
Noname manuscript No.
(will be inserted by the editor)

Incorporating Individual and Group Privacy Preferences in
the Internet of Things

Khaled Alanezi · Shivakant Mishra

Received: date / Accepted: date

Abstract This paper presents a new privacy negoti-

ation mechanism for an IoT environment that is both

e�cient and practical to cope with the IoT special need

of seamlessness. This mechanism allows IoT users to ex-

press and enforce their personal privacy preferences in

a seamless manner while interacting with IoT deploy-

ments. A key contribution of the paper is that it ad-

dresses the privacy concerns of individual users as well

as a group of users where privacy preferences of all in-

dividual users are combined into a group privacy pro�le

to be negotiated with the IoT owner. In addition, the

proposed mechanism satis�es the privacy requirements

of the IoT deployment owner. Finally, the proposed pri-

vacy mechanism is agnostic to the actual IoT archi-

tecture and can be used over a user-managed, edge-

managed or a cloud-managed IoT architecture. Pro-

totypes of the proposed mechanism have been imple-

mented for each of these three architectures, and the

results show the capability of the protocol to negotiate

privacy while adding insigni�cant time overhead.
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1 Introduction

With increasing availability of wide range of commercial

IoT systems nowadays, we are closer than ever into real-

izing the IoT vision of sensing, interconnecting, actuat-

ing and remotely controlling physical objects in our en-

vironment. Users can now shop for smart thermostats,

door locks, light bulbs, home security systems or patient

monitoring systems among other options and control

them from their mobile devices. While such systems

can bring great comfort in our everyday lives, there is

a pressing need to consider user privacy in designing

and using them. We see that addressing the privacy

concerns of such systems involves answering a two-fold

question. First, the simpler question (though answer-

ing this question in itself is not simple) is how to allow

an individual user who comes across an IoT environ-

ment to be in charge of what information can be col-

lected about them? For example, can a user ensure that

a camera system in the environment may take her pic-

ture but must blur her face before distributing it to any

third party, or the IoT environment must anonymize

her location su�ciently before sharing it with anyone

else. While determining and respecting individual user

privacy requirements is complex, a much more sophis-

ticated situation arises when a group of multiple users

immerse in an IoT environment. Each user in the group

may potentially have a di�erent set of privacy concerns,

and the complex question is how to determine the pri-

vacy requirements of the group as a whole (group pri-

vacy) and provide a service that respects these group

privacy requirements. For example, consider a situation

where multiple users walk into a room equipped with

a video surveillance system. While some users in the

group are comfortable with the video capture process,

others might require speci�c policies to be applied to
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the captured videos, such as face �lters or guaranteeing

non-disclosure of the video to third parties. In this jour-

nal paper, we extend our previous work (Alanezi and

Mishra, 2018) that focused on individual user privacy

preferences to incorporate group privacy preferences.

To cater to the privacy preferences of users whether

in individual or group context, we propose a privacy

negotiation mechanism to allow IoT users to automat-

ically express and enforce their personal privacy pref-

erences while interacting with IoT deployments. The

proposed negotiation mechanism is designed to be prac-

tical by allowing users' devices (e.g. their smartphones)

to negotiate with the IoT deployment in background

on users' behalf, thus allowing them to express their

privacy requirements without having to go through the

burden of explicitly specifying their requirements on an

online form or reading privacy notices. Further, this pri-

vacy negotiation mechanism is designed to be e�cient

as it is built on top of existing IoT communication pro-

tocols and adds only a negligible overhead to the ongo-

ing communication of IoT applications. A key novelty of

this work stems from demonstrating through practical

experiments the viability of automated privacy negoti-

ation over IoT architectures.

This proposed negotiation mechanism is holistic in

nature in that it not only covers the privacy require-

ments of the IoT users (i.e. IoT service consumers) but

extends this coverage to negotiate and satisfy the pri-

vacy requirements of the IoT deployment owner (hence-

forth IoT owner) as well. The IoT owner is the responsi-

ble party for setting up and maintaining the IoT infras-

tructure that provides services to IoT users. Generally,

providing services involves enabling the IoT users to

access sensory interfaces such as temperature, audio or

camera sensors. We envision that the IoT owners would

like to manage this access according to their privacy re-

quirements since every access to a sensor can be used

to reveal information about them. To cover the privacy

requirements of IoT users and owners, we model the

problem as a utility-privacy tradeo� function in which

sharing more information increases the utility gained

from the service but can potentially lead to some unde-

sired privacy exposure. We show that the negotiation

protocol can use multiphase negotiation e�ciently to

embark into an agreement that satis�es the utility and

privacy requirements of IoT users and owner simulta-

neously.

Another important aspect that is covered by the

negotiation protocol is the handling of current diverse

IoT infrastructures. IoT infrastructures are envisioned

to act as utility networks for IoT users to use IoT ser-

vices on the go (Stankovic, 2014). However, the gateway

to access these services can vary from a privately-owned

central server or cloud server to an edge server or even

direct access using machine-to-machine (M2M) commu-

nication. An important feature of our negotiation pro-

tocol is that it is architecture agnostic and can be used

on cloud based, edge-based or M2M types of infrastruc-

ture. In summary, our contributions are as follows:

1. We have designed a negotiation protocol to auto-

matically model and realize privacy requirements in

an IoT ecosystem. The protocol takes a holistic ap-

proach by covering the requirements of all involved

parties in an IoT interaction. The practicality of the

protocol stems from modeling privacy as a tradeo�

function with the utility achieved from using/pro-

viding IoT services.

2. The proposed negotiation protocol addresses the pri-

vacy requirements in both individual and group con-

texts. In particular, we extend the individual pri-

vacy negotiation protocol we proposed in (Alanezi

and Mishra, 2018) to address group privacy prefer-

ences. In group negotiation, privacy preferences of

each individual user are combined into a group pri-

vacy pro�le to be negotiated with the IoT owner.

The outcome of the group negotiation could be ei-

ther to proceed with the data collection, alter con-

tent to accommodate for a privacy restriction from

group members or to contact one or more of the

group members to perform a second round of nego-

tiation.

3. We have developed and tested a prototype of the

proposed negotiation protocol for both individual

and group contexts over three di�erent IoT infras-

tructure standards of user-managed, edge-managed

and cloud-managed IoT architectures. Results show

the capability of the protocol to negotiate privacy

preferences in both individual and group contexts

while adding insigni�cant time overhead.

2 Related Work

There is a consensus among researchers that di�culty

in preserving user privacy is a major hurdle for wide

adoption of IoT (Ziegeldorf et al., 2014; Naeini et al.,

2017; Stankovic, 2014). Consequently, many researchers

proposed solutions to address privacy concerns inher-

ent in IoT systems such as background collection of

sensory data without user consent and possibly shar-

ing this data with untrusted third parties such as cloud

providers. This literature review focuses on describing

the body of work that was proposed to face these chal-

lenges. The UPECSI framework (Henze et al., 2014)

proposed privacy enforcement points at selected net-

work locations where sensitive IoT data must be en-
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crypted before shipping to the cloud. Users are in charge

of choosing the privacy enforcement option to be ap-

plied at these network points. The privacy coach (Broenink

et al., 2010) is also a framework that puts the control

of the data being collected in the hand of the user. The

framework is geared towards RFID systems and pro-

vides a mobile client where users can review and ap-

prove data collection policies proposed by corporations

that own the RFID system. Since Blockchain (BC) tech-

nology eliminates the need for a central authority to es-

tablish trust it was used in (Dorri et al., 2017) to allow

an IoT owner to de�ne an access control list of accept-

able peer-to-peer communications that can take place

with their owned devices. The challenge addressed in

this work was to build a BC architecture suitable for low

resource and limited energy IoT devices. The position

paper in (Davies et al., 2016) presented an architecture

based on edge computing to allow the user to control

access to their data in an IoT system. The authors ar-

gued that the use of cloudlets bene�ts the IoT system

by gaining the trust of the user. Our framework adopts

a similar approach to these works in placing the control

of IoT data privacy at the hand of the user. However,

we address the challenge of enforcing the user privacy

policy seamlessly (i.e. without user involvement), which

is a key for the usability of any framework to serve pri-

vacy in IoT .

Another challenge addressed by our work is to adopt

to privacy preferences of group of users that are subject

to a data collection process by an IoT deployment. Re-

quiring privacy for a group is a commonplace scenario

in IoT and we focus in our work on building a generic

architecture to support this requirement. To the best

of our knowledge, we are the �rst to study this prob-

lem. Hence, we cover in this literature other works that

considered group privacy in di�erent domains.

Applying group privacy for multi-owned data items

(e.g. pictures) shared on social networking sites SNS is

a widely studied subject (Squicciarini et al., 2009; Such

and Criado, 2016; Thomas et al., 2010; Such and Rovat-

sos, 2016; Hu et al., 2012; Fogues et al., 2017; Lampinen

et al., 2011). The authors in these works looked into

automatically identifying co-ownership and practically

applying group privacy on such items.

According to the author in (Mittelstadt, 2017) an-

other domain where privacy must also be considered

in a a group context is big data analytics. The author

of this work proposes that when users are categorized

among groups automatically by big data algorithms,

there is an ethical responsibility that information and

actions linked to the group must be considered with

group privacy in mind.

3 Scenarios

We identify three IoT scenarios that are common in lit-

erature namely user-managed IoT, edge-managed IoT

and cloud-managed IoT. In a user-managed IoT archi-

tecture, the IoT owner's mobile device, e.g. a smart-

phone or a tablet acts as a gateway to the IoT in-

frastructure. All negotiation and access must happen

through this mobile device. This is common in an IoT

infrastructure installed at home or a private o�ce. Con-

sider a smart home environment where a home is equipped

with a range of sensors such as a temperature sensor,

a carbon monoxide sensor, etc. These smart home sen-

sors are designed to operate in a star topology network,

where each sensor is connected to a single gateway, e.g.

home owner's smartphone, and sends its data to that

gateway at regular intervals. In this case, if another de-

vice, e.g. a visiting friend's smartphone needs to access

this sensor data, possibly for a limited time, the sensor

data must be retrieved from the home owner's smart-

phone. In this scenario, the home owner's smartphone

must be involved in privacy negotiation with the smart-

phone of the visitor to permit the temporary access.

For edge-managed and cloud-managed IoT, a server

plays the role of the gateway and carries all negoti-

ation and access requests. For the former, the server

is within the same network domain for the IoT infras-

tructure(Davies et al., 2016), whereas for the latter, the

server is situated in a public cloud. For example, in a

smart city, video feed from a security camera may be

stored at an edge server or a cloud server. If an agency

such as a law enforcement agency needs to access this

video feed, the edge or cloud server must be involved in

privacy negotiation with the law enforcement agency.

These three scenarios categorize the negotiation pro-

cess from the perspective of the owner. On the other

side, when it comes to the IoT users, there are two

possible scenarios that could take place. Either an indi-

vidual user is negotiating with the owner to ensure that

his/her privacy preferences are met or a group of users

are present with di�erent privacy preferences pertaining

to each individual in the group. The latter case is more

complex since individual preferences of di�erent users

may con�ict with one another in some situations. We

present a negotiation algorithm covering each of these

scenarios in Section 4.

4 Design

4.1 Privacy Requirements

The fact that the negotiation protocol operates in IoT

environments imposes stringent practical requirements
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on our design. We describe below four of these require-

ments that must be satis�ed:

1. No User Involvement: All negotiation commu-

nication must take place in background, without

any user intervention. When users navigate through

public or private spaces, they will typically encounter

IoT deployments (i.e. IoT owners) and engage in

data exchange with them to avail various services

provided. To avoid any inconvenience introduced by

involving IoT users in negotiation to satisfy their

privacy requirements, the IoT user's device that has

the user privacy requirements should act seamlessly

to negotiate these privacy requirements on behalf of

the user with the IoT owner. Also, the IoT owner's

privacy settings will be communicated to the IoT

user to ensure their adherence to these requirements.

2. Minimal Overhead: The negotiation protocol must

impose minimal time and energy overhead to the

IoT task. IoT services are typically provided promptly

to the users. Therefore, these services are sensitive

to any time delays, which should be considered in

the protocol design. Also, since IoT devices are bat-

tery powered, the protocol must be energy e�cient

to avoid draining the energy sources of involved de-

vices.

3. Choice Flexibility: The protocol should avoid the

current privacy notice and choice model of either

accepting the service as a whole or abandoning it,

since this model is too rigid and will not work with

IoT situations requiring more �exibility. Diverse op-

tions should be o�ered to IoT users to enable them

to continue to use the service while not sacri�cing

their privacy requirements.

4. Guaranteed Privacy: Regardless of whether the

negotiation is happening in an individual or group

context, the protocol shall never proceed with a data

collection action or providing a service that violates

an individual privacy preference. In the case of in-

dividual context, if the IoT user and the IoT owner

did not reach an agreement, any suggested alter-

native data collection policy along with a di�eren-

tiated service by the IoT owner must be listed as

an acceptable option by the individual (i.e. a plan

B option). For the group context, individual group

preferences will be aggregated using the least mis-

ery approach to ensure satisfying the user with most

stringent privacy preference. After that, the group

negotiation with the IoT owner will use the resultant

privacy preference from the aggregation process. In

cases where no agreement can be reached, the cor-

responding user(s) will be noti�ed with a suggested

policy from the IoT owner to obtain their approval

in a similar fashion to the individual negotiation.

4.2 Privacy Model

The negotiation protocol presented here is in alignment

with the vision of achieving openness in IoT environ-

ments. Openness envisions IoT networks to act as a util-

ity infrastructure, similar to electricity and water, that

is accessed by IoT users on the go (Stankovic, 2014).

Open environments as such require that the parties in-

volved in information exchange specify their privacy re-

quirements to be negotiated on their behalf. This is

analogous to the P3P protocol (Cranor, 2002) in which

a browser negotiates the privacy requirements of users

on their behalf with visited websites to control the per-

sonal information that the website can collect about the

user. In our protocol, the IoT user and IoT owner will

store their privacy requirements in a policy �le stored

locally and written using XML language. An example

scenario for privacy policies for an IoT owner and an

IoT user is shown in Listing 1 and Listing 2 respectively.

Listing 1: IoT User Privacy Policy

<privacy−po l i c y>
<data−in type="image" p r i o r i t y="1">

<re t en t i on>3−month</ r e t en t i on >
<shared>no</ shared>
<i n f e r r e d>yes</ i n f e r r e d>

</data−in>
<data−out>
<data−out type=" video " p r i o r i t y="1">

<re t en t i on>1−year</ r e t en t i on >
<shared>no</ shared>
<i n f e r r e d>no</ i n f e r r e d>

</data−out>
</privacy−po l i c y>

Listing 2: IoT Owner Privacy Policy

<privacy−po l i c y>
<data−in type=" video " p r i o r i t y="1">

<re t en t i on>1−year</ r e t en t i on >
<shared>no</ shared>
<i n f e r r e d>yes</ i n f e r r e d>

</data−in>
<data−out type=" face−de t e c t i on "
p r i o r i t y="1">
<re t en t i on>1−year</ r e t en t i on >
<shared>no</ shared>
<i n f e r r e d>no</ i n f e r r e d>

</data−out>
<data−out type="image" p r i o r i t y="1">

<re t en t i on>1−year</ r e t en t i on >
<shared>no</ shared>
<i n f e r r e d>yes</ i n f e r r e d>

</data−out>
</privacy−po l i c y>

As seen in Listing 1, the privacy policy for the IoT

user speci�es <data-in> tags indicating the type of

data that the user would like to acquire from the IoT

owner along with child elements specifying the usage
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scenario for this data. These <data-in> tags from the

IoT user privacy policy will be matched against the

<data-out> tags in the IoT owner's policy since the

latter speci�es the data collection practices accepted

by the IoT owner. Conversely, the <data-in> tags

speci�ed in the IoT owner's policy in Listing 2 will be

matched against the <data-out> tags in the IoT user

privacy policy to ensure that the level of data collection

performed by the IoT owner is acceptable by the IoT

user. An interesting research question is how to learn

the privacy policy for each user which could be di�er-

ent for di�erent locations? Other research (Naeini et al.,

2017) has shown that the privacy preferences of a user

can be predicted by observing a few data collection sce-

narios. Using prediction is bene�cial to avoid the cum-

bersome and error prone task of �lling privacy settings

screens. One of our key design requirements is achieving

�exibility by allowing the protocol to negotiate multi-

levels of service with di�erent scales of data collection

scenarios. This is required due to the high cost of an

unsuccessful negotiation as it might require the user to

leave the place to avoid the data collection process alto-

gether. To address this challenge, the negotiation pro-

tocol models the relationship between data collection

and the IoT service as a utility-privacy tradeo� func-

tion stated as Formula 1. This allows the IoT owner to

o�er multiple choices of service levels, measured by the

utility, to the IoT user based on the amount of data they

are willing to share. We choose to employ four dimen-

sions form factors in�uencing privacy preferences in IoT

environments from (Naeini et al., 2017) in this utility-

privacy tradeo� function. These four factors are saved

in the privacy policy XML representation as child ele-

ments inside each <data-in> and <data-out> tags.

The description for each of these four elements is as

follows:

1. Data Type (t). The type of sensor being accessed

can have varying degree of exposure to the privacy

of the owner of that sensor. Sensors such as the

camera or the microphone are inherently sensitive.

Hence, allowing access to those sensors must be han-

dled with care. There are techniques in literature

to minimize the degree of privacy exposure when

accessing those sensors such as blurring faces from

the live video feed of a surveillance camera (Das

et al., 2017) or carefully choosing audio features to

avoid construction of speech from captured audio

data (Wyatt et al., 2007). If used, these techniques

must be added to the XML �le to be part of the

negotiation process.

2. Retention. (r) Retention policy speci�es time du-

rations for keeping logs of exchanged data. In real-

time applications, where no data storage is required,

this factor can be used by the IoT owner or the IoT

user to enforce purging their data by leaving this

element empty.

3. Shared (s). Any third party recipient must be spec-

i�ed in case the IoT owner or the IoT user is sharing

any gathered data for the IoT task.

4. Inferred (i). The recipient of the data must specify

if inference techniques will be used to gain further

information from the data. For example, accelerom-

eter data can be used to monitor exercising habits

of a user for health applications but can also be used

in dead reckoning techniques (Pratama et al., 2012)

to determine indoor user location.

Other form factors that can also be considered include

the location, purpose and the bene�t of the data col-

lection (Naeini et al., 2017). After learning the afore-

mentioned privacy in�uencing factors in the negotia-

tion exchange described in next two subsections, both

the IoT owner and IoT user will use them as part of a

privacy-utility calculation to ensure that the achieved

utility from the IoT service outweighs the degree of pri-

vacy exposure. We adopted the privacy-utility function

in (Preibusch, 2006), which serves electronic commerce

(e-commerce) sites, with modi�cations to �t to IoT ap-

plications scenario. This function is used by both the

IoT user and the IoT owner of the data to evaluate the

privacy-utility of the the data exchanged between them.

The utility-privacy function is as follows:

U = −γ.Pe(t, r, s, i) +B(t, r, s, i) (1)

U denotes the total utility that will be achieved

from pursuing the information exchange to run the IoT

application.

B is the bene�t from the data exchange as seen from

the perspective of the data owner. For the IoT owner,

this could be a monetary incentive or the social bene�t

from allowing IoT applications to run on their premises.

As for the IoT user, the bene�t would be the service

provided by the IoT application. Notice that B is a

function of privacy exposure form factors as we expect

the bene�t to be proportional to the selected policy for

each data type. Therefore, we can model B as the sum

of the bene�ts achieved by choosing the policy con�gu-

ration for each policy item (i.e. t,r,s,i) and �nding the

summation of bene�ts for all data types involved in the

data exchange scenario as follows:

n∑
i=1

[B(ti) +B(ri) +B(si) +B(ii)] (2)

Pe is the degree of privacy exposure for the selected

privacy policy. Di�erent privacy policies will lead to dif-

ferent levels of privacy exposure based on the exposure
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form factors chosen in the policy. For example, higher

retention periods speci�ed by r for highly sensitive data

speci�ed by t will lead to higher values of Pe.

In contrast with the bene�t B, we choose to model

the privacy exposure Pe as the product of privacy expo-

sure terms resulting from the selection of policy items

and �nding the summation of Pe across the data types

as follows:

n∑
i=1

[Pe(ti) ∗ Pe(ri) ∗ Pe(si) ∗ Pe(ii)] (3)

The design choice of using products for modeling Pe

stems from the fact that di�erent con�guration param-

eters can a�ect each other with direct proportionality.

For example, choosing a three month retention period

for a video will be of higher privacy concern than using

the same retention period with a less sensitive sensor

such as the accelerometer.

We also note that the degree of privacy exposure

for each data type can vary based on the user location

context (private vs. public place) and the social con-

text (individual vs. group). Since this privacy percep-

tion varies from one user to another, user questionnaires

are proposed (Naeini et al., 2017) to learn the individu-

alized user preferences that can then be used as policy

parameters.

γ is an overall privacy sensitivity perception fac-

tor. This factor can vary depending on the location or

context of the user. For example, users might be com-

fortable for taking a picture for them in public places

as opposed to being in private places. γ is multiplied

by Pe to either escalate or deescalate the total privacy

leakage for the speci�c data sharing situation based on

the context and/or location.

Note that the product term to the right of the equal-

ity operator is negative so as to reconcile it with the

bene�t term B. Thus, the utility U will be positive

when the value of the bene�t B term outweighs the

value of the negative privacy exposure term and vice

versa.

In summary, the presented privacy model uses XML

to store the privacy policies and use them without user

intervention. Also, it supports the requirement of choice

�exibility by modeling the utility of the service as a

function of privacy exposure form factors. Section 6

demonstrates that the model and the overall protocol

satis�es the minimum overhead requirement when im-

plemented over well known IoT architectures.

4.3 Individual Privacy Negotiation

This section describes the �ow of the negotiation ac-

tivities between the IoT user and the IoT owner in the

individual context (i.e. when there is a single user in

the IoT environment). We have implemented and eval-

uated the privacy negotiation protocol on all three ar-

chitecture scenarios described in Section 3. The design

of the negotiation protocol is made �exible by avoiding

the go/no-go scheme of current privacy/notice choice

mechanisms and replacing it with multi-phase negotia-

tion. This section describes 1-phase negotiation and 2-

phases negotiation. We start by describing the 1-phase

negotiation scenario shown in Figure 1 (a). The scenario

starts with the IoT user sending an access request for

speci�c type of data (i.e. sensor) to the IoT owner. The

IoT user will embed a summary of their usage require-

ments for this data, which is taken from the <data-

in> element for this type of data in the user policy.

Upon receiving the access request, the IoT owner checks

the utility of the request by substituting it in the util-

ity function. Assuming that the utility of the request

is equal or higher than the utility achieved when sub-

stituting the <data-out> element for the same data

from the IoT owner privacy policy, the owner accepts

the request. After that, the IoT owner connects to the

IoT user and starts acting as a relay by forwarding sen-

sor information received from the IoT infrastructure to

the IoT user. The 2-phases negotiation is shown in Fig-

ure 1 (b). This scenario starts in a similar way by the

IoT user sending an access request to the IoT owner.

However, in this scenario the utility of the request is

deemed unacceptable by the IoT owner. Accordingly,

the IoT owner will retrieve the <data-out> element

for the requested data item from their own privacy pol-

icy, which represents their acceptable usage scenario for

the data item and send it as a proposal to the IoT user.

This only happens after connecting to the IoT user. The

IoT user's device then checks the utility of this pro-

posal against a second priority policy if one is de�ned

in their privacy policy �le. Note that each <data-in>

and <data-out> tag in the privacy policy contains a

priority attribute to allow the IoT user and IoT owner

de�ne alternative policies to be used during negotia-

tions. Only de�ning a priority 1 policy for the data

item means that the policy for this data item is non-

negotiable. Assuming the IoT user has accepted the al-

ternative proposal, the IoT owner will start forwarding

required data as soon as it is received from the data

source.
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(a) 1-Phase Negotiation (b) 2-Phases Negotiation

Fig. 1: Privacy Negotiation Flow

4.4 Group Privacy Negotiation

The previous section focused on performing negotia-

tions between an individual user and the owner of the

IoT environment. However, an important question is

how to perform negotiations when there are multiple

users present in the scene? Answering this question is

vital since IoT deployments cover urban spaces such as

malls, hospitals, ...etc., where the presence of multiple

users interacting with the IoT deployment is the norm.

Let's consider a group of n users U = (u1, · · · , un)
who happen to be at the same location where an IoT

deployment exists. For the IoT environment to provide

a particular service, it requires performing data collec-

tion of one or more sensors represented by the vector

S = (S1, · · · , Sk). The privacy setting of each user is

speci�ed per sensor as follows:

Sps = (< S1, r, s, i >,< S2, r, s, i >, · · · , < Sk, r, s, i >)
This presentation is similar to the notation used in the

individual privacy negotiation as described in Section

4.3. We expect that specifying user privacy settings at

the sensor level would be easy for users as it is anal-

ogous to the way users specify their privacy settings

when granting permissions to mobile applications at the

time of installation in their smart devices.

Indeed, it may be di�cult for users to feed the sys-

tem with their privacy settings for every sensor before

they start using the system. However, prediction based

on limited user input can be used to learn these settings

e�ectively (Naeini et al., 2017) thereby minimizing re-

quired user e�orts. Also, we believe that spatiotempo-

ral context as well as social group context (with family,

friends, colleagues, ..etc) can be a huge in�uencer for

S1r S1s S1i S2r S2s S2i ...
U1 3 yes yes 3 no yes ...
U2 4 no yes 3 no no ...
... ... ... ... ... ... ... ...
Un 2 yes no 3 no yes ..
Boundary lmr lms lmi lmr lms lmi ...

Table 1: Group Privacy Policy Matrix and Boundary

Preference

user choices and should be considered while predicting

a user privacy settings for a particular location.

Given that all available users will post their privacy

settings to IoT service owner in order to consider them

in the data collection policy, the IoT service owner will

end up with a matrix of group preferences with each row

representing the requirements for an individual user as

shown in Table 1. Note here that the individual rows

contain the form factors (i.e. r, sh, i) for each sensor

required by the IoT service as speci�ed by each user.

The last row in the table contains the boundary

policy resulting from merging the privacy preferences of

the group of users. We choose to merge the privacy pref-

erences using the least misery approach to ensure that

no information can be disclosed without the consent of

all users. Using this approach, the resulting boundary

privacy preferences vector will contain in every item a

privacy setting that satis�es the group member with

the most conservative privacy requirement. For exam-

ple, if U1 speci�es that data from S1 can be stored for

maximum 3 months while U2 requires that the maxi-

mum is 1 month only, the aggregate policy will list that

the data item S1 will be stored for maximum 1 month.
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The boundary privacy policy can be used as the

policy of choice as it does not violate the privacy re-

quirements of any user. However, such a choice for the

design would be naive considering that the algorithm

should guide the IoT users in balancing the utility of

the service consumed with the amount of privacy ex-

posure the users will be subjected to. For example, one

possibility that the algorithm should not ignore is the

availability of a policy that is more conservative than

the boundary policy that shall provide a service utility

that still satis�es the users. Hence, the aggregate pri-

vacy policy will be chosen by enumerating all possible

combinations of form factors that are within the bound-

ary privacy preferences vector and then again plugging

every possible combination into an optimization prob-

lem where the goal is to minimize the data collected

about the users (privacy exposure) while maximizing

the bene�ts for the users (service utility) as shown in

the below equations.

min
x�0

(w.r.t Rn
+) (

n∑
i=1

PeiPixi) (4)

max
x�0

(w.r.t Rn
+) (

n∑
i=1

Bixi) (5)

Equation 4 in the optimization problem represents

the sum of the privacy exposure terms Pei caused by

collecting an amount of data xi under a privacy pol-

icy Pi. The goal of the optimization is to maximize

this term. Meanwhile, the optimization will maximize

equation 5 which represents the sum of the bene�ts Bi

caused by collecting the same amount of data xi under
the same privacy policy Pi. These equations add the the

privacy policy term Pi to equation 1 to cater for evalu-

ating and choosing among various privacy policies.

Notice that in the �rst round of the negotiation, the

optimization will only consider the set of policies that

do not violate (i.e. work within the limits of) the bound-

ary privacy policy items derived using the least misery

policy. However, it is important to consider situations

in which one tight restriction from a user might render

the service unusable for the entire group. For exam-

ple, a user refusing to ship some speci�c data item that

must be processed on the server side or by a third party.

Given that the user is available in the IoT domain, the

algorithm can contact them to see if they are willing

to compromise in return for a better service. Finally, if

there is no agreement reached in the second negotiation

phase, the IoT owner can send a noti�cation to the user

device telling the user that their privacy requirements

can not be met and providing them with detailed in-

formation about the data collection that will take place

for them to decide to continue or to simply leave the

location.

5 Implementation

In a user-managed architecture, the dominant commu-

nication protocol is BLE to conserve energy, while for

the edge-managed and cloud-managed architectures, a

server acts as a gateway and communication is done

using WiFi. Hardware used to simulate these infras-

tructures is shown in Table 2.

5.1 User-Managed IoT Experiment

The picture in Figure 2a demonstrates the setup for the

user-managed IoT experiment. We used the breadboard

to connect a temperature sensor to the Arduino Uno.

We then enabled BLE connectivity functionality on the

Arduino board by connecting it to an Adafruit Bluefruit

BLE shield through the breadboard. Using the Arduino

IDE, a program was written to enable the Arduino

board to broadcast using BLE beacons its availability in

order for BLE clients to connect to it and read the tem-

perature sensor values. The two Android-based Moto E

smartphones were then used to simulate the IoT owner

and IoT user mobile devices. We wrote Android code to

enable the IoT owner to connect to the Arduino board

and start receiving temperature values as push noti�ca-

tions periodically. Meanwhile, the IoT owner registers

a BLE search to listen to any guest devices that might

need a sensor reading from the IoT environment they

own. Note here that the BLE search is registered un-

der a speci�c UUID designated for the sensor sharing

services. Searching for speci�c UUID using BLE can

happen in the background while the device is in sleep

mode thereby drastically reducing energy consumption.

This means that the cost of detecting collaborators for

the IoT owner is trivial.

On arriving in an IoT environment, a user who is

looking for a speci�c type of sensor to perform a par-

ticular service sends a BLE advertisement broadcasting

its intention to access a shared sensor. This BLE broad-

cast contains the UUID for the sharing service and a

vector containing the request information as described

in Section 4. The request information here is a sum-

mary from the <data-in> tags describing the data

that the device requires along with the usage scenario.

This broadcast is captured by the IoT owner as it con-

tains the UUID of the sharing service. In case the IoT
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Table 2: List of hardware components used in the experiments along with the corresponding function and the

scenario for each component.

Title Function Scenario Used
Arduino Uno R3 Microcontroller for the IoT device User managed and edge-managed

LM35 Temperature Sensor Sensory interface to be accessed User managed and edge-managed
Arduino Ethernet Shield Adds ethernet connectivity to the Arduino Uno Edge-managed and cloud-managed
Arduino BLE Shield Adds BLE connectivity to the Arduino Uno User-managed

D-Link Wireless Router Wireless LAN router Edge-managed and cloud-managed
Motorola Moto E smartphone IoT user requesting access to a sensor All
Motorola Moto E smartphone IoT owner User-managed

MacBook Air Computing node at the edge of the network Edge-managed
Amazon EC2 Micro Instance Computing node in the Cloud Cloud-managed

Arduino Uno ESP2866 Microcontroller for the IoT camera Edge-managed/Group Privacy
Arducam 2MP Camera IoT camera for generic use Edge-managed/Group Privacy

(a) User-managed experiment. (b) Cloud\Edge-managed experiment. (c) Camera group privacy experiment.

Fig. 2: Hardware Setup.

owner accepts the request, it connects to the request-

ing device and starts relaying temperature readings to

it as soon as they arrive from the Arduino board. Oth-

erwise, as described in Section 4, the negotiation �ow

requires a second round of negotiation. In this case, the

IoT owner's device connects to the IoT user's device

and sends a proposal containing its acceptable privacy

policy for the required sensor. The requester can now

either accept or reject this proposal. The requester will

use the ongoing BLE connection to reply. If the reply is

accept, the owner will start relaying temperature val-

ues to the IoT user. Notice that in this situation the

IoT owner is a hub for a BLE star topology network

with the IoT user and the Arduino board acting as the

hosts. We demonstrate the time e�ciency for the com-

munication in the evaluation in Section 6. If the IoT

user rejects the proposal, the owner simply tears down

the BLE connection and continues to operate normally.

5.2 Edge-Managed and Cloud-Managed IoT

Experiments

We also show in Figure 2b the setup for the edge-

managed and cloud-managed IoT experiments.The Eth-

ernet shield is stacked on top of the Arduino board to

provide it with Ethernet capability. After that, an Eth-

ernet cable is used to connect the Arduino board to

the wireless LAN router. This allows the Arduino to

get a local IP and is now able to communicate with

other devices within the same wireless LAN. We used

the Arduino IDE to write code to let the Arduino Uno

act as web server providing an HTML page to read the

temperature sensor values. This setup is then used to

perform 1-phase negotiation and 2-phases negotiation

for the edge-managed and cloud-managed IoT scenar-

ios. For the former, we used a MacBook Air laptop to

act as an edge server by running Java code listening

to network communication at speci�c port within the

same LAN. For the latter, the same Java code was de-



10 Khaled Alanezi, Shivakant Mishra

ployed to an Amazon EC2 instance that is used as a

cloud server. Port forwarding was used on the wire-

less LAN router to enable communication between the

cloud server and the Arduino board over the Internet.

For both scenario, the server (i.e. IoT owner) receives

a request from a mobile device resembling the IoT user

for sensory data. This request contains a summary from

the IoT user policy. The server replies with the sensor

information or with a proposal in case further negoti-

ation is required. The client either accepts or rejects

this proposal. If the proposal is accepted, the server

performs an HTTP GET to get the temperature value

and sends the result. We report time-e�ciency mea-

surements for the milestone stages for this protocol in

Section 6.

5.3 Edge-Managed Group Privacy Adaptation

Architecture

We choose the edge-managed architecture as a basis for

evaluating a group-based privacy negotiation scenario.

Note that in the other two kinds of architectures of user

managed and cloud-managed, a group-based scenario is

also possible. However, for the former the negotiation

happens with the IoT owner mobile device whereas for

the latter the negotiation happens with the managing

cloud server. We choose to implement the edge-based

scenario as we believe that edge servers will be a preva-

lent choice for use as gateways for managing IoT net-

works. Also note that our implementation focused on

developing a generic software architecture that is ag-

nostic to the application or type of sensory data being

negotiated and evaluating the impact of the group pri-

vacy �lter choice on the performance.

The situation involving group of users requires acti-

vating di�erent kinds of �lters depending on the privacy

preferences of the group members who happen to be at

the scene. We describe in this section a �exible plug-

and-play architecture to support this requirement. We

choose to implement this architecture using the widely

advocated microservices architecture (Dragoni et al.,

2017). We also adapted a pipeline architecture similar

to Eclipse Kura (The Eclipse Foundation, 2018). By us-

ing microservices, it is possible to implement di�erent

privacy �lters independently (each as a microservice)

and bring up/down the �lters as required during run-

time. Our solution architecture resembling a pipeline

structure implemented on the edge server is shown in

Figure 3.

As seen in the �gure, the overall service is decom-

posed into four microservices interacting via message

queues. Using messages and message queues is neces-

sary in order to achieve independence (Dragoni et al.,

Fig. 3: Microservices Architecture

2017), hence the bene�t of the portability that the mi-

croservices architecture provides. First, theData Cap-

ture Service starts the pipeline architecture by read-

ing data from the IoT device. The microservices archi-

tecture hides the implementation details for the type

of communication used between the edge and the IoT

devices which can be based on Bluetooth LE or WiFi

depending on the IoT device preferred communication

protocol. Note that each microservice is implemented

using docker a container (Docker, Inc., 2013). Upon

capturing the sensory data, it will be forwarded via

the message queue, which is implemented using Java

Messaging Service (JMS) (Oracle Corporation, 2012),

to the Data Store Service. The latter is responsible

for saving any captured data into a persistent data store

for future access. We used docker volumes as a means

to implement the persistent data store for the system.

The Data Filter Component is responsible for im-

plementing a privacy �lter after consulting the privacy

preferences of available users. The framework provides

an API for users to submit their preferences immedi-

ately upon joining the IoT environment. Received indi-

vidual preferences are used by the group privacy nego-

tiation protocol described in Section 4.4 to achieve an

agreed privacy preference vector for the group to apply

on the collected data items. Analogous to the individ-

ual context, in case one or more members of the group

have a con�icting privacy preferences, the privacy �lter

component can contact the user for an alternative pri-

vacy preference (i.e. plan B). We describe a speci�c data

�ltering implementation based on camera sensor in Sec-

tion 5.4. Finally, only �ltered data is forwarded to the

data publisher, which publishes the data to the cloud

to be accessed by other users. The Data Publisher

microservice component (or container) is implemented

using the desired data communication plugin for the

preferred cloud provider (Amazon AWS or Microsoft

Azure).
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5.4 Group Privacy Involving Camera Sensor Scenario

To evaluate the group privacy architecture, we imple-

mented an IoT scenario involving a group of IoT users

negotiating the data collection policy of an IoT cam-

era. The hardware setup for this experiment is shown

in Figure 2c.

The experiment consists of an Arduino Uno ESP2866

board that is capable of connecting to Wi-Fi interfaced

with an Arducam 2MP camera. The microcontroller

with the camera and the edge server communicate over

Wi-Fi to resemble an edge-managed environment. We

focused in our experiments on evaluating the e�ect of

applying the privacy �lter on the time required to be

ready for reporting the image to the cloud. That is,

the time from capturing the data until reaching the

Data Publisher components. The results of the fol-

lowing three situations are reported in Section 6:

1. No privacy: This baseline situation assumes no re-

quired privacy �ltering, which means that the group

of users didn't specify any concern about the data

collection practice being carried by the IoT owner.

In this case, no data �lter container is launched and

the data publisher container reads the information

to report to the cloud provider directly from the

persistent data store.

2. Privacy-with data update: In this situation, a

privacy negotiation takes place and the group pref-

erence requires that some private information to be

�ltered from the sensor data before reporting to the

cloud. In particular, we use face �ltering for cap-

tured images in the experiment as an example of a

user requesting a privacy measure. The face �lter

detect all faces in the picture and blur their corre-

sponding pixels.

3. Privacy-no data update: In this situation, a pri-

vacy negotiation will take place where the privacy

preferences of the group is merged together and con-

sidered by the IoT owner. However, contrary to the

previous situation, the outcome of the negotiation

doesn't require any update for the data.

We report the results for these three scenarios for

our choice of data �lter (i.e. face detection and blur)

in Section 6. Note that the overhead of the data �lter

is dependent on the application or sensory interface at

hand. Therefore, it is the responsibility of the designer

or solution architect to ensure that any kind of applied

privacy �lters doesn't negatively impact the user ex-

perience of the whole IoT application or service. We

report in our results the time e�ciency for the face de-

tection and blur to demonstrate by an example how

a particular application such as the surveillance appli-

cation could be a�ected by one possible corresponding

privacy �lter which is the face detection and blur.

6 Evaluation

6.1 User-Managed IoT

The negotiation protocol in user-managed IoT utilizes

BLE to communicate and serve requests for data shar-

ing. A star network is formed whenever an acceptable

request arrives from a IoT user in which the IoT owner

becomes the central node and the IoT user and any

future IoT users will become host nodes. The com-

plexity and time\energy e�ciency of this process are

reported in our previous work (Alanezi et al., 2017).

Note that the IoT owner can serve simultaneous IoT

users by simply joining new users to this BLE star net-

work. Also note that we choose to implement this com-

munication mechanism using BLE as it is becoming a

standard communication protocol for IoT devices. Nev-

ertheless, the negotiation protocol can be implemented

over other communication standards such as ZigBee or

NFC. Figure 4 shows the aggregate time taken for ev-

ery phase in the negotiation. The aggregate time is cal-

culated from the beginning of the request (i.e. send-

ing BLE broadcast embedded with data request infor-

mation) and involves the time taken for the previous

phases. We performed each experiment �ve times and

report the average with the standard error on each bar.

The �gure shows that, after broadcasting a request in a

BLE beacon, it takes around 800 ms to be connected to

an IoT owner in the place who is willing to support this

request. Recall from the design section that after estab-

lishing a connection two situations might occur. First,

The IoT owner accepts the utility of the request and

sends the required sensor data in what we call 1-phase

negotiation. The total time for this situation is reported

in Figure 6 along with the total time for the other two

scenarios of no-privacy and 2-phases negotiation. Sec-

ond, the IoT owner might o�er an alternative proposal

that is suitable for them. The total time for the IoT

user to receive the alternative proposal is 1400 ms on

average. We note here that the additional time of 600

ms is dominated by the time required by the BLE to in-

terrogate the IoT user's device after connecting to it to

be able to call its services. Assuming that the proposal

is accepted, replying to the proposal and receiving the

sensor value requires an additional 30 ms only. Figure 5

reports aggregate time for the negotiation protocol from

the IoT owner's perspective. The average total time to

connect to a device after detecting a supported request

in a BLE broadcast is 400 ms. This is followed by an

almost 600 ms for discovering services on the IoT user's
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Fig. 4: Aggregate time for major ne-

gotiation milestones (IoT User\User-

Managed IoT.)

Fig. 5: Aggregate time for ma-

jor negotiation milestones (IoT

Owner\User-Managed IoT.)

Fig. 6: Total time to receive sen-

sor reading for no-negotiation, 1-

phase & 2-phases negotiation in

user-managed IoT.

device. We report the connect time and the service dis-

covery separately. The time taken from the moment a

beacon is detected to sending an alternative proposal is

around 1200 ms on on average. It takes an additional

30 ms on average for the IoT owner's device to receive

a reply to their proposal. Finally, we report in Figure 6

the average overall time to receive the sensor data for

1-phase communication and 2-phases communication.

This time is measured from the moment the IoT user

sends a beacon with embedded request information to

the moment they actually receives the required sensor

data (i.e. the temperature sensor reading). We also in-

clude a no-negotiation scenario in which the sensor data

is sent to the requester immediately without matching

the speci�cation of the request with the privacy require-

ments of the IoT owner. As expected, the results show

that the 1-phase negotiation adds negligible time over-

head compared to the negotiation scenario as it only

adds information to the beacon and process them at

the IoT owner's side. On the other hand, the 2-phases

negotiation adds on average 350 ms, which includes the

time required to receive an alternative proposal from

the IoT owner, reply by accepting the proposal, then

receiving the sensor value.

6.2 Edge-Managed and Cloud-Managed IoT

In this subsection, we repeat the experiments in the

previous subsection but with the IoT now being man-

aged by either an edge or a cloud server. First, we begin

by describing the results of the edge-managed scenario.

The IoT user needs to negotiate with and access the IoT

infrastructure through the edge server and all commu-

nication is happening over wireless LAN network. Fig-

ure 7 shows the major milestones from the IoT user's

side in this negotiation situation. We note two things in

this experiment. First, as opposed to the user-managed

negotiation scenario, there is no connect phase since

the IoT owner is now a server that continuously listens

to a network port to reply to requests from IoT users.

Hence, there is no connect phase per se. Second, un-

like the user-managed IoT experiment, we don't report

in this experiment results from the IoT owner's side

since the owner is now a server with presumably abun-

dant resources. We see from the �gure that the time

to receive an alternative proposal from the IoT owner

is now less than 400 ms. This time includes the time

to send a request to the edge server with an unaccept-

able privacy settings and receiving back an alternative

proposal. Furthermore, the time to receive the sensor

value if the IoT user accepted the IoT owner's proposal

is around 500 ms. We conclude that managing the IoT

infrastructure using an edge server provided much bet-

ter time e�ciency than the user-managed IoT scenario

using BLE. We also report in Figure 8 a comparison be-

tween three situations for negotiating privacy require-

ments. There are two important lessons that can be

learned from this �gure. First, when comparing the no-

negotiation scenario with the 1-phase negotiation sce-

nario, we see a di�erence of around 20 ms. This di�er-

ence is negligible as it is attributed to the variability

of the performance of the wireless LAN, which can be

realized from the standard errors. Therefore, similar to

the results from the user-managed IoT, these two sit-

uations have similar time performance. Second, we see

that adding a second negotiation phase added an aver-

age of 200 ms attributed to sending the proposal from

the IoT owner and receiving a reply back before sending

the required sensor reading. Overall, the performance is

still better than the same scenario for the user-managed

IoT. Finally, Figure 9 reports similar results for the pre-

vious �gure but with a cloud-based server now used to
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Fig. 7: Aggregate time for ma-

jor negotiation milestones (IoT

User\Edge-Managed IoT.)

Fig. 8: Total time to receive sen-

sor reading for no-negotiation, 1-

phase & 2-phases negotiation in

edge-managed IoT.

Fig. 9: Total time to receive sensor

reading for no-negotiation, 1-phase

& 2-phases negotiation in cloud-

managed IoT.

manage IoT as opposed to an edge-based server. We no-

tice from the �gure that the latency doubled in all three

scenarios due the need of routing the communication

through the Internet. This result is in harmony with

other research (Satyanarayanan, 2017) that highlighted

the bene�ts that cloudlets proximity brings for better

management of IoT infrastructure but highlighted var-

ious challenges for this paradigm to become a reality.

6.3 Camera Sensor Group Privacy Scenario Evaluation

The evaluation of the group-based scenario focuses on

the e�ect of various privacy negotiation outcomes on

the overall performance. For example, if the group de-

cides to apply some �lter to amend the sensory informa-

tion before reporting to the cloud, this decision incurs

an overhead of activating the component responsible

for the negotiation as well as the overhead for applying

the �lter. We measure in our experiment three possi-

ble scenarios. First, a baseline situation of no-privacy

where the collection of images from the camera sensor

is acceptable by de�nition and there is no privacy ne-

gotiation option given to the users. This scenario might

correspond to a situation where the IoT owner enforces

full image collection due to security reasons or to public

places where capturing and publishing of full images is

not considered a breach of user privacy (e.g. cameras in

public streets). Second, a privacy-no-data-update in

which a negotiation had taken place but the result was

to report the camera images to the cloud as is without

applying a privacy �lter. Third, a privacy-with-data-

update scenario where the results of the negotiation

requires applying face detection and �ltering before re-

porting the images to the cloud.

Figure 10 shows the performance for the two mile-

stones required when no privacy is activated in the

pipeline architecture. First, we see that the time needed

to read the image form the camera sensor by the edge

server over Wi-Fi is 2.2 seconds. Afterwards, passing

the image over the message queue to data store compo-

nent to save it to the persistent data store and reading

it by the data publisher for reporting to the cloud re-

quires an addition 100 milliseconds. Hence, the overall

time required for preparing the data for reporting to the

cloud is 2.3 seconds. The experiment in Figure 11 re-

ports the time performance for the di�erent milestones

when privacy negotiation is activated. Note here that

this situation requires full blown activation of all com-

ponents of the pipeline architecture. Hence, the number

of milestones is four in this situation which is double

the number of milestones in the previous �gure. We see

from the �gure that the �rst two milestones have taken

similar time to the same two milestones in the previous

experiment, which is logical since these are the same

steps. We also note that activating the data �lter com-

ponent required reading the data from the persistent

data store and passing it to the data �lter component

to perform the negotiation thereby adding an additional

145 milliseconds time overhead to the pipeline. Finally,

an extra 100 milliseconds is required to pass the data

from the data �lter to data publisher via the message

queue dedicated for communication between the two

components. When comparing the previous two situa-

tions we see that the activation of the data �lter com-

ponent to perform the privacy �ltering incurred an ad-

ditional time overhead of 250 milliseconds. We turn into

Figure 12 which reports the time performance for a situ-

ation similar to the previous �gure with one di�erence

where faces are detected in the image and face blur
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Fig. 10: Aggregate time for ma-

jor milestones in the baseline

situation of no privacy (Edge-

managed\Privacy).

Fig. 11: Aggregate time for ma-

jor milestones in the situation of

privacy-without-data-update (Edge-

managed\Privacy).

Fig. 12: Aggregate time for ma-

jor milestones in the situation

of privacy-with-data-update (Edge-

managed\Privacy).

must be applied. We see from the �gure that data �l-

ter component has taken 240 milliseconds compared to

145 milliseconds in the previous �gure. The additional

100 milliseconds can be attributed to the time need

to perform the privacy �ltering, which is the face blur

code in our speci�c scenario. We learn from this results

that privacy �ltering can be costly in terms of time

overhead and hence must be planned carefully when

introduced to any application. Finally, Figure 13, com-

pares the overall timing for all three scenarios. When

compared to the baseline scenario of No Privacy, we

see that privacy negotiation and its application incurs

some overhead, about 10% in Privacy-No Update sce-

nario and 13% in Privacy - Data Update scenario.

7 Discussion

This paper promotes a solution to cover key issues re-

lated to system architecture for supporting privacy in

the IoT domain. However, the privacy concern in IoT

systems is a complex research topic and other open re-

search problems remain at large. In this section, we

point out these research challenges and point the reader

to possible future directions.

First, learning the privacy preferences of users is a

challenging process. User privacy depends on various

factors including the type of the data being collected,

the usage scenario and location context (i.e. public vs.

private spaces). Fortunately, studies have shown that

the privacy preferences can be predicted by observing

the user behavior towards privacy using limited num-

ber of scenarios (Naeini et al., 2017). Also, social cues

can be given to users to allow them to make informed

Fig. 13: Total time for three situations of no-privacy

privacy-no update & privacy-data update (Edge-

managed\Privacy).

decisions about their privacy decisions in an IoT envi-

ronment (Emami Naeini et al., 2018). Despite the great

bene�ts these studies provide, a missing piece of the

puzzle is to observe the user behavior in a real IoT

environment, as these studies depend largely on user

questionnaires. By learning from studies from a real

world IoT platform, solutions like our framework can

adapt techniques for learning users privacy preferences

without depending on cumbersome preferences collec-

tion screens. The learned privacy preference that can

resemble a trained prediction model can be pushed from
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the cloud, where the model training happened, to users'

mobile devices, where inference for privacy preferences

can happen based on the input from the environment,

such as the current location or social context of the user

and the data collection requirements.

Another important IoT challenge that is also appli-

cable to our framework is scalability. An IoT environ-

ment can involve large number of devices and it is nec-

essary that the preferences of users are negotiated and

applied to these devices in a timely manner. Our frame-

work uses BLE as the communication medium between

the IoT owner, IoT users and IoT devices in the user-

managed scenario. Besides its great energy e�ciency,

BLE is under continuous improvements with BLE 5

(Bluetooth SIG, 2016) providing double the bandwidth

and 4-fold increase in communication range compared

to the previous BLE version. The framework also uti-

lizes Wi-Fi, which has also seen recent improvements by

introducing the IEEE 802.11ah standard (IEEE Work-

ing Group for WLAN Standards, 2017) aimed at ad-

dressing issues relevant to the IoT, such as energy e�-

ciency and scalability.

Finally, a challenge that also must be considered

is the added overhead for applying privacy �lters. IoT

sensors data �ltering mechanisms are dependent on the

type of sensor being �ltered, and their associated cost

can vary from adding negligible to adding substantial

time or energy overhead. For example, detecting and re-

moving particular sounds or speci�c faces from a video

feed requires running pre-trained models, which can be

costly, thereby negatively impacting the quality of the

service. Hence, it is important that system designers

choose the right �ltering mechanism that preserves the

quality of the service while achieving the needed privacy

for user data. There are various research e�orts aimed

at e�ciently introducing privacy measures to collected

data from an IoT environment without impacting the

utility of the service provided. For example, an edge-

based infrastructure is proposed in an IoT environment

(Das et al., 2017) to detect and denature faces from a

video feed based on user privacy preference. In addi-

tion, privacy-aware o�oading is used in healthcare IoT

environments (Min et al., 2018) to protect the user lo-

cation and usage patterns while utilizing resources from

the mobile-edge.

8 Conclusion

This paper presented a privacy negotiation scheme to

address the privacy requirements of users in IoT en-

vironments. The proposed approach is practical as it

negotiates the privacy policy of the user with the IoT

owner without user intervention and supports the se-

lection from among multiple prede�ned IoT user and

owner privacy policies. The paper addresses privacy ne-

gotiation in both individual and group contexts. The

feasibility of the negotiation protocol was demonstrated

by means of a thorough implementation and evaluation

over three widely accepted IoT scenarios.
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