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delays, (ii) does not require specialized RF SIC circuitry or

hardware, thus reducing the system complexity and total power

consumption, (iii) is achieved before the digital domain, which

largely reduces the analog-to-digital converter (ADC) dynamic

range and power consumption, and (iv) will benefit from large-

scale antenna arrays where a large number of TxBF and RxBF

weights can be modified.

We consider network scenarios as depicted in Fig. 1, where

a BS is an N -element, single-stream, FD phased array (see

Fig. 3(a)). We consider two use cases where an FD BS

communicates with: (i) a single-antenna user which is HD-

or FD-capable (the BS-User case), or (ii) with another FD BS

(the BS-BS case), and derive the data rate gain resulting from

using FD. Specifically, the FD link objective is to maximize

the FD data rate gains by optimizing the FD Tx and Rx

beamformers with minimal TxBF and RxBF gain losses. We

demonstrate the FD rate gains introduced by FD phased arrays

employing TxBF and RxBF in various network settings. Based

on the Argos FD channel measurements [13], [14], we show

that in the BS-User case, a 36-element FD phased array with

Tx power of 20 dBm can achieve maximum FD rate gains of

1.27/1.60/1.72× with 0/15/30 dB link SNR values, and with

TxBF and RxBF gain losses of only 3.1 dB.

Based on the FD link objective, we formulate an opti-

mization problem to jointly determine the optimal FD Tx

and Rx beamformers. Due to its non-convexity and analytical

intractability, we present a relaxed optimization problem and

show that it achieves high accuracy. We then present two

alternative convex optimization problems by leveraging the

structural properties of the SI channel matrix and its coupling

with the Tx and Rx beamformers. We develop an iterative

algorithm that efficiently solves the alternative optimization

problems with provable performance guarantees.

We numerically evaluate the network performance and

the corresponding FD rate gains when using the iterative

algorithm, based on SI channel measurements and datasets.

Extensive evaluations are conducted under different network

scenarios and a wide range of number of antennas, antenna

array geometries, and Tx power levels. Specifically, the results

show that an FD phased array with 9/36/72 elements can

cancel the total SI power to below the noise floor with

sum TxBF and RxBF gain losses of 10.6/7.2/6.9 dB, even at

Tx power level of 30 dBm (note that the conventional HD

TxBF and RxBF can provide sum TxBF and RxBF gains of

19.1/30.1/37.1 dB). Moreover, the FD rate gains in the BS-

User case are at least 1.33/1.66/1.68× with N = 9/36/72.

The FD rate gains in the BS-BS case are at least 1.53× with

N ≥ 36 in all considered SNR regimes. We also demonstrate

the efficiency of the developed iterative algorithm.

To summarize, the main contributions of this paper are: (i)

an FD phased array model that employs joint TxBF and RxBF

for simultaneously achieving wideband RF SIC and high FD

rate gains, (ii) an efficient iterative algorithm for obtaining

the FD Tx and Rx beamformers with provable performance

guarantees, and (iii) extensive evaluation of the proposed

approach using realistic SI channel measurements and datasets.

The rest of the paper is organized as follows. We dis-

cuss related work in Section II, and provide background on

phased arrays in Section III. In Section IV, we present the

FD phased array model and FD link objective, followed by

motivating examples in Section V. In Section VI, we present

the optimization problems and the iterative algorithm. We

evaluate the performance via measurement-based simulations

in Section VII and conclude in Section VIII.

II. RELATED WORK

Recent work focused on the design and implementation

of FD radios and systems, either using off-the-shelf compo-

nents [4], [5], [15] or based on integrated circuits (ICs) [3],

[7], [8] (see the review in [2] and references therein). For

single-antenna FD, a pair of Tx and Rx antennas with proper

separation, or a shared antenna interface using a circulator,

have been used. Moreover, a single-antenna open-access FD

radio design has been integrated in the ORBIT wireless

testbed [16] to allow the community to experiment with FD

wireless. In this case, RF SIC is achieved by an additional

cancellation circuitry. FD MIMO radio implementations have

been presented in [11], [12], where up to 3 Tx/Rx antennas are

considered and RF SIC is achieved using either RF cancellers

or through alternating antenna placements.

At the higher layers, FD rate gain with single-antenna FD

radios has been studied analytically at the link-level [17], and

experimentally at the link- and network-level [8]. Moreover,

recent work explores medium access control and scheduling in

FD networks [18]–[22] as well as FD relays [23]–[26]. FD also

facilitates different applications including improved PHY layer

security [27], neighbor discovery [28], and localization [29].

Most relevant to our work are [23], [24], [30]–[32]. In

particular, [30] considers an FD multi-user MIMO downlink

channel with separate Tx and Rx antennas and applies only

digital TxBF to achieve RF SIC. JointNull is proposed in [31]

as an SIC architecture with a varying number of analog can-

cellers, where the antenna configuration and transmit precoder

are optimized to achieve maximized FD rates. This differs

from our approach, which is based on joint analog TxBF and

RxBF and results in lower power consumption. RF SIC in

the spatial domain has also been considered for FD MIMO

relays [23], [24]. On the other hand, in [32], narrowband RF

SIC is achieved via only analog TxBF for small-scale (i.e., 8

elements) phased arrays with separate Tx and Rx antennas.

Our previous work [33] focuses on IC implementations of an

8-element FD phased array. However, the optimization of the

TxBF and RxBF for an FD phased array with varying numbers

of antennas and geometries, and the corresponding FD rate

gains in different network scenarios have not be addressed.

To the best of our knowledge, this is the first fundamental

study of an FD phased array employing joint TxBF and RxBF

to achieve wideband RF SIC and FD rate gains. We believe

that the proposed approach is beneficial to other problems re-

lated to multi-antenna systems applying different beamforming

techniques (e.g., hybrid analog/digital beamforming [34]) at

different frequencies (e.g., millimeter-wave bands [35]).

III. BACKGROUND ON PHASED ARRAYS

In this section, we follow [10] and provide background on

phased arrays and beamforming in the half-duplex setting.
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and vconv (see (5)). However, as we will show in Sec-

tion VII-C, the XINR under wconv and vconv is significant, i.e.,

γbb(fk) � 1, ∀k. Therefore, using these beamforming weights

is impractical for a BS operating in FD mode.

To support FD operation, we aim to achieve wideband RF

SIC in an FD phased array only through manipulating the

TxBF and RxBF weights, w and v, thereby not requiring

specific RF canceller hardware or circuitry (see Section I).

Specifically, by properly selecting w and v, we aim to achieve:

(i) cancellation of SI to below the array noise floor (i.e.,

XINR(fk) = γbb(fk) ≤ 1, ∀k), and (ii) maximum FD data

rate gain. However, w and v, termed as the FD Tx and Rx

beamformers, may not achieve the maximum TxBF and RxBF

gain of N as in the conventional HD setting. Accordingly, we

define the optimal equal FD TxBF and RxBF gain as follows.

Proposition 4.1 (Optimal Equal FD TxBF and RxBF Gain).

For a given FD phased array with H(fk) and Pt, the optimal

equal FD TxBF and RxBF gain is the equal maximum TxBF

and RxBF gains, denoted by g?t = g?r = g?, that can be

achieved while satisfying γbb(fk) ≤ 1, ∀k.

To quantify the performance of FD TxBF and RxBF, we

present the following definition.

Definition 4.1 (TxBF and RxBF Gain Losses). For a pair

of Tx and Rx beamformers that respectively achieve FD TxBF

and RxBF gains of gt and gr, while satisfying γbb(fk) ≤ 1, ∀k,

the TxBF gain loss is defined as the ratio between the

maximum HD TxBF gain and gt, i.e., (N/gt). Symmetrically,

the RxBF gain loss is (N/gr).

The TxBF and RxBF gain losses are typically represented

in dB. For example, a 3 dB TxBF gain loss means that the

far-field Tx power is reduced by half, since gt = 0.5N ⇒
10 log10(N/gt) = 3 dB. Similarly, a 6 dB TxBF gain loss

corresponds to gt = 0.25N .

Fig. 3(b) illustrates the relationship between g? (given by

Proposition 4.1) and the number of antennas, N , for various

array geometries, where different antenna arrays may have

different values of g?. In particular, for a given FD phased

array with H(fk) and Tx power level Pt, there exists a pair

of optimal FD Tx and Rx beamformers that achieves g? while

satisfying γbb(fk) ≤ 1, ∀k. The FD phased array can achieve

higher values of g? with increased value of N , since a larger

number of Tx and Rx weights can be adjusted.

C. Sum Link Rate and FD Rate Gain

We now derive the HD and FD data rates and the effect of

the optimal FD TxBF and RxBF gain on the FD rates. Denote

by γ the average link SNR without beamforming, i.e., using

a single Tx element (with total Tx power, Pt) and a single Rx

element (with noise floor, Pnf). We use Shannon’s capacity

formula to compute the rate on a link with bandwidth, B, and

link SNR, γ. Since the TxBF and RxBF gains, gt and gr, are

independent of the absolute power of the Tx and Rx signals

(see Section III), the link SNR improvement introduced by

beamforming equals to gt and gr in the desired Tx and Rx

beam-pointing directions, respectively.

For the BS-User case, we denote by γbu (u → b) and γub
(b → u) the UL and DL SNRs, respectively. For the BS-BS

case, we index the BSs by b1 and b2 and denote the link SNRs

by γb1b2 (b2 → b1) and γb2b1 (b1 → b2). The sum of the HD

link rates in both cases, when the BSs and user operate in HD

mode and share the channel in a TDD manner equally (i.e.,

each link is activated for 50% of the time), are given by

rHD
BS-User =

B
2

[
log2 (1 +Nγbu) + log2 (1 +Nγub)

]
, (9)

rHD
BS-BS = B

2

[
log2

(
1 +N2γb1b2

)
+ log2

(
1 +N2γb2b1

) ]
. (10)

In particular, the HD UL and DL SNR values in the BS-User

case (9), Nγbu and Nγub, result from the maximum RxBF

and TxBF gains of N in the desired beam-pointing directions.

Similarly, the SNR improvements in the BS-BS case (10),

which are factors of gmax
t gmax

r = N2 for both γb1b2 and γb2b1 ,

stem from the combined TxBF and RxBF gains of both BSs.

When the BSs and user operate in FD mode, the FD link

SNRs are functions of the degraded TxBF and RxBF gains,

g?t and g?r , and the frequency-dependent XINR of the BS and

user, γbb(fk) and γuu(fk), respectively. As a result, the sum

of the FD link rates in both use cases are

rFD
BS-User =

B
K

K∑
k=1

[
log2

(
1 +

g?r γbu
1+γbb(fk)

)
+ log2

(
1 +

g?t γub

1+γuu(fk)

)]
,

(11)

rFD
BS-BS = B

K

K∑
k=1

[
log2

(
1 +

g?t g
?
r γb1b2

1+γbb(fk)

)
+ log2

(
1 +

g?t g
?
r γb2b1

1+γbb(fk)

)]
.

(12)

Due to the coupling between g?t , g?r , and γbb(fk) through the

Tx and Rx beamformers, w and v (see (8)), and the frequency-

dependent H(fk), maximizing (11)–(12) presents numerous

challenges. To allow analytical tractability, we approximate

the FD sum rates in (11)–(12) by setting γuu(fk) = γbb(fk) =
1, ∀k. We refer to the approximated FD sum rates as r̃FD

BS-User

and r̃FD
BS-BS, respectively, and they are given by

r̃FD
BS-User = B

[
log2

(
1 +

g?r γbu
2

)
+ log2

(
1 +

g?t γub

2

)]
, (13)

r̃FD
BS-BS = B

[
log2

(
1 +

g?t g
?
r γb1b2

2

)
+ log2

(
1 +

g?t g
?
r γb2b1

2

)]
.

(14)

Since we aim to achieve γbb(fk) ≤ 1 (0 dB) for an FD phased

array and recall that γuu(fk) ≤ 1, r̃FD
BS-User and r̃FD

BS-BS are lower

bounds of the FD sum rates, rFD
BS-User and rFD

BS-BS, in (11)–(12).

In the rest of the paper, we focus on maximizing r̃FD
BS-User and

r̃FD
BS-BS under the optimal equal FD TxBF and RxBF gain given

by Proposition 4.1. We define the FD rate gain in the BS-User

case as the ratio between the FD sum rate lower bound (13)

with g?t = g?r = g? and the HD sum rate (9). Similarly, we

define the FD rate gain in the BS-BS case as the ratio between

the FD sum rate lower bound (14) with g?t = g?r = g? and the

HD sum rate (10).3

3While it would be beneficial to consider non-equal FD TxBF and RxBF
gains co-optimized with the link SNR values, this is left for future work.
Nevertheless, the case with optimal equal FD TxBF and RxBF gains (Propo-
sition 4.1) still remains as a performance lower bound.
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Fig. 4: FD rate gain in the BS-User case with varying number of
antennas, N , and the normalized optimal equal FD TxBF and RxBF
gain, g?/N , for different link SNR values γ ∈ {0, 15, 30} dB. The
relationships between g?/N and N , based on the Argos traces [13],
are also overlayed on the surface with Pt ∈ {10, 20, 30} dBm.
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Fig. 5: FD rate gain in the BS-User case with varying UL and DL
SNR values, γbu and γub, respectively, with N ∈ {9, 36, 72} and
3 dB TxBF and RxBF gain loss (i.e., g? = N/2).

D. FD Link Objective

Our objective is to maximize the FD rate gains in the two

FD use cases. Based on the observation above, our goal is to

obtain the optimal FD Tx and Rx beamformers, w and v, that

maximize TxBF and RxBF gains, gt and gr, while achieving

sufficient amount of RF SIC, i.e.,

γbb(fk) ≤ 1, ∀k,

⇔ |v>
H(fk)w|2 · Pt

N ≤ SICdig · (NPnf) := Nβ, ∀k, (15)

where β := SICdigPnf is a constant independent of N and Pt.

Next, we first present the benefits introduced by FD phased

arrays in terms of FD rate gains (Section V). Then, we present

the corresponding problem formulation (Section VI).

V. MOTIVATING EXAMPLES

In this section, we illustrate the FD rate gains obtained by

FD phased arrays with joint TxBF and RxBF, where the FD

rate gains are computed as described in Section IV-C. We

provide motivating examples illustrating that higher values of

the optimal equal FD TxBF and RxBF gain, g?t = g?r = g?

(see Definition 4.1), lead to increased FD rate gains. We will

describe how to obtain g? in Section VI-A (Opt-TxRx).

BS-User Case: We first consider equal UL and DL SNR values

of γbu = γub = γ in low, medium, and high SNR regimes

with γ ∈ {0, 15, 30} dB.These values correspond to typical Rx

signal levels in an LTE network, where the user is at the edge,

middle, and center of the small cell. Fig. 4 presents the FD rate

gain with varying number of antennas, N ∈ {4, 8, . . . , 128},

and the normalized optimal FD TxBF and RxBF gain g?/N ∈
[0, 1] (recall from (5) that gmax

t = gmax
r = N ).

Fig. 4 shows, for example, that a 16-element FD phased

array can achieve FD rate gains of 1.14/1.56/1.71× in

low/medium/high SNR regimes, with 3 dB TxBF and RxBF

gain loss (i.e., g? = N/2). These rate gains increase to

Fig. 6: FD rate gain in the BS-BS case with varying number of
antennas, N , and the normalized optimal equal FD TxBF and RxBF
gain, g?/N , for different link SNR values γ ∈ {0, 15, 30} dB. The
relationships between g?/N and N , based on the Argos traces [13],
are also overlayed on the surface with Pt ∈ {10, 20, 30} dBm.

1.36/1.64/1.75× when N = 64. Moreover, with 6 dB TxBF

and RxBF gain losses, a 64-element FD phased array can

achieve FD rate gains of 1.05/1.46/1.62× in low/medium/high

SNR regimes. As we will show in Section VII, a TxBF and

RxBF gain loss of 6 dB is sufficient to achieve γbb(fk) ≤
1, ∀k, in most considered scenarios. It is also interesting to

note that under sufficient link SNR values, an FD phased

array with more antennas provides marginal improvements

on the FD rate gain. For example, in the medium SNR

regime, N = 64/128 elements can achieve FD rate gains

of 1.64/1.67×, respectively (namely, doubling the number of

antennas provides an improvement of only 3%).

To provide a practical example of the FD rate gain, we

overlay in Fig. 4 curves that represent relationships between

g?/N and N using H(fk) from the Argos dataset [13] with

different Tx power levels (the details will be described in

Section VII-D and shown in Fig. 11). For example, the Argos

array with Pt = 20 dBm can achieve g?/N = 0.45/0.49/0.50
for N = 18/36/72. In addition, the Argos array with Pt =
20 dBm and N = 36 experiences only 3.1 dB TxBF and

RxBF gain losses each, and can achieve maximum FD rate

gains of 1.27/1.60/1.72× in low/medium/high SNR regimes.

Importantly, the curves show that for a given FD phased array

with given values of N and Pt, as well as the array geometry,

there exists an upper limit of g? on gt and gr that any FD

Tx and Rx beamformers cannot exceed. The corresponding

TxBF and RxBF gain losses are due to the SI that needs to

be canceled leveraging TxBF and RxBF DoF to ensure FD

operation in a phased array (otherwise a phased array can

always achieve g? = N in the HD mode). Since the FD rate

gain increases as a function of g? (see (13)–(14)), designing

FD Tx and Rx beamformers that reach the upper limit of g?

will result in the maximum achievable FD rate gain.

We also evaluate the FD rate gain with asymmetric UL and

DL SNR values, a scenario which is more common in realistic

network settings. Fig. 5 presents the FD rate gain with varying

UL and DL SNR values, γbu and γub, with N ∈ {9, 36, 72}
and with 3 dB TxBF and RxBF gain loss. The results show

that FD rate gains of 1.28–1.74×/1.37–1.75× can be achieved

with N = 36/72 under all considered UL and DL SNR values.

Note that the FD rate gain also increases as a function of the

number of antennas, N .

BS-BS Case: Fig. 6 plots the FD rate gain in the BS-BS case

with the same setting as used in the BS-User case. The results

show that a 16-element FD phased array can achieve FD rate
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gains of 1.25/1.53/1.66× in low/medium/high SNR regimes,

with only 3 dB TxBF and RxBF gain loss. These gains increase

to 1.49/1.64/1.72× with N = 64. The curves representing the

relationships between g?/N and N using the Argos traces are

overlayed in Fig. 6, and similar observations as in the BS-User

case are also relevant in the BS-BS case. In both use cases,

the FD rate gain does not approach 2×, due to the XINR at

the BS and user, γbb = γuu = 1.

Findings. As indicated above, although an FD phased array

experiences TxBF and RxBF gain losses in the desired beam-

pointing directions to achieve γbb(fk) ≤ 1, ∀k, the network

can still achieve significant FD rate gains in various settings.

Hence, it is important to obtain the optimal equal TxBF and

RxBF gain, g?, in an FD phased array in order to achieve

high FD rate gain in the considered use cases. The results also

reveal an interesting phenomenon: with increased number of

antennas, N , minimal TxBF and RxBF gain losses (e.g., 3 dB)

do not affect the achieved FD rate gains. In addition, higher

TxBF and RxBF gain losses are needed to achieve sufficient

SIC under different Tx power level, Pt, and bandwidth, B,

requirements, as we will show in Section VII. This tradeoff

opens up a possibility of designing FD phased arrays with

different geometries and/or values of N under varying system

requirements (e.g., Tx power levels, link SNRs, bandwidth).

VI. FORMULATION AND OPTIMIZATION

In this section, we formulate an optimization problem based

on the FD link objective described in Section IV-D. Due to the

non-convexity and computational complexity of the problem,

we then present an alternative formulation whose solution

can be efficiently obtained using an iterative algorithm with

provable performance guarantees.

A. Problem Formulation

Given the FD link objective in Section IV-D, the following

problem jointly determines the FD Tx and Rx beamformers.

(Opt-TxRx) g? := maxw,v g (16)

s.t. : |s>t w|2/N = g, |s>r v|2/N = g, (17)

P bf
SI (fk) = |v>

H(fk)w|2 · Pt

N ≤ Nβ, ∀k, (18)

|wn|
2 ≤ 1, |vn|

2 ≤ 1, ∀n. (19)

Specifically, the objective (16) is to maximize the TxBF

and RxBF gains, subject to the following constraints (see

Section IV-D): (i) the TxBF and RxBF gains in the desired

beam-pointing directions, (φt, θt) and (φr, θr), are maximized4,

(17) (see also (4)), (ii) the residual SI power at any frequency is

suppressed to below the array noise floor, i.e., γbb(fk) ≤ 1, ∀k,

(18), and (iii) the amplitude of the beamforming weight on

each Tx/Rx element is at most one (see Section III), (19).

Essentially, the Tx and Rx beamformers that are obtained as

a solution are different from the conventional HD beamfomers

such that the total SI power is canceled to below the array

noise floor with minimal TxBF and RxBF gain loss. In order

4This constraint can be easily modified to consider multiple Tx and Rx
beam-pointing directions suitable for network scenarios with multiple users.

TABLE I: Average accuracy of (Opt-TxRx-Relaxed) compared to
(Opt-TxRx-Relaxed) with the obtained a? and g?, respectively.

Number of antennas, N 9 18 27 36 ≥ 45
∣

∣

∣

g?−(a?)2/N
g?

∣

∣

∣
× 100% (%) 4.43 4.57 3.58 1.49 ≤ 4.86

words, TxBF and RxBF are repurposed for achieving wide-

band RF SIC. We note that (Opt-TxRx) can also be extended

to include general complex-valued desired array patterns.

Throughout the paper, we practically set Pnf = −90 dBm and

SICdig = 40 dB.5 According to (15), β = Pnf · SICdig =
−90 dBm + 40 dB = −50 dBm = 10−5 mW.

Note that (17) and (19) are convex non-linear constraints,

and (Opt-TxRx) always has a feasible solution where w

and v have very small amplitudes. However, in general,

(Opt-TxRx) is a non-convex optimization problem whose

solution poses several challenges. The non-convexity stems

from the coupling between w and v through H(fk) in (18)

where H(fk) is not a Hermitian matrix, and not even a

symmetric matrix in realistic environments (see Section IV-A).

Moreover, the problem becomes computationally expensive to

solve using existing solvers (which may only return a local

optimum) with increased number of antennas, N , especially

for massive-antenna systems and large-scale phased arrays. For

benchmarking purposes, in Section VII, we use the nonlinear

programming solver from MATLAB to solve (Opt-TxRx) and

denote the returned (possibly only locally) optimal FD TxBF

and RxBF gains by g?t and g?r , respectively.6

B. Observation and Intuition

Due to the intractability of (Opt-TxRx), we now describe

alternative optimization problems which are based on the ob-

servations below. First, we relax (Opt-TxRx) into the follow-

ing optimization problem by relaxing the quadratic constraint

(17) given the linear relationship between the array factors and

beamformers (see (4)),

(Opt-TxRx-Relaxed) a? := maxw,v a

s.t. : s>t w = a ∈ R
+, s

>
r v = a ∈ R

+, and (18)–(19).

In particular, the objective {maxw,v : a} is equivalent to

{maxw,v : g} in (16), since the TxBF/RxBF gain, gt/r, is a

monotonically increasing function of real-valued, non-negative

Tx/Rx array factors, at/r ∈ R
+ (i.e., gt/r = a2t/r/N , see (4)).

Using the Argos dataset [13] (described in Section VII-D)

with different values of N and Pt, we numerically evaluated

and confirmed that equal FD TxBF and RxBF gain obtained

by solving (Opt-TxRx) and (Opt-TxRx-Relaxed), g? and

(a?)2/N , respectively, have a relative difference of only within

5% in all considered scenarios. The results are presented in

Table I and show the accuracy of (Opt-TxRx-Relaxed) as an

approximation to (Opt-TxRx).

5Recent work has achieved SICdig = 43/50 dB [5], [8] which leads to
more relaxed requirements on the amount of RF SIC.

6Due to the non-convexity of (Opt-TxRx), we use the same g?t and g?r as
in Section IV-B to denote the numerically obtained solution to (Opt-TxRx)
using existing solvers.
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Second, note that the SI power in (18) can be written as,

P bf
SI (fk) = |v>

H(fk)w|2 · Pt

N

=
(
v
>
H(fk)w

)†
·
(
v
>
H(f)w

)
· Pt

N

= w
†
(
H

†(fk)v
∗
v
>
H(fk)︸ ︷︷ ︸

:=Hv(fk)

)
w · Pt

N

= w
>
Hv(fk)w · Pt

N , ∀k.

It can be seen that with a fixed Rx beamformer, v,

• Hv(fk) is a Hermitian matrix, i.e., Hv(fk) = H
†
v
(fk), ∀k;

• Hv(fk) is positive semidefinite since, for any non-zero Tx

beamformer, w, the SI power cannot be negative, i.e.,

w
†
Hv(fk)w · Pt

N ≥ 0, ∀k, ∀w ∈ C
N and w 6= 0.

Therefore, based on this observation and (Opt-TxRx-

Relaxed), the optimal Tx beamformer that maximizes the Tx

array factor, at, given a fixed v, can be obtained by solving:

(P1) max
w

at

s.t. : Re[s>t w] = at, Im[s>t w] = 0,

w
†
Hv(fk)w · Pt

N ≤ Nβ, ∀k, |wn|
2 ≤ 1, ∀n.

Unlike (Opt-TxRx) and (Opt-TxRx-Relaxed), this is a

quadratically constrained convex program, since Hv(fk) is a

Hermitian matrix. Symmetrically, the optimal Rx beamformer

that maximizes the Rx array factor given a fixed Tx beam-

former w, can be obtained by solving:

(P2) max
v

ar

s.t. : Re[s>r v] = ar, Im[s>r v] = 0,

v
†
Hw(fk)v · Pt

N ≤ Nβ, ∀k, |vn|
2 ≤ 1, ∀n.

(P1) and (P2) are convex programs that can be solved

efficiently via existing solvers (e.g., CVX). Intuitively, an

algorithm that updates w and v by iteratively solving (P1)

and (P2) can be applied, i.e., solving for v given fixed w,

and then solving for an updated w with the newly obtained v.

However, the obtained TxBF and RxBF gains can be largely

imbalanced since w and v are updated independently.

C. The Iterative Algorithm

We now present an iterative algorithm (described in Algo-

rithm 1) that simultaneously maximizes and balances the Tx

and Rx array factors.7 Let κ ∈ Z be the index of iteration.

Let w
(0) and v

(0) be the initial Tx and Rx beamformers

with corresponding Tx and Rx array factors of a
(0)
t and a

(0)
r ,

respectively. Let w
(κ) and a

(κ)
t (resp. v(κ) and a

(κ)
r ) be the

optimal Tx (resp. Rx) beamformer and Tx (resp. Rx) array

factor obtained by the iterative algorithm in the κth iteration.

For κ ∈ Z, we define the following two objective functions.

F
(κ+1)
t (at) = at − ακ+1 · (at − a(κ)r )2,

F (κ+1)
r (ar) = ar − ακ+1 · (ar − a

(κ+1)
t )2,

(20)

7The idea of the iterative algorithm is similar to that presented in [36].

Algorithm 1 The Iterative Algorithm

Input and Initialization: N , Pt, H(fk), ∀k, st = s(φt, θt), and

sr = s(φr, θr). Initial values of Tx and Rx beamformers w
(0)

and v
(0), respectively. The step size sequence, {ακ}κ∈Z.

For κ = 0, 1, · · · do

1: Obtain w
(κ+1) with given v

(κ) and a
(κ)
r by solving the following

optimization problem, (Opt-Tx):

a
(κ+1)
t := argmax

w

F
(κ+1)
t (at) = at − ακ+1 · (at − a(κ)r )2

s.t. : Re[s>t w] = at, Im[s>t w] = 0,

w
†
H

v
(κ)(fk)w · Pt

N
≤ Nβ, ∀k,

|wn|
2 ≤ 1, ∀n.

2: Obtain v
(κ+1) with given w

(κ+1) and a
(κ+1)
t by solving the

following optimization problem, (Opt-Rx):

a(κ+1)
r := argmax

v

F (κ+1)
r (ar) = ar − ακ+1 · (ar − a

(κ+1)
t )2

s.t. : Re[s>r v] = ar, Im[s>r v] = 0,

v
†
H

w
(κ+1)(fk)v · Pt

N
≤ Nβ, ∀k,

|vn| ≤ 1, ∀n.

3: Iterate until the Tx and Rx array factor improvements are within
δN , i.e.,

max
{
a
(κ+1)
t − a

(κ)
t , a(κ+1)

r − a(κ)r

}
≤ δ ·N. (22)

Output: w
(κ+1), v(κ+1), and the corresponding TxBF and RxBF

gains, g
(κ+1)
t = (a

(κ+1)
t )2/N and g

(κ+1)
r = (a

(κ+1)
r )2/N .

where ακ+1 is the step size. Essentially, in the (κ + 1)th

iteration, a penalty term is introduced, which is the square

of the difference between the Tx and Rx array factors with a

weighting factor of ακ+1. Therefore, Tx and Rx array factors

with a larger difference will prevent their individual value from

increasing rapidly.

To allow analytical tractability and easy implementation of

the developed iterative algorithm, it is important to properly

select: (i) the initial Tx and Rx beamformers, w(0) and v
(0),

and (ii) the step size sequence, {ακ}κ∈Z. In particular, we set:

w
(0) = β1/4·wconv

2P
1/4
t N1/2

, v
(0) = β1/4·vconv

2P
1/4
t N1/2

, ακ = 1
κ2 , ∀κ, (21)

since this choice of w(0) and v
(0) satisfies (18), i.e.,

|(v(0))>H(fk)w
(0)|2 · Pt

N

≤
[

β1/4

2P
1/4
t N1/2

]4
· |vconv|

2 · |wconv|
2 · Pt

N = 1
2 ·Nβ < Nβ.

We also note that the above choices of w
(0), v

(0), and

{ακ} are not unique. For example, any step size sequence

{ακ} satisfying 1 = α1 ≥ α2 ≥ · · · > 0 also suffices. In

Section VII, we will evaluate the effect of {ακ} on the solution

obtained by the iterative algorithm.

D. Performance Analysis

In this section, we analyze the performance of the iterative

algorithm. We first present Lemma 6.1 about the structural

properties of the objective functions of (Opt-Tx) and (Opt-

Rx) in (20). Then, we state the main results in Proposition 6.2.

The proofs of Lemma 6.1 and Proposition 6.2 can be found

in Appendices A and B, respectively.
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Fig. 10: TxBF and RxBF gains (on the y-z plane), and the resulting XINR under different TxBF and RxBF schemes with the rectangular
array (N = 8) and the Argos array (N = 72), Pt = 30 dBm, B = 20MHz, and the Tx and Rx beam-pointing directions in the array
broadside (z-axis).

the measured H(fk) is neither Hermitian nor symmetric

although Fig. 7(b) presents some level of symmetry.

B. Setup

TxBF and RxBF in HD and FD Modes. We consider

TxBF and RxBF in the front side of the antenna array

with φ ∈ [−180◦, 180◦] and θ ∈ [0◦, 90◦]. Specifically, the

array broadside corresponds to the direction of θ = 90◦, ∀φ
(see Fig. 2(a)). We consider Pt ∈ {10, 20, 30} dBm8, and

Pnf = −90 dBm and SICdig = 40 dB (see Section IV-D).

The FD rate gains are computed as described in Section IV-C.

The following TxBF and RxBF schemes are considered:

(1) Conventional HD TxBF and RxBF (Conv.), which is

based on (5) and gmax
t = gmax

r = N ;

(2) Only TxBF (TxBF), which is similar to the approach

presented in [32] but adapted to our FD phased array

model (see Section IV). Since [32] considers a narrow-

band system where only TxBF is repurposed, we set

the Rx beamformer in this scheme to be vconv, which

maximizes the RxBF gain in the main beam-pointing

direction, and optimize for the Tx beamformer across the

desired wide bandwidth;

(3) Optimal FD TxBF and RxBF (Opt.), which is based on

solving (Opt-TxRx). We denote the (equal) optimal TxBF

and RxBF gain as g?;

(4) Iterative FD TxBF and RxBF (Iter.), which is based on

the iterative algorithm (Algorithm 1) with δ = 0.01 set in

the termination step. We denote g̃t and g̃r as the obtained

TxBF and RxBF) gains, respectively.

The evaluations are performed using a laptop with a quad-

core Intel i7 CPU and 16 GB RAM. For Opt., we apply

8These values correspond to the typical Tx power levels of a BS in a
small/micro cell.

the nonlinear solver in MATLAB.9 For Iter., we apply the

MATLAB CVX solver for solving the convex (Opt-Tx) and

(Opt-Rx) in Algorithm 1. For TxBF, we also apply the CVX

solver given the convexity of the optimization problem.

Selecting the Step Size, {ακ}. To study the impact of {ακ},

we remove the termination condition in the iterative algorithm

and record the obtained a
(κ)
t and a

(κ)
r (see Algorithm 1). We

consider N = 36, Pt = 20 dBm, and three different step sizes

satisfying the conditions specified in Section VI-C: (i) ακ =
1/κ2, (2) ακ = 1/κ, and (iii) ακ = 1 (constant). Fig. 9 plots

both the obtained a
(κ)
t and a

(κ)
r over iterations, κ, and the

optimal Tx and Rx array factor, a? (red dashed line). The

results show that under all considered three choices of {ακ},

a
(κ)
t and a

(κ)
r converge within 25 iterations. However, a

(κ)
t

and a
(κ)
r become more imbalanced with more aggressive step

sizes (e.g., ακ = 1/κ2). The results for other values of N and

Pt also reveal similar trends. Therefore, we empirically set

ακ = 1/κ2, which achieves fast termination (e.g., less than

10 iterations for all values of N , Pt, and B considered). Note

that the obtained g̃t and g̃r are less balanced compared with

ακ = 1/κ or ακ = 1.

C. XINR and Gain Loss under TxBF and RxBF

We now evaluate the XINR at the BS, γbb(fk), under

different TxBF and RxBF schemes. We consider both the

customized rectangular array (N = 8) and the Argos array

(N = 72), with Pt = 30 dBm, B = 20MHz, and the desired

Tx and Rx beam-pointing directions in the array broadside (z-

axis). Fig. 10 plots the TxBF and RxBF gains (see (2)) and

the resulting XINR, γbb(fk), under the considered TxBF and

RxBF schemes. It can be seen that Conv. results in extremely

9The returned solution to (Opt-TxRx) may be locally optimal due to its
non-convexity.



11

(a) Pt = 10 dBm (b) Pt = 20 dBm (c) Pt = 30 dBm

Fig. 11: TxBF and RxBF gains under different TxBF and
RxBF schemes with varying number of antennas, N , and Pt ∈
{10, 20, 30} dBm.

TABLE II: Average ratio between the FD rate gains achieved under
Iter. (with g̃t and g̃r) and Opt. (with g?).

Number of antennas, N 9 18 27 36 ≥ 45

Low SNR (0 dB) 0.89 0.95 0.97 0.98 ≥ 0.98

Medium SNR (15 dB) 0.93 0.97 0.98 0.99 ≥ 0.99

High SNR (30 dB) 0.95 0.98 0.98 0.99 ≥ 0.99

high XINR of γbb(fk) ≥ 65 dB, ∀k, thereby FD operation at

the BS cannot be supported. Both Opt. and Iter. are able

to cancel the SI power to below the array noise floor, i.e.,

γbb(fk) ≤ 1 (0 dB). The corresponding TxBF and RxBF gain

losses under Opt./Iter. are only 3.6/6.2 dB and 3.6/3.2 dB for

N = 8. The TxBF and RxBF gain losses are reduced to

3.5/1.5 dB and 3.5/5.8 dB for N = 72.

Fig. 10 also shows that the TxBF scheme leads to sig-

nificantly higher TxBF gain losses of 18.4/60.0 dB for 8/72

elements, respectively, compared to the proposed Opt. and

Iter. schemes. This is because with a fixed Rx beamformer

that aims to achieve the maximum RxBF gain (as applied in

TxBF), more attenuated Tx beamformer weights are required

to cancel the strong SI. Therefore, we do not include TxBF in

the rest of the evaluations since these largely degraded TxBF

gains will lead to poor FD rate gains.

D. FD TxBF and RxBF Gains and Rate Gain

FD TxBF and RxBF Gains. We first evaluate the FD

TxBF and RxBF gains. We consider Tx and Rx beam-point

directions in the array broadside with N ∈ {9, 18, . . . , 72} and

Pt ∈ {10, 20, 30} dBm. Fig. 11 plots the optimal FD TxBF

and RxBF gain, g?, and the iterative FD TxBF and RxBF

gains, g̃t and g̃r, respectively. The conventional HD TxBF and

RxBF gains of N are also plotted. The results show that for

a given number of antennas, N , the TxBF and RxBF gain

losses are more significant with increased Tx power level,

Pt. For a given value of Pt, the TxBF and RxBF gain losses

decrease with a larger number of antennas, N . For example,

under the Iter. scheme, an FD phased array with Pt = 20 dBm

and N = 72 experiences 1.7/5.1 dB TxBF/RxBF gain losses,

respectively. These values are only marginally changed to

1.8/5.7 dB with N = 36. It can also be seen that Iter. achieves

relative balanced FD TxBF and RxBF gains across varying N .

Specifically, g̃t and g̃r are always within ±2.8 dB of the optimal

FD TxBF and RxBF gain, g?. Moreover, γbb(fk) ≤ 1, ∀k, can

be achieved with at most 8.0/8.2/11.6 dB sum TxBF and RxBF

gain loss for Pt = 10/20/30 dBm when N ≥ 18.
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(c) High SNR (30 dB)

Fig. 12: FD rate gain in the BS-BS case when both BSs face each
other in the broadside, with varying number of antennas, N , and
Pt ∈ {10, 20, 30} dBm, in the low/medium/high SNR regimes.

(a) N = 9 (b) N = 36 (c) N = 72

Fig. 13: Spatial distributions of the FD rate gain in the BS-User case
when the user is in different spatial directions from the FD BS, with
N ∈ {9, 36, 72}, Pt = 30 dBm, and γbu = γub = 0 dB.

BS-BS Case. We consider the FD rate gain when both BSs

face each other in the array broadside.10 Fig. 12 plots the FD

rate gains under the Iter. scheme with varying Pt and link SNR

values. The results show that although the FD phased array

experiences TxBF and RxBF gain losses to achieve γbb(fk) ≤
1, ∀k, an FD rate gain of at least 1.53× can be achieved with

N ≥ 36 in all SNR regimes. Also, the FD rate gain improves

with increased values of both N and the link SNR. Moreover,

when the number of antennas is large, further increasing N
introduces only marginal FD rate gain since the SI power is

already canceled to below the noise floor with a smaller value

of N (see Section V).

To compare the performance of the Iter. and Opt. schemes,

Table II summarizes the average ratio between the FD rate

gains achieved by Iter. (with g̃t and g̃r) and Opt. (with g?).

The results show that the FD rate gains achieved under g̃t and

g̃r are very close to that achieved under g?, in all considered

scenarios, where the average ratio is at least 89%.

BS-User Case with Spatially Distributed Users. We con-

sider spatially distributed users in the directions of φ ∈
[−180◦, 180◦] and θ ∈ [0◦, 90◦] with respect to the BS. The

BS applies the Iter. scheme with the desired Tx and Rx beam-

pointing directions equal to the user direction. We consider the

low SNR regime with Pt = 30 dBm and N ∈ {9, 36, 72} (see

Section V). Fig. 13 plots the spatial distributions of (i) the

sum TxBF and RxBF gain loss for achieving γbb(fk) ≤ 1, ∀k
at the BS by the Iter. scheme, and (ii) the resulting FD rate

10Note that the proposed optimization and Algorithm 1 can also be applied
to cases where the two BS do not face each other in the broadside.
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TABLE III: Runtime improvements of the iterative algorithm over
directly solving the non-convex (Opt-TxRx).

N 9 18 27 36 45 54 63 72

Runtime
Impr.

0.99× 1.72× 2.41× 2.12× 2.70× 3.18× 5.51× 6.00×

gain with low UL and DL SNR values of 0 dB.

The results show that the sum TxBF and RxBF gain loss

varies across all spatial directions, since the total SI power

depends on both the array geometry and the beam-pointing

directions. The SI power is the strongest (i.e., requiring the

highest amount of RF SIC) in the array broadside (z-axis)

and in the direction of adjacent antennas close to the array

x-y plane (e.g., φ = ±90◦ for N = 9 and φ = ±30/90/150◦

for N ∈ {36, 72}, with very small values of θ). Yet, the Iter.

scheme is still able to achieve γbb(fk) ≤ 1 (>65 dB RF SIC)

under Pt = 30 dBm with maximum sum TxBF and RxBF

gain losses of 9.7/8.6 dB for N = 36/72. Overall, the FD

rate gains are at least 1.33/1.66/1.68× for N = 9/36/72, and

when the user is not in the direction of the strongest SI power,

the FD rate gains can be increased to 1.68/1.83/1.87× for

N = 9/36/72. Note that only 0 dB UL and DL SNR values are

considered, and higher link SNR values would also increase

FD rate gain at the same sum TxBF and RxBF gain loss.

Efficiency of the Iterative Algorithm. We also compare the

performance of the Iter. and Opt. schemes in terms of the time

consumed to obtain the Tx and Rx beamformers. We perform

100 runs of solving (Opt-TxRx) and of the iterative algorithm

in all considered values of N and Pt, and measure the average

running times. Table III summarizes the improvements in the

average running time of Iter. over Opt.. The results show

that with N = 9, both schemes have similar running times.

However, as N increases, the Iter. scheme achieves 2–6×
runtime improvements compared to the Opt. scheme, since

the latter is solving the non-convex problem (Opt-TxRx).

Effect of the Bandwidth, B. Lastly, we evaluate the effects

of the desired RF SIC bandwidth, B, on the FD TxBF and

RxBF using the measurements of the 8-element rectangular

array with circulators (recall that the Argos dataset is only

with B = 20MHz). We consider the Iter. scheme with B ∈
{10, . . . , 50}MHz and Pt ∈ {10, 20, 30} dBm. Fig. 14 plots

the sum TxBF and RxBF gain loss and the corresponding FD

rate gain in both the BS-User and BS-BS cases. The results

show that, even with only 8 elements, an FD phased array

can achieve γbb(fk) ≤ 1, ∀k, for up to B = 50MHz at Pt =
10 dBm, where the sum TxBF and RxBF gain loss is at most

8.5 dB (TxBF/RxBF gain loss of 4.4/4.1 dB). The sum TxBF

and RxBF gain loss increases to 12.3 dB with Pt = 20 dBm.11

However, although higher TxBF and RxBF gain losses are

required in scenarios with increased Pt and B, an 8-element

FD phased array is able to achieve FD rate gains of at least

1.47/1.42/1.36× under Pt = 10/20/30 dBm, with bandwidth

of up to B = 50MHz.

11The small variations on the curves are caused by the selection of the step
size sequence of Algorithm 1, {ακ}.
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(b) The BS-User Case
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(c) The BS-BS Case

Fig. 14: Sum TxBF and RxBF gain loss, and FD rate gains in the
BS-User and BS-BS cases with N = 8 and varying desired RF SIC
bandwidth, B ∈ {10, . . . , 50}MHz, and Pt ∈ {10, 20, 30} dBm.

VIII. CONCLUSIONS

In this paper, we considered FD phased arrays repurposing

TxBF and RxBF for achieving wideband RF SIC. We formu-

lated optimization problems to obtain the maximum FD TxBF

and RxBF gains and developed an iterative algorithm to effi-

ciently solve the optimization problems. Using measurements

and datasets, we extensively evaluated the performance of the

FD phased array and the resulting FD rate gains in various

network settings. Future directions include: (i) system design

and implementation of a large-scale FD phased array based

on our previous work [33], and its integration in the city-scale

COSMOS testbed [16], [37], and (ii) experimental evaluation

of the FD TxBF and RxBF approach, and its integration in

hybrid beamforming systems and multi-user scenarios.
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APPENDIX A

PROOF OF LEMMA 6.1

Since w
(κ) and v

(κ) are optimal solutions to (Opt-Tx) and

(Opt-Rx) in the κth iteration, it holds that

Re[s>t w
(κ′)] = a

(κ′)
t , Im[s>t w

(κ′)] = 0, (κ′ = κ, κ+ 1)

Re[s>r v
(κ′)] = a

(κ′)
r , Im[s>r v

(κ′)] = 0, (κ′ = κ, κ+ 1),

(v(κ))†Hw(κ)(fk)v
(κ) · Pt

N ≤ Nβ, ∀k,

(w(κ+1))†Hv(κ)(fk)w
(κ+1) · Pt

N ≤ Nβ, ∀k.

Assume by contradiction that F
(κ+1)
t (a

(κ+1)
t ) <

F
(κ+1)
t (a

(κ)
t ), we can select a new Tx beamformer

w̃
(κ+1) = w

(κ) with an increased value of F
(κ+1)
t

while satisfying all the constraints in (Opt-Tx). Similarly,

F
(κ+1)
r (a

(κ+1)
r ) ≥ F

(κ+1)
r (a

(κ)
r ) also holds. �

APPENDIX B

PROOF OF PROPOSITION 6.2

The proof is based on induction on κ and the structural

properties of the objective functions (20). By taking the second

derivatives of (20), it can be seen that

• F
(κ+1)
t (at) is symmetric w.r.t. ψ

(κ+1)
t = a

(κ)
r + 1

2ακ+1

and is monotonically increasing for at ∈ (0, ψ
(κ+1)
t ] and

monotonically decreasing for at ∈ (ψ
(κ+1)
t ,∞),

• F
(κ+1)
r (ar) is symmetric w.r.t.ψ

(κ+1)
r = a

(κ+1)
t + 1

2ακ+1

and is monotonically increasing for ar ∈ (0, ψ
(κ+1)
r ] and

is monotonically decreasing for ar ∈ (ψ
(κ+1)
r ,∞).

The proof is based on the induction of κ.

Base Case (κ = 0): Let w(0) and v
(0) be the initial Tx and

Rx beamformers given by (21) with initial array factors:

a
(0)
t = s

>
t w

(0) = 1
2 · β1/4N1/2P

−1/4
t ,

a
(0)
r = s

>
r v

(0) = 1
2 · β1/4N1/2P

−1/4
t .

For κ = 1, F
(1)
t (at) is monotonically increasing for at ∈

(0, ψ
(1)
t ]. Since Pt

N ≥ Nβ, it holds that

ψ
(1)
t = a

(0)
r + 1

2α1
= 1

2 (β
1/4N1/2P

−1/4
t + 1) ≥ β1/4N1/2P

−1/4
t .

One can then select w(1) = 2w(0), which satisfies

a
(1)
t = s

>
t w

(1) = β1/4N1/2P
−1/4
t .

Since |Hmn(fk)| ≤ 1 (see Section IV), it holds that

|(v(0))>H(fk)w
(1)|2 · Pt

N

=
∣∣∑N

m=1

∑N
n=1 (wnHmn(fk)vm)

∣∣2 · Pt

N

≤
∣∣∑N

m=1

∑N
n=1 |wn| · |Hmn(fk)| · |vm|

∣∣2 · Pt

N

≤
∣∣N2 · β1/4

N1/2P
1/4
t

· β1/4

2N1/2P
1/4
t

∣∣2 · Pt

N = Nβ
4 < Nβ.

Hence, there ∃ w
(1) such that a

(1)
t > a

(0)
t and all constraints

in (Opt-Tx) are satisfied. Similarly, a
(1)
r > a

(0)
r holds.

Inductive Step (κ ≥ 1): Assuming that a
(0)
t ≤ · · · ≤ a

(κ)
t and

a
(0)
r ≤ · · · ≤ a

(κ)
r , we need to prove that a

(κ)
t ≤ a

(κ+1)
t and

a
(κ)
r ≤ a

(κ+1)
r . We consider two cases.
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Case 1: a
(κ)
t ≤ a

(κ)
r . First, we show that a

(κ+1)
t ≥ a

(κ)
t .

Assume by contradiction that a
(κ+1)
t < a

(κ)
t ≤ a

(κ)
r , and

a
(κ+1)
t is achieved by w

(κ+1). Since F
(κ+1)
t (at) is mono-

tonically increasing for at ∈ (0, ψ
(κ+1)
t ], it must hold that

F
(κ+1)
t (a

(κ+1)
t ) < F

(κ+1)
t (a

(κ)
t ), contradicting Lemma 6.1.

Second, we show that a
(κ+1)
r ≥ a

(κ)
r . Assume by contradic-

tion that a
(κ+1)
r < a

(κ)
r . Recall that F

(κ+1)
r (ar) has an axis of

symmetry at ψ
(κ+1)
r = a

(κ+1)
t + 1

2ακ+1
, and is monotonically

increasing for ar ∈ (0, ψ
(κ+1)
r ]. We consider the following

cases based on the relationships between a
(κ)
r , a

(κ+1)
t , and

a
(κ+1)
r , as depicted in Fig. 15.

Case (i): If a
(κ)
r ≤ ψ

(κ+1)
r (see Fig 15(a)).

(i) Assume by contradiction that a
(κ+1)
r < a

(κ)
r ≤ ψ

(κ+1)
r , it

holds that F
(κ+1)
r (a

(κ+1)
r ) < F

(κ+1)
r (a

(κ)
r ), which contradicts

Lemma 6.1.

Case (ii)–(iv): If g
(κ)
r > ψ

(κ+1)
r (see Fig 15(b)).

(ii) If a
(κ+1)
r < 2ψ

(κ+1)
r − a

(κ)
r < ψ

(κ+1)
r < a

(κ)
r , it is easy

to see that one can select ṽ(κ+1) = v
(κ) that satisfies all the

constraints and yields a higher value of the objective function

F
(κ+1)
r (ar).

(iii) If 2ψ
(κ+1)
r − a

(κ)
r ≤ a

(κ+1)
r < ψ

(κ+1)
r < a

(κ)
r , there exist

a real number ξ ∈ (0, 1) such that ξa
(κ+1)
r + (1 − ξ)a

(κ)
r =

ψ
(κ+1)
r . Let ṽ(κ+1) = ξv(κ+1) + (1− ξ)v(κ). It holds that

ãr
(κ+1) = ξa

(κ+1)
r + (1− ξ)a

(κ)
r = ψ

(κ+1)
r ,

F
(κ+1)
r (ãr

(κ+1)) > F
(κ+1)
r (a

(κ+1)
r ),

|ṽ
(κ+1)
n |2 ≤ ξ2 + (1− ξ)2 + 2ξ(1− ξ) = 1,

(ṽ(κ+1))†Hw(κ+1)(fk)ṽ
(κ+1) · Pt

N

<
[
ξ · (v(κ+1))†Hw(κ+1)(fk)v

(κ+1)

+ (1− ξ) · (v(κ))†Hw(κ+1)(fk)v
(κ)

]
· Pt

N < Nβ, ∀k,

where the last inequality comes from the fact that

Hw(κ+1)(fk) is Hermitian and positive semidefinite, and thus

(x†
Hw(κ+1)(fk)x) is convex with respect to x.

(iv) If ψ
(κ+1)
r < a

(κ+1)
r < a

(κ)
r , let ṽ(κ+1) = ξv(κ+1), where

ξ =
ψ(κ+1)

r

a
(κ+1)
r

< 1. Since ṽ
(κ+1) is linearly scaled down from

v
(κ+1) by a factor of ξ, we have

ãr
(κ+1) = ξa

(κ+1)
r < a

(κ+1)
r , F

(κ+1)
r (ãr

(κ+1)) > F
(κ+1)
r (a

(κ+1)
r ),

|ṽ
(κ+1)
n |2 = ξ2 · |v

(κ+1)
n |2 < 1, ∀n,

(ṽ(κ+1))†Hw(κ+1)(fk)ṽ
(κ+1) · Pt

N

= ξ2 · (v(κ+1))†Hw(κ+1)(fk)v
(κ+1) · Pt

N < Nβ, ∀k.

This contradicts the fact that v
(κ+1) is the optimal solution

since ṽ
(κ+1) yields F

(κ+1)
r (ãr

(κ+1)) > F
(κ+1)
r (a

(κ+1)
r ) while

satisfying constraints in (Opt-Rx).

Now the only marginal case left is a
(κ+1)
r = ψ

(κ+1)
r . Note that

a
(κ)
t ≤ a

(κ+1)
t , and a

(κ+1)
r = ψ

(κ+1)
r = a

(κ+1)
t + 1

2ακ+1
< a

(κ)
r .

Since a
(κ+1)
t ≥ a

(κ)
t and ακ+1 ≤ ακ, we have ψ

(κ+1)
r ≥ ψ

(κ)
r .

Therefore, one can select ṽ(κ) =
a(κ+1)

r

a
(κ)
r

· v(κ), which yields

a higher value of the objective function F
(κ)
r (ar) since it is

decreasing for ar ∈ [a
(κ+1)
r , a

(κ)
r ). This contradicts the fact

XX

Case (i)

(a) a
(κ)
r ≤ ψ

(κ+1)
r

XX

Case (ii) Case (iii)Case (iv)

(b) a
(κ)
r > ψ

(κ+1)
r

Fig. 15: Illustration of Case 1 in the proof, where ψ
(κ+1)
r = a

(κ+1)
t +

1
2ακ+1

and a
(κ+1)
r < a

(κ)
r (shaded area) is assumed by contradiction.

that v(κ) is optimal in the κth iteration and the proof of Case

1 completes.

Case 2: a
(κ)
t > a

(κ)
r . The proof is similar to Case 1 and thus

is omitted here. �
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