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ABSTRACT

Natural language interfaces (NLIs) for data visualization are be-

coming increasingly popular both in academic research and in

commercial software. Yet, there is a lack of empirical understand-

ing of how people specify visualizations through natural language.

We conducted an online study (N = 102), showing participants a

series of visualizations and asking them to provide utterances they

would pose to generate the displayed charts. From the responses,

we curated a dataset of 893 utterances and characterized the ut-

terances according to (1) their phrasing (e.g., commands, queries,

questions) and (2) the information they contained (e.g., chart types,

data aggregations). To help guide future research and development,

we contribute this utterance dataset and discuss its applications

toward the creation and benchmarking of NLIs for visualization.
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1 INTRODUCTION

Natural language (NL) is gaining traction as an input modality for

data visualization tools. Both mainstream visualization systems

(e.g., Microsoft Power BI [16], Tableau [27]) and research proto-

types (e.g., [7, 10, 21, 24, 26, 30]) have demonstrated the potential

natural language interfaces (NLIs) hold for supporting a rich visual

analytic flow and to cater to broader audiences (e.g., visualization

novices, people with disabilities). Visualization specification plays

a central role in these tools, as people create charts to visually

explore and analyze their data (e.g., creating histograms to check

data distributions, creating scatterplots to observe correlations), as

well as to communicate their findings with other stakeholders (e.g.,

creating grouped bar charts for quarterly reports).

However, beyond the space of utterances supported in current

NLIs for visualization, there is limited empirical understanding

about the nature of utterances people use to specify data visualiza-

tions through NL. For instance, how do people structure or phrase

their utterances? Do they use systemic commands (e.g., łPlot scat-

terplot of sales by profit.ž ) or high-level questions (e.g., łHave cars

gotten lighter over time?ž )? What type of information do people

include in their utterances? Do they explicitly list chart types and

aggregations (e.g., łBar chart showing average profit by statež ) or

expect systems to infer such information for them (e.g., łVisualize

profit across states.ž )? Furthermore, in cases where people provide

explicit references, are these references direct (e.g., exact or partial

matches to attribute names), or implied or semantic (e.g., using syn-

onyms for attribute names, using phrases like łHow manyž instead

of specifying a COUNT aggregation)? Answering these questions

can help assess how well-aligned current tools are with people’s

expectations from NLIs for visualization. This, in turn, can help de-

velopers of NLIs for visualization validate and boost their systems’

performance and improve system usability.

We conducted an online study with 102 participants, curating a

dataset of 893 visualization specification-oriented NL utterances.

Specifically, we showed participants a series of ten canonical visu-

alizations (e.g., bar charts, line charts, scatterplots) and asked them

to enter utterances they would use to create the shown charts. We

then characterized the resulting utterances along two dimensions:

1) their phrasings, i.e., how the utterances were structured (e.g.,

questions, commands), and 2) the information contained in them

(e.g., some utterances explicitly requested a visualization type). For
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the remainder of this paper, we use the term utterance to refer to

any NL command, statement, query, question, or instruction that

one may issue to an NLI.

Leveraging this characterization, we provide a high-level sum-

mary of the types of utterances that people use to specify visu-

alizations, discussing their coverage within current systems and

revealing underexplored classes of utterances. We also distill our

experiences and highlight critical considerations for designing and

conducting online studies to collect data for NLIs for visualization.

Finally, we discuss how the curated dataset of utterances can be

used toward the creation and benchmarking of NLIs for visualiza-

tion, and for collecting larger datasets.

The key contributions of this work are twofold: (1) a publicly

available dataset of 893 visualization specification-oriented utter-

ances and a discussion of its application toward creating and bench-

marking NLIs, and (2) a characterization of NL utterances people

use to specify data visualizations along with its implications for

designing future NLIs for visualization specification.

2 RELATED WORK

Advances in NL recognition and understanding have led to a surge

of interest in NLIs for data visualization. In recent years, a wide

range of systems have been developed to support NL interaction

during visual data exploration (e.g., [10, 12, 21, 23, 24, 26]), for ques-

tion answering with charts [13], and for facilitating data-driven

communication [7, 14]. A majority of these systems focus on spe-

cific visualizations and usage scenarios (e.g., network data explo-

ration [25], dataflow diagram editing [30]) or technical aspects of

system development (e.g., detecting ambiguities [10, 21], inferring

underspecified queries [22]).

On the other hand, some projects have more closely investigated

the structure of NL utterances and thus are highly relevant to our

work. Metoyer et al. [15] conducted a study where 20 participants

worked in pairs with one participant verbally describing a given

chart to another participant who attempted to draw the chart based

on that description. Through the collected data, the authors discuss

implications for future NL systems including the need to support

ambiguous instructions (e.g., ła narrow barž ) and the use of relative

terms to arrange spatial layouts (e.g., łthe yellow bar is stacked on

top of the blue barž ), among others. Setlur et al. [21] conducted

a study to collect utterances people may pose when interacting

with a given chart. They identified different task categories peo-

ple try to perform (e.g., search, filter, change chart type) and used

the corresponding utterances to implement the Eviza system [21].

Tory and Setlur [28] conducted a wizard-of-oz study to understand

people’s expectations of the role of system intelligence in NLIs dur-

ing visual analysis. Their findings highlight that NLIs can enable a

richer visual analytic flow by supporting both explicit and implicit

user intent, by prioritizing explicit intent over consistency in use

of graphical encodings during chart transitions, and by performing

proactive actions, such as visually encoding filters and implicitly

applying data transformations, among others. Our work shares a

similar goal with these studies in that we also seek to understand

the nature of NL utterances within the context of data visualization.

However, we focus on collecting and understanding utterances peo-

ple may pose to a system for visualization specification (as opposed

to interacting with a given chart). In doing so, we provide additional

evidence for findings from prior studies while also offering novel

insights into classes of utterances not supported in current tools

and discussing practical implications for system design.

Recent work has also begun to curate datasets of utterances to

enable the use of machine learning techniques for NLI development.

For instance, during an online study, Kim et al. [13] showed people

a series of bar charts and line charts, and collected questions peo-

ple pose to these charts along with the participants’ answers (and

explanations) to those questions. This data was then used to update

Sempre [5], a model conventionally used for question answering

within relational data tables, to answer questions in the context

of data visualizations. Fu et al. [9] collected utterances mapping

to Amar et al.’s 10 low-level analytic tasks (e.g., filter, sort, find

extremum) [2]. Using the collected data to train a text classification

model, the authors showed how one could detect analytic tasks

from given NL utterances. Similar to these recent studies, we also

aim to foster future research and development by curating a freely

available dataset of utterances. To this end, we complement the ex-

isting datasets that focus on question answering and task detection,

and contribute the first dataset that contains visualizations and

utterances that were used to specify those visualizations. Besides

discussing the applications of the presented dataset, we also offer

insights into unique challenges we faced during data collection and

curation as these can help extend the described study and generate

larger datasets.

3 ONLINE STUDY

3.1 Visualizations and Datasets

Our study covered a total of 30 visualizations (10 visualizations

x three datasets): Figure 1 shows the 10 visualizations that were

presented during each session and Table 1 summarizes the three

datasets used in the study. These visualizations covered three pop-

ular chart types: bar charts, line charts, and scatterplots, along with

their variants (histograms, stacked & grouped bar charts, multi-

series line charts, and colored & faceted scatterplots). Our choice

of visualizations was motivated by the popularity of these charts

across visualization tools in general [4] as well as within existing

NLIs for visualization (e.g., [10, 21, 23, 26]). Furthermore, these visu-

alizations also allowed us to cover three basic data types: categorical

(both nominal and ordinal values), quantitative, and temporal, as

well as their combinations involving one to three data attributes

at a time. Collectively, this set of visualizations and attribute type

combinations ensured that the utterances collected via the study

would be broadly applicable and could be used in the context of

general visualization tools.

Dataset
(Cardinality)

Categorical
Attributes

Quantitative
Attributes

Temporal
Attributes

Cars (303) 2 5 1
Movies (709) 3 5 1
Superstore (5899) 11 5 1

Table 1: Summary of three datasets used for the study (com-

plete datasets are provided as supplementary material).
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corresponding to the 10 visualizations displayed in Figure 1. Each

participant saw all 10 visualizations from only one of the three

datasets (cars, movies, superstore). Both the dataset selected and

the order of visualizations were randomized across participants.

Participants were first informed about the study goal, compensa-

tion, public sharing of collected utterances, etc. and were asked to

provide their consent. Next, participants were given a brief intro-

duction to the dataset (e.g., number of rows and columns, what the

rows and columns represent) and the task, which required partici-

pants to enter (type in) one or more utterances they would pose to

a system like Tableau or Microsoft Power BI to specify a displayed

visualization (Figure 2). Note that to ensure participants were not

biased to phrase utterances in a specific way, we did not provide

any example utterances as part of the task description. Participants

were then presented with the 10 trials in random order. Lastly, par-

ticipants who completed the trials were given the option to provide

their prior experience level using visualization tools on a five-point

scale ranging from ‘Never’ to ‘Very Frequently’. All utterances

entered during the study were logged for further analysis.

3.4 Study Design Considerations

We iteratively developed the final study interface and procedure

described above through 41 pilot sessions, including two in-person

group sessions1 (with 11 and 14 participants, respectively) and 16

distributed online sessions. To the best of our knowledge, this is the

first online study designed specifically for collecting NL utterances

for visualization specification. Correspondingly, below we briefly

reflect on the pilot feedback and the evolution of our study design to

highlight key considerations for future online studies investigating

NL input for data visualization.

3.4.1 No training trials or sample inputs. As we required partici-

pants to enter utterances that naturally occurred to them, we did not

present a łtraining phasež or sample inputs at the start of the study

to avoid biasing the utterances participants entered. This absence

of training trials is one crucial consideration compared to more

traditional perception- and interaction-focused online visualization

experiments that use training trials to acclimatize participants to

the study tasks and interface.

3.4.2 Phrasing task prompts. One important factor for future stud-

ies to consider is the phrasing of the task prompt (Figure 2C). To

cite an anecdote, during the pilots, we initially used the prompt

łEnter one or more natural language commands or utterances that

you would pose to a system to create the visualization shown on

the right.ž With this prompt, a majority of the input utterances

were phrased along the lines of łCreate a [chart type] of [attributes]ž

where the start łCreate až was consistent across almost all par-

ticipants. While these were natural utterances for some partici-

pants, other participants said that the prompt nudged them towards

phrasing their utterances in a particular way. Correspondingly,

to repeatedly remind participants that they were free to phrase

utterances per their individual preferences, we updated the task

1During the group sessions, participants completed the study individually on their
laptops and then collaboratively provided feedback on issues they faced (e.g., incorrect
chart sizes) or instructions that were confusing to them (e.g., task phrasing).

prompt to (łType one or more natural language...ž as shown in Fig-

ure 2C. Specifically, we included a variety of terms to refer to partic-

ipant input (e.g., questions/statements/queries/...) and randomized

the ordering of these terms (e.g., utterances/queries/statements/...,

queries/questions/commands/...), and also varied the verbs used in

the prompt (e.g., create, generate, specify).

3.4.3 Choosing the number of required utterances. Setting the min-

imum number of utterances that participants need to enter is also

an important study design factor to consider. We initially asked the

pilot participants to enter two or more utterances they would use to

specify the given chart. However, participants commented that it

was challenging to provide more than one łnaturalž utterance, lead-

ing them to create a contrived second utterance by paraphrasing

their first utterance. Furthermore, instead of reading łtwo or morež

as two mutually exclusive utterances to specify the shown chart,

some participants misinterpreted the instructions as a mandate

for entering at least two utterances that collectively specified the

shown chart (e.g., łShow me a bar chartž > łAdd states and aver-

age profit"). We therefore asked participants to enter one or more

utterances in the final study (Figure 2C).

3.4.4 Providing a dataset preview. One subtle but important design

consideration is the inclusion of a dataset preview as part of each

trial (Figure 2A). In the initial pilots, we included the dataset pre-

view only during the introductory phase but not for the actual trials.

However, we observed that including a dataset preview alongside

the chart gave participants a better understanding of the dataset,

helping them formulate more naturalistic utterances involving se-

mantic and value-based references to data attributes (e.g., using

phrases like łover timež or łmovie lengthž instead of the attribute

names Year or Running Time, or values like łfurniture, office supplies,

and technologyž to refer to Category).

4 ANALYSIS AND RESULTS

4.1 Data Cleaning

A total of 803 logs were generated from the 102 sessions (76 com-

plete + 26 partial sessions, one log per trial). We manually inspected

these logs to curate a set of logs containing only valid utterances

that could reliably be used for future research and development. We

discarded 159 trials, leaving a total of 644 trials: we discarded trials

if they contained utterances that fell into the following categories:

• Arbitrary text (45): Trials that contained utterances composed

of an arbitrary collection of characters. Examples include łnjknjk,ž

łxyz,ž łfdsfs,ž and łna.ž

• Code or SQL (43): Trials that contained SQL commands or code

in programming languages, such as R and Python. Examples

include łSELECT Year, Origin, AVG(Horsepower) FROM dataset

WHERE Origin IN (‘Europe’, ‘Japan’, ‘USA’) GROUP BY Origin,

Yearž and łggplot(dataset) + geom_point(mapping= aes(x= Horse-

power, y= Acceleration)ž.

• Incomplete utterances (37): Trials with utterances that were

incomplete in the context of recreating the displayed visualiza-

tions. For instance, for the trial shown in Figure 2, we excluded

the utterance łshow me displacement vs miles per gallonž be-

cause it does not specify, in any way, that Origin should be

visualized as a third data attribute and used for coloring the
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Figure 4: An overview of the curated dataset of 814 utterance sets composed of 893 utterances from the 644 trials. (Top) Utter-

ance phrasing types we observed along with examples of each type. (Bottom) A distribution of information references within

each utterance set. The color codes of the columns headers are also used to highlight the corresponding references in examples

shown at the top. Note that specifically for attribute references, a single utterance set can have multiple types of references

and hence the sub-category totals add up tomore than 814 (e.g., łHow does displacement relate to fuel economy for cars from Eu-
rope v. USAž contains an explicit reference to Displacement, a semantic reference to MPG, and a value-based reference to Origin).

Additionally, data aggregations were only applicable to 570/814 utterance sets that were issued in the context of visualizations

other than scatterplots (since scatterplots did not show aggregated values) and 97 of these 570 utterance sets did not include

explicit or implicit aggregation references (e.g., łbar chart for mpg v/s cylindersž).
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Utterances Used
Accuracy

(Exact)

Accuracy

(Partial)

Execution

Time (Avg.)

All (755) 485 (64%) 569 (75%) 1.04

Cars (290) 203 (70%) 225 (78%) 0.21

Movies (257) 168 (65%) 204 (79%) 0.15

Superstore (208) 114 (55%) 140 (67%) 3.30

Table 2: NL4DV’s accuracy and execution time (in seconds)

for 755 singleton utterance sets from the curated dataset.

Note: results are based on a beta version of NL4DV 0.0.1.

utterance sets curated from the study. We only used singletons

since NL4DV currently does not support sequential utterances.

Table 2 summarizes the toolkit’s performance on the curated

utterance dataset. Execution times for individual utterances ranged

between 0.01sś14.11s (mean: 1.04s)2. To compute the accuracy, we

compared the list of Vega-Lite specifications returned by NL4DV to

the Vega-Lite chart shown during the study. In our first iteration,

we checked for exact matches between the mark type (point, bar,

line), encodings (x, y, color, column), data bindings (i.e., map-

pings between attributes and encodings), and data aggregations

(count, mean, sum) with one exception: we marked two scatterplots

as łequalž even if their x, y data bindings were interchanged. In-

specting the failed cases, we noticed that somemismatches were not

interpretation or visualization recommendation errors but rather

resulted from default data binding and aggregation choices made

within NL4DV’s recommendation engine (e.g., reversed x and color

bindings for a stacked bar chart, setting a mean aggregation instead

of a sum when no aggregation is specified in an utterance). Thus,

to account for these default choices, we also computed a second

łpartial matchž accuracy score ignoring such mismatches.

Looking through the remaining failed utterances, we noticed that

errors occurred due to NL4DV’s keyword-based task detection logic

(e.g., the word ‘relationship’ would map to a correlation, resulting in

a pointmark while the utterance was in the context of a bar chart),

and undetected semantic attribute references (e.g., the phrase ‘fuel

economy’ did not get mapped to the MPG attribute), among others.

While not a critical review of NL4DV’s performance, this example

shows how the presented utterance dataset can help benchmark

and identify areas for improvement within current tools.

5.2 Developing New Models for NL-driven Data
Visualization

The curated utterance dataset can also be used to develop new

techniques to generate visualizations from NL. As a preliminary

application, we explored how the curated utterance dataset can be

used to develop a classificationmodel that predicts chart types (with

labels being the ten chart types used in the study) based on NL ut-

terances. To this aim, we experimented with different classification

techniques including logistic regression, random forests, support

vector machines, and Naive Bayes available within Python’s scikit-

learn package [19].

2Reported based on a MacBook Pro with a Dual-Core 2.6GHz processor and 8GB RAM
running MacOS Catalina version 10.15.6

Technique Accuracy

Logistic Regression 88%

Random Forest 88%

Linear Support Vector Classification 87%

Multinomial Naive Bayes 85%

Table 3: Performance of different classification techniques

using the 814 curated utterance sets. All numbers are re-

ported based on a 10-fold cross validation.

We summarize the classification accuracy of thesemodels trained

on TF-IDF vectorized representations of the 814 utterance sets (sin-

gletons + sequential) in Table 3. Although we need substantially

larger datasets to make these models practically useful, this initial

setup illustrates the potential of the presented dataset for support-

ing future development. Ultimately, such classifiers can be coupled

with other NL understanding and visualization recommendation

modules to generate visualizations in response to given utterances.

For example, one could combine the output from a classifier (i.e.,

chart type), detect attributes in input utterances with toolkits like

NL4DV [18], and then determine the most perceptually effective

bindings for the classified chart type’s encoding channels using

tools like CompassQL [29] and Draco [17]. Similarly, the curated

utterances can also be used as input to contemporary few-shot

learning models such as GPT-3 [6]. For instance, developers have al-

ready begun to experiment with GPT-3 for generating visualizations

from NL using only tens of hand-crafted example utterances [1]. To

this end, the presented dataset can help fuel these recent efforts and

significantly improve performance by providing a broader training

set covering multiple chart types and dataset domains.

6 DISCUSSION

6.1 Implications for System Design

The spectrum of heavily specified utterances (e.g., łShow me a bar

chart of the total profitability of each region with a breakdown based

on shipping timež ) to highly underspecified keyword-based utter-

ances (e.g., łCylinders average mpgž ) highlights the varying level

of expectations that people have from NLIs for data visualization.

Closely examining the collected utterances can help current sys-

tems expand their underlying grammar configurations to support

more natural utterances, or help develop new systems based on the

themes observed from this data. As actionable takeaways, below

we highlight some key design considerations for developing NLIs

for visualization based on our observations from the curated set of

utterances.

6.1.1 Accommodating natural phrasings as part of user input in

visualization tools. While not an exhaustive or definitive list, the ex-

amples shown in Figure 4-top illustrate the diverse forms in which

people naturally phrase NL utterances. However, given practical

implementation challenges, current NLIs often suggest utterances

as users provide their input (e.g., Figure 5), asking users to select

from these utterances. While these suggestions can aid discoverabil-

ity and help improve system accuracy, their phrasing may mislead

people about the system’s interpretation capabilities or bias users
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nature of these utterances, we characterize them based on their

phrasing type (e.g., commands, queries, questions) as well as the

visualization specification-relevant information they provide (e.g.,

chart types, encodings, aggregation functions). Additionally, we

present the system design implications of the observed utterance

patterns and briefly reflect on design considerations for conduct-

ing subsequent online studies in the space. Finally, we discuss the

constraints of our study along with future research opportunities

that can complement our study, enriching the data and findings.
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