


Instead, it explicitly references the attributes Worldwide Gross and
Genre through ‘gross’ and ‘genres’, and implicitly refers to the Creative
Type through the values ‘science fiction’ and ‘fantasy’. Furthermore,
by specifying data values for the Creative Type attribute and the word
‘average,’ the query also mentions two intended analytic tasks: Filtering
and computing Derived Values, respectively. This second query is
more challenging since it requires the system to implicitly infer one of
the attributes and then determine the visualization type based on the
identified attributes and tasks.

Finally, the third query “Visualize rating and budget” (Figure 1c) is
even more challenging to interpret since it neither explicitly states the
desired visualization type nor the intended analytic task. Furthermore,
while it explicitly references one attribute (Production Budget through
‘budget’), the reference to the second attribute is ambiguous (‘rating’
can map to IMDB Rating, Content Rating, or Rotten Tomatoes Rating).

To accommodate such query variations, visualization NLIs employ
sophisticated NLP techniques (e.g., dependency parsing, semantic word
matching) to identify relevant information from the query and build
upon visualization concepts (e.g., analytic tasks) and design principles
(e.g., choosing graphical encodings based on attribute types) to generate
appropriate visualizations. For instance, given the query in Figure 1b,
after detecting the data attributes and analytic tasks, a visualization
NLI should select a visualization (e.g., bar chart) that is well-suited to
support the task of displaying Derived Values (average) for Worldwide
Gross (a quantitative attribute) across different Genres (a nominal
attribute). Similarly, in the scenario in Figure 1c, a NLI must first detect
ambiguities in the input query attributes, determine the visualizations
suited to present those attribute combinations (e.g., scatterplot for two
quantitative attributes), and ultimately infer the analytic tasks based
on those attributes and visualizations (e.g., a scatterplot may imply the
user is interested in finding correlations).

To support prototyping NLIs for data visualization, we contribute the
Natural Language-Driven Data Visualization (NL4DV) toolkit. NL4DV
is a Python package that developers can initialize with a tabular dataset.
Once initialized, NL4DV processes subsequent NL queries about the
dataset, inferring data attributes and analytic tasks from those queries.
Additionally, using built-in mappings between attributes, tasks, and
visualizations, NL4DV also returns an ordered list of Vega-Lite spec-
ifications relevant to those queries. By providing a high-level API to
translate NL queries to visualizations, NL4DV abstracts out the core
task of interpreting NL queries and provides task-based visualization
recommendations as plug-and-play functionality. Using NL4DV, de-
velopers can create new visualization NLIs as well as incorporate NL
querying capabilities into their existing visualization systems.

In this paper, we discuss NL4DV’s design goals and describe how
the toolkit infers data attributes, analytic tasks, and visualization spec-
ifications from NL queries. Furthermore, we formalize the inferred
information into a JSON-based analytic specification that can be pro-
grammatically parsed by visualization developers. Finally, through
example applications, we showcase how this formalization can help:
1) implement visualization NLIs from scratch, 2) incorporate NL in-
put into an existing visualization system, and 3) support visualization
specification in data science programming environments.

To support development of future systems, we also provide NL4DV
and the described applications as open-source software available at:
https://nl4dv.github.io/nl4dv/

2 RELATED WORK

2.1 Natural Language Interfaces for Data Visualization

In 2001, Cox et al. [10] presented an initial prototype of a NLI that
supported using well-structured commands to specify visualizations.
Since then, given the advent of NL understanding technology and NLIs
for databases (e.g., [4,17,20,29,39,40,60,71]), there has been a surge of
NLIs for data visualization [13,22,24,25,27,46,47,49,50,52,54,69], es-
pecially in recent years. Srinivasan and Stasko [51] summarize a subset
of these NLIs, characterizing systems based on their supported capa-
bilities including visualization-focused capabilities (e.g., specifying or
interacting with visualizations), data-focused capabilities (e.g., com-
putationally answering questions about a dataset), and system control-

focused capabilities (e.g., augmenting graphical user interface actions
like moving windows with NL). Along these lines, NL4DV’s current
focus is primarily to support visualization specification. With this scope
in mind, below we highlight systems that serve as the motivation for
NL4DV’s development and are most relevant to our work.

Articulate [54] is a visualization NLI that allows people to generate
visualizations by deriving mappings between tasks and data attributes in
user queries. DataTone [13] uses a combination of lexical, constituency,
and dependency parsing to let people specify visualizations through NL.
Furthermore, detecting ambiguities in the input query, DataTone lever-
ages mixed-initiative interaction to resolve these ambiguities through
GUI widgets such as dropdown menus. FlowSense [69] uses seman-
tic parsing techniques to support NL interaction within a dataflow
system, allowing people to specify and connect components without
learning the intricacies of operating a dataflow system. Eviza [46]
incorporates a probabilistic grammar-based approach and a finite state
machine to allow people to interact with a given visualization. Ex-
tending Eviza’s capabilities and incorporating additional pragmatics
concepts, Evizeon [22] allows both specifying and interacting with
visualizations through standalone and follow-up utterances. The ideas
in Eviza and Evizeon were also used to design the Ask Data feature in
Tableau [55]. Ask Data internally uses Arklang [47], an intermediate
language developed to describe NL queries in a structured format that
Tableau’s VizQL [53] can parse to generate visualizations.

The aforementioned systems all present different interfaces and ca-
pabilities, supporting NL interaction through grammar- and/or lexical-
parsing techniques. A commonality in their underlying NLP pipeline,
however, is the use of data attributes and analytic tasks (e.g., correlation,
distribution) to determine user intent for generating the system response.
Building upon this central observation and prior system implementa-
tions (e.g., string similarity metrics and thresholds [13, 46, 52], parsing
rules [13, 25, 69]), NL4DV uses a combination of lexical and depen-
dency parsing-based techniques to infer attributes and tasks from NL
queries. However, unlike previous systems that implement custom NLP
engines and languages that translate NL queries into system actions,
we develop NL4DV as an interface-agnostic toolkit. In doing so, we
formalize attributes and tasks inferred from a NL query into a structured
JSON object that can be programmatically parsed by developers.

2.2 Visualization Toolkits and Grammars

Fundamentally, our research falls under the broad category of user inter-
face toolkits [28, 37, 38]. As such, instead of presenting a single novel
technique or interface, we place emphasis on reducing development
viscosity, lowering development skill barriers, and enabling replication
and creative exploration. Within visualization research, there exist a
number of visualization toolkits with similar goals that particularly
focus on easing development effort for specifying and rendering visual-
izations. Examples of such toolkits include Prefuse [19], Protovis [5],
and D3 [6]. With the advent of visualizations on alternative platforms
like mobile devices and AR/VR, a new range of toolkits are also being
created to assist visualization development on these contemporary plat-
forms. For instance, EasyPZ.js [45] supports incorporating navigation
techniques (pan and zoom) in web-based visualizations across both
desktops and mobile devices. Toolkits like DXR [48] enable develop-
ment of expressive and interactive visualizations in Unity [57] that can
be deployed in AR/VR environments. NL4DV extends this line of work
on toolkits for new modalities and platforms by making it easier for
visualization system developers to interpret NL queries without having
to learn or implement NLP techniques.

Besides toolkits that aid programmatically creating visualizations,
researchers have also formulated visualization grammars that provide
a high-level abstraction for building visualizations to reduce software
engineering know-how [18]. Along these lines, based on the Grammar
of Graphics [62], more recently developed visualization grammars
such as Vega [44] and Vega-Lite [43] support visualization design
through declarative specifications, enabling rapid visualization design
and prototyping. NL4DV’s primary goal is to return visualizations
in response to NL queries. To enable this, in addition to a structured
representation of attributes and tasks inferred from a query, NL4DV

2









if a task was stated explicitly (e.g., through keywords) or derived
implicitly (e.g., if a query requests for a line chart, a trend task may
be implied) and parameters to apply when executing a task. These
include the attributes a task maps to, the operator to be used (e.g.,
GT, EQ, AVG, SUM), and values. If there are ambiguities in task
parameters (e.g., the word ‘fiction’ may refer to the values ‘Science
Fiction,’ ‘Contemporary Fiction,’ ‘Historical Fiction’), NL4DV adds
additional fields (e.g., isValueAmbiguous=true) to highlight them
(DG3). In addition to the tasks themselves, this structuring of the
taskMap allows developers to detect: (1) the parameters needed to
execute a task (attributes, operator, values), (2) operator- and
value-level ambiguities (e.g., isValueAmbiguous), and (3) if the task
was stated explicitly or implicitly (inferenceType).

Consider the taskMap (Figure 5c) for the query in Figure 3. Using
the dependency tree in Figure 5a, NL4DV infers that the word ‘relation-
ship’ maps to the Correlation task and links to the tokens ‘budget’ and
‘rating’ which are in-turn linked by the conjunction term ‘and.’ Next,
referring back to the attributeMap, NL4DV maps the words ‘budget’
and ‘rating’ to their respective data attributes, adding three objects
corresponding to correlations between the attributes [Production
Budget, IMDB Rating], [Production Budget, Content Rating], and
[Production Budget, Rotten Tomatoes Rating] to the correlation task.
Leveraging the tokens ‘Action’ and ‘Adventure’, NL4DV also infers
that the query refers to a Filter task on the attribute Genre, where
the values are in the list (IN) [Action, Adventure]. Lastly, using the
dependencies between tokens in the phrase ‘gross over 100M,’ NL4DV
adds an object with the attributeWorldwide Gross, the greater than
(GT) operator, and 100000000 in the values field. While populating
filter tasks, NL4DV also updates the corresponding attributes in the
attributeMap with the key encode=False (Figure 5b). This helps
developers detect that an attribute is used for filtering and is not visually
encoded in the recommended charts.

4.2.4 Visualization Generation

NL4DV uses Vega-Lite as the underlying visualization grammar. The
toolkit currently supports the Vega-Lite marks: bar, tick, line, area,
point, arc, boxplot, text and encodings: x, y, color, size, column, row,
theta to visualize up to three attributes at a time. This combination
of marks and encodings allows NL4DV to support a range of com-
mon visualization types including histograms, strip plots, bar charts
(including stacked and grouped bar charts), line and area charts, pie
charts, scatterplots, box plots, and heatmaps. To determine visualiza-
tions relevant to the input query, NL4DV checks the query for explicit
requests for visualization types (e.g., Figure 1a) or implicitly infers
visualizations from attributes and tasks (e.g., Figures 1b, 1c, and 3).

Explicit visualization requests are identified by comparing query
N-grams to a predefined list of visualization keywords (e.g., ‘scatter-
plot’, ‘histogram’, ‘bar chart’). For instance, the query in Figure 1a
specifies the visualization type through the token ‘histogram,’ leading
to NL4DV setting bar as the mark type and binned IMDB Rating as
the x encoding in the underlying Vega-Lite specification.

To implicitly determine visualizations, NL4DV uses a combination
of the attributes and tasks inferred from the query. NL4DV starts
by listing all possible visualizations using the detected attributes by
applying well-known mappings between attributes and visualizations
(Table 1). These mappings are preconfigured within NL4DV based on
heuristics used in prior systems like Show Me [32] and Voyager [64,
66]. As stated earlier, when generating visualizations from attributes,
NL4DV does not visually encode the attributes used as filters. Instead,
filter attributes are added as a filter transform in Vega-Lite. Doing
so helps avoid a combinatorial explosion of attributes when a query
includes multiple filters (e.g., including the filter attributes for the query
in Figure 3 would require generating visualizations that encode four
attributes instead of two).

Besides attributes, if tasks are explicitly stated in the query, NL4DV
uses them as an additional metric to modify, prune, and/or rank the
generated visualizations. Consider the query in Figure 3. Similar to
the query in Figure 1c, if only attributes were used to determine the
charts, NL4DV would output two scatterplots (for QxQ) and one bar

Attributes

(x, y, color/size/row/column)
Visualizations Task

Q x Q x {N, O, Q, T} Scatterplot Correlation

N, O x Q x {N, O, Q, T} Bar Chart Derived Value

Q, N, O x {N, O, Q, T} x {Q}
Strip Plot, Histogram,
Bar Chart, Heatmap

Distribution

T x {Q} x {N, O} Line Chart Trend

Table 1: Attribute (+encodings), visualization, and task mappings pre-
configured in NL4DV. Attributes in curly brackets {are optional}. Note
that these defaults can be overridden via explicit queries. For instance,
“Show average gross across genres as a scatterplot” will create a scat-
terplot instead of a bar chart with Genre on the x- and AVG(Worldwide
Gross) on the y-axis. For unsupported attribute combinations and tasks,
NL4DV resorts to a table-like view created using Vega-Lite’s text mark.

chart (for NxQ). However, since the query contains the token ‘relation-
ship,’ which maps to a Correlation task, NL4DV enforces a scatterplot
as the chart type, setting the mark in the Vega-Lite specifications to
point. Furthermore, because correlations are more apparent in QxQ
charts, NL4DV also ranks the two QxQ charts higher, returning the
three visualization specifications shown in Figure 5d. These Task x Vi-
sualization mappings (Table 1) are configured within NL4DV based on
prior visualization systems [8, 14, 36] and studies [26, 42].

NL4DV complies the inferred visualizations into a visList (Fig-
ure 5d). Each object in this list is composed of a vlSpec contain-
ing the Vega-Lite specification for a chart, an inferenceType field to
highlight if a visualization was requested explicitly or implicitly in-
ferred by NL4DV, and a list of attributes and tasks that a visualization
maps to. Developers can use the visList to directly render visual-
izations in their systems (via the vlSpec). Alternatively, ignoring the
visList, developers can also extract only attributes and tasks using
the attributeMap and taskMap, and feed them as input to other
visualization recommendation engines (e.g., [30, 65]) (DG2).

4.2.5 Implicit Task Inference

When the input query lacks explicit keywords referring to analytic tasks,
NL4DV first checks if the query requests for a specific visualization
type. If so, the toolkit uses mappings between Visualizations x Tasks
in Table 1 to infer tasks (e.g., distribution for a histogram, trend for a
line chart, correlation for a scatterplot).

Alternatively, if the query only mentions attributes, NL4DV first lists
possible visualizations based on those attributes. Then, using the in-
ferred visualizations, the toolkit implicitly infers tasks (again leveraging
the Visualization x Task mappings in Table 1). Consider the example
in Figure 1c. In this case, the tasks Correlation and Derived Value are
inferred based on the two scatterplots and one bar chart generated using
the attribute combinations QxQ and NxQ, respectively. In such cases
where the tasks are implicitly inferred through visualizations, NL4DV
also sets their inferenceType in the taskMap to implicit.

5 EXAMPLE APPLICATIONS

5.1 Using NL4DV in Jupyter Notebook

Since NL4DV generates Vega-Lite specifications, in environments that
support rendering Vega-Lite charts, the toolkit can be used to create
visualizations through NL in Python. Specifically, NL4DV provides a
wrapper function render vis(query) that automatically renders the first

visualization in the visList. By rendering visualizations in response
to NL queries in environments like Jupyter Notebook, NL4DV en-
ables novice Python data scientists and programmers to conduct visual
analysis without needing to learn about visualization design or Python
visualization packages (e.g., Matplotlib, Plotly). Figure 6 shows an
instance of a Jupyter Notebook demonstrating the use of NL4DV to
create visualizations for a cars dataset. For the first query “Create a
boxplot of acceleration,” detecting an explicit visualization request,
NL4DV renders a box plot showing values for the attribute Accelera-
tion. For the second query “Visualize horsepower mpg and cylinders”,

6









REFERENCES

[1] R. Amar, J. Eagan, and J. Stasko. Low-level components of analytic

activity in information visualization. In Proceedings of IEEE InfoVis, pp.

111–117, 2005.

[2] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase

from question-answer pairs. In Proceedings of the EMNLP, pp. 1533–1544.

ACL, 2013.

[3] J. Berant and P. Liang. Semantic parsing via paraphrasing. In Proceedings

of the 52nd Annual Meeting of the ACL (Volume 1: Long Papers), pp.

1415–1425, 2014.

[4] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger. Soda:

Generating sql for business users. Proceedings of the VLDB Endowment,

5(10):932–943, 2012.

[5] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE Transactions on Visualization and Computer Graphics, 15(6):1121–

1128, 2009.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: data-driven documents. IEEE

Transactions on Visualization and Computer Graphics, 17(12):2301–2309,

2011.

[7] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models

are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[8] S. M. Casner. Task-analytic approach to the automated design of graphic

presentations. ACM Transactions on Graphics (ToG), 10(2):111–151,

1991.

[9] Y. Chen, J. Yang, and W. Ribarsky. Toward effective insight management

in visual analytics systems. In Proceedings of IEEE PacificVis, pp. 49–56,

2009.

[10] K. Cox, R. E. Grinter, S. L. Hibino, L. J. Jagadeesan, and D. Mantilla.

A multi-modal natural language interface to an information visualization

environment. International Journal of Speech Technology, 4(3-4):297–314,

2001.

[11] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local in-

formation into information extraction systems by gibbs sampling. In

Proceedings of ACL, pp. 363–370, 2005.

[12] Flask. https://palletsprojects.com/p/flask/.

[13] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. DataTone:

Managing ambiguity in natural language interfaces for data visualization.

In Proceedings of ACM UIST, pp. 489–500, 2015.

[14] D. Gotz and Z. Wen. Behavior-driven visualization recommendation. In

Proceedings of ACM IUI, pp. 315–324, 2009.

[15] B. J. Grosz and C. L. Sidner. Attention, intentions, and the structure of

discourse. Computational linguistics, 12(3):175–204, 1986.

[16] B. J. Grosz, S. Weinstein, and A. K. Joshi. Centering: A framework for

modeling the local coherence of discourse. Computational linguistics,

21(2):203–225, 1995.

[17] P. He, Y. Mao, K. Chakrabarti, and W. Chen. X-SQL: reinforce schema

representation with context. arXiv preprint arXiv:1908.08113, 2019.

[18] J. Heer and M. Bostock. Declarative language design for interactive

visualization. IEEE Transactions on Visualization and Computer Graphics,

16(6):1149–1156, 2010.

[19] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive

information visualization. In Proceedings of ACM CHI, pp. 421–430,

2005.

[20] J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. M. Eisenschlos.

TAPAS: Weakly Supervised Table Parsing via Pre-training. arXiv preprint

arXiv:2004.02349, 2020.

[21] M. Honnibal and I. Montani. spacy 2: Natural language understanding

with bloom embeddings. Convolutional Neural Networks and Incremental

Parsing, 2017.

[22] E. Hoque, V. Setlur, M. Tory, and I. Dykeman. Applying pragmatics

principles for interaction with visual analytics. IEEE Transactions on

Visualization and Computer Graphics, 24(1):309–318, 2018.

[23] M. Hulsebos, K. Hu, M. Bakker, E. Zgraggen, A. Satyanarayan, T. Kraska,

c. Demiralp, and C. Hidalgo. Sherlock: A deep learning approach to

semantic data type detection. In Proceedings of SIGKDD. ACM, 2019.

[24] J.-F. Kassel and M. Rohs. Valletto: A multimodal interface for ubiquitous

visual analytics. In ACM CHI ’18 Extended Abstracts, 2018.

[25] D. H. Kim, E. Hoque, and M. Agrawala. Answering questions about

charts and generating visual explanations. In Proceedings of ACM CHI,

pp. :1–:13, 2020.

[26] Y. Kim and J. Heer. Assessing effects of task and data distribution on the

effectiveness of visual encodings. In Computer Graphics Forum, vol. 37,

pp. 157–167. Wiley Online Library, 2018.

[27] A. Kumar, J. Aurisano, B. Di Eugenio, A. Johnson, A. Gonzalez, and

J. Leigh. Towards a dialogue system that supports rich visualizations of

data. In Proceedings of the SIGDIAL, pp. 304–309, 2016.

[28] D. Ledo, S. Houben, J. Vermeulen, N. Marquardt, L. Oehlberg, and

S. Greenberg. Evaluation strategies for hci toolkit research. In Proceedings

of ACM CHI, pp. 1–17, 2018.

[29] F. Li and H. V. Jagadish. NaLIR: an interactive natural language interface

for querying relational databases. In Proceedings of the ACM SIGMOD,

pp. 709–712, 2014.

[30] H. Lin, D. Moritz, and J. Heer. Dziban: Balancing agency & automation

in visualization design via anchored recommendations. In Proceedings of

ACM CHI, pp. 751:1–751:12, 2020.

[31] E. Loper and S. Bird. NLTK: The natural language toolkit. In Proceedings

of ACL Workshop on Effective Tools and Methodologies for Teaching

Natural Language Processing and Computational Linguistics, pp. 63–70,

2002.

[32] J. Mackinlay, P. Hanrahan, and C. Stolte. Show Me: Automatic presenta-

tion for visual analysis. IEEE Transactions on Visualization and Computer

Graphics, 13(6):1137–1144, 2007.

[33] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and

D. McClosky. The Stanford CoreNLP natural language processing toolkit.

In Proceedings of ACL: System Demonstrations, pp. 55–60, 2014.

[34] Microsoft Power BI. https://powerbi.microsoft.com/en-us.

[35] G. A. Miller. WordNet: a lexical database for english. Communications of

the ACM, 38(11):39–41, 1995.

[36] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, and

J. Heer. Formalizing visualization design knowledge as constraints: Ac-

tionable and extensible models in draco. IEEE Transactions on Visualiza-

tion and Computer Graphics, 25(1):438–448, 2018.

[37] B. Myers, S. E. Hudson, and R. Pausch. Past, present, and future of

user interface software tools. ACM Transactions on Computer-Human

Interaction, 7(1):3–28, 2000.

[38] D. R. Olsen Jr. Evaluating user interface systems research. In Proceedings

of ACM UIST, pp. 251–258, 2007.

[39] P. Pasupat and P. Liang. Compositional semantic parsing on semi-

structured tables. In Proceedings of IJCNLP, pp. 1470–1480. ACL, 2015.

[40] A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural

language interfaces to databases. In Proceedings of IUI, pp. 149–157.

ACM, 2003.

[41] R. Sadana and J. Stasko. Designing and implementing an interactive

scatterplot visualization for a tablet computer. In Proceedings of AVI, pp.

265–272, 2014.

[42] B. Saket, A. Endert, and Ç. Demiralp. Task-based effectiveness of basic vi-

sualizations. IEEE Transactions on Visualization and Computer Graphics,

25(7):2505–2512, 2018.

[43] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:

A grammar of interactive graphics. IEEE Transactions on Visualization

and Computer Graphics, 23(1):341–350, 2016.

[44] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive vega: A

streaming dataflow architecture for declarative interactive visualization.

IEEE Transactions on Visualization and Computer Graphics, 22(1):659–

668, 2015.

[45] M. Schwab, J. Tompkin, J. Huang, and M. A. Borkin. Easypz. js: Inter-

action binding for pan and zoom visualizations. In Proceedings of IEEE

VIS: Short Papers, pp. 31–35, 2019.

[46] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:

A natural language interface for visual analysis. In Proceedings of ACM

UIST, pp. 365–377, 2016.

[47] V. Setlur, M. Tory, and A. Djalali. Inferencing underspecified natural

language utterances in visual analysis. In Proceedings of ACM IUI, pp.

40–51, 2019.

[48] R. Sicat, J. Li, J. Choi, M. Cordeil, W.-K. Jeong, B. Bach, and H. Pfis-

ter. Dxr: A toolkit for building immersive data visualizations. IEEE

Transactions on Visualization and Computer Graphics, 25(1):715–725,

2018.

[49] A. Srinivasan, B. Lee, N. H. Riche, S. M. Drucker, and K. Hinckley. InCho-

rus: Designing consistent multimodal interactions for data visualization

on tablet devices. In Proceedings of ACM CHI, pp. 653:1–653:13, 2020.

[50] A. Srinivasan, B. Lee, and J. T. Stasko. Interweaving multimodal in-

teraction with flexible unit visualizations for data exploration. IEEE

Transactions on Visualization and Computer Graphics, 2020.

10



© 2020 IEEE. This is the author’s version of the article that has been published in IEEE Transactions on Visualization and
Computer Graphics. The final version of this record is available at: xx.xxxx/TVCG.201x.xxxxxxx/

[51] A. Srinivasan and J. Stasko. Natural language interfaces for data anal-

ysis with visualization: Considering what has and could be asked. In

Proceedings of EuroVis: Short Papers, pp. 55–59, 2017.

[52] A. Srinivasan and J. Stasko. Orko: Facilitating multimodal interaction

for visual exploration and analysis of networks. IEEE Transactions on

Visualization and Computer Graphics, 24(1):511–521, 2018.

[53] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, anal-

ysis, and visualization of multidimensional relational databases. IEEE

Transactions on Visualization and Computer Graphics, 8(1):52–65, 2002.

[54] Y. Sun, J. Leigh, A. Johnson, and S. Lee. Articulate: A semi-automated

model for translating natural language queries into meaningful visualiza-

tions. In Proceedings of the International Symposium on Smart Graphics,

pp. 184–195, 2010.

[55] Tableau Ask Data. https://www.tableau.com/about/blog/2018/

10/announcing-20191-beta-96449.

[56] M. Tory and V. Setlur. Do what i mean, not what i say! design consid-

erations for supporting intent and context in analytical conversation. In

Proceedings of IEEE VAST, pp. 93–103, 2019.

[57] Unity. https://unity.com/.

[58] Vega editor. https://vega.github.io/editor/.

[59] Vega-embed. https://github.com/vega/vega-embed.

[60] C. Wang, K. Tatwawadi, M. Brockschmidt, P.-S. Huang, Y. Mao, O. Polo-

zov, and R. Singh. Robust Text-to-SQL generation with execution-guided

decoding. arXiv preprint arXiv:1807.03100, 2018.

[61] https://developer.mozilla.org/en-US/docs/Web/API/Web_

Speech_API, 2019.

[62] L. Wilkinson. The grammar of graphics. Springer Science & Business

Media, 2013.

[63] WolframAlpha. https://www.wolframalpha.com/.

[64] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-

tion recommendations. IEEE transactions on visualization and computer

graphics, 22(1):649–658, 2015.

[65] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Towards a general-purpose query language for visualization

recommendation. In Proceedings of the HILDA Workshop, pp. 1–6, 2016.

[66] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,

J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual

analysis with partial view specifications. In Proceedings of ACM CHI, pp.

2648–2659, 2017.

[67] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceed-

ings of ACL, pp. 133–138, 1994.

[68] T. Young, D. Hazarika, S. Poria, and E. Cambria. Recent trends in deep

learning based natural language processing. IEEE Computational Intelli-

gence magazine, 13(3):55–75, 2018.

[69] B. Yu and C. T. Silva. FlowSense: A natural language interface for

visual data exploration within a dataflow system. IEEE Transactions on

Visualization and Computer Graphics, 26(1):1–11, 2019.

[70] D. Zhang, Y. Suhara, J. Li, M. Hulsebos, Ç. Demiralp, and W.-C. Tan.

Sato: Contextual semantic type detection in tables. arXiv preprint

arXiv:1911.06311, 2019.

[71] V. Zhong, C. Xiong, and R. Socher. Seq2SQL: Generating Structured

Queries from Natural Language using Reinforcement Learning. CoRR,

abs/1709.00103, 2017.

11


	Introduction
	Related Work
	Natural Language Interfaces for Data Visualization
	Visualization Toolkits and Grammars
	Natural Language Processing Toolkits

	NL4DV Overview
	Design Goals

	NL4DV Design and Implementation
	Data Interpretation
	Query Interpretation
	Query Parsing
	Attribute Inference
	Explicit Task Inference
	Visualization Generation
	Implicit Task Inference


	Example Applications
	Using NL4DV in Jupyter Notebook
	Creating Visualization Systems with NL4DV
	NL-Driven Vega-Lite Editor
	Recreating Ambiguity Widgets in DataTone

	Adding NL Input to an Existing Visualization System

	Discussion and Future Work
	Evaluation
	Supporting Follow-up Queries
	Improving Query Interpretation and Enabling Additional Query Types
	Balancing Simplicity and Customization

	Conclusion

