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ABSTRACT

Agent-based models (ABMs) are popular in many research communities, but few statisticians have con-
tributed to their theoretical development. They are models like any other models we study, but in general,
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we are still learning how to fit ABMs to data and how to make quantified statements of uncertainty about

the outputs of an ABM. ABM validation is also an underdeveloped area that is ripe for new statistical
developments. In what follows, we lay out the research space and encourage statisticians to address the

many research issues in the ABM ambit.

1. Introduction

Agent-based models (ABMs) are simulators used to study inter-
actions among artificial entities (agents) that are governed by
rules. The goal with ABMs is often to understand emergent
behavior based on a set of explicit rules describing how elements
of a system interact. Often complex phenomena arise from
simple rules.

ABMs are used in many different disciplines. Examples
include:

« Weather forecasting, in which the agents could be viewed
as cubic kilometers of atmosphere that exchange pressure,
temperature and humidity with their neighbors according
to standard physical laws (Simmonds, Gémez, and Ledezma
2019). One can initialize the agents with specific values, and
then watch a weather front roll across a continent.

o Transportation, in which agents are vehicles that traverse
a road way, obeying rules that determine spacing, speed,
destination, and route choice. TRANSIMS is a famous early
ABM. The goal is to identify points of high congestion, or to
perform “what if?” experiments that study the impact of, for
example, a lane closure.

« Sociology, in which agents are “people” with various charac-
teristics (e.g., age, gender, and education) who form friend-
ship networks according to theories of homophily or het-
erophily (Snijders 1996). The goal might be to estimate the
amount of homophily that leads to networks whose connec-
tivity patterns resemble those of human networks.

 Epidemiology, in which infected agents interact with each
other to spread a virtual disease. The goal could be to deter-
mine what kinds of public health response (handwashing
campaigns, social distancing, school closure, and quaran-
tine) are effective for diseases with specific infectiousness
and incubation period (Perez and Dragicevic 2009; Frias-
Martinez, Williamson, and Frias-Martinez 2011).
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ABMs have become a standard tool in many fields, but their
use is still nascent in statistics (Hooten, Wikle, and Schwob
2020). They are models like many others that we use, but statis-
ticians have not yet agreed on a theory and methodology for
estimating their parameters from data or for making quantified
statements of uncertainty about ABM predictions.

There are, of course, a few exceptions. Hooten and Wikle
(2010) developed an ABM to infer the probability of rabies in
Connecticut townships, and Hunter, Mac Namee, and Kelleher
(2018) use an ABM to describe HINI spread. But these are
isolated studies that make special assumptions and that address
relatively simple situations.

1.1. History of ABMs

The ABM perspective dates back to the 1940s, with work on
cellular automata by John von Neumann and Stanislaw Ulam
(Von Neumann et al. 1966). The most famous of these automata
was J. H. Conway’s Game of Life (Gardner 1970). The agents
are squares on a sheet of graph paper in the Game of Life. The
squares may be colored either white or black and may change
color from one time step to another. A black square with fewer
than two black neighbors (out of eight) turns white in the next
time step; a black square with two or three black neighbors
stays black; a black square with more than three black neighbors
turns white; and any white cell with three black neighbors turns
black. This rule set generated complex and sometimes persistent
patterns, which has made the game a longstanding object of
mathematical study (Berlekamp, Conway, and Guy 2004).

The next step in the evolution of ABMs was the development
of theory for interactive particle systems. Prominent probabilists
involved in this work include Frank Spitzer and David Griffeath,
who used methods from statistical mechanics to study system
dynamics and phenomena such as phase changes (Griffeath
1993).

CONTACT David L. Banks @ banks@stat.duke.edu e Department of Statistical Science, Duke University.

© 2021 American Statistical Association


https://doi.org/10.1080/00031305.2021.1900914
https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2021.1900914&domain=pdf&date_stamp=2021-08-06
mailto:banks@stat.duke.edu

236 (&) D.L.BANKSAND M.B. HOOTEN

In the 1990s, ABMs broke away from mathematics and prob-
ability, becoming widely used in biology, ecology, economics,
epidemiology, military strategy, political science, sociology, and
transportation studies. This popularity was the result of many
factors. One factor was that computation became both faster
and more accepted as a scientific tool of inquiry. The increased
computational power made it possible to simulate realistically
complex scenarios. Another factor was that the reasoning pro-
cess that underlies the creation of an ABM enabled domain
experts to build models in a new way, without having to master
sophisticated mathematics. A third factor was that several high-
profile applications grabbed the imagination of those research
communities.

Looking ahead, it is clear that ABMs will remain a popu-
lar tool across a wide range of scientific fields. They are also
becoming accepted as a public policy tool, in large part because
of their ability to perform “what if?” experiments. For exam-
ple, the TRANSIMS ABM enables city planners to model the
impact of a road closure, and possibly foresee unintended con-
sequences. Such tools are being discussed at the national level
in Sweden (Eliasson and Taymaz 1992) and in regional urban
planning (Gilbert 2019; Li and Liu 2008, chap. 7) Chen and
Zhan (2014) used them to evaluate urban evacuation plans, and
Klabunde and Willekens (2016) used them to model interna-
tional migrants.

Modern and complex ABMs typically have all or most of the
following features:

o Many agents, often with differentiated roles and thus different
rule sets.

o Rules, which may be complex. Sometimes the rules are
heuristic, sometimes an ABM is based on randomized rules.

o Learning and adaptation. Agents learn about their environ-
ment (including other agents). Axelrod’s Prisoner’s Dilemma
competition is an example (Axelrod 1980).

o An interaction space. This defines which agents affect each
other-usually this is a model of propinquity, but for auctions
it is a star-graph.

o A nonagent environment. This may include initial condi-
tions, and/or background processes.

To illustrate these ideas, the following section describes three
examples of ABMs. Following that is a discussion of the infer-
ential strategies that the statistical community might apply to
ABM:s, and we close with a few observations.

2. Examples

We review three case studies in what follows. These case studies
illustrate ideas and issues that arise in ABM applications.

2.1. Evacuating a Building

For safety purposes, civil engineers must study how long it takes
a building with a specific design to be evacuated in an emer-
gency. ABMs are a standard tool (Pelechano and Malkawi 2008;
Zheng, Zhong, and Liu 2009). A procedure may involve 100
ABM simulations of the evacuation and result in a histogram
of the time needed for the last agent to exit the building.

In this example, the interaction space is the virtually rendered
architecture of the building being studied. The agents are “peo-
ple” who are randomly distributed within the building. As an
example of differentiated agent roles, some of the people may
be “fire marshals” who direct others to safe stairwells. The rules
for most agents can be quite simple: (i) When the alarm goes
off, exit by the closest stairwell. (ii) If the stairs are blocked,
try the next nearest stairwell. (iii) If a fire marshal directs you
to a specific stairwell, use it. (iv) Move at a prespecified rate
(perhaps different for different agents). Fire marshal rules could
be specified similarly and comparably simple.

The nonagent environment in this example are such things
as conditions that prevent a faster agent from walking through
a slower agent on the stairs, and how to handle bottlenecks
at doorways. Learning occurs when an agent discovers that
a stairwell is blocked, or receives instruction from a fire
marshal.

In this kind of simulation, one can model actions second-by-
second and include a great deal of detail, such as the location of
office furniture and agents with mobility challenges. However,
as a general rule, one should avoid overcomplicating ABMs with
unnecessarily granular detail.

2.2. Growing Artificial Societies

Sociologists became excited about ABMs in part because of an
influential book, Growing Artificial Societies: Social Science from
the Bottom Up (Epstein and Axtell 1996). The environment is
a “sugarscape,” which is a Cartesian plane on which a resource,
“sugar;” grows at a fixed rate at the lattice points. The agents are
virtual people who stand at lattice points and consume the sugar
until it is gone; then they search for a new lattice point at which
to harvest sugar.

As an example, here are the first three of 17 rules used in
Epstein and Axtell (1996).

1. Sugarscape Growback: At each lattice position, sugar grows
back at a rate of & per time interval up to the capacity of that
position.

2. Agent Movement: Look out as far as vision permits in each of
the four lattice directions, north, south, east, and west:

o Considering only unoccupied lattice positions, find the
nearest position producing maximum welfare;

o Move to the new position;

o Collect all the resources at that location.

3. Agent Mating:

o Select a neighboring agent at random;

« If the neighboring agent is of the opposite sex and if both
agents are fertile and at least one of the agents has an empty
neighboring site, then a newborn is produced by crossing
over the parents’ genetic and cultural characteristics;

o Repeat for all neighbors.

Note that the first rule includes a tunable parameter; there
are many such in the full rule list, and these are common
in ABMs.



The first two rules govern search and movement; they gen-
erate simulated migratory patterns that mimic those seen in
hunter-gatherer populations. The third rule for mating and
reproduction produce age pyramids and population dynamics
similar to those seen in humans.

Epstein and Axtell (1996) introduce a second resource,
“spice,” and it, with additional rules, creates realistic barter
economies. Ultimately, a total of 17 rules enable war, epidemics,
division of labor, religion, and other rich behaviors. This kicked
off a groundswell of interest in the sociological community,
and now these ABM tools are used for many purposes, notably
the study of social networks (Snijders 1996) and illegal drug
markets (Dray et al. 2008; Romano, Lomax, and Richmond
2009).

In this application, the agents are differentiated (male/female,
buyers/sellers), the rules are surprisingly simple, agents adapt
to their environment in various ways, such as by movement
and consumption. The interaction space is determined by the
distance to nearby agents, and the nonagent environment is the
sugarscape. This ABM has a compelling balance between simple
rules and complex behavior.

2.3. Disease Spread and Epidemiology

A common application of ABMs is to study disease spread
(Perez and Dragicevic 2009; Frias-Martinez, Williamson, and
Frias-Martinez 2011). These are generally complementary to
differential equation models and other alternatives (Bobashev
et al. 2007; Hefley et al. 2017), and often enable greater realism
and accuracy (Ajelli et al. 2010).

The general strategy is straightforward. One uses or models
data on transportation flows within the geographic unit of inter-
est (e.g., nursing home, city, nation, or world). The analyst picks
disease parameters (e.g., age-specific infectiousness, incubation
period, and mortality rate), and then seeds the community with
an infected person, who travels within the geography, interact-
ing with people in realistic ways. Often the interest is in the
peak number of ill people, the duration of the outbreak, and the
effect of mitigating measures, such as closing schools or social
distancing.

In this example, the agents generally take different roles (e.g.,
children, physicians, people with more or less exposure). The
rules mostly govern movement. The interactions are opportu-
nities to spread the infection, behavioral adaptation includes
such things as social distancing or going to a hospital, and the
environment is the geography. Some ABM simulations are quite
detailed, but generally the important questions can be addressed
with relatively simple models.

The disease application indicates one of the limitations of
ABMs. There were several ABM:s for the 2014 ebola outbreak in
Liberia (Merler et al. 2015; Siettos et al. 2015; Venkatramanan
et al. 2018). Generally, such models did well in predicting how
many villages would experience an outbreak in the next week,
but they were poor at predicting which villages would suffer.
This is reasonable, because a common transmission pattern in
Liberia was someone working in Monrovia would start to feel
ill, and then travel to their village so that family could care for
them. The ABM could predict how many new cases would occur
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in the city, but it was not able to forecast the home village of the
infected person.

3. Inferential Strategies

Stochastic ABMs are models just like other statistical models
but, with some exceptions, we cannot write down their likeli-
hood functions. Therefore, we often have little theoretical guid-
ance in estimating the parameters needed to fit the model to
data, or in making quantified statements of uncertainty about
model forecasts.

Sometimes ABM likelihoods are accessible, as we describe in
what follows. But when the likelihood function is intractable,
statisticians generally must use one of two tools. The first is
statistical emulation, and the second is Approximate Bayesian
Computation (ABC).

3.1. Tractable ABMs: Spread of Epidemiological and
Ecological Processes

Many statistical models used in wildlife ecology to study popula-
tion dynamics are individual-based and tractable using conven-
tional statistical methods (i.e., maximum likelihood or Bayesian
methods). For example, capture-recapture models are mature
and provide inference about population abundance, survival,
recruitment, and movement (e.g., King et al. 2009; Hooten,
Wikle, and Schwob 2020). These models use data sources that
arise from tracking (or relocating) animals over time to under-
stand various demographic rates that can aid in the management
and conservation of species. Most capture-recapture models are
simple enough that they can be fit to data using conventional
statistical methods. This is because they often lack components
that allow for interaction among individuals, and hence indi-
viduals are assumed to be conditionally independent, which
facilitates a hierarchical model structure that is amenable to
implementation.

Like the capture-recapture class of models, the rapidly
growing field of animal movement modeling treats dynamic
individual-level processes explicitly (Hooten et al. 2017).
Individual-based animal movement models could be referred
to as ABMs, yet rarely are (but see Hooten et al. 2010b).
In fact, population level inference using animal movement
models often proceeds by treating individual-level parame-
ters as random effects (Hooten et al. 2016). To formally scale
individual-level processes up to the population level, many
approaches use PDEs (Wikle 2003; Hooten and Wikle 2008;
Lu et al. 2019). While these approaches to modeling collec-
tions of individuals have mechanistic mathematical underpin-
nings and have been simplified to be computationally tractable,
they are often specified in terms of an Eulerian approximation
to an underlying Lagrangian ABM for individual movement
(Turchin 1998).

Despite their sophistication, most population-level models
based on individual-level animal movement processes do not
account for interactions among individuals beyond density
dependence. For example, Lu et al. (2019) extended a spatio-
temporal population model developed by Williams et al. (2017)
to describe the colonization of Glacier Bay by sea otters that
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incorporated regulated population growth based on density
dependence. More complex interactions among individuals are
the basis for realistic ABMs and have been accommodated in
models for animal movement (e.g., Scharf et al. 2016, 2018).
These models, often referred to as “collective” movement models
(e.g., Couzin et al. 2005; Strandburg-Peshkin et al. 2015; Russell
et al. 2017) have been used for a variety of applications but are
not usually treated in a formal statistical framework. Moreover,
connecting other important ecological and epidemiological pro-
cesses with movement models may be challenging in conven-
tional statistical frameworks.

Motivated by Smith et al. (2002), who employed a cellular
automata model for the spread of rabies in raccoon popula-
tions throughout Connecticut, USA, Hooten and Wikle (2010)
developed a statistical ABM for the spread of ecological and
epidemiological processes. Instead of using a PDE as the basis
for characterizing movement, their approach relied on funda-
mental dispersal processes of raccoons on a regular grid with
resolution matching the approximate size of Connecticut town-
ships. However, rather than use deterministic cellular automata,
they specified the entire model in a hierarchical Bayesian frame-
work that linked movement probabilities to a gradient surface
based on spatial covariates to understand barriers to and cor-
ridors for disease spread. They fit the model using conven-
tional Bayesian computational methods such as MCMC. In fact,
Broms et al. (2016) generalized the statistical ABM to account
for imperfect detection and used it to model the spread of
an invasive bird in South Africa, fitting the model with JAGS
(Plummer et al. 2003).

At the heart of these statistical ABMs is a mixture Bernoulli
process for binary data (Wikle and Hooten 2015). For example,
following Broms et al. (2016), to model the observed presence
or absence of a species y;j(t) in region i during period j at time
t, they accounted for the probability p;;(¢) of detecting a species
when it is present, by letting

{ Bern(p;i(t)) ifzi(t) =1

ifz;(t) =0

where z;(t) represents the true latent occupancy process of the
species. This type of measurement process is commonly used
in the so-called occupancy models (e.g., Hoeting, Leecaster,
and Bowden 2000; MacKenzie et al. 2002; Johnson et al. 2013).
A conditional binary model is often specified for the latent
processes z;(t) so that the probability of occupancy depends on a
set of spatially referenced predictor variables as in typical species
distribution models (Hefley and Hooten 2016). Hooten and
Wikle (2010) and Broms et al. (2016) treated the areal units as
“agents” and modeled the process using a dynamic conditional
specification such as

Bern(¢i())
Bern(6;(t))

yij(t) ~ 1)

ifzit—1)=1

ifzj(t—1) =0butzy(t —1) =1

zi(t) ~ for i a neighbor of i

Bern(y;(t)) ifzi(t—1)=0andzy(t—1) =0

for all i’ a neighbor of i
)
where the probability ¢;(t) represents persistence or survival of
the species or disease, 6;(t) represents neighborhood-based dis-
persal probability, and v;(f) represents long-distance dispersal

probability. Hooten and Wikle (2010) specified the persistence
and long-distance dispersal probabilities to be homogeneous,
but allowed for heterogeneous short-distance dispersal pro-
cesses by allowing 0;; to be the cumulative probability of immi-
grating individuals (or disease). This first requires an under-
standing of movement from the individual perspective and then
aggregates that process to assess incoming individuals to new
regions. Using similar principles of disease spread, Hooten,
Anderson, and Waller (2010a) modeled influenza dynamics in
the continental U.S. based on multiple mechanisms of human
movement.

The ABM examples described in this section were all devel-
oped to facilitate fitting statistical models to data. However, such
accommodations limit their potential realism to describe more
complicated processes. Thus, we often seek inference in cases
where it is computationally possible to simulate the process,
but not trivial to express a joint or even conditional probability
model for the data directly. This puts the statistician in an awk-
ward position because they have access to a generative model
for the data (as one does in a maximum likelihood or Bayesian
setting), but they cannot evaluate a PDF or PMF associated with
the model. In these cases, we must rely on some form of approx-
imation that makes statistical inference possible. Either we must
approximate the process itself which includes mechanisms in
the ABM (i.e., the emulator approach), or we approximate the a
Bayesian posterior distribution using an MCMC algorithm that
substitutes a suitable distance metric for the likelihood (i.e., the
ABC approach), or both.

3.2. Emulators

Emulators are approximations (or surrogates) to complex sim-
ulation models, either deterministic or stochastic (Gramacy
2020). Generally, emulators use Gaussian processes or treed
Gaussian processes as the model (Gramacy and Lee 2008).
These are Bayesian procedures first proposed by Kennedy and
O’Hagan (2001), but have been subsequently extended and
developed by many others (Bayarri et al. 2007; Higdon et al.
2008; Hooten, Anderson, and Waller 2010a; Smith 2013).

In our case, the ABM is the complex simulator that we seek to
emulate. Farah (2014) examined such emulators in the context
of an ABM for the spread of HIN1 influenza. Heard (2014) and
Heard, Bobashev, and Morris (2014) compared emulators and
ABC in the context of ABMs used to describe HIV spread and
drug markets. They found that emulators were generally easier
to implement and more robust.

Suppose the ABM takes input x; and produces (potentially
random) outputs Y;. The ABM contains parameters (e.g., the
growth rate in the sugarscape and the rules that determine agent
movement) that we denote by 6. Then the simulation output is
modeled statistically using the emulator 1 (x;, @) as follows:

Y(x;) = n(x;,0) + 6(x;) + €(x;)

where the random term §(x;) accounts for the discrepancy
between the emulator and the simulator and € (x;) is noise.
One goal is tune the parameter 0 to find 6* that best calibrates
the emulator to the simulator. This purpose is to calibrate the
model using data assimilation, a statistical concept. A second
goal is to estimate the discrepancy function; this indicates where



the emulator performs poorly and may need more elaboration.
This aspect enables one to infer credible regions and prediction
intervals. Additional goals might include analogues of variable
selection, estimation of variable importance, and insight into
model dynamics.

The Kennedy-O'Hagan approach scales all inputs to the unit
hypercube. Then the Bayesian version uses a Gaussian process
to model the unknown function 7(-, -). In much of the related
work, the Gaussian process is specified to have a constant mean
function and a product covariance with power exponential form
(Higdon et al. 2008)

covl(x,0), (x,8))] = A, 'R((x,0), (s p,)))

where A, controls the marginal precision of 7 (-, ) and p, con-
trols the strength of dependency in each component of x and
0. It is often useful to add a little white noise to the covariance
model to account for small numerical fluctuations (from, say,
adaptive meshing or convergence tolerances). The formulation
of the prior is completed by specifying independent priors for
the parameters controlling 7 (-, -): the i, 4, and p,,.

A similar Gaussian process model is used for the discrepancy
term 8 (x). This has mean zero and covariance function

cov(x,x') = AsR((x,X); pg).

As before, there are technical details regarding the specification
of the covariance function.

This emulator structure enables one to use Markov chain
Monte Carlo (MCMC) sampling to learn the posterior distribu-
tions for critical ABM output. Specifically, one obtains posterior
distributions for

o the n(x,0), which is the hard-to-know implicit function
calculated by the ABM;

« the optimal calibration parameter 8*;

« the calibrated emulator 7(x, 0*);

o the physical system Y(x); and

o the discrepancy function 6 (x).

The last, of course, is the most interesting from the standpoint
of model validation. When and where this discrepancy function
is large points out missing mechanisms or poor approximations.

Iterated application of this method permits successive esti-
mation of the discrepancy function. One winds up with an
approximation to the ABM in terms of simple functions, and
the accuracy of the approximation can often be improved to the
degree required by making the Gaussian process model more
elaborate (e.g., by using a treed Gaussian process; Gramacy and
Lee 2008).

In some ABM applications, one can go further in calibrat-
ing the ABM to reality. For example, in the case of weather
forecasting, one has an ABM that predicts wind, humidity, and
temperature in the future. Because we get to observe the weather
on the following day, we can use essentially the same strategy
outlined above to tune the emulator to the simulator to let us
exploit the simulator to characterize real world data.

The Kennedy-O’Hagan approach is specified and imple-
mented based on the second-moment dependence, but other
emulator approaches have been developed based on the first-
order structure (Hooten, Anderson, and Waller 2010a). Those
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approaches using heterogeneous mean functions to mimic ABM
processes may be faster and simpler to implement in high-
dimensional settings.

3.3. Approximate Bayesian Computation

ABC s an alternative to emulators when the likelihood function
is unavailable. First proposed in Rubin (1984), it did not achieve
modern form until Tavaré et al. (1997). Although ABC antedates
emulators, in many ways the methodology seems less mature.

The core idea in ABC for ABMs is that one has a sample
X of data from the process that the ABM is modeling; e.g.,
meteorological data, in the context of a ABM that forecasts
weather. The ABM has parameters § and the analyst has a prior
77(0) on those.

One then draws a value of @ from the prior, and conditions
the ABM on that draw. Next, one generates a sample X(6#) from
that data. For some appropriate metric d(-,-) and tolerance y,
the analyst checks whether d(X,X(6)) < y. If it is within the
tolerance, then @ is accepted accepted; if not, it is rejected. Then
a new 0 is drawn and the process repeats. The histogram of
accepted values is approximately the posterior distribution that
is wanted.

There are many reasons why this approach is problematic
for ABMs. Often one does not have much (or any) data X, as
was the case with the Sugarscape example (Epstein and Axtell
1996). When there are data, they can be highly multivatiate
(e.g., temperature and rainfall measurements for all weather
stations in a state). In that case, one must contend with the Curse
of Dimensionality, or find some appropriate low-dimensional
summary of the data, which in turn reduces the accuracy of the
approximation. It is not obvious how to choose the metric or
how to select the tolerance (Robert et al. 2011). For complex
ABMs, it is difficult to develop a meaningful prior. Also, ABC
is susceptible to pathologies (Berger et al. 2010).

ABC researchers have strategies for addressing all of these
concerns, and ABC may be the right tool for some ABM appli-
cations. But, ABC could also more difficult to implement and
less reliable that emulator methodology.

4. Model Validation

A key concern with ABMs is validating the simulation. Is the
ABM elaborate enough to capture the full range of behaviors
that are needed?

There are five main approaches to validation, not all of which
are possible in some applications. We refer to the first as physics-
based validation, in which the ABM encodes well-understood
principles that govern emerging behavior. An example would be
an ABM simulation of an #n-body problem, in which objects in
space interact according to gravitational attraction (Trenti and
Hut 2008). If the physics are correct and complete, then the
ABM is valid.

The second approach might be termed “intelligent design”
Thoughtful experts encode all the factors that they believe are
relevant, and hope they have not overlooked any important
interactions. This is the most common method of validation; it is
used by Hoffer, Bobashev, and Morris (2009) to simulate a drug



240 D. L. BANKS AND M. B. HOOTEN

(X

fo- - <{ \{e‘

9]

=Y A
VN

*—0
63

N
L

\)_____.___._-;)""-_‘

@ Male
© Female

Figure 1. A network showing sexual relationships at an anonymized high school over the course of a year.

market and by Farah (2014) to describe disease spread. It may
be about as reliable as software coding in some cases, because
the thought processes are similar.

The third approach is face validity, and it is a true vali-
dation protocol. The designer runs the ABM with preselected
inputs, ideally inputs for which there are known real-world
outcomes, and evaluates the plausibility of the outputs. Such
ABM testing is commonly used for battlefield simulation by
the Defense Modeling and Simulation Office and the Naval
Postgraduate School, among many others (Cioppa, Lucas, and
Sanchez 2004).

The fourth method is more rare. The analyst compares the
results from the ABM to predictions from another model (which
may be an independently coded ABM, or some other forecast).
One example is to compare an ABM model for disease spread
to, say, the Kermack-McKendrick model, which employs a set of
coupled ordinary differential equations to describe an epidemic
curve (Brauer 2005). If these agree, the ABM seems sound.

Finally, in some cases, it is possible to compare the ABM
outputs to real-world observations, as in weather forecasting
(Simmonds, Gémez, and Ledezma 2019). This is the strongest
form of validation, but it may still be unreliable if the analyst
intends to use the ABM for inputs not previously seen (e.g.,
predicting weather outcomes from climate change).

As an example of the difficulty of model validation, consider
the high-school social network of romantic relationships stud-
ied by Bearman, Moody, and Stovel (2004) shown in Figure 1.

These sociologists found that racial and smoking homophily
predicted relationships, as did gender heterophily.

However, when they coded an ABM to simulate similar
networks, conditioning on the number of edges and the esti-
mated parameters in their logit model, the outputs looked like
tangled balls of yarn rather than the filamentary structure seen
in Figure 1. Then they realized that their data contain very few 4-
cycles (a swap, in which two couples exchange partners). When
they reran their ABM with an additional condition to exclude 4-
cycles, the filamentary structure emerged. This, of course, does
not prove that their ABM is correct, but illustrates the challenges
of validation.

As a final comment on model validation, it is important to
consider the intrinsic dimension of the ABM. Some analysts
create elaborate ABMs, cluttered with code that is irrelevant to
the emergent behavior. But that is not as great a problem as an
ABM that omits structure needed to simulate the phenomenon,
as with the initial ABM in Bearman, Moody, and Stovel (2004).

Every ABM has a set of parameters. The intrinsic parameters
are those that control the outputs, and the rest affect the output
to a lesser degree. For example, in an ABM for disease spread, it
may be that the ABM models transmission in homes, at work, at
the grocery store, at the laundry, and so forth. But it is plausible
that the parameters driving transmission at the laundry are
largely irrelevant to predicting the course of the epidemic.

Using methods in Banks and Olszewski (1997), one can use
principal components regression to estimate the local intrinsic



dimension of an ABM. This approach can inform the analyst
about whether the ABM is underparameterized or overparam-
eterized.

5. Conclusions

We have reviewed ABMs and their inherent statistical challenges
as a call to action for the statistical community. ABMs are used
in many disciplines, but few statisticians are addressing their
theoretical foundations. If we are to stay relevant for many
domains, we need to address this research topic.

ABMs will be used for the foreseeable future. They are
easy to program, and domain experts can embed their beliefs
in straightforward ways. But as we suggest, those reasons are
insufficient. In most cases, researchers do not know how to
best fit ABMs to data, or how to make quantified statements of
uncertainty about their predictions. And in general, we do not
have an agreed upon procedure for validating ABMs.

Most ABMs do not have tractable likelihood functions. In
those cases, statisticians have limited tools, including emula-
tors and ABC. Emulators have been popular for implementing
ABMs and other mechanistic process models, but ABC and
related methods may be helpful in certain cases (Hooten, Wikle,
and Schwob 2020).
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