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Understanding physiological traits and ecological conditions that influence a species
reliance on metabolic water is critical to creating accurate physiological models that can
assess their ability to adapt to environmental perturbations (e.g., drought) that impact
water availability. However, relatively few studies have examined variation in the sources
of water animals use to maintain water balance, and even fewer have focused on the role
of metabolic water. A key reason is methodological limitations. Here, we applied a new
method that measures the triple oxygen isotopic composition of a single blood sample
to estimate the contribution of metabolic water to the body water pool of three passerine
species. This approach relies on A'"70O, defined as the residual from the tight linear
correlation that naturally exists between 670 and §'¢0 values. Importantly, A0 is relatively
insensitive to key fractionation processes, such as Rayleigh distillation in the water cycle
that have hindered previous isotope-based assessments of animal water balance.
We evaluated the effects of changes in metabolic rate and water intake on A"7O values
of captive rufous-collared sparrows (Zonotrichia capensis) and two invertivorous passerine
species in the genus Cinclodes from the field. As predicted, colder acclimation temperatures
induced increases in metabolic rate, decreases in water intake, and increases in the
contribution of metabolic water to the body water pool of Z. capensis, causing a consistent
change in A'"7O. Measurement of A"7O also provides an estimate of the §'0 composition
of ingested pre-formed (drinking/food) water. Estimated §'®0 values of drinking/food water
for captive Z. capensis were ~ —11%o, which is consistent with that of tap water in
Santiago, Chile. In contrast, 880 values of drinking/food water ingested by wild-caught
Cinclodes were similar to that of seawater, which is consistent with their reliance on marine
resources. Our results confirm the utility of this method for quantifying the relative
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contribution of metabolic versus pre-formed drinking/food water to the body water pool

in birds.
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INTRODUCTION

Understanding the physiological mechanisms that species use
to maintain water balance is becoming more relevant as increases
in temperature and drought frequency represent significant
ecological shifts that are affecting the behavior, distribution,
and abundance of animals (McCarty, 2001; Albright et al.,
2010; Sekercioglu et al., 2012; IPCC, 2013; Reme§ and
Harméckova, 2018). Because of their diurnal habits and high
mass-specific metabolic rates, birds are particularly susceptible
to increases in temperature and aridity (Riddell et al., 2021),
so better understanding the environmental factors that influence
their water balance is an important topic of research. Recent
studies highlight that warm temperatures and reduced availability
of fresh water impact key aspects of avian physiology, such
as energy expenditure, body mass, thermal tolerance/conductance,
and evaporative water loss (Carmi et al, 1993; Sabat et al.,
2006a, 2009; Barcel6 et al., 2009; Gerson and Guglielmo, 2011;
Smith et al., 2017; McWhorter et al., 2018). In addition to
inducing physiological changes, thermal and water stress can
also affect behavior, species distribution, and fitness. For instance,
using a combination of physiological data, mechanistically
informed models and climatic data predicted that the proportion
of the ranges of the distribution of avian species with risk of
lethal dehydration during heat waves will dramatically increase
under future climate scenarios (Albright et al., 2017).

Most metabolic and functional processes of terrestrial animals
are sensitive to water balance, where the steady state homeostatic
water budget (intake = loss) assumes a constant amount of
total body water:

WID =+ WIPF =+ WIM = WLC —+ WLR =+ WLU + WLFC (1)

where W1, is drinking water; Wl is (preformed) water in
food; W1 is metabolic water formed in the aerobic metabolism
of dietary macromolecules; WL is cutaneous loss of water
thorough the skin; WLy, is the loss of water through respiratory
surfaces; and WLy and WLy are the loss of water through
urine and feces, respectively. For most birds, the total evaporative
water loss (TEWL), which is the sum of cutaneous and respiratory
losses (WLc+WLy), accounts for between 50 and 80% of total
losses depending on hydration conditions, while urine and
feces (WLy+WLgc) account for only 15-30% of total water
losses (Goldstein and Braun, 1986; MacMillen, 1990; Goldstein
and Skadhauge, 2000). The relative contribution of WIp, Wiy,
and WIy to an animals total water budget depends on
environmental conditions (e.g., temperature, humidity, and water
intake), the rate and macromolecular substrate (protein,
carbohydrates, and/or lipids) oxidation, and behavioral attributes
(e.g., diurnal versus nocturnal activity). Ultimately, an organism’s
water balance is a function of the interplay between the physical

environment, the physiological and/or behavioral mechanisms
for conserving water (minimizing losses), and the production
of metabolic water which is directly linked to metabolic rate
(Bartholomew and Cade, 1963; MacMillen, 1990; Gerson and
Guglielmo, 2011; Rutkowska et al., 2016; Albright et al., 2017).

The contribution of metabolic water to the body water pool
is highly variable among birds (MacMillen, 1990; Williams
et al.,, 1993; Sabat et al., 2006a). Because TEWL accounts for
the largest proportion of water lost by birds (McKechnie and
Wolf, 2004), the WI,/TEWL ratio is especially informative:
As this ratio increases toward unity, birds rely more heavily
on metabolic water to maintain water balance. Importantly,
the physiological traits and ecological conditions that constrain
this ratio by either favoring or limiting reliance on metabolic
water and thus potential independence from environmental
water remain largely unknown (Bartholomew and Cade, 1963;
MacMillen, 1990). For instance, what role does metabolic water
production (WI,) play in maintaining water balance during
physiological challenges related to thermoregulation? Does
reliance on different water sources vary with thermoregulatory
demands? Understanding these mechanisms is critical to creating
accurate physiological models that can assess the ability of
animals to adapt to potential threats caused by anthropogenic
and natural environmental perturbations, especially increases
in ambient temperature and drought frequency predicted for
many regions over the next century (Walther et al., 2002; Vale
and Brito, 2015; Iknayan and Beissinger, 2018). These
perturbations are especially relevant for birds from the order
Passeriformes because most species are diurnal and have small
body masses, high body temperatures, and high mass-specific
metabolic rates that make them particularly susceptible to
thermal and dehydration stress (McKechnie and Wolf, 2010;
Albright et al., 2017).

Several studies have shown that in comparison with their
counterparts that occur in more mesic environments, birds
inhabiting aridland ecosystems exhibit physiological adjustments
to prevent water loss (Casotti and Braun, 2000; Williams and
Tieleman, 2005; McKechnie et al., 2016; Gerson et al., 2019).
However, few avian studies have examined variation in the
use of potential sources of water to maintain water balance
(Navarro et al., 2018; Smit et al., 2019), and even fewer studies
have focused on the role of metabolic water in the body water
budgets of birds (Williams, 2001; Giulivi and Ramsey, 2015).
One of the primary limitations is the inability to assess the
contribution of metabolic water to the body water pool without
the use of injected tracers (e.g., *H,'*O) that require multiple
captures of the same individual over short periods of time
(Butler et al. 2004). Recently, Whiteman et al. (2019) proposed
a new method for estimating the contribution of metabolic
water to the body water pool based on the measurement of
A0, which is the positive or negative deviation from the

Frontiers in Physiology | www.frontiersin.org

September 2021 | Volume 12 | Article 710026


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Sabat et al.

Metabolic Water in Passerine Birds

tight linear correlation that naturally exists between 87O and
80 values (Sharp et al., 2018; Whiteman et al, 2019). As
shown in equation (1), body water inputs primarily include
drinking water (Wp) and food water (W), both of which
are ultimately derived from meteoric water (i.e., precipitation),
and metabolic water (WI,,). Metabolic water (WI,,) is assumed
to have a A"O value of —0.44%o reflecting that of inhaled
atmospheric oxygen (Liang et al., 2006; Wostbrock et al., 2020).
In contrast, the A"7O value of W, and Wy; is that of meteoric
water, which is approximately +0.03%o regardless of the source
(Li et al., 2015; Sharp et al., 2018; Passey and Ji, 2019). A"7O
values of meteoric water have this consistent value because
mass-dependent fractionation associated with evaporation and
condensation affects all three oxygen isotopes in a similar and
predictable fashion (Sharp et al., 2018). By extension, evaporation
during physiological processes (e.g., gular fluttering) should
have minimal effect on A'™O values of animal body water.
A linear mixing model can be used to calculate the proportional
contribution from drinking/food versus metabolic water
(Whiteman et al, 2019). Because drinking/food water and
metabolic water together provide 80-99% of the body water of
most animals (Bryant and Froelich, 1995; Kohn, 1996), we can
ignore the remaining minor contribution (1-20%) from water
formed in condensation reactions from the bound oxygen in
dietary macromolecules, and model bird body water (A"7Ogy) as:

A Opyy = Fyr X (—0.44%0) + (1— Fy ) x (0.030%0)  (2)

where Fy represents the fractional contribution to body water
from metabolic water, and (1—Fy;) represents the contribution
from pre-formed (drinking/food) water. Whiteman et al. (2019)
showed that this equation accurately predicted relative changes
in A’Y0 values of captive deer mice based on their metabolic
rate and drinking water intake and that A’’O measurements
in wild mammals appeared to reflect expected variation in
relative mass-specific rates of metabolism and water intake.
Continued research is required to assess additional potential
predictors for this model, such as evaporation-driven variation
in A0 (as described above), and trophic enrichment in which
food water is increasingly influenced by prey metabolic water
for higher-trophic level consumers. Another important need
is applying this simplified model (equation 2) to
non-mammalian taxa.

Assuming a fixed A'"7O value of 0.03%o for meteoric water
is reasonable, but the potential for variation should be noted.
Regarding precipitation, patterns emerge at high and low values
of 8"%0: A0 is closer to 0.01%o if 6'*0 is above —10%o0 and
closer to 0.04%o if 80 is below —25%o (Passey and Levin,
2021). Unique environmental conditions can alter A"’O more
dramatically: For example, if ~90% of a closed water body
evaporates into air with very low relative humidity, the A"7O
of the remaining water may fall as low as —0.20%o0 (Passey
and Levin, 2021); evaporation of water from plants in very
dry conditions can have a similar effect (Landais et al., 2006;
Li et al, 2017). However, many environmental sources of
meteoric water are not subject to the conditions required to
cause such variation in meteoric water A"’O. In addition, while

deviation from 0.03%o represents important information for
hydrological and geochemical studies, the mean A"O value
for meteoric water (0.03%o) is very distinct from the biological
signal of metabolic water (—0.44%o).

Here, we explore A'7O in birds. We consider the responses
of metabolic rate, TEWL, and the contribution of metabolic
water to the body water pool in a widely distributed passerine,
the rufous-collared sparrow (Zonotrichia capensis), with captive
experiments of 15-day exposure to cold (15°C) followed by
warm (30°C) environmental conditions. We hypothesize that
birds acclimated to the cold conditions will have relatively
higher resting metabolic rates (RMRs) but will consume less
drinking water than when acclimated to warm conditions.
We predict that these responses will yield a change in body
water AVO values that reflect a net increase in the contribution
of metabolic water to the body water pool during cold conditions.
Unlike previous applications of oxygen isotopes that have
focused exclusively on 8O, our triple isotope approach is
much less sensitive to evaporative '®O-enrichment of body
water nor does it require isotopic characterization of all potential
water sources. A novel contribution of our study is the application
of a new analytical method that estimates the relative
contributions drinking and food water (W1, + WI;) vs. metabolic
water (WIy,) to the body water pool (Whiteman et al., 2019)
based on the analysis of a single blood plasma sample. In
addition to using this approach to study water balance in
captive sparrows, we also report data on the contribution of
metabolic water to the body water pool in two species of
wild-caught songbirds in the genus Cinclodes (Cinclodes oustaleti
and the Cinclodes nigrofumosus), a coastal group of invertivorous
passerines that vary in their ability to use marine resources.
Our approach combines phenomenological data collected from
the field with results from laboratory experiments designed
to identify the physiological mechanisms that constrain how
animals respond to environmental conditions (Khaliq et al,
2014). The results improve our understanding of the physiological
responses to climate change and the ultimate threats to species’
persistence.

MATERIALS AND METHODS

Sample Collection

Our captive model species was the omnivorous rufous-collared
sparrow, which is widely distributed across a range of habitats
in western and southern South America (Araya et al.,, 2005).
We captured 10 individuals using mist nets in the Quebrada
de la Plata (33°31'S, 70°5'0W, ~500m elevation) in central
Chile, a locality with a Mediterranean climate. Following capture,
we transported birds to the laboratory for a 2-day habituation
period at 22°C. The birds were maintained in individual cages
(50x50x50cm) and were fed ad libitum with dried birdseed
and water. Water was offered in inverted 100ml graduated
plastic tubes that allowed birds to eat and drink in a small
(~1cm?) container at the bottom of the tube. After the habituation
period, birds were maintained at 15+0.5°C for 15 days, and
then at 30%0.5°C for another 15days (12:12 light:dark
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photoperiod). This acclimation period was long enough to
ensure complete turnover of the body water pool for a 20-30g
passerine (Bartholomew and Cade, 1963; Smit and Mckechnie,
2015). After each cold or warm acclimation period, we collected
samples of blood (50-100pl) in the morning (09:00-11:00h)
from the humeral vein using hematocrit tubes with anticoagulant
(heparine). Blood samples were then centrifuged at 10,000 rpm
(relative centrifugal force = 9,250) for 5min during which
plasma was separated from red blood cells, and then, plasma
was frozen at —80°C until isotope analysis. Water intake rates
were measured with the inverted graduated plastic tubes and
corrected for evaporation by using control tubes located outside
each experimental cage.

Wild C. oustaleti and C. nigrofumosus were collected using
mist nets in the austral winter (June 2018) at Los Molles
(32°14'22'S 71°30'54'W) on the central coast of Chile. Blood
samples were obtained with heparinized microcapillary tubes
from the humeral vein immediately after capture. Blood was
centrifuged at 10,000rpm for 10min and the plasma was
separated from red blood cells and stored at —80°C until
isotope analysis.

Metabolic Water Analysis
To measure A0, we cryogenically distilled water from 1 to
2 pl blood plasma samples in a vacuum line, then reacted it
with BrFs at ~300°C for 5-10min, quantitatively converting H,O
to O, and other gasses. These other gasses were removed via
liquid nitrogen traps and the O, was further purified by passing
it through a zeolite molecular sieve and a gas chromatography
column. O, was then analyzed on a dual-inlet Thermo Scientific
253 isotope ratio mass spectrometer (Bremen, Germany) at the
University of New Mexico Center for Stable Isotopes (Albuquerque,
NM). The measured values of 7O and 830 were used to calculate
A0 (Sharp et al., 2018; Whiteman et al., 2019). At the beginning
of each analytical session, we measured a local water standard
(NM2:  8%0=-13.1%0, 870=-6.919%0) that had been
calibrated  against the international water  standards
VSMOW2 (870=58""0=0.000%0) and SLAP2 (8'*0O=—55.5%o,
870=-29.699%0; Schoenemann et al., 2013; Sharp et al., 2016).
The NM2 A'O values associated with each measurement were
then used to calculate a correction factor which we applied to
the raw A"7O values of unknown samples to yield corrected values.
In addition to using A"O values to understand reliance
upon metabolic water, we used the combination of Fy values
and 80 values of body water to calculate the §'®0 values of
the combination of drinking and food water (8"Op,pr) that
birds consumed as:

8" Oppw =

5'80gw — (Fyr) % (6180 Air)

I(1=Fy) ()

Here, we assumed 80, was 19.4%o because of fractionation
that occurs during absorption of inhaled atmospheric oxygen.
This fractionation depends on the efficiency of oxygen absorption
(EOy Epstein and Zeiri, 1988); although this efficiency was
not measured in our experiment, previous research suggests
that an EO, of 0.4 is reasonable for small passerines (Clemens,
1988; Arens and Cooper, 2005), which in humans produces

a fractionation of ~4.4%o (Epstein and Zeiri, 1988). Although
such data are lacking for our study species, applying the plausible
range of fractionation values for absorbed oxygen (2-6%o) to
equation 3 indicates that the resulting estimate of 8"O of
ingested water generally changes by < 3%o, which is smaller
than much of the naturally occurring variation in 8"O of
potential water sources.

Metabolic Rates and Total Evaporative
Water Loss

At the end of the 15-day experimental period at each temperature
treatment (15°C or 30°C), we measured rates of oxygen
consumption (VO,) and TEWL for sparrows during 3-4h using
standard flow-through respirometry and hygrometry methods
that we have previously applied to this species (Sabat et al.,
2006a). Measurements were made at ambient temperatures (T,)
of 15.0+£0.5°C and 30.0+0.5°C using an infrared O,-CO,
analyzer equipped with a hygrometer (FMS, Sable Systems®).
All trials were conducted in metallic metabolic chambers
(2000ml). Briefly, birds were placed in metabolic chambers
kept at a constant temperature (15°C or 30°C) that received
air free of water and CO, removed via Drierite and CO,
absorbent at a flow of 750ml/min (+1%). O, concentrations
in the chamber were recorded during the active period between
06:00 and 18:00. Oxygen consumption was calculated according
to the following equation (Lighton, 2018):

VO, =FRx60x(F 0, —F. 0,)/(1-F O,) (4)

where FR is the flow rate in ml min™', and F,O, and F.O,
are the fractional concentrations of inflow and outflow O, in
the metabolic chamber, respectively. We calculated absolute
humidity (kg/m®) of air entering and leaving the chamber
as=P/(TxRw), where P is water vapor pressure of the air in
Pascal, T is the dewpoint temperature in Kelvin, and Rw is
the gas constant for water vapor (461,5 J/kgK; Lide, 2001). P
was determined using the average value of the vapor pressure
of the air entering the empty chamber (i.e., baseline period
of 15min) before and after each experiment with a dewpoint
hygrometer located in the FMS. Total evaporative water loss
was calculated as TEWL=(V, X po - ViXpi,), where TEWL is
in mg/ml, p;, and p,, are the absolute humidity in kg/m* of
the inlet air and the outlet air, respectively, V; is the flow rate
of the air entering the chamber as given by the mass flow
controller (750mlmin™), and V, is the flow of exiting air. Ve
was calculated following (Williams and Tieleman, 2000) as:

Ve =V; —[VO, x(1-RQ)|+ Vir.0 (5)

Vi, and VO, (mlmin™) are known, and we assumed a
respiratory quotient (RQ) of 0.71 (Sabat et al., 2006a). Output
from the H,O (kPa) analyzer, the oxygen analyzer (%), and
the flow meter was digitalized using a Universal Interface II
(Sable Systems, Nevada, United States) and recorded on a
personal computer using EXPEDATA data acquisition software
(Sable Systems, Nevada, United States). To estimate RMR,
we averaged O, concentrations of the excurrent air stream
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over a 20-min period after steady state was reached (Tieleman
et al., 2002). We estimated the metabolic water production
(WIy) of sparrows using the equivalence of 0.567ml H,O per
liter O, consumed (Schmidt-Nielsen, 1997). We calculated the
WI/TEWL ratio at different temperature treatments (15°C or
30°C). We also used equation (1) to calculate sparrow water
balance, given that pre-formed water in food was negligible
(WPF=0); after combining CWL and RWL into TEWL, and
combining Wy and W; into Wy as water losses via excreta,
equation (1) was simplified to:

Wp + WIy = TEWL + Wy (6)

Birds were captured with permits from SAG, Chile (No.
10192/2019). All protocols were approved by the institutional
Animal Care Committee of the University of Chile, following
the  recommendation of the ARRIVE  guidelines
(Kilkenny et al., 2010).

Statistical Analysis

We evaluated the effect of thermal acclimation on RMR, TEWL,
and water intake using a generalized linear mixed model
(GLMM) with body mass as a covariate, acclimation temperature
(15°C and 30°C) as fixed factors, and individual identity as
a random factor to control for repeated measures. Assumptions
of normality and heteroscedasticity in residuals were examined
with Q-Q plots and a plot of residuals against fitted values,
respectively (Zuur et al., 2009). Dependent variables and
covariates were natural log transformed for data normalization.
Body mass and isotope values (A0, 8"O, and §70) were
compared between warm (30°C) and cold (15°C) treatments
using non-parametric two-sample paired t-tests. The
statistical analyses were performed in nlme package (Pinheiro
et al, 2013) using the R platform (v4.0.3; R Development
Core Team, 2013).

RESULTS

Physiological Data of Captive Sparrows
Sparrows acclimated at 15°C exhibited higher RMR (93.2+15.2ml
O, h™") and lower daily water intake (0.19+0.05ml H,Oh™)
in comparison with when they were acclimated at 30°C (RMR:
70.8+12.2ml O, h™' and daily water intake: 0.26+0.08 ml
H,Oh™); however, there was no difference in TEWL between
temperature treatments (Table 1). In addition, the WI,,/TEWL
ratio, converted to percentage, decreased significantly with
increasing T, (Figure 1), ranging from ~65% at 15°C to ~55%
at 30°C. Using Wy and Wy and the equation (6), metabolic
water represented 22.8+4.2% and 14.0+5.6% of the total body
water pool (i.e., Wy, /(W + Wp) at 15°C and 30°C respectively,
while TEWL represented 80% of the total water loss at 15°C
and 67% of the total water loss at 30°C.

Oxygen Isotopes
A"™O values were lower for captive sparrows acclimated to 15°C
than 30°C (Wilcoxon Sign test=—7.5; p=0.03, Figure 2A).

A'VO-based estimates (via equation 2) of the proportion of
metabolic water in the total body water pool in captive sparrows
were 27.2 and 24.1% at 15°C and 30°C, respectively (Figure 2B).
Wild Cinclodes A"O values vary both within and among species
(Figure 3), and A"™O-based estimates of the metabolic water
contribution to the body water pool ranged from 19.6 to 31.0%.
Mean (+SD) metabolic water contributions for C. nigrofumosus
and C. oustaleti were 23.0+4.8% and 27.7+4.0%, respectively.
Intriguingly, two of the three highest measured A"’O values were
sourced from C. nigrofumosus, suggesting a greater intake of
pre-formed drinking/food water than for C. oustaleti. This inference
is consistent with the general hypothesis of reduced dependence
on W1, for larger body-sized individuals across birds and mammals
(Whiteman et al., 2019), because C. nigrofumosus (70-80g) is
more than twice the body mass of C. oustaleti (23-28g; Sabat
et al, 2006a). The mean (+SD) estimated 8®O value of the
combined pre-formed drinking/food water ingested by captive
sparrows was ~ —11%3%o, which is within the range for tap
water and groundwater in the Santiago Basin of central Chile
(—15 to —11%o; Iriarte et al., 2004). In contrast, the pre-formed
drinking/food water ingested by wild Cinclodes was estimated to
have mean 80 (£SD) values near seawater (0%o; LeGrande and
Schmidt, 2006): 0.2£8.3%o for C. nigrofumosus and —1.4+0.9%o
for C. oustaleti.

DISCUSSION

Metabolic water production (WI,) alone is typically insufficient
to meet the water requirements of most vertebrates (McNab,
2002), although some species adapted to arid environments
or routinely experience long periods of time without food or
drinking water can survive solely on metabolic water under
certain conditions (Bartholomew and Cade, 1963; MacMillen
and Hinds, 1983; Ostrowski et al., 2002). Several factors have
been suggested to influence the importance of WIy to the
water budget of birds, such as the nature of oxidized substrates
and environmental temperature. The current study aimed to
experimentally assess the effects of changes in metabolic rate
and water intake on A"O values of captive house sparrows,
kept in standard housing conditions at 30°C or 15°C for 15 days.
As predicted, sparrows acclimated to cooler temperatures
increased their RMR by ~31% while decreasing their drinking
water intake by ~27% (Table 1). This elevation in metabolic
rate suggests that an ambient temperature of 15°C is below
their lower critical temperature (Maldonado et al, 2009).
Accordingly, plasma A'O values were lower in individuals
housed at 15°C than at 30°C, reflecting the larger contribution
of metabolic water relative to drinking/food water to the body
water pool (Figure 2). These results support the predictions
of a model of the relationship between the WI,:TEWL ratio
and ambient temperature in granivorous birds (MacMillen,
1990). In this model, the ratio of WI,,/TEWL increases when
temperature declines below the Ty, as a result of increased
WIy and dampened TEWL via water-recovery adaptations,
such as desaturation of exhaled air into nasal surfaces (MacMillen,
1990). In a similar controlled experiment on mammals, A'"7O
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TABLE 1 | Results of generalized linear mixed model testing the effect of 15days of thermal acclimation to 15°C (cold) and 30°C (warm) on resting metabolic rate

(RMR), total evaporative water loss (TEWL), and water intake in Zonotrichia capensis.

R? marginal/

Predictors Coeff. Estimate 95% CI df t Value of p "
conditional

RMR (mlO, h-) 0.58/0.58

Intercept 0.94 (-1.91-3.79) 9 0.75 0.47

Mass 1.18 (0.22-2.13) 8 2.84 0.02

Temperature (30°) -2.25 (-=0.40to —-0.10) 8 -3.85 0.005

TEWL (mgH,Oh ) 0.10/0.25

Intercept 2.52 (—2.95-8.00) 9 1.04 0.32

Mass 0.62 (—1.21-2.45) 8 0.78 0.45

Temperature (30°) -0.12 (-=0.37-0.13) 8 -1.15 0.28

Water Intake (mlIH;0) 0.25/0.66

Intercept -2.45 (—8.96-4.06) 9 -0.85 0.41

Mass 0.24 (—1.94-2.42) 8 0.26 0.80

Temperature (30°) 0.34 (0.13-0.55) 8 3.67 0.006

Numbers in bold indicate statistical significance (p <0.05)
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FIGURE 1 | The ratio between metabolic water production estimated from
RMRs and total evaporative water loss in Z. capensis at 15°C and 30°C
ambient temperature. Error bars in each panel represent SD.

values of plasma from deer mice declined in response to
elevated metabolic rate when animals were housed at 5°C
rather than 25°C (Whiteman et al., 2019). The magnitude of
the decline in A'VO (0.01-0.03 %o) in deer mice was similar
to that observed here in captive sparrows. Our results confirm
that WI in small passerines increases with thermoregulatory
demands and highlights the utility of this method for estimating
water balance in laboratory conditions.

In a formative study, it was observed that the theoretical
production of metabolic water can approach the rate of
evaporative water loss in birds with body masses > 60g, creating
the opportunity for these larger birds to be “water-independent”
and possibly rely solely on W1y (Bartholomew and Cade, 1963).
However, MacMillen (1990) suggested that smaller birds (e.g.,
< 20g) can also attain favorable states of water balance
(WIy>TEWL) if they are below the lower critical temperature

(~25°C) when experiencing water deprivation. For the captive
sparrows (~20g) in our study, we calculated a mean WIy/
TEWL of ~61% (Figure 1), which suggests that sparrows are
not capable of relying solely on metabolic water production
to maintain water balance, even in conditions that yield increases
in metabolic rate (i.e., colder temperatures). Note that WIy/
TEWL was 67 and 56% for cold- and warm-acclimated birds,
respectively. Nevertheless, our estimates of TEWL come from
an experimental setup that controlled the humidity inside the
metabolic chambers near zero, which likely does not occur
often in nature. In some birds, TEWL appears to vary as a
function of absolute humidity (mgH,0/m’) across a range of
environmental temperatures (Powers 1992, Gerson et al., 2014).
By using data at comparable temperatures from the literature
and climate data available from a local weather station,'
we calculated that TEWL could be reduced on average by up
to 20% at 30°C and 40% at 20°C, which would result in a
WIM/TEWL of 76% at 30°C and up to 100% at 15°C.

The traditional approach to measuring WIy is to assume
a constant equivalence of water production based on oxygen
consumption (Schmidt-Nielsen, 1997). Using this approach,
we found that WI, was 23% of the total water intake (i.e.,
WIy+Wp) at 15°C but decreased to 14% at 30°C. These
values are slightly lower to the percent contribution of
metabolic water to the total body water pool that we estimated
from A'"7O data alone, which were 27.5% for cold-acclimated
birds and 24.5% for warm-acclimated birds. The similarity
in estimates of WIy using the two approaches is notable
because the A"O estimates were based on collection of a
single sample and did not rely on any measurements of
water intake or loss, highlighting the potential accuracy of
this new method (Whiteman et al., 2019). The discrepancy
in estimates of WIy, which is larger for warm-acclimated
sparrows (14.0% vs. 24.5%), may be due to at least two
non-exclusive alternatives. First, the calculation for the amount
of water consumed per day was obtained under acclimatization
conditions when birds were in larger cages that allowed for
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FIGURE 2 | (A) The effects of changes in metabolic rate and water intake on
A"70 values of five Z. capensis. Individuals were kept in standard housing
conditions at 30°C, then exposed to 15°C for 15days. The cooler
temperature, outside of their thermal neutral zone, induced increases in RMR
by a mean (£SD) of 31% +12% (data not shown) and decreases in mean
drinking water intake (—17% +28%). These changes should have increased
the contribution of metabolic water to the body water pool. Accordingly, the
A0 values of plasma samples significantly declined from 30°C to 15°C,
reflecting the greater contribution of metabolic water (A""O=-0.44%o) and
smaller contribution of drinking water (A"7O=0.03%o). (B) The mean
proportion of metabolic water in the body water pool water in captive Z.
capensis estimated from A"7O of plasma at 15°C and 30°C ambient
temperature. Values from physiological experiments (W/(W+Wp) are
included in filled black squares and its error for comparison.

movement and flight, conditions that yield higher rates of
energy consumption than in the more confined conditions
when RMR was measured. In addition, the traditional approach
of using an equivalency between oxygen consumption and
WIy (i.e., 0.567ml H,O per liter O, consumed) does not
distinguish between (1) H,O that was produced by
condensation reactions that occur during the oxidation of
food that contains oxygen bound in macromolecules (e.g.,
protein or lipids) and (2) H,O that was produced by complex
IV of the electron transport chain, and which therefore
only contains inhaled atmospheric oxygen (Morrison, 1953).
In contrast, the A"7O approach only estimates the contribution
of the latter mitochondrial source of H,O. It should also
be noted that body water exchanges oxygen atoms with
dissolved CO; in the blood via the bicarbonate buffer system.
This CO, is from metabolic decarboxylation (e.g., reactions
that occur within the citric acid cycle) and contains oxygen
bound in macromolecules (e.g., glucose) as well as phosphate
groups (e.g., added by glucokinase). We expect that the
influence of dissolved CO, on body water A"7O is small,
because the isotopic fractionation associated with loss of
exhaled CO, (Speakman and Racey, 1987; Haggarty et al,,
1988) is mass-dependent, and because phosphate groups are
likely in isotopic equilibrium with body water (Li et al,
2016). In general, more precise studies of water balance
that considers the loss of water through wurine and
measurements of metabolic rate during longer periods in
acclimatization conditions are necessary to establish the
precision of the A'"7O-based method.

The contribution of metabolic water to the body water
pool is highly variable among birds, ranging from < 10%
in some hummingbirds, ~14% in desert-adapted ostriches,
and up to 80% in some passerines (MacMillen, 1990; Williams
et al., 1993). For example, captive zebra finches (Taeniopygia
guttata) with ad libitum access to drinking water produced
only 1ml metabolic H,O per ~1.5-1.8ml of evaporative
water lost at temperatures between 15 and 25°C, showing
that without drinking water, the birds would have been in
negative water balance. However, when birds were dehydrated
for 30 days, their TEWL declined and WI/TEWL increased
to one (Cade et al.,, 1965). The influence of water availability
on the relative importance of WIy to total water pool in
birds is in agreement with our previous work on small
mammals. For example, captive mice (Mus musculus) that
were provided drinking water ad libitum had smaller
contributions of metabolic water to their body water than
did wild desert-adapted small mammals (Peromyscus leucopus)
of similar body mass (Whiteman et al., 2019). Overall, these
results suggest that wild animals lacking ad libitum access
to water responded by relying more on metabolic water
than their captive counterparts.

Birds also have substantial flexibility in their sources of
water intake. In wild zebra finches, WI,; calculated on the
basis of field metabolic rate was lower during hot versus cool
periods. As a consequence, WI fulfilled 20% of water
requirements during hot days and 32% on cold days (Cooper
et al, 2019). Because the total water turnover (ml/day) did
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FIGURE 3 | A'"7O values for six Cinclodes individuals sampled at Los Molles,
a coastal locality in central Chile characterized by moderate temperatures and
low precipitation.

not vary substantially with environmental temperature, the
change in the contribution of metabolic water to the total
body water pool (i.e., Fy) is likely due to changes in metabolic
rates. A question that remains unresolved is whether birds,
especially species living in arid seasonal environments, modify
their metabolic rate strictly for the purpose of WIy. Lastly,
another important variable that influences W1, is the type of
oxidative substrate used for aerobic metabolism. For instance,
Zebra finches predictably lose body mass when fasting; however,
when they are simultaneously water deprived, they lose
substantially more body fat than lean (protein-rich) tissue
(Rutkowska et al, 2016). The catabolism of body fat can
potentially substantially increase the yield of metabolic water
because fat is far more energy dense than other macromolecules
oxidized for energy. In contrast, house sparrows (Passer
domesticus) accelerate protein catabolism during acute
dehydration (Gerson and Guglielmo, 2011), presumably to
liberate pre-formed water molecules bound in proteinaceous
(muscle) tissue (Giulivi and Ramsey, 2015).

We compared the A'7O-based estimates of the fractional
contribution to body water from metabolic water (Fy) in
captive sparrows with similar estimates for arid- and mesic-
adapted wild birds based on allometric equations for water
influx rate and field metabolic rate (Williams et al., 1993).
We assumed that WI, from oxidized substrates is 0.027
mlH,0/K] based on oxidation of carbohydrates; note that
this calculation yields the same result for WIy as the
equivalence method (0.567 ml H,O per liter O,) mentioned
above (Morrison, 1953). We found that on average, the
warm- and cold-acclimated sparrows in our study had Fy
values that were~29% and~26% higher than the values
expected for arid- and mesic-adapted birds of a similar

size. Estimates of Fy in wild C. nigrofumosus were~23%
or~19% higher than expected values for similar-sized birds
inhabiting an arid or mesic environment, respectively. Note
that A'7O-based estimates of Fy for captive sparrows and
wild C. nigrofumosus are within the 95% confidence interval
of those reported for arid- and mesic-adapted birds of similar
size. In contrast, A'O-based estimates of F, for C. oustaleti
were significantly higher by ~48% or~42% than predicted
for birds from arid and mesic environments, respectively.
We hypothesize that observed differences in Fy based on
A0 versus allometric proxies for C. oustaleti may be related
to the high energetic and osmoregulatory costs of migrating
between coastal (winter) and high elevation (summer) habitats,
which may also be why this species has a relatively high
BMR in comparison with other Cinclodes (Tapia-Monsalve
et al., 2018). Overall, A'"O data revealed that the contribution
of metabolic water to body water in captive sparrows and
wild Cinclodes was similar to or within the same order of
magnitude as for other free-ranging birds based on logarithmic
allometric relationships. This finding emphasizes the
validity of our method to the study of wild birds in
natural ecosystems.

As expected, our regression approach based on oxygen
isotope analysis shows that captive sparrows consumed
drinking/food water that had a 'O value of —11%o, consistent
with local tap water in Santiago, Chile (Figure 4.). Likewise,
isotope data show that wild Cinclodes consumed pre-formed
drinking/food water with 8'®O values of ~0%o, which is
consistent with the oxygen isotope composition of seawater
(Figure 4). Intriguingly, one C. nigrofumosus individual
ingested water with an anomalously positive estimated §'*0O
value of 6.3%o0 (Supplementary Table S1), notably higher
than seawater. This enrichment could result from abiotic
evaporation occurring in the environment prior to ingestion
and/or physiologically mediated evaporative enrichment
occurring within the organism. The first explanation suggests
seawater ingested as pre-formed drinking/food water in the
arid intertidal habitats where C. nigrofumosus forages in
central and northern Chile may be '*O-enriched. Alternatively,
the relatively high 8"Oppy value observed for this species
may result from isotopic fractionation that occurs during
evaporation of body water, which largely depends on
environmental temperature and humidity (Kohn, 1996). While
C. nigrofumosus in this study was sampled in arid central
Chile where evaporative "*O-enrichment of body water could
be a factor, this species inhabits humid coastal intertidal
ecosystems and has ample access to drinking water in the
form of seawater (Sabat et al., 2006a). In contrast to patterns
for wild Cinclodes, we observed less within-treatment variation
in  estimates of 8"Oppy for captive  sparrows
(Supplementary Table S1), which is expected because (1)
their drinking water was sourced from a municipal
groundwater-derived aquifer with a relatively constant 8O
value and (2) they were subjected to less variation in
temperature and humidity in comparison with wild Cinclodes
species (Sabat and del Rio, 2002; Sabat et al., 2006a). To
better understand the ecological (e.g., habitat use and/or
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FIGURE 4 | Measured mean A'"7O values (y-axis) and §'°O values (x-axis) of body water used to estimate the §'®0 value of ingested drinking/food water of captive
Z. capensis and wild Cinclodes. Captive Z. capensis was predicted to have ingested drinking/food water with a §'80 value of —12%., which is consistent with tap
water in Santiago, Chile. Cinclodes were predicted to have ingested drinking/food water with a §'®0 value of ~0%o, similar to seawater and consistent with their
reliance on marine resources. Ranges of §'°0 values for tap water and seawater are shown by solid bars at the top of the range for meteoric waters (sky-blue
dashed area). The dotted lines represent the solutions for equation 2 for each group of birds.
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diet composition) and environmental (e.g., temperature and/
or humidity) factors that influence water budgets in birds
will require more experiments that assess the effect of
physiologically mediated water conservation strategies on
the oxygen isotope composition of body water, and additional
sampling of birds from a range of environments that span
temperature and humidity gradients.

Finally, apparent differences in 8'*0 of pre-formed drinking/
food water between Cinclodes species may be related to inter-
specific variation in the ability to cope with saline-rich prey
and drinking water sources (Sabat et al., 2006b; Tapia-Monsalve
et al, 2018). For example, the high salinity tolerance of
C. nigrofumosus (Sabat et al., 2006b), especially at the northern
margin of its distribution, may allow this species to rely less
on metabolic water because of the ability to obtain and process
an abundant source of drinking/food water sourced from the
ocean. The ecological conditions that either favor or limit the
ability of birds to depend on metabolic water remain largely
unknown, while the combined effect of temperature and humidity
on a bird’s water budget is poorly understood, especially in
free-ranging individuals. We predict that a species dependence
on metabolic water vs. pre-formed drinking/food water along
environmental gradients will depend on the interaction between
the ability of different populations/species to retain water and
dissipate heat, coupled with the availability of pre-formed water
as well as environmental temperature and humidity. For example,

the study of bird species and/or populations that differ in
how they evaporatively cool their bodies via panting,
hyperthermia, or cutaneous evaporation that ultimately influences
water loss rates (Gerson et al, 2014) represents a unique
opportunity to determine which environmental and physiological
variables modulate an animal’s use of metabolic versus pre-formed
water to maintain water balance.

Overall, our study revealed that the contribution of
metabolic water to the total body water pool increased with
metabolic rate, consistent with a recent report in small
mammals that used a similar A"’O-based approach (Whiteman
et al,, 2019). Although these increases may not seem very
significant in magnitude, they could account for natural
changes in the energy expenditure of animals in the field.
More precise studies of water balance that considers all
potential sources of water losses during longer periods in
acclimatization are necessary to establish the precision of
the A'"7O-based method used in this study. A'O-based
estimates of Fy, in captive sparrows and wild C. nigrofumosus
were similar to those for free-ranging birds based on
independent allometric relationships, while estimates for
C. oustaleti based on oxygen isotopes were higher than
expected, but in the same order of magnitude as predictions
based on logarithmic allometric relationships, emphasizing
the validity of our method to better understand water balance
in wild birds.

Frontiers in Physiology | www.frontiersin.org

September 2021 | Volume 12 | Article 710026


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Sabat et al.

Metabolic Water in Passerine Birds

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

ETHICS STATEMENT

The animal study was reviewed and all protocols were approved
by the institutional Animal Care Committee of the University
of Chile (CICUA), and National Research and Development
Agency (ANID).

AUTHOR CONTRIBUTIONS

PS, SN, and JW designed the research. SP, PS, ZS, and JW
performed the research. SP, AG, KM, and PS analyzed the data.
PS, SN, RN, JS-H, KM, and JW wrote the paper. All authors
contributed to the article and approved the submitted version.

REFERENCES

Albright, T. P, Mutiibwa, D., Gerson, A. R, Smith, E. K, Talbot, W. A,
O’Neill, J. J., et al. (2017). Mapping evaporative water loss in desert passerines
reveals an expanding threat of lethal dehydration. Proc. Natl. Acad. Sci.
U. S. A. 114, 2283-2288. doi: 10.1073/pnas.1613625114

Albright, T. P,, Pidgeon, A. M., Rittenhouse, C. D., Clayton, M. K., Wardlow, B. D.,
Flather, C. H,, et al. (2010). Combined effects of heat waves and droughts
on avian communities across the conterminous United States. Ecosphere 1,
1-22. doi: 10.1890/ES10-00057.1

Araya, B., Millie, G., and BERNAL, M. (2005). Guia de campo de las aves de
Chile. Editor. Univ. Santiago, 406.

Arens, J. R., and Cooper, S. J. (2005). Seasonal and diurnal variation in
metabolism and ventilation in house sparrows. Condor 107, 433-444. doi:
10.1093/condor/107.2.433

Barcel6, G., Salinas, J., Cavieres, G., Canals, M., and Sabat, P. (2009). Thermal
history can affect the short-term thermal acclimation of basal metabolic
rate in the passerine Zonotrichia capensis. J. Therm. Biol. 34, 415-419. doi:
10.1016/j.jtherbio.2009.06.008

Bartholomew, G. A., and Cade, T. J. (1963). The water economy of land birds.
Auk 80, 504-539. doi: 10.2307/4082856

Bryant, D. ], and Froelich, P. N. (1995). A model of oxygen isotope fractionation
in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523-4537.
doi: 10.1016/0016-7037(95)00250-4

Butler, P. J., Green, J. A., Boyd, I. L., and Speakman, J. R. (2004). Measuring
metabolic rate in the field: the pros and cons of the doubly labelled water
and heart rate methods. Funct. Ecol. 18, 168-183. doi: 10.1086/
physzool.38.1.30152342

Cade, T. ], Tobin, C. A., and Gold, A. (1965). Water economy and metabolism
of two Estrildine finches. Physiol. Zool. 38, 9-33. doi: 10.1086/
physzool.38.1.30152342

Carmi, N., Pinshow, B., Horowitz, M., and Bernstein, M. H. (1993). Birds
conserve plasma volume during thermal and flight-incurred dehydration.
Physiol. Zool. 66, 829-846. doi: 10.1086/physz00l.66.5.30163826

Casotti, G., and Braun, E. J. (2000). Renal anatomy in sparrows from different
environments. J. Morphol. 243, 283-291. doi: 10.1002/(SICI)1097-4687(200003
)243:3<283::AID-JMOR5>3.0.CO;2-B

Clemens, D. T. (1988). Ventilation and oxygen consumption in rosy finches
and house finches at sea level and high altitude. J. Comp. Physiol. B 158,
57-66. doi: 10.1007/BF00692729

Cooper, C. E., Withers, P. C.,, Hurley, L. L., and Griffith, S. C. (2019). The
field metabolic rate, water turnover, and feeding and drinking behavior of

FUNDING

This work was funded by the ANID PIA/BASAL FB0002, ANID
FONDECYT Regular N° 1200386, and NSF grants to SN and
ZS (I0S-1941903), AG (I0S-1941475), and JW (IOS-1941853).

ACKNOWLEDGMENTS

We thank Andrés Sazo and Natalia Ramirez for their invaluable
fieldwork assistance and Guido Pavez and Isaac Pefia-Villalobos
for the bird images. We also thank Natalia Ricote for her help
in final details of this manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphys.2021.710026/
full#supplementary-material

a small Avian Desert Granivore During a summer heatwave. Front. Physiol.
10:1405. doi: 10.3389/fphys.2019.01405

Epstein, S., and Zeiri, L. (1988). Oxygen and carbon isotopic compositions of
gases respired by humans. Proc. Natl. Acad. Sci. 85, 1727-1731. doi: 10.1073/
pnas.85.6.1727

Gerson, A. R., and Guglielmo, C. G. (2011). House sparrows (Passer domesticus)
increase protein catabolism in response to water restriction. Am. J. Phys.
Regul. Integr. Comp. Phys. 300, R925-R930. doi: 10.1152/ajpregu.00701.2010

Gerson, A. R., McKechnie, A. E., Smit, B., Whitfield, M. C., Smith, E. K,
Talbot, W. A., et al. (2019). The functional significance of facultative
hyperthermia varies with body size and phylogeny in birds. Funct. Ecol.
33, 597-607. doi: 10.1111/1365-2435.13274

Gerson, A. R., Smith, E. K, Smit, B, McKechnie, A. E., and Wolf, B. O.
(2014). The impact of humidity on evaporative cooling in Small Desert
birds exposed to high air temperatures. Physiol. Biochem. Zool. 87, 782-795.
doi: 10.1086/678956

Giulivi, C., and Ramsey, J. (2015). On fuel choice and water balance during
migratory bird flights. Int. Biol. Rev. 2015:58. doi: 10.18103/ibr.v0il1.58

Goldstein, D. L., and Braun, E. J. (1986). Lower intestinal modification of
ureteral urine in hydrated house sparrows. Am. J. Phys. Regul. Integr. Comp.
Phys. 250, R89-R95. doi: 10.1152/ajpregu.1986.250.1.R89

Goldstein, D. L., and Skadhauge, E. (2000). “Renal and Extrarenal regulation
of body fluid composition,” in Sturkie’s Avian Physiology. ed. G. C. Whittow
(Elsevier), 265-297.

Haggarty, P, McGaw, P. A, and Franklin, M. E (1988). Measurement of
fractionated water loss and CO, production using triply labelled water.
J. Theor. Biol. 134, 291-308. doi: 10.1016/S0022-5193(88)80060-2

Iknayan, K. J., and Beissinger, S. R. (2018). Collapse of a desert bird community
over the past century driven by climate change. Proc. Natl. Acad. Sci.
U S. A. 115, 8597-8602. doi: 10.1073/pnas.1805123115

IPCC (2013). Intergovernmental Panel on Climate Change Working Group L.
Climate Change 2013: The Physical Science Basis. Long-term Climate Change:
Projections, Commitments and Irreversibility. Cambridge Univ. Press. New York.

Iriarte, S., Tore, C., Pardo, M., Aguirre, E., and Aravena, E. R. (2004). Use of
environmental isotopes to evaluate natural and antropic sources of groundwater
in an area with multiple land uses, Santiago norte basin, Chile. Isot. Hydrol.
Integr. Water Resour. Manage., 165-167.

Khaliq, I, Hof, C., Prinzinger, R., Béhning-Gaese, K., and Pfenninger, M.
(2014). Global variation in thermal tolerances and vulnerability of endotherms
to climate change. Proc. R. Soc. B Biol. Sci. 281:20141097. doi: 10.1098/
rspb.2014.1097

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., and Altman, D. G.
(2010). Improving bioscience research reporting: the ARRIVE guidelines

Frontiers in Physiology | www.frontiersin.org

September 2021 | Volume 12 | Article 710026


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/articles/10.3389/fphys.2021.710026/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2021.710026/full#supplementary-material
https://doi.org/10.1073/pnas.1613625114
https://doi.org/10.1890/ES10-00057.1
https://doi.org/10.1093/condor/107.2.433
https://doi.org/10.1016/j.jtherbio.2009.06.008
https://doi.org/10.2307/4082856
https://doi.org/10.1016/0016-7037(95)00250-4
https://doi.org/10.1086/physzool.38.1.30152342
https://doi.org/10.1086/physzool.38.1.30152342
https://doi.org/10.1086/physzool.38.1.30152342
https://doi.org/10.1086/physzool.38.1.30152342
https://doi.org/10.1086/physzool.66.5.30163826
https://doi.org/10.1002/(SICI)1097-4687(200003)243:3<283::AID-JMOR5>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1097-4687(200003)243:3<283::AID-JMOR5>3.0.CO;2-B
https://doi.org/10.1007/BF00692729
https://doi.org/10.3389/fphys.2019.01405
https://doi.org/10.1073/pnas.85.6.1727
https://doi.org/10.1073/pnas.85.6.1727
https://doi.org/10.1152/ajpregu.00701.2010
https://doi.org/10.1111/1365-2435.13274
https://doi.org/10.1086/678956
https://doi.org/10.18103/ibr.v0i1.58
https://doi.org/10.1152/ajpregu.1986.250.1.R89
https://doi.org/10.1016/S0022-5193(88)80060-2
https://doi.org/10.1073/pnas.1805123115
https://doi.org/10.1098/rspb.2014.1097
https://doi.org/10.1098/rspb.2014.1097

Sabat et al.

Metabolic Water in Passerine Birds

for reporting animal research. PLoS Biol. 8:21000412. doi: 10.1371/journal.
pbio.1000412

Kohn, M. J. (1996). Predicting animal 180: accounting for diet and physiological
adaptation. Geochim. Cosmochim. Acta 60, 4811-4829. doi: 10.1016/
S0016-7037(96)00240-2

Landais, A., Barkan, E., Yakir, D., and Luz, B. (2006). The triple isotopic
composition of oxygen in leaf water. Geochim. Cosmochim. Acta 70,
4105-4115. doi: 10.1016/j.gca.2006.06.1545

LeGrande, A. N., and Schmidt, G. A. (2006). Global gridded data set of the
oxygen isotopic composition in seawater. Geophys. Res. Lett. 33:L12604. doi:
10.1029/2006GL026011

Li, S., Levin, N. E., and Chesson, L. A. (2015). Continental scale variation in
170-excess of meteoric waters in the United States. Geochim. Cosmochim.
Acta 164, 110-126. doi: 10.1016/j.gca.2015.04.047

Li, S., Levin, N. E., Soderberg, K., Dennis, K. J., and Caylor, K. K. (2017).
Triple oxygen isotope composition of leaf waters in Mpala, Central Kenya.
Earth Planet. Sci. Lett. 468, 38-50. doi: 10.1016/j.epsl.2017.02.015

Li, H,, Yu, C., Wang, E, Chang, S. ], Yao, J., and Blake, R. E. (2016). Probing
the metabolic water contribution to intracellular water using oxygen isotope
ratios of PO4. Proc. Natl. Acad. Sci. U. S. A. 113, 5862-5867. doi: 10.1073/
pnas.1521038113

Liang, M.-C., Irion, E W.,, Weibel, J. D., Miller, C. E., Blake, G. A., and
Yung, Y. L. (2006). Isotopic composition of stratospheric ozone. J. Geophys.
Res. 111:D02302. doi: 10.1029/2005]D006342

Lide, D. R. (2001). CRC Handbook of Chemistry and Physics. Boca Raton, FL:
CRC press.

Lighton, J. R. B. (2018). “Flow-through Respirometry: The equations,” in Measuring
Metabolic Rates (Oxford: Oxford University Press), 94-100.

MacMillen, R. E. (1990). Water economy of Granivorous birds: a predictive
model. Condor 92, 379-392. doi: 10.2307/1368235

MacMillen, R. E., and Hinds, D. S. (1983). Water regulatory efficiency in
Heteromyid rodents: a model and its application. Ecology 64, 152-164. doi:
10.2307/1937337

Maldonado, K. E., Cavieres, G., Veloso, C., Canals, M., and Sabat, P. (2009). Physiological
responses in rufous-collared sparrows to thermal acclimation and seasonal
acclimatization. J. Comp. Physiol. 179, 335-343. doi: 10.1007/s00360-008-0317-1

McCarty, J. P. (2001). Ecological consequences of recent climate change. Conserv.
Biol. 15, 320-331. doi: 10.1046/j.1523-1739.2001.015002320.x

McKechnie, A. E., Smit, B., Whitfield, M. C., and Noakes, M. J., Talbot, W. A.,
Garcia, M., et al. (2016). Avian thermoregulation in the heat: evaporative
cooling capacity in an archetypal desert specialist, Burchell's sandgrouse
(Pterocles burchelli). J. Exp. Biol. 219, 2137-2144. doi:10.1242/jeb.
139733.

McKechnie, A. E., and Wolf, B. O. (2004). The allometry of avian basal metabolic
rate: good predictions need good data. Physiol. Biochem. Zool. 77, 502-521.
doi: 10.1086/383511

McKechnie, A. E., and Wolf, B. O. (2010). Climate change increases the likelihood
of catastrophic avian mortality events during extreme heat waves. Biol. Lett.
6, 253-256. doi: 10.1098/rsb1.2009.0702

McNab, B. K. (2002). Short-term energy conservation in endotherms in relation
to body mass, habits, and environment. J. Therm. Biol. 27, 459-466. doi:
10.1016/S0306-4565(02)00016-5

McWhorter, T. J., Gerson, A. R., Talbot, W. A., Smith, E. K., McKechnie, A. E.,
and Wolf, B. O. (2018). Avian thermoregulation in the heat: evaporative
cooling capacity and thermal tolerance in two Australian parrots. J. Exp.
Biol. 221:jeb168930. doi: 10.1242/jeb.168930

Morrison, S. D. (1953). A method for the calculation of metabolic water.
J. Physiol. 122, 399-402. doi: 10.1113/jphysiol.1953.5p005009

Navarro, R. A., Meijer, H. A. J,, Underhill, L. G., and Mullers, R. H. E. (2018).
Extreme water efficiency of cape gannet Morus capensis chicks as an adaptation
to water scarcity and heat stress in the breeding colony. Mar. Freshw. Behav.
Physiol. 51, 30-43. doi: 10.1080/10236244.2018.1442176

Ostrowski, S., Williams, J. B., Bedin, E., and Ismail, K. (2002). Water influx and
food consumption of free-living oryxes (Oryx leucoryx) in the arabian desert
in summer. J. Mammal. 83, 665-673. doi: 10.1644/1545-1542(2002)083<0665:W1
AFCO0>2.0.CO;2

Passey, B. H., and Ji, H. (2019). Triple oxygen isotope signatures of evaporation
in lake waters and carbonates: a case study from the western United States.
Earth Planet. Sci. Lett. 518, 1-12. doi: 10.1016/j.epsl.2019.04.026

Passey, B. H., and Levin, N. E. (2021). Triple oxygen isotopes in meteoric
waters, carbonates, and biological apatites: implications for continental
paleoclimate reconstruction. Rev. Mineral. Geochem. 86, 429-462. doi: 10.2138/
rmg.2021.86.13

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and Team, R. C. (2013). nlme:
Linear and nonlinear mixed effects models. R Packag. version 3, 111.

R Development Core Team (2013). R: a language and environment for
statistical computing.

Remes, V., and Harméckovd, L. (2018). Disentangling direct and indirect effects
of water availability, vegetation, and topography on avian diversity. Sci. Rep.
8:15475. doi: 10.1038/541598-018-33671-w

Riddell, E. A., Iknayan, K. J., Hargrove, L., Tremor, S., Patton, J. L., Ramirez, R,
et al. (2021). Exposure to climate change drives stability or collapse of
desert mammal and bird communities. Science 371, 633-636. doi: 10.1126/
science.abd4605

Rutkowska, J., Sadowska, E. T., Cichon, M., and Bauchinger, U. (2016). Increased
fat catabolism sustains water balance during fasting in zebra finches. J. Exp.
Biol. 219, 2623-2628. doi: 10.1242/jeb.138966

Sabat, P, Cavieres, G., Veloso, C., and Canals, M. (2006a). Water and energy
economy of an omnivorous bird: population differences in the rufous-collared
sparrow (Zonotrichia capensis). Comp. Biochem. Physiol. - A Mol. Integr.
Physiol. 144, 485-490. doi: 10.1016/j.cbpa.2006.04.016

Sabat, P, and del Rio, C. M. (2002). Inter- and intraspecific variation in the
use of marine food resources by three Cinclodes (Furnariidae, Aves) species:
carbon isotopes and osmoregulatory physiology. Zoology 105, 247-256. doi:
10.1078/0944-2006-00078

Sabat, P., Gonzalez-Vejares, S., and Maldonado, K. (2009). Diet and habitat
aridity affect osmoregulatory physiology: an intraspecific field study along
environmental gradients in the rufous-collared sparrow. Comp. Biochem.
Physiol. Part A Mol. Integr. Physiol. 152, 322-326. doi: 10.1016/j.
cbpa.2008.11.003

Sabat, P,, Maldonado, K., Farifia, J. M., and Del Rio, C. M. (2006b). Osmoregulatory
capacity and the ability to use marine food sources in two coastal songbirds
(Cinclodes: Furnariidae) along a latitudinal gradient. Oecologia 148, 250-257.
doi: 10.1007/s00442-006-0377-4

Schmidt-Nielsen, K. (1997). Animal Physiology: Adaptation and Environment.
New York: Cambridge University Press.

Schoenemann, S. W.,, Schauer, A. J., and Steig, E. ]. (2013). Measurement of
SLAP2 and GISP 8170 and proposed VSMOW-SLAP normalization for
8170 and 17Oexcess. Rapid Commun. Mass Spectrom. 27, 582-590. doi:
10.1002/rcm.6486

Sekercioglu, C. H., Primack, R. B., and Wormworth, J. (2012). The effects of
climate change on tropical birds. Biol. Conserv. 148, 1-18. doi: 10.1016/j.
biocon.2011.10.019

Sharp, Z. D., Gibbons, J. A., Maltsev, O., Atudorei, V., Pack, A., Sengupta, S.,
et al. (2016). A calibration of the triple oxygen isotope fractionation in the
SiO,-H,0O system and applications to natural samples. Geochim. Cosmochim.
Acta 186, 105-119. doi: 10.1016/j.gca.2016.04.047

Sharp, Z. D., Wostbrock, J. A. G., and Pack, A. (2018). Mass-dependent triple
oxygen isotope variations in terrestrial materials. Geochem. Perspect. Lett 7,
27-31. doi: 10.7185/geochemlet.1815

Smit, B., and Mckechnie, A. E. (2015). Water and energy fluxes during summer
in an arid-zone passerine bird. Ibis 157, 774-786. doi: 10.1111/ibi.12284

Smit, B., Woodborne, S., Wolf, B. O., and McKechnie, A. E. (2019). Differences
in the use of surface water resources by desert birds are revealed using
isotopic tracers. Auk Ornithol. Adv. 136:uky005. doi: 10.1093/auk/uky005

Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E., and Wolf, B. O.
(2017). Avian thermoregulation in the heat: resting metabolism, evaporative
cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220,
3290-3300. doi: 10.1242/jeb.161141

Speakman, J., and Racey, P. A. (1987). The equilibrium concentration of
oxygen-18 in body water: implications for the accuracy of the doubly-
labelled water technique and a potential new method of measuring RQ
in free-living animals. J. Theor. Biol. 127, 79-95. doi: 10.1016/
$0022-5193(87)80162-5

Tapia-Monsalve, R., Newsome, S. D., Sanchez-Hernandez, J. C., Bozinovic, F,
Nespolo, R., and Sabat, P. (2018). Terrestrial birds in coastal environments:
metabolic rate and oxidative status varies with the use of marine resources.
Oecologia 188, 65-73. doi: 10.1007/s00442-018-4181-8

Frontiers in Physiology | www.frontiersin.org

11

September 2021 | Volume 12 | Article 710026


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1371/journal.pbio.1000412
https://doi.org/10.1371/journal.pbio.1000412
https://doi.org/10.1016/S0016-7037(96)00240-2
https://doi.org/10.1016/S0016-7037(96)00240-2
https://doi.org/10.1016/j.gca.2006.06.1545
https://doi.org/10.1029/2006GL026011
https://doi.org/10.1016/j.gca.2015.04.047
https://doi.org/10.1016/j.epsl.2017.02.015
https://doi.org/10.1073/pnas.1521038113
https://doi.org/10.1073/pnas.1521038113
https://doi.org/10.1029/2005JD006342
https://doi.org/10.2307/1368235
https://doi.org/10.2307/1937337
https://doi.org/10.1007/s00360-008-0317-1
https://doi.org/10.1046/j.1523-1739.2001.015002320.x
https://doi.org/10.1242/jeb.139733
https://doi.org/10.1242/jeb.139733
https://doi.org/10.1086/383511
https://doi.org/10.1098/rsbl.2009.0702
https://doi.org/10.1016/S0306-4565(02)00016-5
https://doi.org/10.1242/jeb.168930
https://doi.org/10.1113/jphysiol.1953.sp005009
https://doi.org/10.1080/10236244.2018.1442176
https://doi.org/10.1644/1545-1542(2002)083<0665:WIAFCO>2.0.CO;2
https://doi.org/10.1644/1545-1542(2002)083<0665:WIAFCO>2.0.CO;2
https://doi.org/10.1016/j.epsl.2019.04.026
https://doi.org/10.2138/rmg.2021.86.13
https://doi.org/10.2138/rmg.2021.86.13
https://doi.org/10.1038/s41598-018-33671-w
https://doi.org/10.1126/science.abd4605
https://doi.org/10.1126/science.abd4605
https://doi.org/10.1242/jeb.138966
https://doi.org/10.1016/j.cbpa.2006.04.016
https://doi.org/10.1078/0944-2006-00078
https://doi.org/10.1016/j.cbpa.2008.11.003
https://doi.org/10.1016/j.cbpa.2008.11.003
https://doi.org/10.1007/s00442-006-0377-4
https://doi.org/10.1002/rcm.6486
https://doi.org/10.1016/j.biocon.2011.10.019
https://doi.org/10.1016/j.biocon.2011.10.019
https://doi.org/10.1016/j.gca.2016.04.047
https://doi.org/10.7185/geochemlet.1815
https://doi.org/10.1111/ibi.12284
https://doi.org/10.1093/auk/uky005
https://doi.org/10.1242/jeb.161141
https://doi.org/10.1016/S0022-5193(87)80162-5
https://doi.org/10.1016/S0022-5193(87)80162-5
https://doi.org/10.1007/s00442-018-4181-8

Sabat et al.

Metabolic Water in Passerine Birds

Tieleman, B. I, Williams, J. B., and Buschur, M. E. (2002). Physiological
adjustments to arid and Mesic environments in larks (Alaudidae). Physiol.
Biochem. Zool. 75, 305-313. doi: 10.1086/341998

Vale, C. G., and Brito, J. C. (2015). Desert-adapted species are vulnerable to
climate change: insights from the warmest region on earth. Global Ecol.
Conserv. 4, 369-379. doi: 10.1016/j.gecco.2015.07.012

Walther, G.-R., Post, E., Convey, P, Menzel, A., Parmesan, C., Beebee,
T. J. C, et al. (2002). Ecological responses to recent climate change. Nature
416, 389-395. doi: 10.1038/416389%a

Whiteman, J. P, Sharp, Z. D., Gerson, A. R., and Newsome, S. D. (2019).
Relating A170 values of animal body water to exogenous water inputs and
metabolism. Bioscience 69, 658-668. doi: 10.1093/biosci/biz055

Williams, J. B. (2001). Energy expenditure and water flux of free-living dune
larks in the Namib: a test of the reallocation hypothesis on a desert bird.
Funct. Ecol. 15, 175-185. doi: 10.1046/j.1365-2435.2001.00512.x

Williams, J. B., Siegfried, W. R, Milton, S. J., Adams, N. J., Dean, W. R. ],
du Plessis, M. A., et al. (1993). Field metabolism, water requirements, and
foraging behavior of wild ostriches in the Namib. Ecology 74, 390-404. doi:
10.2307/1939301

Williams, J. B., and Tieleman, B. I. (2000). Flexibility in basal metabolic rate
and evaporative water loss among hoopoe larks exposed to different
environmental temperatures. J. Exp. Biol. 203, 3153-3159.

Williams, J. B., and Tieleman, B. I. (2005). Physiological adaptation in desert
birds. Bioscience 55, 416-425. doi: 10.1641/0006-3568(2005)055[0416:PAIDB]2
.0.CO;2

Wostbrock, J. A. G., Cano, E. J., and Sharp, Z. D. (2020). An internally consistent
triple oxygen isotope calibration of standards for silicates, carbonates and
air relative to VSMOW2 and SLAP2. Chem. Geol. 533:119432. doi: 10.1016/j.
chemgeo.2019.119432

Zuur, A., ITeno, E. N., Walker, N., Saveliev, A. A, and Smith, G. M. (2009).
Mixed Effects Models and Extensions in Ecology with R New York: Springer
Science and Business Media.

Conflict of Interest: The authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made by its manufacturer, is
not guaranteed or endorsed by the publisher.

Copyright © 2021 Sabat, Newsome, Pinochet, Nespolo, Sanchez-Hernandez, Maldonado,
Gerson, Sharp and Whiteman. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org

12

September 2021 | Volume 12 | Article 710026


https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://doi.org/10.1086/341998
https://doi.org/10.1016/j.gecco.2015.07.012
https://doi.org/10.1038/416389a
https://doi.org/10.1093/biosci/biz055
https://doi.org/10.1046/j.1365-2435.2001.00512.x
https://doi.org/10.2307/1939301
https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2
https://doi.org/10.1641/0006-3568(2005)055[0416:PAIDB]2.0.CO;2
https://doi.org/10.1016/j.chemgeo.2019.119432
https://doi.org/10.1016/j.chemgeo.2019.119432
http://creativecommons.org/licenses/by/4.0/

	Triple Oxygen Isotope Measurements (Δ' 17 O) of Body Water Reflect Water Intake, Metabolism, and δ 18 O of Ingested Water in Passerines
	Introduction
	Materials and Methods
	Sample Collection
	Metabolic Water Analysis
	Metabolic Rates and Total Evaporative Water Loss
	Statistical Analysis

	Results
	Physiological Data of Captive Sparrows
	Oxygen Isotopes

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material

	References

