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ABSTRACT

Natural language interfaces (NLIs) for data visualization are be-
coming increasingly popular both in academic research and in
commercial software. Yet, there is a lack of empirical understand-
ing of how people specify visualizations through natural language.
We conducted an online study (N = 102), showing participants a
series of visualizations and asking them to provide utterances they
would pose to generate the displayed charts. From the responses,
we curated a dataset of 893 utterances and characterized the ut-
terances according to (1) their phrasing (e.g., commands, queries,
questions) and (2) the information they contained (e.g., chart types,
data aggregations). To help guide future research and development,
we contribute this utterance dataset and discuss its applications
toward the creation and benchmarking of NLIs for visualization.
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1 INTRODUCTION

Natural language (NL) is gaining traction as an input modality for
data visualization tools. Both mainstream visualization systems
(e.g., Microsoft Power BI [16], Tableau [27]) and research proto-
types (e.g., [7, 10, 21, 24, 26, 30]) have demonstrated the potential
natural language interfaces (NLIs) hold for supporting a rich visual
analytic flow and to cater to broader audiences (e.g., visualization
novices, people with disabilities). Visualization specification plays
a central role in these tools, as people create charts to visually
explore and analyze their data (e.g., creating histograms to check
data distributions, creating scatterplots to observe correlations), as
well as to communicate their findings with other stakeholders (e.g.,
creating grouped bar charts for quarterly reports).

However, beyond the space of utterances supported in current
NLIs for visualization, there is limited empirical understanding
about the nature of utterances people use to specify data visualiza-
tions through NL. For instance, how do people structure or phrase
their utterances? Do they use systemic commands (e.g., “Plot scat-
terplot of sales by profit.”) or high-level questions (e.g., “Have cars
gotten lighter over time?”)? What type of information do people
include in their utterances? Do they explicitly list chart types and
aggregations (e.g., “Bar chart showing average profit by state”) or
expect systems to infer such information for them (e.g., “Visualize
profit across states.”)? Furthermore, in cases where people provide
explicit references, are these references direct (e.g., exact or partial
matches to attribute names), or implied or semantic (e.g., using syn-
onyms for attribute names, using phrases like “How many” instead
of specifying a COUNT aggregation)? Answering these questions
can help assess how well-aligned current tools are with people’s
expectations from NLIs for visualization. This, in turn, can help de-
velopers of NLIs for visualization validate and boost their systems’
performance and improve system usability.

We conducted an online study with 102 participants, curating a
dataset of 893 visualization specification-oriented NL utterances.
Specifically, we showed participants a series of ten canonical visu-
alizations (e.g., bar charts, line charts, scatterplots) and asked them
to enter utterances they would use to create the shown charts. We
then characterized the resulting utterances along two dimensions:
1) their phrasings, i.e., how the utterances were structured (e.g.,
questions, commands), and 2) the information contained in them
(e.g., some utterances explicitly requested a visualization type). For
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the remainder of this paper, we use the term utterance to refer to
any NL command, statement, query, question, or instruction that
one may issue to an NLIL

Leveraging this characterization, we provide a high-level sum-
mary of the types of utterances that people use to specify visu-
alizations, discussing their coverage within current systems and
revealing underexplored classes of utterances. We also distill our
experiences and highlight critical considerations for designing and
conducting online studies to collect data for NLIs for visualization.
Finally, we discuss how the curated dataset of utterances can be
used toward the creation and benchmarking of NLIs for visualiza-
tion, and for collecting larger datasets.

The key contributions of this work are twofold: (1) a publicly
available dataset of 893 visualization specification-oriented utter-
ances and a discussion of its application toward creating and bench-
marking NLIs, and (2) a characterization of NL utterances people
use to specify data visualizations along with its implications for
designing future NLIs for visualization specification.

2 RELATED WORK

Advances in NL recognition and understanding have led to a surge
of interest in NLIs for data visualization. In recent years, a wide
range of systems have been developed to support NL interaction
during visual data exploration (e.g., [10, 12, 21, 23, 24, 26]), for ques-
tion answering with charts [13], and for facilitating data-driven
communication [7, 14]. A majority of these systems focus on spe-
cific visualizations and usage scenarios (e.g., network data explo-
ration [25], dataflow diagram editing [30]) or technical aspects of
system development (e.g., detecting ambiguities [10, 21], inferring
underspecified queries [22]).

On the other hand, some projects have more closely investigated
the structure of NL utterances and thus are highly relevant to our
work. Metoyer et al. [15] conducted a study where 20 participants
worked in pairs with one participant verbally describing a given
chart to another participant who attempted to draw the chart based
on that description. Through the collected data, the authors discuss
implications for future NL systems including the need to support
ambiguous instructions (e.g., “a narrow bar”) and the use of relative
terms to arrange spatial layouts (e.g., “the yellow bar is stacked on
top of the blue bar”), among others. Setlur et al. [21] conducted
a study to collect utterances people may pose when interacting
with a given chart. They identified different task categories peo-
ple try to perform (e.g., search, filter, change chart type) and used
the corresponding utterances to implement the Eviza system [21].
Tory and Setlur [28] conducted a wizard-of-oz study to understand
people’s expectations of the role of system intelligence in NLIs dur-
ing visual analysis. Their findings highlight that NLIs can enable a
richer visual analytic flow by supporting both explicit and implicit
user intent, by prioritizing explicit intent over consistency in use
of graphical encodings during chart transitions, and by performing
proactive actions, such as visually encoding filters and implicitly
applying data transformations, among others. Our work shares a
similar goal with these studies in that we also seek to understand
the nature of NL utterances within the context of data visualization.
However, we focus on collecting and understanding utterances peo-
ple may pose to a system for visualization specification (as opposed
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to interacting with a given chart). In doing so, we provide additional
evidence for findings from prior studies while also offering novel
insights into classes of utterances not supported in current tools
and discussing practical implications for system design.

Recent work has also begun to curate datasets of utterances to
enable the use of machine learning techniques for NLI development.
For instance, during an online study, Kim et al. [13] showed people
a series of bar charts and line charts, and collected questions peo-
ple pose to these charts along with the participants’ answers (and
explanations) to those questions. This data was then used to update
Sempre [5], a model conventionally used for question answering
within relational data tables, to answer questions in the context
of data visualizations. Fu et al. [9] collected utterances mapping
to Amar et al’s 10 low-level analytic tasks (e.g., filter, sort, find
extremum) [2]. Using the collected data to train a text classification
model, the authors showed how one could detect analytic tasks
from given NL utterances. Similar to these recent studies, we also
aim to foster future research and development by curating a freely
available dataset of utterances. To this end, we complement the ex-
isting datasets that focus on question answering and task detection,
and contribute the first dataset that contains visualizations and
utterances that were used to specify those visualizations. Besides
discussing the applications of the presented dataset, we also offer
insights into unique challenges we faced during data collection and
curation as these can help extend the described study and generate
larger datasets.

3 ONLINE STUDY

3.1 Visualizations and Datasets

Our study covered a total of 30 visualizations (10 visualizations
x three datasets): Figure 1 shows the 10 visualizations that were
presented during each session and Table 1 summarizes the three
datasets used in the study. These visualizations covered three pop-
ular chart types: bar charts, line charts, and scatterplots, along with
their variants (histograms, stacked & grouped bar charts, multi-
series line charts, and colored & faceted scatterplots). Our choice
of visualizations was motivated by the popularity of these charts
across visualization tools in general [4] as well as within existing
NLIs for visualization (e.g., [10, 21, 23, 26]). Furthermore, these visu-
alizations also allowed us to cover three basic data types: categorical
(both nominal and ordinal values), quantitative, and temporal, as
well as their combinations involving one to three data attributes
at a time. Collectively, this set of visualizations and attribute type
combinations ensured that the utterances collected via the study
would be broadly applicable and could be used in the context of
general visualization tools.

Dataset Categorical Quantitative Temporal
(Cardinality) Attributes  Attributes  Attributes
Cars (303) 2 5 1
Movies (709) 3 5 1
Superstore (5899) 11 5 1

Table 1: Summary of three datasets used for the study (com-
plete datasets are provided as supplementary material).
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Figure 1: Ten visualizations used for the study (all charts were created using Vega-Lite [20]). Charts shown in the figure repre-
sent the movies dataset. Charts (1, 2) visualize one quantitative or categorical attribute using the x- and y-encoding channels.
Charts (3-5) also only encode data via the x- and y-channels but visualize two attributes at a time. Finally, charts (6-10) use
color and/or column (for faceting) as an additional encoding to visualize three attributes at a time. The corresponding ten
charts for the cars and superstore data are included in the supplemental materials.

For the data underlying these charts, we decided to use datasets
that: (1) contain a mix of categorical, quantitative, and temporal
values, and (2) represent a generally understood domain to engage
a broad participant pool. With these criteria in mind, we chose
three tabular datasets covering different domains: cars, movies, and
superstore sales (Table 1).

3.2 Participants

To collect utterances that were representative of what end-users of
a visualization system might provide, we sought to recruit partici-
pants who are actual users of visualization tools or are interested
in visual data analysis. With this target population in mind, we
shared the call for participation for the study via mailing lists at
universities and software companies. We specifically used mailing
lists that included data systems-related users (e.g., database and
visualization courses, dashboard tool user groups, visualization
tool developers and product managers). We also posted the call
for participation on public social platforms such as LinkedIn and
Reddit. On these social platforms, we again posted only in targeted

interest groups pertaining to data visualization and visual analyt-
ics (e.g., ‘r/visualization’ and ‘r/PowerBI’ communities in Reddit,
Tableau user groups on LinkedIn, the Data Visualization Society
Slack channel). Participation was voluntary and no compensation
was provided (neither financially nor via other reward mechanisms
such as course credit). Participants could choose to exit the study at
any point. Participants were also informed beforehand that the ut-
terances collected through the study will be made publicly available
and that no personal information (contact details or demographic
information) will be captured during the study.

Over a span of ~60 days, a total of 202 participants visited the
study URL among which 102 participants took part in the study (i.e.,
completed at least one trial). Seventy-six participants completed the
entire session, entering utterances for all ten visualizations while
26 participants exited the study amidst a session.

3.3 Procedure and Task

Each session included four major phases: (1) introduction & con-
sent, (2) dataset & task description, (3) task trials, and (4) providing
prior experience with visualization tools, and consisted of 10 trials
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corresponding to the 10 visualizations displayed in Figure 1. Each
participant saw all 10 visualizations from only one of the three
datasets (cars, movies, superstore). Both the dataset selected and
the order of visualizations were randomized across participants.
Participants were first informed about the study goal, compensa-
tion, public sharing of collected utterances, etc. and were asked to
provide their consent. Next, participants were given a brief intro-
duction to the dataset (e.g., number of rows and columns, what the
rows and columns represent) and the task, which required partici-
pants to enter (type in) one or more utterances they would pose to
a system like Tableau or Microsoft Power BI to specify a displayed
visualization (Figure 2). Note that to ensure participants were not
biased to phrase utterances in a specific way, we did not provide
any example utterances as part of the task description. Participants
were then presented with the 10 trials in random order. Lastly, par-
ticipants who completed the trials were given the option to provide
their prior experience level using visualization tools on a five-point
scale ranging from ‘Never’ to ‘Very Frequently’. All utterances
entered during the study were logged for further analysis.

3.4 Study Design Considerations

We iteratively developed the final study interface and procedure
described above through 41 pilot sessions, including two in-person
group sessions' (with 11 and 14 participants, respectively) and 16
distributed online sessions. To the best of our knowledge, this is the
first online study designed specifically for collecting NL utterances
for visualization specification. Correspondingly, below we briefly
reflect on the pilot feedback and the evolution of our study design to
highlight key considerations for future online studies investigating
NL input for data visualization.

3.4.1 No training trials or sample inputs. As we required partici-
pants to enter utterances that naturally occurred to them, we did not
present a “training phase” or sample inputs at the start of the study
to avoid biasing the utterances participants entered. This absence
of training trials is one crucial consideration compared to more
traditional perception- and interaction-focused online visualization
experiments that use training trials to acclimatize participants to
the study tasks and interface.

3.4.2  Phrasing task prompts. One important factor for future stud-
ies to consider is the phrasing of the task prompt (Figure 2C). To
cite an anecdote, during the pilots, we initially used the prompt
“Enter one or more natural language commands or utterances that
you would pose to a system to create the visualization shown on
the right” With this prompt, a majority of the input utterances
were phrased along the lines of “Create a [chart type] of [attributes]”
where the start “Create a” was consistent across almost all par-
ticipants. While these were natural utterances for some partici-
pants, other participants said that the prompt nudged them towards
phrasing their utterances in a particular way. Correspondingly,
to repeatedly remind participants that they were free to phrase
utterances per their individual preferences, we updated the task

!During the group sessions, participants completed the study individually on their
laptops and then collaboratively provided feedback on issues they faced (e.g., incorrect
chart sizes) or instructions that were confusing to them (e.g., task phrasing).
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prompt to (“Type one or more natural language...” as shown in Fig-
ure 2C. Specifically, we included a variety of terms to refer to partic-
ipant input (e.g., questions/statements/queries/...) and randomized
the ordering of these terms (e.g., utterances/queries/statements/...,
queries/questions/commands/...), and also varied the verbs used in
the prompt (e.g., create, generate, specify).

3.4.3 Choosing the number of required utterances. Setting the min-
imum number of utterances that participants need to enter is also
an important study design factor to consider. We initially asked the
pilot participants to enter two or more utterances they would use to
specify the given chart. However, participants commented that it
was challenging to provide more than one “natural” utterance, lead-
ing them to create a contrived second utterance by paraphrasing
their first utterance. Furthermore, instead of reading “two or more”
as two mutually exclusive utterances to specify the shown chart,
some participants misinterpreted the instructions as a mandate
for entering at least two utterances that collectively specified the
shown chart (e.g., “Show me a bar chart” > “Add states and aver-
age profit"). We therefore asked participants to enter one or more
utterances in the final study (Figure 2C).

3.4.4  Providing a dataset preview. One subtle but important design
consideration is the inclusion of a dataset preview as part of each
trial (Figure 2A). In the initial pilots, we included the dataset pre-
view only during the introductory phase but not for the actual trials.
However, we observed that including a dataset preview alongside
the chart gave participants a better understanding of the dataset,
helping them formulate more naturalistic utterances involving se-
mantic and value-based references to data attributes (e.g., using
phrases like “over time” or “movie length” instead of the attribute
names Year or Running Time, or values like “furniture, office supplies,
and technology” to refer to Category).

4 ANALYSIS AND RESULTS
4.1 Data Cleaning

A total of 803 logs were generated from the 102 sessions (76 com-
plete + 26 partial sessions, one log per trial). We manually inspected
these logs to curate a set of logs containing only valid utterances
that could reliably be used for future research and development. We
discarded 159 trials, leaving a total of 644 trials: we discarded trials
if they contained utterances that fell into the following categories:

o Arbitrary text (45): Trials that contained utterances composed
of an arbitrary collection of characters. Examples include “njknjk,”
“xyz,” “fdsfs,” and “na.”

Code or SQL (43): Trials that contained SQL commands or code
in programming languages, such as R and Python. Examples
include “SELECT Year, Origin, AVG(Horsepower) FROM dataset
WHERE Origin IN (‘Europe’, ‘Japan’, USA’) GROUP BY Origin,
Year” and “ggplot(dataset) + geom_point(mapping= aes(x= Horse-
power, y= Acceleration)”.

Incomplete utterances (37): Trials with utterances that were
incomplete in the context of recreating the displayed visualiza-
tions. For instance, for the trial shown in Figure 2, we excluded
the utterance “show me displacement vs miles per gallon” be-
cause it does not specify, in any way, that Origin should be
visualized as a third data attribute and used for coloring the
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Chart 5/10

Model Origin | Year | Acceleration | MPG

Volkswagen Dasher Europe 1974 185 26
Honda Civic Japan 1976 74| 33
Ford Flesta

Mercedes-Benz 2400

Dodge Aspen

Note: The above table

contains 303 rows and 9 columns,

©

1% -
* Enter text here.

MPG

Origin
@ Europe
’ Japan
USA

0 50 100 150 200 250 300 350 400 450 500
Displacement

Type one or more natural language questions/statements/queries/utterances/commands you
would enter in a system to specify the visualization on the right based on the given dataset.

(Fill out the *required fields to proceed)

Figure 2: Screenshot from the study illustrating a single task trial. The example shown is from a session visualizing the cars
dataset. (A) Dataset preview, (B) chart to specify, and (C) task prompt and input. Besides entering utterances, participants could
also click the @ icon on the top-right corner to revisit the dataset and task overview.

points. While incomplete utterances may be considered valid for
the given datasets during general data exploration, they lacked
sufficient information for a visualization system to adequately
infer the shown chart from the utterance alone. Other discarded
examples under this category include “Bar graph” (for a bar
chart that needs two attributes similar to Figure 1-3), “average of
horsepower” (for a multi-series line chart similar to Figure 1-8),
and “Show me bar graphs of each ship mode” (for a stacked bar
chart with three attributes similar to Figure 1-6).

e Miscellaneous utterances (34): Trials containing utterances
where it looked like participants did not follow the instructions
and entered utterances that were not relevant to the task of spec-
ifying a displayed chart. For example, for the chart in Figure 2,
we discarded a trial composed of only the following two utter-
ances: “Overlay Legend top right” and “Add Exponential Trend.”
Other discarded examples include “add data labels, inside end,”
“Change y-axis major units to 2,” and “Title start with A.”

4.2 Results

Among the filtered group of 644 trials, 252 corresponded to the cars
dataset, 205 to the movies dataset, and 187 to the superstore dataset.
The number of trials for each [dataset x chart type] combination
ranged 15-28 (M = 21). The 76 participants who completed all 10
trials also provided their prior working experience with visualiza-
tion tools (Never: 3, Somewhat infrequently: 9, Occasionally: 15,

Somewhat frequently: 23, Very frequently: 26). In terms of utter-
ances, from the 644 trials, we extracted a total of 893 utterances
with individual trials containing one to seven utterances.

Characterizing Utterances. We qualitatively analyzed the 893
utterances through an open coding process. Specifically, two of the
authors collaboratively inspected the data to identify high-level
themes and generated a set of codes to characterize and group ut-
terances. We then individually tagged random subsets of utterances
using the initial coding scheme and compared the coding results
for agreement. The resulting codes were then collectively discussed
and refined for consistency until an 85% agreement was reached us-
ing the Jaccard Index. Subsequently, all 893 utterances were tagged
using the mutually agreed-upon codes.

From the 893 utterances, we identified a total of 814 utterance
sets: we define an utterance set as a set of one or more utterances
that collectively map to a specific visualization. Utterance sets can
either be singleton (755) or sequential (59). A singleton utterance set
contains only one utterance intended to specify one chart. Examples
of singleton utterance sets for the chart shown in Figure 2 include
(1) “Scatterplot mpg vs displacement color by origin” and (2) “What is
the correlation between displacement and MPG of cars with different
origins?” On the other hand, a sequential utterance set is composed
of multiple utterances that collectively create one chart. Going back
to the chart in Figure 2, an example of a sequential utterance set
(with two utterances) is “plot displacement by mpg”> “color by origin”
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(the symbol ‘>’ denotes a follow-up utterance). The 59 sequential
utterances were composed of 2-5 utterances (M = 2). The lengths
of utterance sets ranged 2-61 words (M = 10), with individual
utterances containing up to 38 words (M = 9), see Figure 3.

To better understand the nature of utterances that people use
to specify visualizations, we characterized the 814 utterance sets
along two key dimensions: How the utterances are phrased and
WHAT dataset or visualization-specific information they contain.
Figure 4 summarizes the results of this characterization.

In terms of phrasing variations, we tagged each of the 814 utter-
ance sets as one of: commands (368), queries (260), questions (114), or
others (72). Figure 4-top presents examples of utterances under each
of these phrasing categories. Specifically, we defined ‘commands’
as utterances that were phrased similar to instructions or requests
from one person to another. We tagged an utterance set as a ‘query’
when the underlying utterances were phrased as keywords or terse
web search-like queries. ‘Questions’ were data-driven questions
that participants expected to see the displayed visualization as a
response to. If an utterance set did not fall under one of the three
aforementioned phrasing categories, we tagged it as ‘others’ be-
cause such phrasings were relatively infrequent. Broadly speaking,
the types of phrasings in the ‘others’ category included caption-like
statements describing a chart, commands that were primarily in
NL but also used special characters like ‘=" and ‘(' )’ that have a
programming connotation, or detailed chart rendering instructions.

With respect to the information contained within utterances, we
identified five types of references that would be relevant to an NLI
when interpreting utterances to create visualizations: attribute,

, encoding, , and references. Fig-
ure 4-top highlights these references in the context of sample ut-
terances illustrating the different phrasing variations. Attribute
references are essentially words in a query that map to a data
attribute. Attribute references can be further divided into four sub-
categories: (i) explicit references, where words in a query directly
match a portion of a data attribute (e.g., “mpg” — MPG, “genre” —
Major Genre), (ii) semantic references, where words in a query
are synonyms or semantically similar to the dataset attributes (e.g.,
“heavy” — Weight, “fuel economy” — MPG, “over time” — Year), (iii)
value-based references, where words in the query refer to cell val-
ues instead of column names (e.g., “1995 to 2010” — Release Year,
“furniture, office supplies, and technology” — Category), and (iv) im-
plicit references, where attributes are requested indirectly through
a visualization type (e.g., if there is only one temporal attribute,
requesting a line chart implies a reference to that attribute). Chart
type references include explicit requests for specific visualization
types (e.g., “scatterplot”, “bar chart”, “histogram”). A subset of utter-
ances also included explicit, unambiguous references to graphical
encoding channels that should be bound to different attributes (e.g.,
“color by category,” “facet by origin”). Utterances with aggregation
references included one or more words that mapped to the type of
mathematical transform that needed to be applied to create a chart
(e.g., sum, average, count). Aggregation references were further
sub-divided as explicit (e.g., “total gross”->SUM(Worldwide Gross),
“number of orders” — COUNT) or implicit via a requested chart type
or phrasing (e.g., “histogram” or “How many” — COUNT, “stacked
bar chart” — SUM or COUNT). Finally, utterances with explicit design
references specified additional details such as mark color, chart
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Histogram [89] —Jil—
Single Attribute Bar Chart [92]- —lll—

Bar Chart [86]1 —JlIl

Scatterplot [90]1 ————

."g’ Line Chart [85]{ —lill——

g Stacked Bar Chart [74]1 —MW———
Grouped Bar Chart [71] —il

Mult-series Line Chart [73]{ —lil—

Colored Scatterplot [74]-{ —ll——

Faceted Scatterplot [80]  ——JIl

0 10 20 30 40 50 6
Utterance Set Length

Figure 3: Summary of the lengths of the 614 utterance sets
across the 10 chart types (Figure 1) and three datasets (Ta-
ble 1) used in the study. The [count] alongside the chart
types indicates the number of utterance sets.

orientation, sorting order, or axis tick windows that could be lever-
aged by visualization NLIs when rendering charts (e.g., “set origin
colors to: europe, blue, japan, orange, usa, red,” “Histogram of running
time, in 20 minute bands”).

Note that the aforementioned phrasing and information types
are by no means an exhaustive list, nor are they mutually exclusive.
For instance, while we tagged them as commands, one could cross-
list the utterances “Faceting on Origin, plot Weight by Acceleration”
and “Can you create a graph showing sales and profit by region?” as
command+query and command+question, respectively. Similarly,
many utterances included keywords like ‘correlation,” ‘distribution,’
‘compare’ that could be used to identify intended analytic tasks [2],
which is another potentially relevant factor for a system when
determining which visualizations to render. Instead, the categoriza-
tion described in this section is primarily to provide a subjective
overview of the curated dataset and to serve as a reference point
for more detailed discussions regarding the nature of utterances
within visualization NLIs going forward.

5 APPLICATIONS

The central contribution of this work is the curated dataset of
893 utterances (814 utterance sets) that are publicly available at:
https://nlvcorpus.github.io. To lay the groundwork and help
foster ideas for future research and development, below we high-
light some exemplary applications of this dataset.

5.1 Benchmarking Existing NL-based
Visualization Tools

The curated utterances can serve as a benchmarking dataset to
evaluate the performance of existing systems. As an example, we
used the dataset to evaluate the NL4DV toolkit [18] which returns
a list of Vega-Lite specifications in response to NL utterances. To
benchmark NL4DV’s performance, we configured NL4DV with the
three datasets used for the study and executed the 755 singleton



Collecting and Characterizing Natural Language Utterances for Specifying Data Visualizations CHI ’21, May 8-13, 2021, Yokohama, Japan

» draw a of daily sales forecasts « Cylinders average mpg
(s) (e) (e) (e) (e)
* Please show me a of weights with . Production Budget vs Worldwide Gross >
(i) (e (e) (e)
-8 - Slice by Content Rating ‘ ‘
c [} (e)
g =
Q .
£+ Showmea of the profit for each region > S| * mpg vs displacement > as
o e (e) (@] (e) (e)
O Make the bars stacked with the ship status
(e) « Count by origin
(e) (e)
» show me the average Welght ina * (Gross versus genre
(e) (e) (i) (e) (e)
* What is our proEit) based on shipping moc{e) by . (x=production budget, y=worldwide gross) for
e e
customer segment? content rating © ©
(e) (e)
v | How much do various cars weigh? « Trend for average horsepower over time across
c (s) | different origin  (e) (e) (s)
2 > (e)
'g * How does displacement relate to fuel economy for cars f.
S| from Europe v. USA? (e) (s) O|°3 , one each for every Europe, Japa(o), and
o (v) (v) USA, to show weight on X Axis and Acceleration on Y
(v) (e) (e)
Axi
* What major genre had the highest average worldwide s
gross? © “
(e)
Attributes Aggregations
ael (7]
[} oo
= g o £ o
5 5 0 S 3 S 2
o = = =% o S [=3
ST 82| 22| E= & IZ| E=
Commands | Singleton (336) 322 46 9 7 152 57 28 173 28
(368) Sequential (32) 32 2 17 3 15 2
Queries Singleton (249) 246 15 3 108 33 19 133 18
(260) Sequential (11) 11 1 8 2 1 6
Questions | Singleton (113) 105 32 3 1 1 2 1 28 28
(114) Sequential (1) 1 1 1
Others Singleton (57) 56 9 1 36 23 1 24 6
(72) Sequential (15) 15 1 12 3 6 10 1
Total (814) 788 103 18 8 339 137 59 390 83

Figure 4: An overview of the curated dataset of 814 utterance sets composed of 893 utterances from the 644 trials. (Top) Utter-
ance phrasing types we observed along with examples of each type. (Bottom) A distribution of information references within
each utterance set. The color codes of the columns headers are also used to highlight the corresponding references in examples
shown at the top. Note that specifically for attribute references, a single utterance set can have multiple types of references
and hence the sub-category totals add up to more than 814 (e.g., “How does displacement relate to fuel economy for cars from Eu-
rope v. USA” contains an explicit reference to Displacement, a semantic reference to MPG, and a value-based reference to Origin).
Additionally, data aggregations were only applicable to 570/814 utterance sets that were issued in the context of visualizations
other than scatterplots (since scatterplots did not show aggregated values) and 97 of these 570 utterance sets did not include
explicit or implicit aggregation references (e.g., “bar chart for mpg v/s cylinders”).
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Accuracy Accuracy Execution

Utterances Used " p ) (Partial) Time (Avg.)
All (755) 485 (64%) 569 (75%) 1.04
Cars (290) 203 (70%) 225 (78%) 0.21
Movies (257) 168 (65%) 204 (79%) 0.15
Superstore (208) 114 (55%) 140 (67%) 3.30

Table 2: NL4DV’s accuracy and execution time (in seconds)
for 755 singleton utterance sets from the curated dataset.
Note: results are based on a beta version of NL4DV 0.0.1.

utterance sets curated from the study. We only used singletons
since NL4DV currently does not support sequential utterances.

Table 2 summarizes the toolkit’s performance on the curated
utterance dataset. Execution times for individual utterances ranged
between 0.01s-14.11s (mean: 1.04s)?. To compute the accuracy, we
compared the list of Vega-Lite specifications returned by NL4DV to
the Vega-Lite chart shown during the study. In our first iteration,
we checked for exact matches between the mark type (point, bar,
line), encodings (x, y, color, column), data bindings (i.e., map-
pings between attributes and encodings), and data aggregations
(count, mean, sum) with one exception: we marked two scatterplots
as “equal” even if their x, y data bindings were interchanged. In-
specting the failed cases, we noticed that some mismatches were not
interpretation or visualization recommendation errors but rather
resulted from default data binding and aggregation choices made
within NL4DV’s recommendation engine (e.g., reversed x and color
bindings for a stacked bar chart, setting a mean aggregation instead
of a sum when no aggregation is specified in an utterance). Thus,
to account for these default choices, we also computed a second
“partial match” accuracy score ignoring such mismatches.

Looking through the remaining failed utterances, we noticed that
errors occurred due to NL4DV’s keyword-based task detection logic
(e.g., the word ‘relationship’ would map to a correlation, resulting in
a point mark while the utterance was in the context of a bar chart),
and undetected semantic attribute references (e.g., the phrase ‘fuel
economy’ did not get mapped to the MPG attribute), among others.
While not a critical review of NL4DV’s performance, this example
shows how the presented utterance dataset can help benchmark
and identify areas for improvement within current tools.

5.2 Developing New Models for NL-driven Data
Visualization

The curated utterance dataset can also be used to develop new
techniques to generate visualizations from NL. As a preliminary
application, we explored how the curated utterance dataset can be
used to develop a classification model that predicts chart types (with
labels being the ten chart types used in the study) based on NL ut-
terances. To this aim, we experimented with different classification
techniques including logistic regression, random forests, support
vector machines, and Naive Bayes available within Python’s scikit-
learn package [19].

ZReported based on a MacBook Pro with a Dual-Core 2.6GHz processor and 8GB RAM
running MacOS Catalina version 10.15.6
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Technique Accuracy
Logistic Regression 88%
Random Forest 88%
Linear Support Vector Classification 87%
Multinomial Naive Bayes 85%

Table 3: Performance of different classification techniques
using the 814 curated utterance sets. All numbers are re-
ported based on a 10-fold cross validation.

We summarize the classification accuracy of these models trained
on TF-IDF vectorized representations of the 814 utterance sets (sin-
gletons + sequential) in Table 3. Although we need substantially
larger datasets to make these models practically useful, this initial
setup illustrates the potential of the presented dataset for support-
ing future development. Ultimately, such classifiers can be coupled
with other NL understanding and visualization recommendation
modules to generate visualizations in response to given utterances.
For example, one could combine the output from a classifier (i.e.,
chart type), detect attributes in input utterances with toolkits like
NL4DV [18], and then determine the most perceptually effective
bindings for the classified chart type’s encoding channels using
tools like CompassQL [29] and Draco [17]. Similarly, the curated
utterances can also be used as input to contemporary few-shot
learning models such as GPT-3 [6]. For instance, developers have al-
ready begun to experiment with GPT-3 for generating visualizations
from NL using only tens of hand-crafted example utterances [1]. To
this end, the presented dataset can help fuel these recent efforts and
significantly improve performance by providing a broader training
set covering multiple chart types and dataset domains.

6 DISCUSSION

6.1 Implications for System Design

The spectrum of heavily specified utterances (e.g., “Show me a bar
chart of the total profitability of each region with a breakdown based
on shipping time”) to highly underspecified keyword-based utter-
ances (e.g., “Cylinders average mpg”) highlights the varying level
of expectations that people have from NLIs for data visualization.
Closely examining the collected utterances can help current sys-
tems expand their underlying grammar configurations to support
more natural utterances, or help develop new systems based on the
themes observed from this data. As actionable takeaways, below
we highlight some key design considerations for developing NLIs
for visualization based on our observations from the curated set of
utterances.

6.1.1 Accommodating natural phrasings as part of user input in
visualization tools. While not an exhaustive or definitive list, the ex-
amples shown in Figure 4-top illustrate the diverse forms in which
people naturally phrase NL utterances. However, given practical
implementation challenges, current NLIs often suggest utterances
as users provide their input (e.g., Figure 5), asking users to select
from these utterances. While these suggestions can aid discoverabil-
ity and help improve system accuracy, their phrasing may mislead
people about the system’s interpretation capabilities or bias users
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What is the relationship between sales and profit for each region?

sum of Sales and sum of Profit by Region

Figure 5: A phrasing suggestion in Tableau’s Ask Data [27]
while entering an utterance collected during the study.

towards phrasing their input in a specific format (e.g., query-like
utterances as in the suggestion in Figure 5). Furthermore, mentally
mapping different phrasings of input utterances and system sug-
gestions can be tedious and potentially confusing (e.g., the input
utterance in Figure 5 does not contain aggregations but the system
suggestion does). Hence, going forward, to enable truly “natural”
language-based interactions and support flexible input phrasings,
one consideration for visualization systems is to explore ways to
internally translate input utterances into system-friendly phrasings
without exposing these phrasings to users by default.

6.1.2 Inferring different types of attribute references. Prior work by
Grammel et al. [11] has highlighted how people, especially novices,
heavily rely on attributes to specify visualizations (deferring under-
lying visualization design decisions onto the system). This obser-
vation has played a key role in motivating the design of NLIs for
visualization as NL allows users (novices or experts) to freely specify
attributes amidst naturally phrased questions or as part of targeted
commands. The collected utterances not only reaffirm this fact but
also highlight the flexibility that NL affords in specifying attributes
(explicit, semantic, value-based, and implicit references in Figure 4-
bottom). However, as also highlighted by prior work [10, 22], to be
effective, NLIs must complement this input flexibility with robust
interpretation techniques to infer these different references, partic-
ularly focusing on ambiguous (e.g., partial attribute matches) and
semantic references (e.g., synonyms, domain-specific terminology
such as “fuel economy" for MPG).

6.1.3  Balancing automated and manual view specification. Given
the overarching task of visualization specification, an important
aspect for supporting NL interaction is making automated visual-
ization design choices when an utterance is underspecified (e.g.,
choosing chart types based on attribute types, selecting a default ag-
gregation when there is none specified in the query) [22]. However,
in this study, we observed that participants oftentimes provided
explicit references to one or more encoding channels (e.g., “color
by Origin,” “faceted by region”) that may not match a system’s in-
herent design choices (e.g., a visualization system might select a
colored scatterplot over a faceted one by default). Yet, such custom
specification is seldom supported in current systems that strive to
provide agency through implicit decisions. Thus, in line with rec-
ommendations from Tory and Setlur on prioritizing explicit intent
during analytic conversations [28], in the context of visualization
specification, future systems must accommodate explicit encoding
requests, allowing users to override implicit visualization design
choices made by current systems.

CHI ’21, May 8-13, 2021, Yokohama, Japan

6.2 Limitations and Future Work

Although our work presents implications for the general design of
NLIs for visualization, the collected data and our findings should be
interpreted with the study’s constraints and assumptions in mind.
Specifically, we only considered typed input and did not allow par-
ticipants to use voice to enter utterances. Furthermore, we did not
screen participants or collect any demographic information, and
only distributed the study to participants outside the European
region (due to privacy laws and IRB requirements). Hence, con-
ducting follow-up studies to collect spoken utterances or targeting
focused user groups (e.g., visualization novices) can help enrich the
data and findings.

As with most online studies, cleaning and filtering the data col-
lected from the trials was an integral aspect of our work. For in-
stance, even after incorporating the feedback from the pilot sessions,
we still encountered a breadth of trials that had to be discarded
(Section 4.1). Furthermore, for individual trials, participants often
entered two or more singleton utterance sets, one or more sequen-
tial utterance sets, or a combination of singleton and sequential
utterance sets. While this highlights the input flexibility that the
study interface provided, it also required us to manually inspect
utterances and detect utterance sets. Given the relatively small
scale of the data, performing these cleaning steps manually was
feasible, albeit tedious. However, generalizing the data cleaning
process for larger utterance datasets and investigating interactive
data cleaning systems that function based on preconfigured rules
or a set of examples are important areas for future work to explore.

Besides the immediate applications of the current dataset (Sec-
tion 5), our study can also be extended in different ways. First, a
short-term extension could be to consider additional visualization
types (e.g., parallel coordinates, heatmaps) or focusing on non-
tabular data (e.g., network visualizations, maps). Second, following
the methodology used to construct popular NL-to-SQL datasets
such as WikiSQL [33], a crowdsourced task could be setup to para-
phrase the current set of utterances and then to validate the para-
phrased utterances. This paraphrasing can help generate a larger
dataset which could subsequently enable more quantitative anal-
yses of utterances and the development of NL-to-Visualization
models, complementing research trends in the computer vision
(e.g., [3, 8]) and database communities (e.g., [31, 32]). Lastly, we
asked participants to specify only one chart at a time. However,
NLIs have the potential to offer a more fluid analytic experience
which goes beyond specifying a single chart. To this end, future
studies could combine ideas from the current study and prior re-
search on conversational visual analysis [12, 28] to collect data on
how people specify dashboards or sequences of charts (as opposed
to specifying each chart from scratch).

7 CONCLUSION

We conducted an online study with 102 participants to collect NL
utterances people use to specify data visualizations. To guide future
research and development, we make the curated dataset of 893 ut-
terances publicly available at https://nlvcorpus.github.ioand
illustrate its application toward the creation and benchmarking of
NLIs for data visualization. In this paper, providing insight into the
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nature of these utterances, we characterize them based on their
phrasing type (e.g., commands, queries, questions) as well as the
visualization specification-relevant information they provide (e.g.,
chart types, encodings, aggregation functions). Additionally, we
present the system design implications of the observed utterance
patterns and briefly reflect on design considerations for conduct-
ing subsequent online studies in the space. Finally, we discuss the
constraints of our study along with future research opportunities
that can complement our study, enriching the data and findings.
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