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NL4DV: A Toolkit for Generating Analytic Specifications
for Data Visualization from Natural Language Queries

Arpit Narechania*, Arjun Srinivasan*, and John Stasko

Title Release Genre Creative Type Content Production Worldwide

IMDB  Rotten Tomatoes Running

Year Rating  Budget Gross  Rating Rating Time
Titanic 1997 Thriler  Historical Fiction PG-13 200M 1.84G 74 82 194
The Dark Knight 2008 Action  Super Hero PG-13 185M 1.026 89 93 152
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Fig. 1: Examples illustrating the flexibility of natural language queries for specifying data visualizations. NL4DV processes
all three query variations, inferring , [partially explicit] or [ambiguous], and [implicit] references to attributes, tasks, and
visualizations. The corresponding visualizations suggested by NL4DV in response to the individual queries are also shown.

Abstract— Natural language interfaces (NLIs) have shown great promise for visual data analysis, allowing people to flexibly specify
and interact with visualizations. However, developing visualization NLIs remains a challenging task, requiring low-level implementation
of natural language processing (NLP) techniques as well as knowledge of visual analytic tasks and visualization design. We present
NL4DV, a toolkit for natural language-driven data visualization. NL4DV is a Python package that takes as input a tabular dataset and
a natural language query about that dataset. In response, the toolkit returns an analytic specification modeled as a JSON object
containing data attributes, analytic tasks, and a list of Vega-Lite specifications relevant to the input query. In doing so, NL4DV aids
visualization developers who may not have a background in NLP, enabling them to create new visualization NLIs or incorporate natural
language input within their existing systems. We demonstrate NL4DV’s usage and capabilities through four examples: 1) rendering
visualizations using natural language in a Jupyter notebook, 2) developing a NLI to specify and edit Vega-Lite charts, 3) recreating data
ambiguity widgets from the DataTone system, and 4) incorporating speech input to create a multimodal visualization system.
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1 INTRODUCTION

To create visualization NLIs, besides implementing a graphical user
interface (GUI) and rendering views, visualization system developers
must also implement a natural language processing (NLP) module to
interpret queries. Although there exist tools to support GUI and visu-
alization design (e.g., D3.js [6], Vega-Lite [43]), developers currently
have to implement custom modules for query interpretation. However,
for developers without experience with NLP techniques and toolkits

Natural language interfaces (NLIs) for visualization are becoming in-
creasingly popular in both academic research (e.g., [13,22,46,52,69])
as well as commercial software [34,55]. At a high-level, visualization
NLIs allow people to pose data-related queries and generate visual-
izations in response to those queries. To generate visualizations from
natural language (NL) queries, NLIs first model the input query in
terms of data attributes and low-level analytic tasks [1,9] (e.g., filter,

correlation, trend). Using this information, the systems then determine
which visualizations are most suited as a response to the input query.
While NLIs provide flexibility in posing data-related questions, inherent
characteristics of NL such as ambiguity and underspecification make
implementing NLIs for data visualization a challenging task.
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(e.g., NLTK [31], spaCy [21]), implementing this pipeline is non-trivial,
requiring them to spend significant time and effort in learning and
implementing different NLP techniques.

Consider the spectrum of queries in Figure 1 issued to create vi-
sualizations in the context of an IMDb movies dataset with different
attributes including the # Worldwide Gross, A Genre, and 8 Release
Year, among others (for consistency, we use this movies dataset for
examples throughout this paper). The query “Create a histogram show-
ing distribution of IMDB ratings” (Figure 1a) explicitly refers to a data
attribute (IMDB Rating), a low-level analytic task (Distribution), and
requests a specific visualization type (Histogram). This is an ideal inter-
pretation scenario from a system standpoint since the query explicitly
lists all components required to generate a visualization.

On the other hand, the second query “Show average gross across
genres for science fiction and fantasy movies” (Figure 1b) does not
explicitly state the visualization type or the attribute Creative Type.



Instead, it explicitly references the attributes Worldwide Gross and
Genre through ‘gross’ and ‘genres’, and implicitly refers to the Creative
Type through the values ‘science fiction” and ‘fantasy’. Furthermore,
by specifying data values for the Creative Type attribute and the word
‘average,’ the query also mentions two intended analytic tasks: Filtering
and computing Derived Values, respectively. This second query is
more challenging since it requires the system to implicitly infer one of
the attributes and then determine the visualization type based on the
identified attributes and tasks.

Finally, the third query “Visualize rating and budget” (Figure 1c¢) is
even more challenging to interpret since it neither explicitly states the
desired visualization type nor the intended analytic task. Furthermore,
while it explicitly references one attribute (Production Budget through
‘budget’), the reference to the second attribute is ambiguous (‘rating’
can map to IMDB Rating, Content Rating, or Rotten Tomatoes Rating).

To accommodate such query variations, visualization NLIs employ
sophisticated NLP techniques (e.g., dependency parsing, semantic word
matching) to identify relevant information from the query and build
upon visualization concepts (e.g., analytic tasks) and design principles
(e.g., choosing graphical encodings based on attribute types) to generate
appropriate visualizations. For instance, given the query in Figure 1b,
after detecting the data attributes and analytic tasks, a visualization
NLI should select a visualization (e.g., bar chart) that is well-suited to
support the task of displaying Derived Values (average) for Worldwide
Gross (a quantitative attribute) across different Genres (a nominal
attribute). Similarly, in the scenario in Figure 1c¢, a NLI must first detect
ambiguities in the input query attributes, determine the visualizations
suited to present those attribute combinations (e.g., scatterplot for two
quantitative attributes), and ultimately infer the analytic tasks based
on those attributes and visualizations (e.g., a scatterplot may imply the
user is interested in finding correlations).

To support prototyping NLIs for data visualization, we contribute the
Natural Language-Driven Data Visualization (NL4DV) toolkit. NL4DV
is a Python package that developers can initialize with a tabular dataset.
Once initialized, NL4DV processes subsequent NL queries about the
dataset, inferring data attributes and analytic tasks from those queries.
Additionally, using built-in mappings between attributes, tasks, and
visualizations, NL4DV also returns an ordered list of Vega-Lite spec-
ifications relevant to those queries. By providing a high-level API to
translate NL queries to visualizations, NL4DV abstracts out the core
task of interpreting NL queries and provides task-based visualization
recommendations as plug-and-play functionality. Using NL4DV, de-
velopers can create new visualization NLIs as well as incorporate NL
querying capabilities into their existing visualization systems.

In this paper, we discuss NL4DV’s design goals and describe how
the toolkit infers data attributes, analytic tasks, and visualization spec-
ifications from NL queries. Furthermore, we formalize the inferred
information into a JSON-based analytic specification that can be pro-
grammatically parsed by visualization developers. Finally, through
example applications, we showcase how this formalization can help:
1) implement visualization NLIs from scratch, 2) incorporate NL in-
put into an existing visualization system, and 3) support visualization
specification in data science programming environments.

To support development of future systems, we also provide NLADV
and the described applications as open-source software available at:
https://nl4dv.github.io/nl4dv/

2 RELATED WORK
2.1 Natural Language Interfaces for Data Visualization

In 2001, Cox et al. [10] presented an initial prototype of a NLI that
supported using well-structured commands to specify visualizations.
Since then, given the advent of NL understanding technology and NLIs
for databases (e.g., [4,17,20,29,39,40,60,71]), there has been a surge of
NLIs for data visualization [13,22,24,25,27,46,47,49,50,52,54,69], es-
pecially in recent years. Srinivasan and Stasko [51] summarize a subset
of these NLIs, characterizing systems based on their supported capa-
bilities including visualization-focused capabilities (e.g., specifying or
interacting with visualizations), data-focused capabilities (e.g., com-
putationally answering questions about a dataset), and system control-

focused capabilities (e.g., augmenting graphical user interface actions
like moving windows with NL). Along these lines, NL4DV’s current
focus is primarily to support visualization specification. With this scope
in mind, below we highlight systems that serve as the motivation for
NL4DV’s development and are most relevant to our work.

Articulate [54] is a visualization NLI that allows people to generate
visualizations by deriving mappings between tasks and data attributes in
user queries. DataTone [13] uses a combination of lexical, constituency,
and dependency parsing to let people specify visualizations through NL.
Furthermore, detecting ambiguities in the input query, DataTone lever-
ages mixed-initiative interaction to resolve these ambiguities through
GUI widgets such as dropdown menus. FlowSense [69] uses seman-
tic parsing techniques to support NL interaction within a dataflow
system, allowing people to specify and connect components without
learning the intricacies of operating a dataflow system. Eviza [46]
incorporates a probabilistic grammar-based approach and a finite state
machine to allow people to interact with a given visualization. Ex-
tending Eviza’s capabilities and incorporating additional pragmatics
concepts, Evizeon [22] allows both specifying and interacting with
visualizations through standalone and follow-up utterances. The ideas
in Eviza and Evizeon were also used to design the Ask Data feature in
Tableau [55]. Ask Data internally uses Arklang [47], an intermediate
language developed to describe NL queries in a structured format that
Tableau’s VizQL [53] can parse to generate visualizations.

The aforementioned systems all present different interfaces and ca-
pabilities, supporting NL interaction through grammar- and/or lexical-
parsing techniques. A commonality in their underlying NLP pipeline,
however, is the use of data attributes and analytic tasks (e.g., correlation,
distribution) to determine user intent for generating the system response.
Building upon this central observation and prior system implementa-
tions (e.g., string similarity metrics and thresholds [13, 46, 52], parsing
rules [13,25,69]), NL4DV uses a combination of lexical and depen-
dency parsing-based techniques to infer attributes and tasks from NL
queries. However, unlike previous systems that implement custom NLP
engines and languages that translate NL queries into system actions,
we develop NL4DV as an interface-agnostic toolkit. In doing so, we
formalize attributes and tasks inferred from a NL query into a structured
JSON object that can be programmatically parsed by developers.

2.2 \Visualization Toolkits and Grammars

Fundamentally, our research falls under the broad category of user inter-
face toolkits [28,37,38]. As such, instead of presenting a single novel
technique or interface, we place emphasis on reducing development
viscosity, lowering development skill barriers, and enabling replication
and creative exploration. Within visualization research, there exist a
number of visualization toolkits with similar goals that particularly
focus on easing development effort for specifying and rendering visual-
izations. Examples of such toolkits include Prefuse [19], Protovis [5],
and D3 [6]. With the advent of visualizations on alternative platforms
like mobile devices and AR/VR, a new range of toolkits are also being
created to assist visualization development on these contemporary plat-
forms. For instance, EasyPZ.js [45] supports incorporating navigation
techniques (pan and zoom) in web-based visualizations across both
desktops and mobile devices. Toolkits like DXR [48] enable develop-
ment of expressive and interactive visualizations in Unity [57] that can
be deployed in AR/VR environments. NL4DV extends this line of work
on toolkits for new modalities and platforms by making it easier for
visualization system developers to interpret NL queries without having
to learn or implement NLP techniques.

Besides toolkits that aid programmatically creating visualizations,
researchers have also formulated visualization grammars that provide
a high-level abstraction for building visualizations to reduce software
engineering know-how [18]. Along these lines, based on the Grammar
of Graphics [62], more recently developed visualization grammars
such as Vega [44] and Vega-Lite [43] support visualization design
through declarative specifications, enabling rapid visualization design
and prototyping. NL4DV’s primary goal is to return visualizations
in response to NL queries. To enable this, in addition to a structured
representation of attributes and tasks inferred from a query, NL4ADV
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also needs to return visualization specifications most relevant to an input
query. Given the conciseness of Vega-Lite and its growing usage in both
web-based visualization systems and Python-based visual data analysis,
NLA4DV uses Vega-Lite as its underlying visualization grammar.

2.3 Natural Language Processing Toolkits

Toolkits like NLTK [31], Stanford CoreNLP [33] and NER [11], and
spaCy [21] help developers perform NLP tasks such as part-of-speech
(POS) tagging, entity recognition, and dependency parsing, among
others. However, since these are general-purpose toolkits, to imple-
ment visualization NLIs, developers need to learn to use the toolkit
and also understand the underlying NLP techniques/concepts (e.g.,
knowing which dependency paths to traverse while parsing queries,
understanding semantic similarity metrics). Furthermore, to implement
visualization systems, developers need to write additional code to con-
vert the output from NLP toolkits into visualization-relevant concepts
(e.g., attributes and values for applying data filters), which can be both
complex and tedious. Addressing these challenges, NLADV internally
uses NLTK [31], Stanford CoreNLP [33], and spaCy [21] but provides
an API that encapsulates and hides the underlying NLP implementation
details. This allows visualization developers to focus more on front-end
code pertaining to the user interface and interactions while invoking
high-level functions to interpret NL queries.

3 NL4DV OVERVIEW

Figure 2 presents an overview of a typical pipeline for implementing
NLIs that generate visualizations in response to NL queries. At a
high-level, once an input query is collected through a User Interface,
a Query Processor infers relevant information such as data attributes
and analytic tasks from the input query. This information is then
passed to a Visualization Recommendation Engine which generates a
list of visualizations specifications relevant to the input query. These
specifications are finally rendered through a library (e.g., D3 [6]) of the
developer’s choice. In the context of this pipeline, NL4ADV provides
a high-level API for processing NL queries and generating Vega-Lite
specifications relevant to the input query. Developers can choose to
directly render the Vega-Lite specifications to create views (e.g., using
Vega-Embed [59]) or use the attributes and tasks inferred by NLADV
to make custom changes to their system’s interface.

3.1 Design Goals

Four key design goals drove the development of NL4DV. We compiled
these goals based on a review of design goals and system implemen-
tations of prior visualization NLIs [13,22, 46, 52, 54, 69] and recent
toolkits for supporting visualization development on new platforms and
modalities (e.g, [45,48]).

DG1. Minimize NLP learning curve. NL4DV’s primary target users
are developers without a background or experience in working with
NLP techniques. Correspondingly, it was important to make the learn-
ing curve as flat as possible. In other words, we wanted to enable
developers to use the output of NL4DV without having to spend time
learning about the mechanics of how information is extracted from
NL queries. In terms of toolkit design, this consideration translated to
providing high-level functions for interpreting NL queries and design-
ing a response structure that was optimized for visualization system
development by emphasizing visualization-related information such as
analytic tasks (e.g., filter, correlation) and data attributes and values.

DG2. Generate modularized output and support integration with
existing system components. By default, NLADV recommends Vega-
Lite specifications in response to NL queries. However, a developer
may prefer rendering visualizations using a different library such as
D3 or may want to use a custom visualization recommendation engine
(e.g., [30,36,65]), only leveraging NL4DV to identify attributes and/or
tasks in the input query. Supporting this goal required us to ensure that
NL4DV’s output was modularized (allowing developers to choose if
they wanted attributes, tasks, and/or visualizations) and that developers
do not have to significantly modify their existing system architecture
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Fig. 2: An overview of steps to generate visualizations based on NL
queries. NLADV encapsulates the query processing and visualization
recommendation components, providing abstract functions to support
their functionality. Once initialized with a dataset, NLADV parses input
NL queries and returns relevant information (in terms of data attributes
and analytic tasks) and an ordered list of Vega-Lite specifications.

to use NL4DV. In terms of toolkit design, in addition to using a stan-
dardized grammar for visualizations (in our case, Vega-Lite), these
considerations translated to devising a formalized representation of
data attributes and analytic tasks that developers can programmatically
parse to link NL4DV’s output to other components in their system.

DG3. Highlight inference type and ambiguity. NL is often under-
specified and ambiguous. In other words, input queries may only
include partial references to data attributes or may implicitly refer to
intended tasks and visualizations (e.g., Figure 1b, ¢) [56]. Besides
addressing these challenges from an interpretation standpoint, it was
also important to make developers aware of the resulting uncertainty
in NL4DV’s output so they can choose to use/discard the output and
provide appropriate visual cues (e.g., ambiguity widgets [13]) in their
systems’ interface. In terms of toolkit design, this translated to struc-
turing NL4DV’s output so it indicates whether information is inferred
through an explicit (e.g., query substring matches an attribute name)
or implicit (e.g., query refers to a data attribute through the attribute’s
values) reference, and highlights potential ambiguities in its response
(e.g., two or more attributes map to the same word in an input query as
in Figure 1c).

DG4. Support adding aliases and overriding toolkit defaults. Vi-
sualization systems are frequently used to analyze domain-specific
datasets (e.g., sales, medical records, sports). Given a domain, it is
common for data attributes to have abbreviations or aliases (e.g., “GDP”
for Gross domestic product, “investment” for Capital), or values that
are unique to the dataset (e.g., the letter “A” can refer to a value in
a course grade dataset, but would be considered as a stopword and
ignored by most NLP algorithms by default). In terms of toolkit design,
these dataset-specific considerations translated to providing develop-
ers with helper functions to specify aliases or special word lists that
NL4DV should consider/exclude for a given dataset.

4 NL4DV DESIGN AND IMPLEMENTATION

In this section, we detail NL4DV’s design and implementation, high-
lighting key functions and describing how the toolkit interprets NL
queries. We defer discussing example applications developed using
NLA4DV to the following section.

Listing 1 shows the basic Python code for using NL4DV. Given a
dataset (as a CSV, TSV, or JSON) and a query string, with a single func-
tion call analyze query(query) , NLADV infers attributes, tasks, and
visualizations, returning them as a JSON object (DG1). Specifically,
NL4DV’s response object has an attributeMap composed of the in-
ferred dataset attributes, a taskMap composed of the inferred analytic
tasks, and a visList, a list of visualization specifications relevant
to the input query. By providing attributes, tasks, and visualizations
as separate keys in the response object, NL4DV allows developers to
selectively extract and use parts of its output (DG2).

4.1 Data Interpretation

Once initialized with a dataset (Listing 1, line 2), NL4DV iterates
through the underlying data item values to infer metadata including the



1 from nl4dv import NL4DV

2 nl4dv_instance = NL4DV(data_url="movies.csv'")

3 response = nl4dv_instance.analyze_query("Show the
— relationship between budget and rating for Action
- and Adventure movies that grossed over 100M")

4 print(response)

"attributeMap": { [...] },
"taskMap": { [...] },
"visList": [ [...] ]

Listing 1: Python code illustrating NL4DV’s basic usage involving
initializing NLADV with a dataset (line 2) and analyzing a query string
(line 3). The high-level structure of NL4DV’s response is also shown.

attribute types (# Quantitative, A Nominal, = Ordinal, # Temporal)
along with the range and domain of values for each attribute. This
attribute metadata is used when interpreting queries to infer appropriate
analytic tasks and generate relevant visualization specifications.

Since NL4DV uses data values to infer attribute types, it may make
erroneous interpretations. For example, a dataset may have the attribute
Day with values in the range [1,31]. Detecting a range of integer values,
by default, NLADV will infer Day as a quantitative attribute instead
of temporal. This misinterpretation can lead to NL4DV making poor
design choices when selecting visualizations based on the inferred at-
tributes (e.g., a quantitative attribute may result in a histogram instead of
a line chart). To overcome such issues caused by data quality or dataset
semantics, NL4DV allows developers to verify the inferred metadata
using getmetadata() . This function returns a hash map of attributes
along with their inferred metadata. If they notice errors, developers can
use other helper functions (e.g., set.attribute_type(attribute,type) )
to override the default interpretation (DG4).

4.2 Query Interpretation

To generate visualizations in response to a query, visualization NLIs
need to identify informative phrases in the query that map to relevant
concepts like data attributes and values, analytic tasks, and visualization
types, among others. Figure 3 shows the query in Listing 1 “Show
the relationship between budget and rating for Action and Adventure
movies that grossed over 100M” with such annotated phrases (we use
this query as a running example throughout this section to describe
NL4DV’s query interpretation strategy). To identify relevant phrases
and generate the attributeMap, taskMap, and visList, NLADV
performs four steps: 1) query parsing, 2) attribute inference, 3) task
inference, and 4) visualization specification generation. Figure 4 gives
an overview of NL4DV’s underlying architecture. Below we describe
the individual query interpretation steps (task inference is split into two
steps to aid explanation) and summarize the pipeline in Figure 5.

4.2.1 Query Parsing

The query parser runs a series of NLP functions on the input string to
extract details that can be used to detect relevant phrases. In this step,
NLA4DV first preprocesses the query to convert any special symbols
or characters into dataset-relevant values (e.g., converting /00M to
the number 700000000). Next, the toolkit identifies the POS tags for
each token (e.g., NN: Noun, JJ: Adjective, CC: Coordinating Con-
junction) using Stanford’s CoreNLP [33]. Furthermore, to understand

Task Keyword Attributes

Show the relationship between budget and rating for Action
and Adventure movies that grossed over 100M.

Filter Expression
Data Values

Fig. 3: An illustration of query phrases that NLADV identifies while
interpreting NL queries.
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Fig. 4: NLADV’s architecture. The arrows indicate the flow of informa-
tion between different modules.

the relationship between different phrases in the query, NLADV uses
CoreNLP’s dependency parser to create a dependency tree. Then, with
the exception of conjunctive/disjunctive terms (e.g., ‘and’, ‘or’) and
some prepositions (e.g., ‘between’, ‘over’) and adverbs (e.g., ‘except’,
‘not’), NL4DV trims the input query by removing all stop words and
performs stemming (e.g., ‘grossed’ — ‘gross’). Lastly, the toolkit
generates all N-grams from the trimmed query string. The output from
the query parser (POS tags, dependency tree, N-grams) is shown in
Figure 5a and is used internally by NL4ADV during the remaining stages
of query interpretation.

4.2.2 Attribute Inference

After parsing the input query, NL4DV looks for data attributes that are
mentioned both explicitly (e.g., through direct references to attribute
names) and implicitly (e.g., through references to an attribute’s values).
Developers can also configure aliases (e.g., ‘Investment’ for Production
Budget) to support dataset- and domain-specific attribute references
(DG4). To do so, developers can provide a JSON object consisting of
attributes (as keys) and lists of aliases (as values). This object can be
passed through the optional parameters alias_map or alias_map_url
when initializing NL4ADV (Listing 1, line 2) or using the helper function
set_aliasmap(alias_map, url="") .

To infer attributes, NL4DYV iterates through the N-grams generated
by the query parser, checking for both syntactic (e.g., misspelled words)
and semantic (e.g., synonyms) similarity between N-grams and a lex-
icon composed of data attributes, aliases, and values. To check for
syntactic similarity, NLADV computes the cosine similarity Sincos (i, j)
between a N-gram 7 and a tokenized lexical entity j. The possible values
for Simcos (i, j) range from [0,1] with 1 indicating that strings are equiv-
alent. For semantic similarity, the toolkit checks for the Wu-Palmer
similarity score [67] Simyup (i, /) between a N-gram i and a tokenized
lexical entry j. This score returns the distance between stemmed ver-
sions of p and a in the WordNet graph [35], and is a value in the range
(0,1], with higher values implying greater similarity. If Simcos(i, j) or
Simyup(i, j) > 0.8, NLADV maps the N-gram i to the attribute corre-
sponding to j, also adding the attribute as a key in the attributeMap.

As shown in Figure 5b, the attributeMap is structured such that
besides the attributes themselves, for each attribute, developers can also
identify: (1) query substrings that led to an attribute being detected
(queryPhrase) along with (2) the type of reference (inferenceType),
and (3) ambiguous matches (ambiguity). For instance, given the query
in Figure 3, NLADV detects the attributes Production Budget (based
on ‘budget’), Content Rating, IMDB Rating, Rotten Tomatoes Rating
(ambiguity caused by the word ‘rating’), Worldwide Gross (based on
‘grossed’), and Genre (based on the values ‘Action’ and ‘Adventure’).
Furthermore, since Genre is referenced by its values, it is marked as
implicit whereas the other attributes are marked as explicit (DG3).

4.2.3 Explicit Task Inference

After detecting N-grams mapping to data attributes, NLADV checks the
remaining N-grams for references to analytic tasks. NL4DV currently
identifies five low-level analytic tasks [1] including four base tasks: Cor-
relation, Distribution, Derived Value, Trend, and a fifth Filter task. We
separate base tasks from filter since base tasks are used to determine ap-
propriate visualizations (e.g., correlation maps to a scatterplot) whereas
filters are applied across different types of visualizations. We focus on
these five tasks as a starting set since they are commonly supported in
prior NLIs [13,24,47,54,69] and are most relevant to NLADV’s primary
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goal of supporting visualization specification through NL (as opposed
to interacting with a given chart [46,52] or question answering [25]).

While filters may be detected via data values (e.g., ‘Action’, ‘Com-
edy’), to detect base tasks, NLADV compares the query tokens to a
predefined list of task keywords (e.g., ‘correlate’, ‘relationship’, etc.,
for the Correlation task, ‘range’, ‘spread’, etc., for the Distribution
task, ‘average’, ‘sum’, etc., for Derived Value). Merely detecting refer-
ences to attributes, values, and tasks is insufficient to infer user intent,
however. To model relationships between query phrases and popu-
late task details, NL4DV leverages the POS tags and the dependency

tree generated by the query parser. Specifically, using the token type
and dependency type (e.g., nmod, conj, nsubj) and distance, NL4DV
identifies mappings between attributes, values, and tasks. These map-
pings are then used to model the taskMap. The task keywords and
dependency parsing rules were defined based on the query patterns and
examples from prior visualization NLIs [13,22,46,54,69] as well as
~200 questions collected by Amar et al. [1] when formulating their
analytic task taxonomy.

The taskMap contains analytic tasks as keys. Tasks are broken down
as a list of objects that include an inferenceType field to indicate



if a task was stated explicitly (e.g., through keywords) or derived
implicitly (e.g., if a query requests for a line chart, a trend task may
be implied) and parameters to apply when executing a task. These
include the attributes a task maps to, the operator to be used (e.g.,
GT, EQ, AVG, SUM), and values. If there are ambiguities in task
parameters (e.g., the word ‘fiction’ may refer to the values ‘Science
Fiction,” ‘Contemporary Fiction,” ‘Historical Fiction’), NL4DV adds
additional fields (e.g., isValueAmbiguous=true) to highlight them
(DG3). In addition to the tasks themselves, this structuring of the
taskMap allows developers to detect: (1) the parameters needed to
execute a task (attributes, operator, values), (2) operator- and
value-level ambiguities (e.g., isValueAmbiguous), and (3) if the task
was stated explicitly or implicitly (inferenceType).

Consider the taskMap (Figure 5c) for the query in Figure 3. Using
the dependency tree in Figure 5a, NL4DV infers that the word ‘relation-
ship’ maps to the Correlation task and links to the tokens ‘budget’ and
‘rating’ which are in-turn linked by the conjunction term ‘and.” Next,
referring back to the attributeMap, NL4DV maps the words ‘budget’
and ‘rating’ to their respective data attributes, adding three objects
corresponding to correlations between the attributes [Production
Budget, IMDB Rating], [Production Budget, Content Rating], and
[Production Budget, Rotten Tomatoes Rating] to the correlation task.
Leveraging the tokens ‘Action’ and ‘Adventure’, NL4DV also infers
that the query refers to a Filter task on the attribute Genre, where
the values are in the list (IN) [Action, Adventure]. Lastly, using the
dependencies between tokens in the phrase ‘gross over 100M, NLADV
adds an object with the attribute Worldwide Gross, the greater than
(GT) operator, and 100000000 in the values field. While populating
filter tasks, NL4DV also updates the corresponding attributes in the
attributeMap with the key encode=False (Figure 5b). This helps
developers detect that an attribute is used for filtering and is not visually
encoded in the recommended charts.

4.2.4 Visualization Generation

NLA4DV uses Vega-Lite as the underlying visualization grammar. The
toolkit currently supports the Vega-Lite marks: bar, tick, line, area,
point, arc, boxplot, text and encodings: x, y, color, size, column, row,
theta to visualize up to three attributes at a time. This combination
of marks and encodings allows NL4DV to support a range of com-
mon visualization types including histograms, strip plots, bar charts
(including stacked and grouped bar charts), line and area charts, pie
charts, scatterplots, box plots, and heatmaps. To determine visualiza-
tions relevant to the input query, NL4DV checks the query for explicit
requests for visualization types (e.g., Figure 1a) or implicitly infers
visualizations from attributes and tasks (e.g., Figures 1b, 1c, and 3).

Explicit visualization requests are identified by comparing query
N-grams to a predefined list of visualization keywords (e.g., ‘scatter-
plot’, ‘histogram’, ‘bar chart’). For instance, the query in Figure 1la
specifies the visualization type through the token ‘histogram,” leading
to NL4DV setting bar as the mark type and binned IMDB Rating as
the x encoding in the underlying Vega-Lite specification.

To implicitly determine visualizations, NL4DV uses a combination
of the attributes and tasks inferred from the query. NL4DV starts
by listing all possible visualizations using the detected attributes by
applying well-known mappings between attributes and visualizations
(Table 1). These mappings are preconfigured within NL4DV based on
heuristics used in prior systems like Show Me [32] and Voyager [64,
66]. As stated earlier, when generating visualizations from attributes,
NL4DV does not visually encode the attributes used as filters. Instead,
filter attributes are added as a filter transformin Vega-Lite. Doing
so helps avoid a combinatorial explosion of attributes when a query
includes multiple filters (e.g., including the filter attributes for the query
in Figure 3 would require generating visualizations that encode four
attributes instead of two).

Besides attributes, if tasks are explicitly stated in the query, NL4ADV
uses them as an additional metric to modify, prune, and/or rank the
generated visualizations. Consider the query in Figure 3. Similar to
the query in Figure lc, if only attributes were used to determine the
charts, NL4DV would output two scatterplots (for OxQ) and one bar

Attributes

(%, y, color/size/row/column) Visualizations Task
QxQx{N,0,Q, T} Scatterplot Correlation
N,OxQx{N,0,Q, T} Bar Chart Derived Value

Strip Plot, Histogram,
Bar Chart, Heatmap

Line Chart

Distribution

Q,N,0x{N,0,Q, T} x {Q}

Tx {Q} x {N, O} Trend

Table 1: Attribute (+encodings), visualization, and task mappings pre-
configured in NL4DV. Attributes in curly brackets {are optional}. Note
that these defaults can be overridden via explicit queries. For instance,
“Show average gross across genres as a scatterplot” will create a scat-
terplot instead of a bar chart with Genre on the x- and AVG(Worldwide
Gross) on the y-axis. For unsupported attribute combinations and tasks,
NLA4DV resorts to a table-like view created using Vega-Lite’s fext mark.

chart (for NxQ). However, since the query contains the token ‘relation-
ship,” which maps to a Correlation task, NLADV enforces a scatterplot
as the chart type, setting the mark in the Vega-Lite specifications to
point. Furthermore, because correlations are more apparent in xQ
charts, NLADV also ranks the two OxQ charts higher, returning the
three visualization specifications shown in Figure 5d. These Task x Vi-
sualization mappings (Table 1) are configured within NL4DV based on
prior visualization systems [8, 14,36] and studies [26,42].

NL4DV complies the inferred visualizations into a visList (Fig-
ure 5d). Each object in this list is composed of a vISpec contain-
ing the Vega-Lite specification for a chart, an inferenceType field to
highlight if a visualization was requested explicitly or implicitly in-
ferred by NL4DV, and a list of attributes and tasks that a visualization
maps to. Developers can use the visList to directly render visual-
izations in their systems (via the vISpec). Alternatively, ignoring the
visList, developers can also extract only attributes and tasks using
the attributeMap and taskMap, and feed them as input to other
visualization recommendation engines (e.g., [30,65]) (DG2).

4.2.5

When the input query lacks explicit keywords referring to analytic tasks,
NLA4DV first checks if the query requests for a specific visualization
type. If so, the toolkit uses mappings between Visualizations x Tasks
in Table 1 to infer tasks (e.g., distribution for a histogram, trend for a
line chart, correlation for a scatterplot).

Alternatively, if the query only mentions attributes, NLADV first lists
possible visualizations based on those attributes. Then, using the in-
ferred visualizations, the toolkit implicitly infers tasks (again leveraging
the Visualization x Task mappings in Table 1). Consider the example
in Figure 1c. In this case, the tasks Correlation and Derived Value are
inferred based on the two scatterplots and one bar chart generated using
the attribute combinations QxQ and NxQ, respectively. In such cases
where the tasks are implicitly inferred through visualizations, NL4DV
also sets their inferenceType in the taskMap to implicit.

Implicit Task Inference

5 EXAMPLE APPLICATIONS
5.1 Using NL4DV in Jupyter Notebook

Since NL4DV generates Vega-Lite specifications, in environments that
support rendering Vega-Lite charts, the toolkit can be used to create
visualizations through NL in Python. Specifically, NLADV provides a
wrapper function render_vis(query) that automatically renders the first
visualization in the visList. By rendering visualizations in response
to NL queries in environments like Jupyter Notebook, NL4DV en-
ables novice Python data scientists and programmers to conduct visual
analysis without needing to learn about visualization design or Python
visualization packages (e.g., Matplotlib, Plotly). Figure 6 shows an
instance of a Jupyter Notebook demonstrating the use of NL4DV to
create visualizations for a cars dataset. For the first query “Create a
boxplot of acceleration,” detecting an explicit visualization request,
NLA4DV renders a box plot showing values for the attribute Accelera-
tion. For the second query “Visualize horsepower mpg and cylinders”,
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from nladv import NL4DV
nl4dv_instance = NL4DV(data_url="../assets/data/cars-w-year.csv")

nl4dv_instance.render_vis("Create a boxplot of acceleration")

o—f@l oo
o 5 1 15 2 25
Acceleration
nl4dv_instance.render_vis("Visualize horsepower mpg and cylinders")
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Fig. 6: NL4DV being used to specify visualizations through NL in
Python within a Jupyter Notebook.

Vega-Lite Editor with NL4DV

olegescsy  + B Show debt and earnings for different types of colleges » Exocute

VegarLite Spec

m Visualization

Fig. 7: A Vega-Lite editor that supports NL-based chart specification
and presents design alternatives using the visList returned by NL4DV.
Here, the query “Show debt and earnings for different types of colleges”
issued in the context of a U.S. colleges dataset results in the system
suggesting a colored scatterplot and a colored + faceted scatterplot. The
faceted scatterplot is selected as the active chart by the user.

NL4DV implicitly selects a scatterplot as the appropriate visualization
using the inferred attributes (# Horsepower, # MPG, i= Cylinders).

5.2 Creating Visualization Systems with NL4DV

The above example illustrates how the visList generated by NLADV
is used to create visualizations in Python-based data science environ-
ments. The following two examples showcase how NL4DV can assist
the development of web-based NLIs for data visualization.

5.2.1 NL-Driven Vega-Lite Editor

Although the declarative nature of Vega-Lite makes it an intuitive way
to specify visualizations, novices unaware of visualization terminology
may need to spend a significant amount of time and effort to look at
examples and learn the specification grammar. NL input presents itself
as a promising solution in such scenarios to help onboard users for
learning Vega-Lite. With a NLI, users can load their data and express
their intended chart through NL. The system in response can present
both the chart and the corresponding Vega-Lite specification, allowing
users to learn the underlying grammar through charts of their interest.
Figure 7 illustrates this idea implemented as an alternative version of
the Vega-Lite editor [58], supporting NL input. Users can enter queries
through the text input box at the top of the page to specify charts and
edit the specification on the left to modify the resulting visualization.
Besides the main visualization returned in response to an NL query,
the interface also presents a alternative visualizations using different
encodings similar to the Voyager systems [64, 66].

This example is developed following a classic client-server archi-
tecture and is implemented as a Python Flask [12] application. From
a development standpoint, the client-side of this application is writ-
ten from scratch using HTML and JavaScript. On the Python server-
side, a single call is made to NL4DV’s analyze query(query) function

1 $.post('"/analyzeQuery", {"query": query})
2 .done(function (responseString) {
3 let nl4dvResponse = JSON.parse(responseString);
4 let visList = nl4dvResponse['visList'];
5 // render visList[0]['viSpec'] as default chart
6 for(let visObj of visList){
7 // add visObj['vlSpec'] as a thumbnail in the

— bottom panel displaying all possible designs
8 }
9 b

Listing 2: JavaScript code to parse NL4DV'’s output to create the Vega-
Lite editor application shown in Figure 7.

DataTone - NL4DV
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Fig. 8: A sample interface illustrating how NL4DV can be used to
replicate DataTone’s [13] ambiguity widgets.
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where the query is collected and passed via JavaScript. As shown
earlier (Listing 1), this function returns a JSON object composed of
the attributeMap, taskMap, and visList. For this example, the
visList returned by NL4ADV is parsed in JavaScript to render the main
chart along with the alternative designs (Listing 2, lines 5-8). The
visualizations are rendered using Vega-Embed [59].

5.2.2 Recreating Ambiguity Widgets in DataTone

Consider a second example where we use NL4DV to replicate features
of the DataTone system [13]. Given a NL query, DataTone identifies
ambiguities in the query and surfaces them via “ambiguity widgets”
(dropdown menus) that users can interact with to clarify their intent.

Figure 8 shows a DataTone-like interface implemented using NL4DV.
This system is also implemented as a Flask web-application using
HTML and JavaSript on the client-side. The example in Figure 8
illustrates the result of executing the query “Show me medals for hockey
and skating by country” against an Olympics medal winners dataset
(query reused from the DataTone paper [13]). Here, ‘medals’ is an
ambiguous reference to four data attributes—the three medal types
(Bronze, Silver, Gold) and the Total Medals. Similarly, ‘hockey’ and
‘skating’ are value-level ambiguities corresponding to the Sport attribute
(e.g., ‘hockey’=[Ice Hockey, Hockey]).

Similar to the Vega-Lite editor application, the server-side code only
involves initializing NLADV with the active dataset and making a call to
the analyze query(query) function to process user queries. As detailed
in Listing 3, on the client-side, to highlight attribute- and value-level
ambiguities in the query, we parse the attributeMap and taskMap
returned by NL4DV in JavaScript, checking the isAmbiguous fields.
Vega-Embed is once again used to render the v1Specs returned as
part of NL4ADV’s visList. Note that we only focus on data ambigu-
ity widgets in this example, not displaying design ambiguity widgets
(e.g., dropdown menus for switching between visualization types). To
generate design ambiguity widgets, however, developers can parse
the visList, converting the Vega-Lite marks and encodings into
dropdown menu options.

5.3 Adding NL Input to an Existing Visualization System

NLA4DV can also be used to augment existing visualization systems
with NL input. As an example, consider TOUCHPLOT (Figure 9-top), a



$.post(""/analyzeQuery", {"query": query})
.done(function (responseString) {
let nl4dvResponse = JSON.parse(responseString);
let attributeMap = nl4dvResponse['attributeMap'],
taskMap = nl4dvResponse['taskMap'];
for(let attr in attributeMap){
if(attributeMap[attr]['isAmbiguous']){
// add attr and attributeMap[attr]['ambiguity']
— to attribute-level ambiguity widget
— corresponding to the
— attributeMap[attr]['queryPhrase']

L Y T

9 }
10 }

12 });”

Listing 3: JavaScript code to parse NL4ADV’s output and generate
attribute-level ambiguity widgets (highlighted in Figure 8-left). A
similar logic is used to iterate over the taskMap when creating value-
level ambiguity widgets (highlighted in Figure 8-right) for filtering.

touch-based scatterplot visualization system running on a tablet. We
modeled TOUCHPLOT after the interface and capabilities of the scatter-
plot visualization system, Tangere [41]. Specifically, users can select
points and zoom/pan by interacting directly with the chart canvas, bind
attributes to the position, color, and size encodings using dropdown
menus on axes and legends, or apply filters using a side panel. TOUCH-
PLOT is implemented using HTML and JavaScript, and D3 is used for
creating the visualization.

Recent work has shown that complementing touch interactions with
speech can support a more fluid interaction experience during visual
analysis on tablets [49]. For example, while touch can support fine-
grained interactions with marks, speech can allow specifying filters
without having to open and interact with the side panel, saving screen
space and preserving the user workflow. To explore such fluid interac-
tions, we developed MMPLOT (Figure 9-bottom), a modified version
of TOUCHPLOT that supports multimodal touch and speech input. In
addition to touch interactions, MMPLOT allows issuing speech com-
mands to specify charts (e.g., “Correlate age and salary by country”)
and filter points (e.g., “Remove players over the age of 30”).

To support these interactions, we record speech input and con-
vert it to a text string using the Web Speech API [61]. This query
string is then passed to the server, where we make a call to NL4DV’s

analyze query(query) . By parsing NL4DV’s response in JavaScript,
ToucCHPLOT is modified to support the required speech interactions
(Listing 4). In particular, we parse the taskMap to detect and apply
any filters requested as part of the query (lines 6-12). Next, we check if
the input query specifies a new scatterplot that can be rendered by the
system and adjust the view mappings accordingly (lines 13-16). This
sequential parsing of taskMap and visList allows using speech to
apply filters, specify new scatterplots, or do both with a single query
(Figure 9). Unlike previous examples, since this application uses D3
(as opposed to Vega-Lite) to create the visualization, when parsing
NLA4DV’s output, we perform an added step of invoking the D3 code
required to update the view (line 17).

Implementing the aforementioned examples (NL-based Vega-Lite edi-
tor, DataTone’s ambiguity widgets, MMPLOT) would typically require
developers to write hundreds of lines of code (in addition to the front-
end code) requiring both NLP and visualization design knowledge
(Figure 2). As illustrated above, with NL4DV, developers can accom-
plish the desired NLI capabilities with a single call to analyze_query(
and a few additional lines of code to parse NL4DV’s response, enabling
them to focus on the interface design and user experience.

6 DiscussiON AND FUTURE WORK

6.1 Evaluation

In this paper, we illustrate NL4DV’s query interpretation capabilities
through sample queries executed on different datasets!. As part of this

! Additional queries available at: https:/nl4dv.github.io/nl4dv/showcase.html

Fig. 9: (Top) TOUCHPLOT interface supporting interaction through
touch and control panels. (Bottom) MMPLOT interface supporting
multimodal interactions. Here, the user has specified a new scatterplot
and applied a filter through a single query “Show a scatter plot of age
and salary for players under the age of 30.”

1 $.post("/analyzeQuery", {"query": query})
2 .done(function (responseString) {
3 let nl4dvResponse = JSON.parse(responseString);
4 let taskMap = nl4dvResponse['taskMap'],
5 visList = nl4dvResponse['visList'];
6 if("filter" in taskMap){ // query includes a filter
7 for(let taskObj of taskMap['filter']){
8 for(let attr of taskObj['attributes']){
9 // use the attribute type, 'operator', and
— 'values' to apply requested filters

10 }

1 }

12 }

13 if(visList.length>0){ // query specifies a new chart
14 let newVisSpec = visList[0]['v1Spec'];

15 // check if newVisSpec is a scatterplot

— configuration supported by the system and
< modify the attribute-encoding mappings

16 }
17 // invoke the D3 code to update the view
18 b

Listing 4: JavaScript code to parse NL4DV’s output for supporting
speech and multimodal interactions in MMPLOT (Figure 9-bottom).

initial validation, we used NL4DV to query tabular datasets containing
300-6000 rows and up to 27 attributes. The toolkit’s response time for
these queries ranged between 1-18 sec. (mean: 3 sec.)?. Besides sample
queries, we also present applications employing NL4DV to highlight
how the toolkit can reduce development viscosity and lower skill bar-
riers (in terms of prior knowledge of NLP tools and techniques) [38].
However, assessing the toolkit’s usability and utility likely involves a
more detailed evaluation in two ways. First, we need to formally bench-
mark NL4DV’s performance by executing it against a large corpus of
NL queries. To this end, an important area for future work is to collect
labeled data on utterances people use to specify visualizations and use
it to benchmark NL4DV and other visualization NLIs. Second, we
need to conduct a longitudinal study incorporating feedback from both
visualization and NLP developers. Going forward, we hope that the
open-source nature of this research will help us conduct such a study
in the wild, enabling us to assess NL4DV’s practical usability, identify
potential issues, and understand the breadth of possible applications.

6.2 Supporting Follow-up Queries

NL input presents the opportunity to support a richer visual analytic
dialog through conversational interaction (as opposed to one-off utter-

2Reported based on a MacBook Pro with a 6-core 2.9GHz processor and
16GB RAM running MacOS Catalina version 10.15.5
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ances). For example, instead of a single query including both visual-
ization specification and filtering requests (e.g., “Show a scatterplot
of gross and budget highlighting only Action and Adventure movies”),
one can issue a shorter query to first gain an overview by specifying a
visualization (e.g., “Show a scatterplot of gross and budget”) and then
issue a follow-up query to apply filters (e.g., “Now just show Action
and Adventure movies”). However, supporting such a dialog through an
interface-agnostic toolkit is challenging as it requires the toolkit to have
context of system state in which the query was issued. Furthermore, not
all queries in a dialog may be follow-up queries. While current systems
like Evizeon [22] allow users to reset the canvas to reset the query
context, explicitly specifying when context should be preserved/cleared
while operating an interface-agnostic toolkit is impractical.

NL4DV currently does not support follow-up queries. However,
as a first pass at addressing these challenges, we are experiment-
ing with an additional dialog parameter to analyze query() and

render_vis() to support follow-up queries involving filtering and en-
coding changes. Specifically, setting dialog=true notifies NL4DV
to check for follow-up queries. NL4DV uses conversational centering
techniques [15, 16] similar to prior visualization NLIs [22, 50, 52] to
identify missing attributes, tasks, or visualization details in a query
based on the toolkit’s previous response. Consider the example in
Figure 10 showing queries issued in the context of a housing dataset.
In response to the first query “Show average prices for different home
types over the years,” NLADV generates a line chart by detecting the
attributes Price, House Type, and Year, and the task Derived Value (with
the operator AVG). Next, given the follow-up query “As a bar chart,”
NLA4DV infers the attributes and tasks from its previous response, up-
dating the mark type and encoding channels in the Vega-Lite specifi-
cation to create a grouped bar chart. Lastly, with the third query, “Just
show condos and duplexes,” detecting ‘condos’ and ‘duplexes’ as data
values, NL4DV modifies the underlying taskMap and applies a filter on
the House Type attribute. Besides implementing additional parameters
and functions to support conversational interaction in NL4DV, a general
future research challenge is to investigate how interface context (e.g.,
active encodings, selections) can be modeled into a structured format
that can be interpreted by interface-agnostic toolkits like NLADV.

6.3 Improving Query Interpretation and Enabling Addi-

tional Query Types

Through our initial testing, we have already identified some areas for
improvement in NLADV’s interpretation pipeline. One of these is better
inference of attribute types upon initialization. To this end, we are
looking into how we can augment NL4DV’s data interpretation pipeline
with recent semantic data type detection models that use both attribute
names and values (e.g., [23,70]). Another area for improvement is
task detection. NL4DV currently leverages a combination of lexicon-
and dependency-based approach to infer tasks. Although this serves
as a viable starting point, it is less reliable when there is uncertainty
in the task keywords (e.g., the word “relationship” may not always
map to a Correlation task) or the keywords conflict with data attributes
(e.g., the query “Show the average cost of schools by region” would
currently apply a Derived Value task on the Average Cost attribute
even though Average Cost already represents a derived value). As we
collect more user queries, we are exploring ways to complement the
current approach with semantic parsers (e.g., [2,3]) and contemporary
deep learning models (e.g., [7,68]) that can infer tasks based on the
query phrasing and structure. Finally, a third area for improvement
is to connect NL4DV to knowledge bases like WolframAlpha [63] to
semantically understand words in the input query. Incorporating such
connections will help resolve vague predicates for data values (e.g.,
‘large’, ‘expensive’, ‘near’) [46,47] and may also reduce the need for
developers to manually configure attribute aliases.

Besides improving query interpretation, another theme for future
work is to support additional query types. As stated earlier, NL4ADV
is currently primarily geared to support visualization specification-
oriented queries (e.g., “What is the relationship between worldwide
gross and content rating?,” “Create a bar chart showing average profit
by state”). To aid development of full-fledged visualization systems,
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Fig. 10: Example of NL4DV supporting follow-up queries using the
experimental dialog parameter. Here, the three visualizations are gen-
erated through consecutive calls to render_vis(query, dialog=true ).

however, the toolkit needs to support a tighter coupling with an active vi-
sualization and enable other tasks such as question answering [25] (e.g.,
“How many movies grossed over 100M?.” “When was the difference be-
tween the two stocks the highest?”’) and formatting visualizations (e.g.,
“Color SUVs green,” “Highlight labels for countries with a population
of more than 200M”). Incorporating these new query types would
entail making changes in terms of both the interpretation strategies (to
identify new task categories and their parameters) and the output format
(to include the computed “answers” and changes to the view).

6.4 Balancing Simplicity and Customization

NLA4DV is currently targeted towards visualization developers who
may not have a strong NLP background (DG1). As such, NLADV
uses a number of default settings (e.g., preset rules for dependency
parsing, empirically set thresholds for attribute detection) to minimize
the learning curve and facilitate ease-of-use. Developers can override
some of these defaults (e.g., replace CoreNLP with spaCy [21], ad-
just similarity matching thresholds) and also configure dataset-specific
settings to improve query interpretation (e.g., attribute aliases, special
words referring to data values, additional stopwords to ignore) (DG4).
Furthermore, by invoking analyze query() with the debug parameter
set to true, developers can also get additional details such as why an
attribute was detected (e.g., semantic vs. syntactic match along with
the match score) or how a chart was implicitly inferred (e.g., using
attributes vs. attributes and tasks).

NLP or visualization experts, however, may prefer using custom
modules for query processing or visualization recommendation. To this
end, visualization developers can override the toolkit’s default recom-
mendation engine by using the inferred attributes and tasks as input to
their custom modules (i.e., ignoring the visList). However, NLADV
currently does not support using custom NLP models for attribute and
task inference (e.g., using word embedding techniques to detect syn-
onyms or classification models to identify tasks). Going forward, as we
gather feedback on the types of customizations developers prefer, we
hope to provide the option for developers to replace NL4DV’s heuristic
modules with contemporary ML models/techniques. Given the end goal
of aiding prototyping of visualization NLIs, a challenge in supporting
this customization, however, is to ensure that the output from the cus-
tom models can be compiled into NL4DV’s output specification or to
modify NLADV’s specification to accommodate additional information
(e.g., classification accuracy) generated by the custom models.

7 CONCLUSION

We present NL4DV, a toolkit that supports prototyping visualization
NLIs. Given a dataset and a NL query, NL4DV generates a JSON-based
analytic specification composing of attributes, tasks, and visualizations
inferred from the query. Through example applications, we show
how developers can use this JSON response to create visualizations
in Jupyter notebooks through NL, develop web-based visualization
NLIs, and augment existing visualization tools with NL interaction. We
provide NL4DV and the example applications as open-source software
(https://nlddv.github.io/nl4dv/) and hope these will serve as
valuable resources to advance research on NLIs for data visualization.
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