in the far-field normalized to the maximum total
Tx (resp. Rx) power. Denote by Gi(¢,0) and G(¢,0)) the

TxBF gain and RxBF gain in the spatial direction of (¢, 6),
respectively. They are given by

Gt(¢7 9) = Et(¢7 9)/N = |ST(¢7 9) . W‘2/N7
Gr(¢7 9) = Er(¢7 9)/N = |ST(¢7 9) : V‘2/N.
Denote the desired Tx and Rx beam-pointing directions by

(¢, 6;) and (¢, 6;). Let s; and s, be the steering vectors in the
desired Tx and Rx beam-pointing directions, given by

St = S(¢t70t)7 Sy = S(¢T’ er)

Then, the (complex-valued) Tx and Rx array factors in the
desired beam-pointing directions, denoted by a; and a,, are
then given by

Ay = At(¢t7 t) = St—rw: ar = Ar(¢ra 0;) = SrTV~ (3)
Therefore, the TxBF and RxBF gains in (¢, 6;) and (¢, 6;),
denoted by ¢; and g, are given by

= |a|?/N, g = |a:[*/N. )

Note that since ¢ and g, are the normalized power gains
introduced by TxBF and RxBF, respectively, they do not
depend on the absolute power levels of the Tx and Rx signals.

Conventional (Half-Duplex) TxBF and RxBF. It is known
that by setting w = s{ (resp. v = s;), a maximum Tx
(resp. Rx) array factor of N and a maximum TxBF (resp.
RxBF) gain of IV in the desired beam-pointing direction can
be achieved [10], i

N, ama"—s sy =N,

)

2

max

maX
a - = St s =

max

= N. (5)

We refer to Weony = S (r€sp. Veony = Sy) as the conventional
HD Tx (resp. Rx) beamformers.
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Fig. 3: (a) Block diagram of an NN-element FD phased array with
SI channel matrix, H(fx), where a Tx and an Rx phased arrays
are connected to the antennas through circulators, (b) illustration
of the relationship between the maximum TxBF and RxBF gains,
g = g& = g*, that can be achieved by an FD phased array after
repurposing TxBF and RxBF for wideband RF SIC, and the number
of antennas, N, for various array geometries.

IV. MODEL, RATES, AND OBJECTIVE

In this section, we present the model of an FD phased array
node combining TxBF and RxBF, as well as the corresponding
FD TxBF and RxBF gains. Then, we discuss the data rate gains
obtained by FD and the FD link objective.

A. FD Phased Array Model

We consider an FD phased array node as depicted in
Fig. 3(a). A BS is equipped with an N-element FD phased
array with N unit-gain antennas, /N circulators, and N Tx/Rx
elements, where TxBF and RxBF are applied. Each antenna is
shared between a pair of Tx and Rx elements via a circulator.
For HD operation, the phased array will activate only N Tx or
Rx elements. As shown in Fig. 1, a user has a single antenna
and does not apply beamforming. We use b and w in the
subscript to denote the BS and user. We consider a wireless
bandwidth of B that is divided into K orthogonal frequency
channels indexed by k € {1,..., K}, where fj is the center
frequency of the k™ channel. One example is OFDM-based
system with K subcarriers over bandwidth of B.

SI Channel Matrix. Similar to [30], we let H,,(fx),Vn,
denote the frequency response of the SI channel from the
n™ Tx element to the n™ Rx element at frequency f, Vk,
and let Hp,n(fi), Vm # n, denote the frequency response
of the cross-talk SI (CTSI) channel from the n™ Tx ele-
ment to the m™ Rx element at frequency fi,Vk. We then
denote H(fr) = [Humn(fr)] € CVN*N as the SI channel
matrix of the TxRx array at frequency f,Vk, consisting
of all the N2 SI and CTSI channels, as shown in Fig 1.
We assume |H,,,(f)| < 1,Vi,7,k, due to the propagation
loss of the Tx signal. Ideally, due to channel reciprocity,
Hpn(fr) = Hpm(fx),Vk, for any Tx and Rx element pair
(n,m), resulting in H(f,) = HT(f). However, as we will
show in Section VII-A, this does not hold in a realistic
environment, due to effects such as imperfections of antenna
matching and environmental interference and noise.'

Use Cases. We consider four use cases as depicted in Fig. 1:

Note that our model and results also apply to an FD phased array where the
Tx and Rx arrays are equipped with seperate antennas, which requires twice
many antenna elements (as illustrated in Fig. 3(a)). Such separated Tx and Rx
antennas usually provide better isolation (i.e., smaller values of | Hpmn (fx)])
than a shared antenna interface.

(i) BS-User (HD or FD): uplink-downlink (UL-DL) trans-
mission between a BS and a user in HD (orange) or FD
(blue) mode,

(ii) BS-BS (HD or FD): bidirectional transmission between
two BSs in HD (beamforming in dark/light green in
alternate time slots) or FD (simultaneous beamforming
in dark/light green) mode.

The cases where the BSs or the user operate in HD mode

and the channel is shared in a TDD manner are considered as

the benchmark HD cases. When operating in FD mode, a BS
applies simultaneous TxBF and RxBF when communicating
with an FD user or another FD BS. We also assume that the

BS has the information about the direction of another BS or an

intended user (that can be spatially distributed in the network).

Self-Interference-to-Noise Ratio (XINR) under TxBF and
RxBF. For an FD node, XINR is defined as the ratio between
the residual SI power after SIC (across the RF/analog and
digital domains) and the noise floor. Denote by 7, (f) and
Yuu(fre) the XINR of the BS and the user at frequency
(subcarrier) fj, respectively, when operating in FD mode.
Since our focus is on the SIC at the BS with TxBF and RxBF,
we assume that a user can always cancel its SI to below the
noise floor, i.e., Yy (fr) < 1,Vk [7], [8]. Accordingly, a user
transmits at the maximum possible power level when operating
in either HD or FD mode.

For the BS, denote by PSf(fi) the SI power under TxBF
and RxBF, and by SICg, the amount of achievable digital
SIC.? The residual SI power after SIC is thus P ( f;)/STCl.
Recall that the BS has a noise floor of (N Py). Accordingly,
the XINR at frequency (subcarrier) fj is given by

Py (fx)
Yo (fr) = SICaq - (NPy)' k. (6)
We now derive ~yp(fx) under joint TxBF and RxBF. Without
loss of generality, we assume a wideband (e.g., OFDM) trans-
mit symbol z(fx) € C with unit power of |z(f)|? = 1,Vk.
The received SI symbol, denoted by y(fx) € C, is given by

y(fk) = Zﬁzl nyzl [wnHmn(fk)Um] :
=SB TH(w -2 (fi) + 2, .

Boa(fy) + 2

where z is the additive white Gaussian noise. Then, the SI
power is given by

P (fe) = ly(fo)? = VTH(fr)w]* - §, Ve (D)
Plugging (7) into (6) yields the XINR of the BS:

(i) = (P VTH)W? R
AR T SICes - (NPy)  SICygNPy N

, VE. (8)

B. FD Beamformers and Beamforming Gains

A maximum TxBF and RxBF gain of N can be achieved
under the conventional HD Tx and Rx beamformers, W¢ony

2We assume that ST Claig is a positive constant across frequency. For

example, [8] achieves 43dB digital SIC (ie., SICy; = 10%) based on
Volterra series and a least-square problem (more details can be found in [5]).



and vy (see (5)). However, as we will show in Sec-
tion VII-C, the XINR under w o,y and v¢oyy is significant, i.e.,
Yoo (fix) > 1, Vk. Therefore, using these beamforming weights
is impractical for a BS operating in FD mode.

To support FD operation, we aim to achieve wideband RF
SIC in an FD phased array only through manipulating the
TxBF and RxBF weights, w and v, thereby not requiring
specific RF canceller hardware or circuitry (see Section I).
Specifically, by properly selecting w and v, we aim to achieve:
(i) cancellation of SI to below the array noise floor (i.e.,
XINR(fx) = vou(fx) < 1,VEk), and (ii) maximum FD data
rate gain. However, w and v, termed as the FD Tx and Rx
beamformers, may not achieve the maximum TxBF and RxBF
gain of IV as in the conventional HD setting. Accordingly, we
define the optimal equal FD TxBF and RxBF gain as follows.

Proposition 4.1 (Optimal Equal FD TxBF and RxBF Gain).
For a given FD phased array with H( fy,) and P, the optimal
equal FD TxBF and RxBF gain is the equal maximum TxBF
and RxBF gains, denoted by gf = g = g*, that can be
achieved while satisfying vy (fr) < 1,VEk.

To quantify the performance of FD TxBF and RxBF, we
present the following definition.

Definition 4.1 (TxBF and RxBF Gain Losses). For a pair
of Tx and Rx beamformers that respectively achieve FD TxBF
and RxBF gains of g, and g,, while satisfying e (f1) < 1,VE,
the TxBF gain loss is defined as the ratio between the
maximum HD TxBF gain and g, i.e., (N/g;). Symmetrically,
the RxBF gain loss is (N/g,).

The TxBF and RxBF gain losses are typically represented
in dB. For example, a 3dB TxBF gain loss means that the
far-field Tx power is reduced by half, since ¢ = 0.5N =
10logo(N/g) = 3dB. Similarly, a 6dB TxBF gain loss
corresponds to g = 0.25N.

Fig. 3(b) illustrates the relationship between g* (given by
Proposition 4.1) and the number of antennas, IV, for various
array geometries, where different antenna arrays may have
different values of g*. In particular, for a given FD phased
array with H(f,) and Tx power level P, there exists a pair
of optimal FD Tx and Rx beamformers that achieves g* while
satisfying v, (fx) < 1,Vk. The FD phased array can achieve
higher values of g* with increased value of IV, since a larger
number of Tx and Rx weights can be adjusted.

C. Sum Link Rate and FD Rate Gain

We now derive the HD and FD data rates and the effect of
the optimal FD TxBF and RxBF gain on the FD rates. Denote
by 7 the average link SNR without beamforming, i.e., using
a single Tx element (with total Tx power, ;) and a single Rx
element (with noise floor, FPyr). We use Shannon’s capacity
formula to compute the rate on a link with bandwidth, B, and
link SNR, ~. Since the TxBF and RxBF gains, ¢, and g, are
independent of the absolute power of the Tx and Rx signals
(see Section III), the link SNR improvement introduced by
beamforming equals to ¢ and g. in the desired Tx and Rx
beam-pointing directions, respectively.

For the BS-User case, we denote by vy, (v — b) and vy
(b — w) the UL and DL SNRs, respectively. For the BS-BS
case, we index the BSs by b; and b> and denote the link SNRs
by Vo,b, (b2 — b1) and ~vp,p, (b1 — b2). The sum of the HD
link rates in both cases, when the BSs and user operate in HD
mode and share the channel in a TDD manner equally (i.e.,
each link is activated for 50% of the time), are given by

©))

TBS User E[logQ 1 + N’Ybu) + IOgQ (1 + N’Yub)]
log (1 + N 'yble) + log, (1 + N ’szbl) } . (10)

2
|
In particular, the HD UL and DL SNR values in the BS-User
case (9), Nvp, and Nryyp, result from the maximum RxBF
and TxBF gains of N in the desired beam-pointing directions.
Similarly, the SNR improvements in the BS-BS case (10),
which are factors of g™ g™ = N2 for both 73,5, and Yp,p,
stem from the combined TXBF and RxBF gains of both BSs.

When the BSs and user operate in FD mode, the FD link
SNRs are functions of the degraded TxBF and RxBF gains,
g and g7, and the frequency-dependent XINR of the BS and
user, Vpu(fx) and Yy (fx), respectively. As a result, the sum
of the FD link rates in both use cases are

K *
e =& 9; Vou Y
TBS-User — & kg:l [IOgQ (]. + #’Zb(fk)) + 10g2 (1 + Wu(bfk))]’
(1)
K * _x * %
B 9t 9r Yoy Y
iSms = 7 2o [los (14 1555) + losa (14 15503
(12)

Due to the coupling between ¢, ¢, and vy, ( fx ) through the
Tx and Rx beamformers, w and v (see (8)), and the frequency-
dependent H( fj), maximizing (11)-(12) presents numerous
challenges. To allow analytical tractability, we approximate
the FD sum rates in (11)—-(12) by setting vy, (fx) = Yoo (fr) =
1,Vk. We refer to the approximated FD sum rates as 755 (..,
and 7ER oo, respectively, and they are given by

PhR vser = B[ logy (1+ £2) +log, (1+ £22)],  (13)

PR ps = B[logy (1+ 29302 4 log, (1 4 90 et )(]1.4)

Since we aim to achieve vy, (fx) < 1 (0dB) for an FD phased
array and recall that v, (fx) < 1, 75D |, and 752 oo are lower
bounds of the FD sum rates, r52 . and 752 oo, in (11)—~(12).

In the rest of the paper, we focus on maximizing 755 .., and
Tha ps under the optimal equal FD TxBF and RxBF gain given
by Proposition 4.1. We define the FD rate gain in the BS-User
case as the ratio between the FD sum rate lower bound (13)
with ¢ = ¢ = ¢* and the HD sum rate (9). Similarly, we
define the FD rate gain in the BS-BS case as the ratio between
the FD sum rate lower bound (14) with g = g = ¢g* and the
HD sum rate (10).2

3While it would be beneficial to consider non-equal FD TxBF and RxBF
gains co-optimized with the link SNR values, this is left for future work.
Nevertheless, the case with optimal equal FD TxBF and RxBF gains (Propo-
sition 4.1) still remains as a performance lower bound.
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gain, g* /N, for different link SNR values v € {0,15,30} dB. The
relationships between g*/N and N, based on the Argos traces [13],
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Fig. 5: FD rate gain in the BS-User case with varying UL and DL
SNR values, Yy and 7y, respectively, with N € {9,36,72} and
3dB TxBF and RxBF gain loss (i.e., g* = N/2).

D. FD Link Objective

Our objective is to maximize the FD rate gains in the two
FD use cases. Based on the observation above, our goal is to
obtain the optimal FD Tx and Rx beamformers, w and v, that
maximize TxBF and RxBF gains, ¢ and g, while achieving
sufficient amount of RF SIC, i.e.,

,Ybb(fk) S 17 Vk,
& [VTH(fo)w|? - & < SICy, - (NPy) := NB, Vk, (15)

where 3 := SICy, Py is a constant independent of NV and F,.
Next, we first present the benefits introduced by FD phased
arrays in terms of FD rate gains (Section V). Then, we present
the corresponding problem formulation (Section VI).

V. MOTIVATING EXAMPLES

In this section, we illustrate the FD rate gains obtained by
FD phased arrays with joint TxBF and RxBF, where the FD
rate gains are computed as described in Section IV-C. We
provide motivating examples illustrating that higher values of
the optimal equal FD TxBF and RxBF gain, g/ = ¢ = ¢*
(see Definition 4.1), lead to increased FD rate gains. We will
describe how to obtain g* in Section VI-A (Opt-TxRx).

BS-User Case: We first consider equal UL and DL SNR values
of Ypu = Yup = 7y in low, medium, and high SNR regimes
with v € {0, 15,30} dB.These values correspond to typical Rx
signal levels in an LTE network, where the user is at the edge,
middle, and center of the small cell. Fig. 4 presents the FD rate
gain with varying number of antennas, N € {4,8,...,128},
and the normalized optimal FD TxBF and RxBF gain ¢*/N €
[0,1] (recall from (5) that g™ = g™ = N).

Fig. 4 shows, for example, that a 16-element FD phased
array can achieve FD rate gains of 1.14/1.56/1.71x in
low/medium/high SNR regimes, with 3dB TxBF and RxBF

gain loss (i.e., g* = N/2). These rate gains increase to

Medium SNR (15 dB)

Low SNR (0 dB) High SNR (30 dB)

14

FD Rate Gain

Fig. 6: FD rate gain in the BS-BS case with varying number of
antennas, N, and the normalized optimal equal FD TxBF and RxBF
gain, g* /N, for different link SNR values v € {0,15,30} dB. The
relationships between ¢*/N and N, based on the Argos traces [13],
are also overlayed on the surface with P; € {10, 20,30} dBm.

1.36/1.64/1.75x when N = 64. Moreover, with 6 dB TxBF
and RxBF gain losses, a 64-element FD phased array can
achieve FD rate gains of 1.05/1.46/1.62% in low/medium/high
SNR regimes. As we will show in Section VII, a TxBF and
RxBF gain loss of 6dB is sufficient to achieve u(fi) <
1,VEk, in most considered scenarios. It is also interesting to
note that under sufficient link SNR values, an FD phased
array with more antennas provides marginal improvements
on the FD rate gain. For example, in the medium SNR
regime, N = 64/128 elements can achieve FD rate gains
of 1.64/1.67x, respectively (namely, doubling the number of
antennas provides an improvement of only 3%).

To provide a practical example of the FD rate gain, we
overlay in Fig. 4 curves that represent relationships between
g*/N and N using H(fj) from the Argos dataset [13] with
different Tx power levels (the details will be described in
Section VII-D and shown in Fig. 11). For example, the Argos
array with P, = 20dBm can achieve g*/N = 0.45/0.49/0.50
for N = 18/36/72. In addition, the Argos array with P, =
20dBm and N = 36 experiences only 3.1dB TxBF and
RxBF gain losses each, and can achieve maximum FD rate
gains of 1.27/1.60/1.72x in low/medium/high SNR regimes.
Importantly, the curves show that for a given FD phased array
with given values of NV and P, as well as the array geometry,
there exists an upper limit of g* on g, and ¢, that any FD
Tx and Rx beamformers cannot exceed. The corresponding
TxBF and RxBF gain losses are due to the SI that needs to
be canceled leveraging TxBF and RxBF DoF to ensure FD
operation in a phased array (otherwise a phased array can
always achieve g* = N in the HD mode). Since the FD rate
gain increases as a function of g* (see (13)—(14)), designing
FD Tx and Rx beamformers that reach the upper limit of g*
will result in the maximum achievable FD rate gain.

We also evaluate the FD rate gain with asymmetric UL and
DL SNR values, a scenario which is more common in realistic
network settings. Fig. 5 presents the FD rate gain with varying
UL and DL SNR values, vp,, and ~,;, with N € {9,36,72}
and with 3dB TxBF and RxBF gain loss. The results show
that FD rate gains of 1.28-1.74x/1.37-1.75x can be achieved
with N = 36/72 under all considered UL and DL SNR values.
Note that the FD rate gain also increases as a function of the
number of antennas, N.

BS-BS Case: Fig. 6 plots the FD rate gain in the BS-BS case
with the same setting as used in the BS-User case. The results
show that a 16-element FD phased array can achieve FD rate



gains of 1.25/1.53/1.66x in low/medium/high SNR regimes,
with only 3 dB TxBF and RxBF gain loss. These gains increase
to 1.49/1.64/1.72x with N = 64. The curves representing the
relationships between g* /N and N using the Argos traces are
overlayed in Fig. 6, and similar observations as in the BS-User
case are also relevant in the BS-BS case. In both use cases,
the FD rate gain does not approach 2x, due to the XINR at
the BS and user, vpp = Yuu = 1.

Findings. As indicated above, although an FD phased array
experiences TxBF and RxBF gain losses in the desired beam-
pointing directions to achieve vy, (fr) < 1,VEk, the network
can still achieve significant FD rate gains in various settings.
Hence, it is important to obtain the optimal equal TxBF and
RxBF gain, ¢g*, in an FD phased array in order to achieve
high FD rate gain in the considered use cases. The results also
reveal an interesting phenomenon: with increased number of
antennas, NV, minimal TxBF and RxBF gain losses (e.g., 3dB)
do not affect the achieved FD rate gains. In addition, higher
TxBF and RxBF gain losses are needed to achieve sufficient
SIC under different Tx power level, F;, and bandwidth, B,
requirements, as we will show in Section VII. This tradeoff
opens up a possibility of designing FD phased arrays with
different geometries and/or values of N under varying system
requirements (e.g., Tx power levels, link SNRs, bandwidth).

VI. FORMULATION AND OPTIMIZATION

In this section, we formulate an optimization problem based
on the FD link objective described in Section IV-D. Due to the
non-convexity and computational complexity of the problem,
we then present an alternative formulation whose solution
can be efficiently obtained using an iterative algorithm with
provable performance guarantees.

A. Problem Formulation

Given the FD link objective in Section IV-D, the following
problem jointly determines the FD Tx and Rx beamformers.

(Opt-TxRX) ¢* := maxw,v ¢ (16)
s.t.: |S[Tw|2/N =g, |SrTv\2/N =g, 17)
PY(fr) = VTH(fr)w[* - § < NB, Vk, (18)

lwn|? < 1, |va|? <1, Vn. (19)

Specifically, the objective (16) is to maximize the TxBF
and RxBF gains, subject to the following constraints (see
Section IV-D): (i) the TxBF and RxBF gains in the desired
beam-pointing directions, (¢, 6;) and (¢, 6;), are maximized*,
(17) (see also (4)), (ii) the residual SI power at any frequency is
suppressed to below the array noise floor, i.e., vpp (f5) < 1, Vk,
(18), and (iii) the amplitude of the beamforming weight on
each Tx/Rx element is at most one (see Section III), (19).
Essentially, the Tx and Rx beamformers that are obtained as
a solution are different from the conventional HD beamfomers
such that the total SI power is canceled to below the array
noise floor with minimal TxBF and RxBF gain loss. In order

4This constraint can be easily modified to consider multiple Tx and Rx
beam-pointing directions suitable for network scenarios with multiple users.

TABLE I. Average accuracy of (Opt-TxRx-Relaxed) compared to
(Opt-TxRx-Relaxed) with the obtained a* and g*, respectively.

Number of antennas, N 9 18 27 36
S =@N | 009 (%) 443 457 358 149 < 486
g

> 45

words, TxBF and RxBF are repurposed for achieving wide-
band RF SIC. We note that (Opt-TxRXx) can also be extended
to include general complex-valued desired array patterns.
Throughout the paper, we practically set P,y = —90dBm and
SICg, = 40dB.> According to (15), 8 = Py - SICg, =
—90dBm + 40dB = —50dBm = 1075 mW.

Note that (17) and (19) are convex non-linear constraints,
and (Opt-TxRx) always has a feasible solution where w
and v have very small amplitudes. However, in general,
(Opt-TxRx) is a non-convex optimization problem whose
solution poses several challenges. The non-convexity stems
from the coupling between w and v through H(fx) in (18)
where H(f;) is not a Hermitian matrix, and not even a
symmetric matrix in realistic environments (see Section IV-A).
Moreover, the problem becomes computationally expensive to
solve using existing solvers (which may only return a local
optimum) with increased number of antennas, N, especially
for massive-antenna systems and large-scale phased arrays. For
benchmarking purposes, in Section VII, we use the nonlinear
programming solver from MATLAB to solve (Opt-TxRx) and
denote the returned (possibly only locally) optimal FD TxBF
and RxBF gains by g and g, respectively.®

B. Observation and Intuition

Due to the intractability of (Opt-TxRx), we now describe
alternative optimization problems which are based on the ob-
servations below. First, we relax (Opt-TxRx) into the follow-
ing optimization problem by relaxing the quadratic constraint
(17) given the linear relationship between the array factors and
beamformers (see (4)),

(Opt-TxRx-Relaxed) ¢* := maxw, v a
s.t.: stTw =a €RT, srTv =a €R™, and (18)—(19).

In particular, the objective {maxw v : a} is equivalent to
{maxw v : g} in (16), since the TxXBF/RxBF gain, gy, is a
monotonically increasing function of real-valued, non-negative
Tx/Rx array factors, ay, € RT (i.e., g = a2, /N, see (4)).

Using the Argos dataset [13] (described in Section VII-D)
with different values of N and F;, we numerically evaluated
and confirmed that equal FD TxBF and RxBF gain obtained
by solving (Opt-TxRx) and (Opt-TxRx-Relaxed), g* and
(a*)?/N, respectively, have a relative difference of only within
5% in all considered scenarios. The results are presented in
Table I and show the accuracy of (Opt-TxRx-Relaxed) as an
approximation to (Opt-TxRXx).

SRecent work has achieved ST Cgig = 43/50dB [5], [8] which leads to
more relaxed requirements on the amount of RF SIC.

®Due to the non-convexity of (Opt-TxRx), we use the same g; and g as
in Section IV-B to denote the numerically obtained solution to (Opt-TxRx)
using existing solvers.



Second, note that the SI power in (18) can be written as,
Psi(fx) = IVTH(fi)w|? - §
= (vTH(fyw)' - (vTH(/)w) - §
=wi ( HT(fk)V*VTH(fk) )W ) %

:Hv(fk)
=w Hy(fr)w- g, Yk

It can be seen that with a fixed Rx beamformer, v,
o Hy(fi) is a Hermitian matrix, i.e., Hy(fr) = Hi (f1.), Vk;

o H,(fx) is positive semidefinite since, for any non-zero Tx
beamformer, w, the SI power cannot be negative, i.e.,

wiH, (f)w- & >0, Vk, Vw € CV and w # 0.

Therefore, based on this observation and (Opt-TxRx-
Relaxed), the optimal Tx beamformer that maximizes the Tx
array factor, a;, given a fixed v, can be obtained by solving:

(P1) max q

s.t.: Re[s] w] = a(, Im[s/ w] =0,
wiH, (fo)w- & < NB, Vk, |w,|* <1, Vn.

Unlike (Opt-TxRx) and (Opt-TxRx-Relaxed), this is a
quadratically constrained convex program, since Hy (fi) is a
Hermitian matrix. Symmetrically, the optimal Rx beamformer
that maximizes the Rx array factor given a fixed Tx beam-
former w, can be obtained by solving:

(P2) max a,

s.t.: Re[sv] = ay, Im[s/v] =0,
VviH (fr)v- & < NB, Yk, [v,]? <1, Vn.

(P1) and (P2) are convex programs that can be solved
efficiently via existing solvers (e.g., CVX). Intuitively, an
algorithm that updates w and v by iteratively solving (P1)
and (P2) can be applied, i.e., solving for v given fixed w,
and then solving for an updated w with the newly obtained v.
However, the obtained TxBF and RxBF gains can be largely
imbalanced since w and v are updated independently.

C. The Iterative Algorithm

We now present an iterative algorithm (described in Algo-
rithm 1) that simultaneously maximizes and balances the Tx
and Rx array factors.” Let x € Z be the index of iteration.
Let w(© and v(® be the initial Tx and Rx beamformers
with corresponding Tx and Rx array factors of at(o) and aﬁo),
respectively. Let w(*) and o™ (resp. v(*) and a!") be the
optimal Tx (resp. Rx) beamformer and Tx (resp. Rx) array
factor obtained by the iterative algorithm in the x™ iteration.
For k € Z, we define the following two objective functions.

Ft(KH)(at) = ac — Qi1 - (o — ‘ISH))2>

(H+1))2

(20)
F‘r(’f""l)(ar) = Qr — Q41 (ar &

"The idea of the iterative algorithm is similar to that presented in [36].

Algorithm 1 The Iterative Algorithm

Input and Initialization: N, P, H(fx),Vk, s. = s(¢,0,), and
S = s%d)rﬁ,). Initial values of Tx and Rx beamformers w(®)
and v(%), respectively. The step size sequence, {cv; }rez.

For x =0,1,--- do

1: Obtain w**V) with given v(*) and a™ by solving the following
optimization problem, (Opt-Tx):

afKH) :=arg max Fl(F"H)(al) =a— Qut1 - (@ — a,(“))2

s.t.: Re[s w] = a, Im[s w] =0,
WTHV(K,) (fe)w - % < NB, Vk,
lwn|? < 1, Vn.

(

2: Obtain v+ with given w and at'ﬁl) by solving the
following optimization problem, (Opt-Rx):

(k=+1)
al" ) = argmax F(a) = ar — any1 - (ar — a")?
s.t.: Re[s; v] = ar, Im[s;'v] =0,

VTHW(WJrl) (fk)v : % S N/87 Vka

lvn] <1, Vn.

3: Iterate until the Tx and Rx array factor improvements are within
0N, ie.,
max {a[(NH) — ™, gt — ar(“)} <é6-N. (22)

Output: w* D v+ “and the corresponding TxBF and RxBF
gains, gt = (a"T)2/N and "t = (al"TV)2)/N.

where o411 is the step size. Essentially, in the (x + 1)®
iteration, a penalty term is introduced, which is the square
of the difference between the Tx and Rx array factors with a
weighting factor of 1. Therefore, Tx and Rx array factors
with a larger difference will prevent their individual value from
increasing rapidly.

To allow analytical tractability and easy implementation of
the developed iterative algorithm, it is important to properly
select: (i) the initial Tx and Rx beamformers, w(® and v(©),
and (ii) the step size sequence, {a,; }«cz. In particular, we set:

1/4
B / “Veonv

/4
(0) — 51 “Weonv 0) —
W= v = 2P /AN1/2"

1
2P /IN1/2 Ax = 13, Vi, (21)

since this choice of w(®) and v(©) satisfies (18), i.e.,

(vO)YTH(fr)w O -
B1/4

4
= {W} : |Vconv|2 . |VVconv‘2 : % = % : Nﬁ < Nﬁ
t

We also note that the above choices of W(O), V(O), and
{a,} are not unique. For example, any step size sequence
{a,} satisfying 1 = a3 > a3 > -+ > 0 also suffices. In
Section VII, we will evaluate the effect of {«,; } on the solution
obtained by the iterative algorithm.

D. Performance Analysis

In this section, we analyze the performance of the iterative
algorithm. We first present Lemma 6.1 about the structural
properties of the objective functions of (Opt-Tx) and (Opt-
Rx) in (20). Then, we state the main results in Proposition 6.2.
The proofs of Lemma 6.1 and Proposition 6.2 can be found
in Appendices A and B, respectively.
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Lemma 6.1. Under the iterative algorithm, Yk € Z,
R )

> F" ("),

F(R+1)(a(fi+l)) > F(ﬁ+1)(a(f€))_

Recall that g™ = (a/*™)2/N and g{*) =
have the following proposition.

( nJrl) /N We

Proposition 6.2. With initial Tx and Rx beamformers, w(®)
and v, and step size, q,q, given in (21), under the iterative
algorithm,

at(ﬁ+1) > al( K) and a(f'i-i-l) > a, ) Vk € 7. (23)

Furthermore, the corresponding TxBF and RxBF gains satisfy,
VK € Z,

(k+1) (k1)

glm ) > glm ! )

> g(®), gt 4 glatD) > glm)

(24
Corollary 6.1. The iterative algorithm is guaranteed to ter-
minate in at most [1/§] iterations.

Proof. Proposition 6.2 states that the Tx and Rx array factors
obtained by Algorithm 1 after each iteration, a[(”) and o™, are
always monotonically non-decreasing. From the termination
condition (22) and the fact that a™* = a™* = N (see (5)),
the iterative algorithm is guaranteed to terminate within at

most [N/(§- N)] = [1/4] iterations. O

VII. MEASUREMENT-BASED EVALUATION

In this section, we first describe the measurements, datasets,
and setup. Then, we numerically evaluate the performance of
an FD phased array with TxBF and RxBF, and the correspond-
ing FD rate gains. We also discuss various design tradeoffs.

A. Measurements and Datasets

Since currently large-scale Tx and Rx phased array nodes
are not widely available, our evaluations are based on H( f3)
from measurements and traces with different bandwidth, B. In
particular, we consider two antenna arrays with different array
geometries, number of antennas, and operating frequencies.

A Customized Rectangular Array with Circulators. We
custom designed a 1.65GHz 8-element rectangular antenna
array using a slot loop antenna structure as shown in Fig. 7(a).
The spacing between adjacent antennas is half-wavelength. An
RF-CI RFCR3406 circulator is also included (see Fig. 3). The
frequency responses of the antenna array and the circulator
are measured using a vector network analyzer at frequencies
between 1.625-1.675GHz (B = 50MHz), from which the
SI channel matrix, H(f;) € C8%®, is constructed. Figs. 7(b)

+ g\
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©

Fig. 8: (a) The 2.4 GHz 72-element Argos hexagonal array with SI

channel measurements reported in [13], [30], (b) the Taoglas 2.4 GHz

circular antenna, and (c) the measured antenna amplitude response
used for |Hpn(f%)|, V1.
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and 7(c) respectively plot the measured |H,,,(fx)| at fr =
1.65GHz, and example SI channels, |H,,,(fx)|, with high
frequency-selectivity.

The Argos Hexagonal Array [13], [14]. We also leverage the
publicly available Argos dataset from [13], [14]. The Argos
platform consists of 72 circular patch antennas at 2.4 GHz
placed in a hexagonal grid consisting of 8 rows and 9 columns,
with 0.6-wavelength spacing between adjacent elements (see
Fig. 8(a)). The SI channel matrix, H(fz) € C™*72, is
measured using a WARPv3 platform with B = 20MHz
bandwidth and K = 64 subcarriers (52 non-zero subcarriers).
With such a large number of antennas, uniform linear arrays
(ULAs) and hexagonal planar arrays with different values of
N can be constructed by taking a subset of the measurements.

However, the Argos platform employs seperate Tx and Rx
antennas and does not contain circulators. Therefore, H( fx)
is missing the diagonal elements, H,,,(f%),Vn. To complete
H(fr), we measure the frequency response of a Taoglas
2.4 GHz circular antenna (see Fig. 8(b)). Using the completed
H(fi), we generate hexagonal arrays with N € {9,...,72}
by considering the top {1,...,8} rows of the Argos array.
Note that case of N = 9 corresponds to a ULA.

Steering Vectors of the Rectangular and Argos Arrays.
The steering vector of the rectangular array is computed as
described in Section III. The steering vector of the Argos
hexagonal array is given by (n = (ny — 1) Ny + ny)

eJ &= [(ng—1) cos 6 cos ¢+§(nyfl) cos 0 sin ¢>}’ ny odd,

n(¢7 0) = {ej%r[(’ﬂm%)COS@COS¢+§(7M1) cos@sin¢], n, even.
Our evaluations using the Argo dataset is with 20 MHz as
provided [13], [14]. For higher bandwidth up to 50 MHz, we
use the rectangular array measurements. For compactness of
presentation, we use N € {8,9,18,...,72} to correspond to
different array geometries. Note that in both antenna arrays,
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Fig. 10: TxBF and RxBF gains (on the y-z plane), and the resulting XINR under different TxBF and RxBF schemes with the rectangular
array (N = 8) and the Argos array (N = 72), P, = 30dBm, B = 20MHz, and the Tx and Rx beam-pointing directions in the array

broadside (z-axis).

the measured H(f;) is neither Hermitian nor symmetric
although Fig. 7(b) presents some level of symmetry.

B. Setup

TxBF and RxBF in HD and FD Modes. We consider

TxBF and RxBF in the front side of the antenna array

with ¢ € [—180°,180°] and 6 € [0°,90°]. Specifically, the

array broadside corresponds to the direction of 8 = 90°, V¢

(see Fig. 2(a)). We consider P, € {10,20,30} dBm®, and

Py = —90dBm and SIC4, = 40dB (see Section IV-D).

The FD rate gains are computed as described in Section IV-C.

The following TxBF and RxBF schemes are considered:

(1) Conventional HD TxBF and RxBF (Conv.), which is
based on (5) and g™ = g"* = N;

(2) Only TxBF (TxBF), which is similar to the approach
presented in [32] but adapted to our FD phased array
model (see Section IV). Since [32] considers a narrow-
band system where only TxBF is repurposed, we set
the Rx beamformer in this scheme to be v, Which
maximizes the RxBF gain in the main beam-pointing
direction, and optimize for the Tx beamformer across the
desired wide bandwidth;

(3) Optimal FD TxBF and RxBF (Opt.), which is based on
solving (Opt-TxRx). We denote the (equal) optimal TxBF
and RxBF gain as g*;

(4) Iterative FD TxBF and RxBF (Iter.), which is based on
the iterative algorithm (Algorithm 1) with 6 = 0.01 set in
the termination step. We denote g, and g, as the obtained
TxBF and RxBF) gains, respectively.

The evaluations are performed using a laptop with a quad-
core Intel i7 CPU and 16 GB RAM. For Opt., we apply

8These values correspond to the typical Tx power levels of a BS in a
small/micro cell.

the nonlinear solver in MATLAB.® For Iter., we apply the
MATLAB CVX solver for solving the convex (Opt-Tx) and
(Opt-Rx) in Algorithm 1. For TxBF, we also apply the CVX
solver given the convexity of the optimization problem.

Selecting the Step Size, {a,;}. To study the impact of {«,},
we remove the termination condition in the iterative algorithm
and record the obtained o™ and a{™ (see Algorithm 1). We
consider N = 36, P, = 20dBm, and three different step sizes
satisfying the conditions specified in Section VI-C: (i) o, =
1/k2, (2) aye = 1/k, and (iii) a,; = 1 (constant). Fig. 9 plots
both the obtained at('@) and czr("i over iterations, x, and the
optimal Tx and Rx array factor, a* (red dashed line). The
results show that under all considered three choices of {a},
at(“) and o' converge within 25 iterations. However, at('{)
and ar(ﬂ) become more imbalanced with more aggressive step
sizes (e.g., a,, = 1/k?). The results for other values of N and
P, also reveal similar trends. Therefore, we empirically set
a, =1 /mQ, which achieves fast termination (e.g., less than
10 iterations for all values of IV, F,, and B considered). Note
that the obtained g; and g, are less balanced compared with
ar,=1/k or a, = 1.

C. XINR and Gain Loss under TxBF and RxBF

We now evaluate the XINR at the BS, 7u,(fx), under
different TxBF and RxBF schemes. We consider both the
customized rectangular array (N = 8) and the Argos array
(N = 72), with P, = 30dBm, B = 20 MHz, and the desired
Tx and Rx beam-pointing directions in the array broadside (z-
axis). Fig. 10 plots the TxBF and RxBF gains (see (2)) and
the resulting XINR, 75 (f%), under the considered TxBF and
RxBF schemes. It can be seen that Conv. results in extremely

9The returned solution to (Opt-TxRx) may be locally optimal due to its
non-convexity.
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Fig. 11: TxBF and RxBF gains under different TxBF and
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TABLE II: Average ratio between the FD rate gains achieved under
Iter. (with g; and g;) and Opt. (with g*).

Number of antennas, N 9 18 27 36 > 45
Low SNR (0dB) 089 095 097 098 >098
Medium SNR (15 dB) 093 097 098 099 >099
High SNR (30dB) 095 098 098 099 >099

high XINR of 7, (fx) > 65dB, Vk, thereby FD operation at
the BS cannot be supported. Both Opt. and Iter. are able
to cancel the SI power to below the array noise floor, i.e.,
Yob (f1) < 1 (0dB). The corresponding TxBF and RxBF gain
losses under Opt./Iter. are only 3.6/6.2dB and 3.6/3.2dB for
N = 8. The TxBF and RxBF gain losses are reduced to
3.5/1.5dB and 3.5/5.8dB for N = 72.

Fig. 10 also shows that the TxBF scheme leads to sig-
nificantly higher TxBF gain losses of 18.4/60.0dB for 8/72
elements, respectively, compared to the proposed Opt. and
Iter. schemes. This is because with a fixed Rx beamformer
that aims to achieve the maximum RxBF gain (as applied in
TxBF), more attenuated Tx beamformer weights are required
to cancel the strong SI. Therefore, we do not include TxBF in
the rest of the evaluations since these largely degraded TxBF
gains will lead to poor FD rate gains.

D. FD TxBF and RxBF Gains and Rate Gain

FD TxBF and RxBF Gains. We first evaluate the FD
TxBF and RxBF gains. We consider Tx and Rx beam-point
directions in the array broadside with N € {9,18,...,72} and
P, € {10,20,30} dBm. Fig. 11 plots the optimal FD TxBF
and RxBF gain, g*, and the iterative FD TxBF and RxBF
gains, g; and g, respectively. The conventional HD TxBF and
RxBF gains of IV are also plotted. The results show that for
a given number of antennas, N, the TxBF and RxBF gain
losses are more significant with increased Tx power level,
P.. For a given value of F,, the TxBF and RxBF gain losses
decrease with a larger number of antennas, /N. For example,
under the Iter. scheme, an FD phased array with P, = 20 dBm
and N = 72 experiences 1.7/5.1dB TxBF/RxBF gain losses,
respectively. These values are only marginally changed to
1.8/5.7dB with N = 36. It can also be seen that Iter. achieves
relative balanced FD TxBF and RxBF gains across varying N.
Specifically, g; and g, are always within 2.8 dB of the optimal
FD TxBF and RxBF gain, g*. Moreover, v, (fx) < 1,Vk, can
be achieved with at most 8.0/8.2/11.6 dB sum TxBF and RxBF
gain loss for P, = 10/20/30dBm when N > 18.
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BS-BS Case. We consider the FD rate gain when both BSs
face each other in the array broadside.'® Fig. 12 plots the FD
rate gains under the Iter. scheme with varying P, and link SNR
values. The results show that although the FD phased array
experiences TxBF and RxBF gain losses to achieve yup,(fx) <
1,Vk, an FD rate gain of at least 1.53x can be achieved with
N > 36 in all SNR regimes. Also, the FD rate gain improves
with increased values of both N and the link SNR. Moreover,
when the number of antennas is large, further increasing N
introduces only marginal FD rate gain since the SI power is
already canceled to below the noise floor with a smaller value
of N (see Section V).

To compare the performance of the Iter. and Opt. schemes,
Table II summarizes the average ratio between the FD rate
gains achieved by Iter. (with g; and g;) and Opt. (with g*).
The results show that the FD rate gains achieved under g, and
g are very close to that achieved under g*, in all considered
scenarios, where the average ratio is at least 89%.

BS-User Case with Spatially Distributed Users. We con-
sider spatially distributed users in the directions of ¢ €
[—180°,180°] and € € [0°,90°] with respect to the BS. The
BS applies the Iter. scheme with the desired Tx and Rx beam-
pointing directions equal to the user direction. We consider the
low SNR regime with P, = 30dBm and N € {9, 36, 72} (see
Section V). Fig. 13 plots the spatial distributions of (i) the
sum TxBF and RxBF gain loss for achieving v, (fr) < 1,Vk
at the BS by the Iter. scheme, and (ii) the resulting FD rate

10Note that the proposed optimization and Algorithm 1 can also be applied
to cases where the two BS do not face each other in the broadside.



TABLE III: Runtime improvements of the iterative algorithm over
directly solving the non-convex (Opt-TxRx).

N 9 18 27 36 45 54 63 72

Rﬁ$§ne 0.99x 1.72x 241x 2.12x 270x 3.18x 551x 6.00x

gain with low UL and DL SNR values of 0dB.

The results show that the sum TxBF and RxBF gain loss
varies across all spatial directions, since the total SI power
depends on both the array geometry and the beam-pointing
directions. The SI power is the strongest (i.e., requiring the
highest amount of RF SIC) in the array broadside (z-axis)
and in the direction of adjacent antennas close to the array
z-y plane (e.g., ¢ = +£90° for N = 9 and ¢ = +30/90/150°
for N € {36, 72}, with very small values of ). Yet, the Iter.
scheme is still able to achieve v, (fx) < 1 (>65dB RF SIC)
under P, = 30dBm with maximum sum TxBF and RxBF
gain losses of 9.7/8.6dB for N = 36/72. Overall, the FD
rate gains are at least 1.33/1.66/1.68x for N = 9/36/72, and
when the user is not in the direction of the strongest SI power,
the FD rate gains can be increased to 1.68/1.83/1.87x for
N =9/36/72. Note that only 0 dB UL and DL SNR values are
considered, and higher link SNR values would also increase
FD rate gain at the same sum TxBF and RxBF gain loss.

Efficiency of the Iterative Algorithm. We also compare the
performance of the Iter. and Opt. schemes in terms of the time
consumed to obtain the Tx and Rx beamformers. We perform
100 runs of solving (Opt-TxRx) and of the iterative algorithm
in all considered values of N and F,, and measure the average
running times. Table III summarizes the improvements in the
average running time of Iter. over Opt.. The results show
that with N = 9, both schemes have similar running times.
However, as N increases, the Iter. scheme achieves 2—6x
runtime improvements compared to the Opt. scheme, since
the latter is solving the non-convex problem (Opt-TxRx).

Effect of the Bandwidth, B. Lastly, we evaluate the effects
of the desired RF SIC bandwidth, B, on the FD TxBF and
RxBF using the measurements of the 8-element rectangular
array with circulators (recall that the Argos dataset is only
with B = 20 MHz). We consider the Iter. scheme with B €
{10,...,50} MHz and P, € {10,20,30} dBm. Fig. 14 plots
the sum TxBF and RxBF gain loss and the corresponding FD
rate gain in both the BS-User and BS-BS cases. The results
show that, even with only 8 elements, an FD phased array
can achieve vpp(fx) < 1,Vk, for up to B = 50MHz at P, =
10 dBm, where the sum TxBF and RxBF gain loss is at most
8.5dB (TxBF/RxBF gain loss of 4.4/4.1dB). The sum TxBF
and RxBF gain loss increases to 12.3 dB with P, = 20 dBm.!!
However, although higher TxBF and RxBF gain losses are
required in scenarios with increased P, and B, an 8-element
FD phased array is able to achieve FD rate gains of at least
1.47/1.42/1.36x under P, = 10/20/30 dBm, with bandwidth
of up to B = 50 MHz.

"IThe small variations on the curves are caused by the selection of the step
size sequence of Algorithm 1, {c}.
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Fig. 14: Sum TxBF and RxBF gain loss, and FD rate gains in the
BS-User and BS-BS cases with N = 8 and varying desired RF SIC
bandwidth, B € {10,...,50} MHz, and P, € {10, 20,30} dBm.

VIII. CONCLUSIONS

In this paper, we considered FD phased arrays repurposing
TxBF and RxBF for achieving wideband RF SIC. We formu-
lated optimization problems to obtain the maximum FD TxBF
and RxBF gains and developed an iterative algorithm to effi-
ciently solve the optimization problems. Using measurements
and datasets, we extensively evaluated the performance of the
FD phased array and the resulting FD rate gains in various
network settings. Future directions include: (i) system design
and implementation of a large-scale FD phased array based
on our previous work [33], and its integration in the city-scale
COSMOS testbed [16], [37], and (ii) experimental evaluation
of the FD TxBF and RxBF approach, and its integration in
hybrid beamforming systems and multi-user scenarios.
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APPENDIX A
PROOF OF LEMMA 6.1

Since w*) and v(*) are optimal solutions to (Opt-Tx) and
(Opt-Rx) in the x™ iteration, it holds that

Re[s, w(")] = al"),

Re[sv(")] = al"), Im[sv(")] =0, (K =k, k+1),
K K P

(Vi) Hy o (fe)v™) - & < NB, VE,

(WD) H oo ()W - < NB, k.

Im[s, w*)] =0, (&' =k, +1)

Assume by contradiction that F[(”+ 1 (at(~+1)) <
Ft(»s+1)(a[(,@))’ we can select a new Tx beamformer
wit) =  w() with an increased value of FI(KH)

while satisfying all the constraints in (Opt-Tx). Similarly,

Fr(

HH)(ar(K’H)) > Fr(HH)(ar(K’)) also holds. O

APPENDIX B
PROOF OF PROPOSITION 6.2

The proof is based on induction on x and the structural
properties of the objective functions (20). By taking the second
derivatives of (20), it can be seen that

.« B

. Fr(x-s-l)(ar) is symmetric w.r.t.Jy

Pt =

a;) is symmetric w.r.t. al™ +

200041

and is monotonically increasing for a, € (0, 9" )] and

(k+

t

monotonically decreasing for a; € (1, (k+1) ,00),
(k+1) _ ( 1) 1

& + 200541

(O r(f'i-‘rl)]

and is monotonically increasing for a, € and

is monotonically decreasing for a, € (1/4(““), 00).

The proof is based on the induction of .
Base Case (k = 0): Let w(® and v(?) be the initial Tx and

Rx beamformers given by (21) with initial array factors:

For k

o,
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o
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BYENTER T,
. ,61/4N1/2Pfl/4.

_ e lw(0) _ 1
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1, F( )(a[) is monotonically increasing for a; €

(1)] Since & > N, it holds that
a0

)

P ORI %(51/4N1/23_1/4+1) 251/41\]1/2}3‘—1/4.
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One can then select w(1) = 2w(®) which satisfies

(1)

a 5

=5/ wi

) — 51/4N1/2Pfl/4.

Since |Hpn (fi)] < 1 (see Section IV), it holds that

Hence, there 3 w(l) such that a(l)

in

Inductive Step (x > 1): Assuming that a;

((vO) TH(fr)w D2 §

N N 2
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and all constraints
> ar“” holds.
(0 <o <L at(”) and

(Opt-Tx) are satisfied. Similarly, a

NONSS

- < a'™, we need to prove that at(“) < a"™ and

(“) < a(”“) We consider two cases.



Case 1: al”) < o). First, we show that af'ﬁl)
Assume by contradiction that """ <
a"™) is achieved by w(*+1). Since F a;) is mono-
tonically increasing for a; € (0, t(HH)], it must hold that

(%),

t
at('{) < o, and
(Ii+1)(

> a

Ft(ﬁﬂ)(al('{ﬂ)) < Ft('ﬁ_l)( l('{)) contradicting Lemma 6.1.
Second, we show that a* TV > (). Assume by contradic-

tion that ¢V <

symmetry at

a{™ . Recall that F(KH)(ar) has an axis of

al" 4 , and is monotonically
I(H—O—l)}

wr(nJrl) 2a

increasing for a, € (0, . We consider the following
cases based on the relationships between al™, af”+1), and
"t as depicted in Fig. 15.

Case (i): If o™ < ") (see Fig 15(a)).

(i) Assume by contradiction that Y < olF) < 1/4(”“), it
holds that F}(HH)( T('QH)) < Fr(HH)(ar('{)) which contradicts
Lemma 6.1.

Case (i))—=(iv): If g > "™ (see Fig 15(b)).

(i) If @l < 29"t — g < D 6™ it s easy
to see that one can select v(#1t1) = v(¥) that satisfies all the
co(ns_:rla)lints and yields a higher value of the objective function
E" (ar

(i) If 21/)(R+1) 5'{) < ar('ﬁ_l) < wr('ﬁl) < aS ~) there exist
a real number ¢ € (0,1) such that o™ + (1 — &)al™
P Let ¥ = gv(c+D) 4 (1 — £)v(®)_ Tt holds that

~(,~g+1) _ §a(”+1) + (1 o g)agm) _ d)r(n—H)
F(n+1)( (/{—0—1)) > Fr(n+1)(ar(/-i+1))

IR <2+ (1-6)2 + 201 -¢)
(VD) H ey (f) VD) -
< [e- (V(“H))THWMD(f/e)V(KH)
+(1=8) - (vVO) Hyeern ()] - § < NB, Vk,
where the last inequality comes from the fact that
H,, ~+1 (fx) is Hermitian and positive semidefinite, and thus
(xTmeH) (fk) ) is convex with respect to x.
(v) If (wr”Jr ) < a Y < ) et 7D = vt where
+1

= w(ﬁ < 1. Since v(#+1) is linearly scaled down from

L

(““) by a factor of £, we have

dvr(n—i-l) _ €arn+l) < ar(m+1)’Fr(ﬁ+l)(a/r(n+1)) > E(R-Q-l)(agn-l-l))
BrtIR =2 Y12 < 1, vn

(g(~+1))TH (Hl)(fk)g(wl) . %
=& (VT T H (o) (fr) v D) -
This contradicts the fact that v(*+1) is the optimal solution

since v+ yields £ (G, %FY) > ST (") while
satisfying constraints in (Opt-Rx).

&< NB, Vk.

Now the only marginal case left is oY — wr('{ﬂ). Note that
o < Y, g ) g _ e

Since a(RH) > a( %) and i1 < ., we have @ZJSKH) > wr(”).
a(m+D)

a0

Therefore, one can select v(¥) = - v(®) which yields

a higher value of the objective function F(H)(ar) since it is

n).

Case (i) |

Case (ii),Case (iii)Case (iv),

PO ar gD - P 1/:‘(A~+1) a(rn) e
@ al™ < ("t ) af™ > "t
Fig 15: Tllustration of Case 1 in the proof, where 1" ") = ¢{" ™1 ¢
2a e and a('ﬁ'l) < ar“> (shaded area) is assumed by contradlctlon

that v(*) is optimal in the x™ iteration and the proof of Case
1 completes.
Case 2: o\ >
is omitted here.

(R) . The proof is similar to Case 1 and thus
O

Tingjun Chen received the Ph.D. degree in electri-
cal engineering from Columbia University in 2020,
and the B.Eng. degree in electronic engineering
from Tsinghua University in 2014. He is currently a
Postdoctoral Associate at Yale University and will
start as an Assistant Professor in the Department
of Electrical and Computer Engineering at Duke
University in Fall 2021. His research interests are in
the areas of networking and communications with
a specific focus on next-generation wireless net-
works and Internet-of-Things systems. He received
the Google Research Scholar Award, the Facebook Fellowship, the Wei
Family Private Foundation Fellowship, the Columbia Electrical Engineering
Armstrong Memorial Award, and the ACM CoNEXT’16 Best Paper Award.

Mahmood Baraani Dastjerdi received the Ph.D.
degree in electrical engineering from Columbia Uni-
versity in 2020, and the M.S. degree from Sharif
University of Technology in 2014. His career is
focused on the theory, design and experimental
validation of analog/RF/millimeter-wave integrated
circuits and systems. He joined MixComm Inc.
as a member of technical staff in 2019. He is a
recipient of the 2020 Columbia University Electrical
Engineering Department Jury Award, the 2019 IEEE
SSCS Predoctoral Achievement Award, the 2018
ADI ISSCC Outstanding Student Designer Award, and the Creative Tech
Award in Engineering at the NYC Media Lab’18.

Harish Krishnaswamy received the Ph.D. degree
in electrical engineering from USC in 2009. He is
now an Associate Professor of Electrical Engineer-
ing at Columbia University and is the co-founder
and CTO of MixComm Inc. His research inter-
ests span integrated devices, circuits, and systems
for RF/mmWave/sub-mmWave applications. He re-
ceived the Best Thesis in Experimental Research
Award from the USC Viterbi School of Engineering,
a DARPA Young Faculty Award, an IBM Faculty
Award, an MTT-S Outstanding Young Engineer
Award, several best paper awards including the IEEE ISSCC’07 Lewis Winner
Award for Outstanding Paper, the 2015, 2018, 2020 IEEE RFIC Symposium
Best Student Paper Awards, the 2020 IEEE IMS Best Student Paper Award,
and the 2021 IEEE MTT-S Microwave Magazine Best Paper Award.

Gil Zussman received the Ph.D. degree in electrical
engineering from the Technion in 2004 and was a
postdoctoral associate at MIT in 2004-2007. He has
been with Columbia University since 2007, where
he is a Professor of Electrical Engineering and Com-
puter Science (affiliated faculty). His research inter-
ests are in the area of networking, and in particular in
the areas of wireless, mobile, and resilient networks.
He is a co-recipient of 7 paper awards including the
ACM SIGMETRICS’06 Best Paper Award, the 2011
IEEE Communications Society Award for Advances
in Communication, and the ACM CoNEXT’ 16 Best Paper Award. He received
the Fulbright Fellowship, the DTRA Young Investigator Award, two Marie

decreasing for a, € [ar(ﬁ-‘rl) (ﬁ)) This contradicts the fact Curie International Fellowships, and the NSF CAREER Award.



