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Abstract This paper presents a new privacy negoti-
ation mechanism for an IoT environment that is both
efficient and practical to cope with the IoT special need
of seamlessness. This mechanism allows IoT users to ex-
press and enforce their personal privacy preferences in
a seamless manner while interacting with IoT deploy-
ments. A key contribution of the paper is that it ad-
dresses the privacy concerns of individual users as well
as a group of users where privacy preferences of all in-
dividual users are combined into a group privacy profile
to be negotiated with the IoT owner. In addition, the
proposed mechanism satisfies the privacy requirements
of the IoT deployment owner. Finally, the proposed pri-
vacy mechanism is agnostic to the actual IoT archi-
tecture and can be used over a user-managed, edge-
managed or a cloud-managed IoT architecture. Pro-
totypes of the proposed mechanism have been imple-
mented for each of these three architectures, and the
results show the capability of the protocol to negotiate
privacy while adding insignificant time overhead.
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1 Introduction

With increasing availability of wide range of commercial
IoT systems nowadays, we are closer than ever into real-
izing the IoT vision of sensing, interconnecting, actuat-
ing and remotely controlling physical objects in our en-
vironment. Users can now shop for smart thermostats,
door locks, light bulbs, home security systems or patient
monitoring systems among other options and control
them from their mobile devices. While such systems
can bring great comfort in our everyday lives, there is
a pressing need to consider user privacy in designing
and using them. We see that addressing the privacy
concerns of such systems involves answering a two-fold
question. First, the simpler question (though answer-
ing this question in itself is not simple) is how to allow
an individual user who comes across an IoT environ-
ment to be in charge of what information can be col-
lected about them? For example, can a user ensure that
a camera system in the environment may take her pic-
ture but must blur her face before distributing it to any
third party, or the IoT environment must anonymize
her location sufficiently before sharing it with anyone
else. While determining and respecting individual user
privacy requirements is complex, a much more sophis-
ticated situation arises when a group of multiple users
immerse in an IoT environment. Each user in the group
may potentially have a different set of privacy concerns,
and the complex question is how to determine the pri-
vacy requirements of the group as a whole (group pri-
vacy) and provide a service that respects these group
privacy requirements. For example, consider a situation
where multiple users walk into a room equipped with
a video surveillance system. While some users in the
group are comfortable with the video capture process,
others might require specific policies to be applied to
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the captured videos, such as face filters or guaranteeing
non-disclosure of the video to third parties. In this jour-
nal paper, we extend our previous work (Alanezi and
Mishra, 2018) that focused on individual user privacy
preferences to incorporate group privacy preferences.

To cater to the privacy preferences of users whether
in individual or group context, we propose a privacy
negotiation mechanism to allow IoT users to automat-
ically express and enforce their personal privacy pref-
erences while interacting with IoT deployments. The
proposed negotiation mechanism is designed to be prac-
tical by allowing users’ devices (e.g. their smartphones)
to negotiate with the IoT deployment in background
on users’ behalf, thus allowing them to express their
privacy requirements without having to go through the
burden of explicitly specifying their requirements on an
online form or reading privacy notices. Further, this pri-
vacy negotiation mechanism is designed to be efficient
as it is built on top of existing IoT communication pro-
tocols and adds only a negligible overhead to the ongo-
ing communication of IoT applications. A key novelty of
this work stems from demonstrating through practical
experiments the viability of automated privacy negoti-
ation over IoT architectures.

This proposed negotiation mechanism is holistic in
nature in that it not only covers the privacy require-
ments of the IoT users (i.e. IoT service consumers) but
extends this coverage to negotiate and satisfy the pri-
vacy requirements of the IoT deployment owner (hence-
forth IoT owner) as well. The IoT owner is the responsi-
ble party for setting up and maintaining the IoT infras-
tructure that provides services to IoT users. Generally,
providing services involves enabling the IoT users to
access sensory interfaces such as temperature, audio or
camera sensors. We envision that the IoT owners would
like to manage this access according to their privacy re-
quirements since every access to a sensor can be used
to reveal information about them. To cover the privacy
requirements of IoT users and owners, we model the
problem as a utility-privacy tradeoff function in which
sharing more information increases the utility gained
from the service but can potentially lead to some unde-
sired privacy exposure. We show that the negotiation
protocol can use multiphase negotiation efficiently to
embark into an agreement that satisfies the utility and
privacy requirements of IoT users and owner simulta-
neously.

Another important aspect that is covered by the
negotiation protocol is the handling of current diverse
IoT infrastructures. IoT infrastructures are envisioned
to act as utility networks for IoT users to use IoT ser-
vices on the go (Stankovic, 2014). However, the gateway
to access these services can vary from a privately-owned

central server or cloud server to an edge server or even
direct access using machine-to-machine (M2M) commu-
nication. An important feature of our negotiation pro-
tocol is that it is architecture agnostic and can be used
on cloud based, edge-based or M2M types of infrastruc-
ture. In summary, our contributions are as follows:

1. We have designed a negotiation protocol to auto-
matically model and realize privacy requirements in
an IoT ecosystem. The protocol takes a holistic ap-
proach by covering the requirements of all involved
parties in an IoT interaction. The practicality of the
protocol stems from modeling privacy as a tradeoff
function with the utility achieved from using/pro-
viding IoT services.

2. The proposed negotiation protocol addresses the pri-
vacy requirements in both individual and group con-
texts. In particular, we extend the individual pri-
vacy negotiation protocol we proposed in (Alanezi
and Mishra, 2018) to address group privacy prefer-
ences. In group negotiation, privacy preferences of
each individual user are combined into a group pri-
vacy profile to be negotiated with the IoT owner.
The outcome of the group negotiation could be ei-
ther to proceed with the data collection, alter con-
tent to accommodate for a privacy restriction from
group members or to contact one or more of the
group members to perform a second round of nego-
tiation.

3. We have developed and tested a prototype of the
proposed negotiation protocol for both individual
and group contexts over three different IoT infras-
tructure standards of user-managed, edge-managed
and cloud-managed IoT architectures. Results show
the capability of the protocol to negotiate privacy
preferences in both individual and group contexts
while adding insignificant time overhead.

2 Related Work

There is a consensus among researchers that difficulty
in preserving user privacy is a major hurdle for wide
adoption of IoT (Ziegeldorf et al., 2014; Naeini et al.,
2017; Stankovic, 2014). Consequently, many researchers
proposed solutions to address privacy concerns inher-
ent in IoT systems such as background collection of
sensory data without user consent and possibly shar-
ing this data with untrusted third parties such as cloud
providers. This literature review focuses on describing
the body of work that was proposed to face these chal-
lenges. The UPECSI framework (Henze et al., 2014)
proposed privacy enforcement points at selected net-
work locations where sensitive IoT data must be en-
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crypted before shipping to the cloud. Users are in charge
of choosing the privacy enforcement option to be ap-

plied at these network points. The privacy coach (Broenink

et al., 2010) is also a framework that puts the control
of the data being collected in the hand of the user. The
framework is geared towards RFID systems and pro-
vides a mobile client where users can review and ap-
prove data collection policies proposed by corporations
that own the RFID system. Since Blockchain (BC) tech-
nology eliminates the need for a central authority to es-
tablish trust it was used in (Dorri et al., 2017) to allow
an IoT owner to define an access control list of accept-
able peer-to-peer communications that can take place
with their owned devices. The challenge addressed in
this work was to build a BC architecture suitable for low
resource and limited energy IoT devices. The position
paper in (Davies et al., 2016) presented an architecture
based on edge computing to allow the user to control
access to their data in an IoT system. The authors ar-
gued that the use of cloudlets benefits the IoT system
by gaining the trust of the user. Our framework adopts
a similar approach to these works in placing the control
of IoT data privacy at the hand of the user. However,
we address the challenge of enforcing the user privacy
policy seamlessly (i.e. without user involvement), which
is a key for the usability of any framework to serve pri-
vacy in IoT .

Another challenge addressed by our work is to adopt
to privacy preferences of group of users that are subject
to a data collection process by an IoT deployment. Re-
quiring privacy for a group is a commonplace scenario
in IoT and we focus in our work on building a generic
architecture to support this requirement. To the best
of our knowledge, we are the first to study this prob-
lem. Hence, we cover in this literature other works that
considered group privacy in different domains.

Applying group privacy for multi-owned data items
(e.g. pictures) shared on social networking sites SNS is
a widely studied subject (Squicciarini et al., 2009; Such
and Criado, 2016; Thomas et al., 2010; Such and Rovat-
sos, 2016; Hu et al., 2012; Fogues et al., 2017; Lampinen
et al., 2011). The authors in these works looked into
automatically identifying co-ownership and practically
applying group privacy on such items.

According to the author in (Mittelstadt, 2017) an-
other domain where privacy must also be considered
in a a group context is big data analytics. The author
of this work proposes that when users are categorized
among groups automatically by big data algorithms,
there is an ethical responsibility that information and
actions linked to the group must be considered with
group privacy in mind.

3 Scenarios

We identify three IoT scenarios that are common in lit-
erature namely user-managed IoT, edge-managed IoT
and cloud-managed IoT. In a user-managed IoT archi-
tecture, the IoT owner’s mobile device, e.g. a smart-
phone or a tablet acts as a gateway to the IoT in-
frastructure. All negotiation and access must happen
through this mobile device. This is common in an IoT
infrastructure installed at home or a private office. Con-
sider a smart home environment where a home is equipped
with a range of sensors such as a temperature sensor,
a carbon monoxide sensor, etc. These smart home sen-
sors are designed to operate in a star topology network,
where each sensor is connected to a single gateway, e.g.
home owner’s smartphone, and sends its data to that
gateway at regular intervals. In this case, if another de-
vice, e.g. a visiting friend’s smartphone needs to access
this sensor data, possibly for a limited time, the sensor
data must be retrieved from the home owner’s smart-
phone. In this scenario, the home owner’s smartphone
must be involved in privacy negotiation with the smart-
phone of the visitor to permit the temporary access.

For edge-managed and cloud-managed IoT, a server
plays the role of the gateway and carries all negoti-
ation and access requests. For the former, the server
is within the same network domain for the IoT infras-
tructure(Davies et al., 2016), whereas for the latter, the
server is situated in a public cloud. For example, in a
smart city, video feed from a security camera may be
stored at an edge server or a cloud server. If an agency
such as a law enforcement agency needs to access this
video feed, the edge or cloud server must be involved in
privacy negotiation with the law enforcement agency.

These three scenarios categorize the negotiation pro-
cess from the perspective of the owner. On the other
side, when it comes to the IoT users, there are two
possible scenarios that could take place. Either an indi-
vidual user is negotiating with the owner to ensure that
his/her privacy preferences are met or a group of users
are present with different privacy preferences pertaining
to each individual in the group. The latter case is more
complex since individual preferences of different users
may conflict with one another in some situations. We
present a negotiation algorithm covering each of these
scenarios in Section 4.

4 Design

4.1 Privacy Requirements

The fact that the negotiation protocol operates in IoT
environments imposes stringent practical requirements
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on our design. We describe below four of these require-
ments that must be satisfied:

1. No User Involvement: All negotiation commu-
nication must take place in background, without
any user intervention. When users navigate through
public or private spaces, they will typically encounter
IoT deployments (i.e. IoT owners) and engage in
data exchange with them to avail various services
provided. To avoid any inconvenience introduced by
involving IoT users in negotiation to satisfy their
privacy requirements, the IoT user’s device that has
the user privacy requirements should act seamlessly
to negotiate these privacy requirements on behalf of
the user with the IoT owner. Also, the IoT owner’s
privacy settings will be communicated to the IoT
user to ensure their adherence to these requirements.

2. Minimal Overhead: The negotiation protocol must
impose minimal time and energy overhead to the
ToT task. IoT services are typically provided promptly
to the users. Therefore, these services are sensitive
to any time delays, which should be considered in
the protocol design. Also, since IoT devices are bat-
tery powered, the protocol must be energy efficient
to avoid draining the energy sources of involved de-
vices.

3. Choice Flexibility: The protocol should avoid the
current privacy notice and choice model of either
accepting the service as a whole or abandoning it,
since this model is too rigid and will not work with
IoT situations requiring more flexibility. Diverse op-
tions should be offered to IoT users to enable them
to continue to use the service while not sacrificing
their privacy requirements.

4. Guaranteed Privacy: Regardless of whether the
negotiation is happening in an individual or group
context, the protocol shall never proceed with a data
collection action or providing a service that violates
an individual privacy preference. In the case of in-
dividual context, if the IoT user and the IoT owner
did not reach an agreement, any suggested alter-
native data collection policy along with a differen-
tiated service by the IoT owner must be listed as
an acceptable option by the individual (i.e. a plan
B option). For the group context, individual group
preferences will be aggregated using the least mis-
ery approach to ensure satisfying the user with most
stringent privacy preference. After that, the group
negotiation with the IoT owner will use the resultant
privacy preference from the aggregation process. In
cases where no agreement can be reached, the cor-
responding user(s) will be notified with a suggested
policy from the IoT owner to obtain their approval
in a similar fashion to the individual negotiation.

4.2 Privacy Model

The negotiation protocol presented here is in alignment
with the vision of achieving openness in IoT environ-
ments. Openness envisions IoT networks to act as a util-
ity infrastructure, similar to electricity and water, that
is accessed by IoT users on the go (Stankovic, 2014).
Open environments as such require that the parties in-
volved in information exchange specify their privacy re-
quirements to be negotiated on their behalf. This is
analogous to the P3P protocol (Cranor, 2002) in which
a browser negotiates the privacy requirements of users
on their behalf with visited websites to control the per-
sonal information that the website can collect about the
user. In our protocol, the IoT user and IoT owner will
store their privacy requirements in a policy file stored
locally and written using XML language. An example
scenario for privacy policies for an IoT owner and an
IoT user is shown in Listing 1 and Listing 2 respectively.

Listing 1: IoT User Privacy Policy

<privacy—policy>
<data—in type="image" priority="1">
<retention>3—month</ retention >
<shared>no</shared>
<inferred>yes</inferred>
</data—in>
<data—out>
<data—out type="video" priority="1">
<retention>l—year</ retention >
<shared>no</shared>
<inferred>no</inferred>
</data—out>
</privacy—policy>

Listing 2: IToT Owner Privacy Policy

<privacy—policy>
<data—in type="video" priority="1">
<retention>l—year</ retention >
<shared>no</shared>
<inferred>yes</inferred>
</data—in>
<data—out type="face—detection"
priority="1">
<retention>l—year</ retention >
<shared>no</shared>
<inferred>no</inferred>
</data—out>
<data—out type="image" priority="1">
<retention>l—year</ retention >
<shared>no</shared>
<inferred>yes</inferred>
</data—out>
</privacy—policy>

As seen in Listing 1, the privacy policy for the IoT
user specifies <data-in> tags indicating the type of
data that the user would like to acquire from the IoT
owner along with child elements specifying the usage
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scenario for this data. These <data-in> tags from the
IoT user privacy policy will be matched against the
<data-out> tags in the IoT owner’s policy since the
latter specifies the data collection practices accepted
by the IoT owner. Conversely, the <data-in> tags
specified in the IoT owner’s policy in Listing 2 will be
matched against the <data-out> tags in the IoT user
privacy policy to ensure that the level of data collection
performed by the IoT owner is acceptable by the IoT
user. An interesting research question is how to learn
the privacy policy for each user which could be differ-
ent for different locations? Other research (Naeini et al.,
2017) has shown that the privacy preferences of a user
can be predicted by observing a few data collection sce-
narios. Using prediction is beneficial to avoid the cum-
bersome and error prone task of filling privacy settings
screens. One of our key design requirements is achieving
flexibility by allowing the protocol to negotiate multi-
levels of service with different scales of data collection
scenarios. This is required due to the high cost of an
unsuccessful negotiation as it might require the user to
leave the place to avoid the data collection process alto-
gether. To address this challenge, the negotiation pro-
tocol models the relationship between data collection
and the IoT service as a utility-privacy tradeoff func-
tion stated as Formula 1. This allows the IoT owner to
offer multiple choices of service levels, measured by the
utility, to the IoT user based on the amount of data they
are willing to share. We choose to employ four dimen-
sions form factors influencing privacy preferences in IoT
environments from (Naeini et al., 2017) in this utility-
privacy tradeoff function. These four factors are saved
in the privacy policy XML representation as child ele-
ments inside each <data-in> and <data-out> tags.
The description for each of these four elements is as
follows:

1. Data Type (t). The type of sensor being accessed
can have varying degree of exposure to the privacy
of the owner of that sensor. Sensors such as the
camera or the microphone are inherently sensitive.
Hence, allowing access to those sensors must be han-
dled with care. There are techniques in literature
to minimize the degree of privacy exposure when
accessing those sensors such as blurring faces from
the live video feed of a surveillance camera (Das
et al., 2017) or carefully choosing audio features to
avoid construction of speech from captured audio
data (Wyatt et al., 2007). If used, these techniques
must be added to the XML file to be part of the
negotiation process.

2. Retention. (r) Retention policy specifies time du-
rations for keeping logs of exchanged data. In real-
time applications, where no data storage is required,

this factor can be used by the IoT owner or the IoT
user to enforce purging their data by leaving this
element empty.

3. Shared (s). Any third party recipient must be spec-
ified in case the IoT owner or the IoT user is sharing
any gathered data for the IoT task.

4. Inferred (7). The recipient of the data must specify
if inference techniques will be used to gain further
information from the data. For example, accelerom-
eter data can be used to monitor exercising habits
of a user for health applications but can also be used
in dead reckoning techniques (Pratama et al., 2012)
to determine indoor user location.

Other form factors that can also be considered include
the location, purpose and the benefit of the data col-
lection (Naeini et al., 2017). After learning the afore-
mentioned privacy influencing factors in the negotia-
tion exchange described in next two subsections, both
the IoT owner and IoT user will use them as part of a
privacy-utility calculation to ensure that the achieved
utility from the IoT service outweighs the degree of pri-
vacy exposure. We adopted the privacy-utility function
in (Preibusch, 2006), which serves electronic commerce
(e-commerce) sites, with modifications to fit to IoT ap-
plications scenario. This function is used by both the
ToT user and the IoT owner of the data to evaluate the
privacy-utility of the the data exchanged between them.
The utility-privacy function is as follows:

U= —7.P(t,r,s,i) + B(t,r,s,1) (1)

U denotes the total utility that will be achieved
from pursuing the information exchange to run the IoT
application.

B is the benefit from the data exchange as seen from
the perspective of the data owner. For the IoT owner,
this could be a monetary incentive or the social benefit
from allowing IoT applications to run on their premises.
As for the IoT user, the benefit would be the service
provided by the IoT application. Notice that B is a
function of privacy exposure form factors as we expect
the benefit to be proportional to the selected policy for
each data type. Therefore, we can model B as the sum
of the benefits achieved by choosing the policy configu-
ration for each policy item (i.e. ¢,7,s,i) and finding the
summation of benefits for all data types involved in the
data exchange scenario as follows:

n

> [B(t:) + B(ri) + B(s:) + B(is)] (2)

=1

P, is the degree of privacy exposure for the selected
privacy policy. Different privacy policies will lead to dif-
ferent levels of privacy exposure based on the exposure
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form factors chosen in the policy. For example, higher
retention periods specified by r for highly sensitive data
specified by t will lead to higher values of P..

In contrast with the benefit B, we choose to model
the privacy exposure P, as the product of privacy expo-
sure terms resulting from the selection of policy items
and finding the summation of P, across the data types
as follows:

D [Pe(ti) # Pe(ri) = Pe(si) * Pe(is)] (3)

i=1

The design choice of using products for modeling P,
stems from the fact that different configuration param-
eters can affect each other with direct proportionality.
For example, choosing a three month retention period
for a video will be of higher privacy concern than using
the same retention period with a less sensitive sensor
such as the accelerometer.

We also note that the degree of privacy exposure
for each data type can vary based on the user location
context (private vs. public place) and the social con-
text (individual vs. group). Since this privacy percep-
tion varies from one user to another, user questionnaires
are proposed (Naeini et al., 2017) to learn the individu-
alized user preferences that can then be used as policy
parameters.

7 is an overall privacy sensitivity perception fac-
tor. This factor can vary depending on the location or
context of the user. For example, users might be com-
fortable for taking a picture for them in public places
as opposed to being in private places. v is multiplied
by P. to either escalate or deescalate the total privacy
leakage for the specific data sharing situation based on
the context and/or location.

Note that the product term to the right of the equal-
ity operator is negative so as to reconcile it with the
benefit term B. Thus, the utility U will be positive
when the value of the benefit B term outweighs the
value of the negative privacy exposure term and vice
versa.

In summary, the presented privacy model uses XML
to store the privacy policies and use them without user
intervention. Also, it supports the requirement of choice
flexibility by modeling the utility of the service as a
function of privacy exposure form factors. Section 6
demonstrates that the model and the overall protocol
satisfies the minimum overhead requirement when im-
plemented over well known IoT architectures.

4.3 Individual Privacy Negotiation

This section describes the flow of the negotiation ac-
tivities between the IoT user and the IoT owner in the
individual context (i.e. when there is a single user in
the ToT environment). We have implemented and eval-
uated the privacy negotiation protocol on all three ar-
chitecture scenarios described in Section 3. The design
of the negotiation protocol is made flexible by avoiding
the go/no-go scheme of current privacy/notice choice
mechanisms and replacing it with multi-phase negotia-
tion. This section describes 1-phase negotiation and 2-
phases negotiation. We start by describing the 1-phase
negotiation scenario shown in Figure 1 (a). The scenario
starts with the IoT user sending an access request for
specific type of data (i.e. sensor) to the IoT owner. The
IoT user will embed a summary of their usage require-
ments for this data, which is taken from the <data-
in> element for this type of data in the user policy.
Upon receiving the access request, the IoT owner checks
the utility of the request by substituting it in the util-
ity function. Assuming that the utility of the request
is equal or higher than the utility achieved when sub-
stituting the <data-out> element for the same data
from the IoT owner privacy policy, the owner accepts
the request. After that, the IoT owner connects to the
IoT user and starts acting as a relay by forwarding sen-
sor information received from the IoT infrastructure to
the IoT user. The 2-phases negotiation is shown in Fig-
ure 1 (b). This scenario starts in a similar way by the
IoT user sending an access request to the IoT owner.
However, in this scenario the utility of the request is
deemed unacceptable by the IoT owner. Accordingly,
the IoT owner will retrieve the <data-out> element
for the requested data item from their own privacy pol-
icy, which represents their acceptable usage scenario for
the data item and send it as a proposal to the IoT user.
This only happens after connecting to the IoT user. The
IoT user’s device then checks the utility of this pro-
posal against a second priority policy if one is defined
in their privacy policy file. Note that each <data-in>
and <data-out> tag in the privacy policy contains a
priority attribute to allow the IoT user and IoT owner
define alternative policies to be used during negotia-
tions. Only defining a priority 1 policy for the data
item means that the policy for this data item is non-
negotiable. Assuming the IoT user has accepted the al-
ternative proposal, the IoT owner will start forwarding
required data as soon as it is received from the data
source.
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Fig. 1: Privacy Negotiation Flow

4.4 Group Privacy Negotiation

The previous section focused on performing negotia-
tions between an individual user and the owner of the
IoT environment. However, an important question is
how to perform negotiations when there are multiple
users present in the scene? Answering this question is
vital since IoT deployments cover urban spaces such as
malls, hospitals, ...etc., where the presence of multiple
users interacting with the IoT deployment is the norm.

Let’s consider a group of n users U = (uy, -, uy)
who happen to be at the same location where an IoT
deployment exists. For the IoT environment to provide
a particular service, it requires performing data collec-
tion of one or more sensors represented by the vector
S = (S1,-++,Sk). The privacy setting of each user is
specified per sensor as follows:

Sps = (< S1,7, 8,0 >,< So,r, 8,4 >+, < Sk, r,8,1>)
This presentation is similar to the notation used in the
individual privacy negotiation as described in Section
4.3. We expect that specifying user privacy settings at
the sensor level would be easy for users as it is anal-
ogous to the way users specify their privacy settings
when granting permissions to mobile applications at the
time of installation in their smart devices.

Indeed, it may be difficult for users to feed the sys-
tem with their privacy settings for every sensor before
they start using the system. However, prediction based
on limited user input can be used to learn these settings
effectively (Naeini et al., 2017) thereby minimizing re-
quired user efforts. Also, we believe that spatiotempo-
ral context as well as social group context (with family,
friends, colleagues, ..etc) can be a huge influencer for

Sir Sls S1i S2r S52s S2i
U, 3 yes yes 3 no yes
Uz 4 no yes 3 no no
Un 2 yes no 3 no yes
Boundary | Im, | Ims | Im; | lmy | lms | Im;

Table 1: Group Privacy Policy Matrix and Boundary
Preference

user choices and should be considered while predicting
a user privacy settings for a particular location.

Given that all available users will post their privacy
settings to IoT service owner in order to consider them
in the data collection policy, the IoT service owner will
end up with a matrix of group preferences with each row
representing the requirements for an individual user as
shown in Table 1. Note here that the individual rows
contain the form factors (i.e. r, sh, i) for each sensor
required by the IoT service as specified by each user.

The last row in the table contains the boundary
policy resulting from merging the privacy preferences of
the group of users. We choose to merge the privacy pref-
erences using the least misery approach to ensure that
no information can be disclosed without the consent of
all users. Using this approach, the resulting boundary
privacy preferences vector will contain in every item a
privacy setting that satisfies the group member with
the most conservative privacy requirement. For exam-
ple, if Uy specifies that data from S; can be stored for
maximum 3 months while U; requires that the maxi-
mum is 1 month only, the aggregate policy will list that
the data item S; will be stored for maximum 1 month.
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The boundary privacy policy can be used as the
policy of choice as it does not violate the privacy re-
quirements of any user. However, such a choice for the
design would be naive considering that the algorithm
should guide the IoT users in balancing the utility of
the service consumed with the amount of privacy ex-
posure the users will be subjected to. For example, one
possibility that the algorithm should not ignore is the
availability of a policy that is more conservative than
the boundary policy that shall provide a service utility
that still satisfies the users. Hence, the aggregate pri-
vacy policy will be chosen by enumerating all possible
combinations of form factors that are within the bound-
ary privacy preferences vector and then again plugging
every possible combination into an optimization prob-
lem where the goal is to minimize the data collected
about the users (privacy exposure) while maximizing
the benefits for the users (service utility) as shown in
the below equations.

n

;nil% (w.r.t RY) (Z Pe; Pix;) (4)
i=1

r;lgi)( (w.r.t RY) (Zl Bix;) (5)
i—

Equation 4 in the optimization problem represents
the sum of the privacy exposure terms Pe; caused by
collecting an amount of data x; under a privacy pol-
icy P;. The goal of the optimization is to maximize
this term. Meanwhile, the optimization will maximize
equation 5 which represents the sum of the benefits B;
caused by collecting the same amount of data x; under
the same privacy policy P;. These equations add the the
privacy policy term P; to equation 1 to cater for evalu-
ating and choosing among various privacy policies.

Notice that in the first round of the negotiation, the
optimization will only consider the set of policies that
do not violate (i.e. work within the limits of) the bound-
ary privacy policy items derived using the least misery
policy. However, it is important to consider situations
in which one tight restriction from a user might render
the service unusable for the entire group. For exam-
ple, a user refusing to ship some specific data item that
must be processed on the server side or by a third party.
Given that the user is available in the IoT domain, the
algorithm can contact them to see if they are willing
to compromise in return for a better service. Finally, if
there is no agreement reached in the second negotiation
phase, the IoT owner can send a notification to the user
device telling the user that their privacy requirements

can not be met and providing them with detailed in-
formation about the data collection that will take place
for them to decide to continue or to simply leave the
location.

5 Implementation

In a user-managed architecture, the dominant commu-
nication protocol is BLE to conserve energy, while for
the edge-managed and cloud-managed architectures, a
server acts as a gateway and communication is done
using WiFi. Hardware used to simulate these infras-
tructures is shown in Table 2.

5.1 User-Managed IoT Experiment

The picture in Figure 2a demonstrates the setup for the
user-managed IoT experiment. We used the breadboard
to connect a temperature sensor to the Arduino Uno.
We then enabled BLE connectivity functionality on the
Arduino board by connecting it to an Adafruit Bluefruit
BLE shield through the breadboard. Using the Arduino
IDE, a program was written to enable the Arduino
board to broadcast using BLE beacons its availability in
order for BLE clients to connect to it and read the tem-
perature sensor values. The two Android-based Moto E
smartphones were then used to simulate the IoT owner
and IoT user mobile devices. We wrote Android code to
enable the IoT owner to connect to the Arduino board
and start receiving temperature values as push notifica-
tions periodically. Meanwhile, the IoT owner registers
a BLE search to listen to any guest devices that might
need a sensor reading from the IoT environment they
own. Note here that the BLE search is registered un-
der a specific UUID designated for the sensor sharing
services. Searching for specific UUID using BLE can
happen in the background while the device is in sleep
mode thereby drastically reducing energy consumption.
This means that the cost of detecting collaborators for
the IoT owner is trivial.

On arriving in an IoT environment, a user who is
looking for a specific type of sensor to perform a par-
ticular service sends a BLE advertisement broadcasting
its intention to access a shared sensor. This BLE broad-
cast contains the UUID for the sharing service and a
vector containing the request information as described
in Section 4. The request information here is a sum-
mary from the <data-in> tags describing the data
that the device requires along with the usage scenario.
This broadcast is captured by the IoT owner as it con-
tains the UUID of the sharing service. In case the IoT
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Table 2: List of hardware components used in the experiments along with the corresponding function and the

scenario for each component.

Title

Function

Scenario Used

Arduino Uno R3
LM35 Temperature Sensor
Arduino Ethernet Shield
Arduino BLE Shield
D-Link Wireless Router
Motorola Moto E smartphone
Motorola Moto E smartphone
MacBook Air
Amazon EC2 Micro Instance
Arduino Uno ESP2866

Microcontroller for the IoT device
Sensory interface to be accessed
Adds ethernet connectivity to the Arduino Uno
Adds BLE connectivity to the Arduino Uno
Wireless LAN router
IoT user requesting access to a sensor
IoT owner
Computing node at the edge of the network
Computing node in the Cloud
Microcontroller for the IoT camera

User managed and edge-managed
User managed and edge-managed
Edge-managed and cloud-managed
User-managed
Edge-managed and cloud-managed
All
User-managed
Edge-managed
Cloud-managed
Edge-managed/Group Privacy

Arducam 2MP Camera

IoT camera for generic use

Edge-managed/Group Privacy

(a) User-managed experiment.

(b) Cloud\Edge-managed experiment.

(c) Camera group privacy experiment.

Fig. 2: Hardware Setup.

owner accepts the request, it connects to the request-
ing device and starts relaying temperature readings to
it as soon as they arrive from the Arduino board. Oth-
erwise, as described in Section 4, the negotiation flow
requires a second round of negotiation. In this case, the
IoT owner’s device connects to the IoT user’s device
and sends a proposal containing its acceptable privacy
policy for the required sensor. The requester can now
either accept or reject this proposal. The requester will
use the ongoing BLE connection to reply. If the reply is
accept, the owner will start relaying temperature val-
ues to the IoT user. Notice that in this situation the
IoT owner is a hub for a BLE star topology network
with the IoT user and the Arduino board acting as the
hosts. We demonstrate the time efficiency for the com-
munication in the evaluation in Section 6. If the IoT
user rejects the proposal, the owner simply tears down
the BLE connection and continues to operate normally.

5.2 Edge-Managed and Cloud-Managed IoT
Experiments

We also show in Figure 2b the setup for the edge-
managed and cloud-managed IoT experiments.The Eth-
ernet shield is stacked on top of the Arduino board to
provide it with Ethernet capability. After that, an Eth-
ernet cable is used to connect the Arduino board to
the wireless LAN router. This allows the Arduino to
get a local IP and is now able to communicate with
other devices within the same wireless LAN. We used
the Arduino IDE to write code to let the Arduino Uno
act as web server providing an HTML page to read the
temperature sensor values. This setup is then used to
perform 1-phase negotiation and 2-phases negotiation
for the edge-managed and cloud-managed IoT scenar-
ios. For the former, we used a MacBook Air laptop to
act as an edge server by running Java code listening
to network communication at specific port within the
same LAN. For the latter, the same Java code was de-



10

Khaled Alanezi, Shivakant Mishra

ployed to an Amazon EC2 instance that is used as a
cloud server. Port forwarding was used on the wire-
less LAN router to enable communication between the
cloud server and the Arduino board over the Internet.
For both scenario, the server (i.e. IoT owner) receives
a request from a mobile device resembling the IoT user
for sensory data. This request contains a summary from
the IoT user policy. The server replies with the sensor
information or with a proposal in case further negoti-
ation is required. The client either accepts or rejects
this proposal. If the proposal is accepted, the server
performs an HTTP GET to get the temperature value
and sends the result. We report time-efficiency mea-
surements for the milestone stages for this protocol in
Section 6.

5.3 Edge-Managed Group Privacy Adaptation
Architecture

We choose the edge-managed architecture as a basis for
evaluating a group-based privacy negotiation scenario.
Note that in the other two kinds of architectures of user
managed and cloud-managed, a group-based scenario is
also possible. However, for the former the negotiation
happens with the IoT owner mobile device whereas for
the latter the negotiation happens with the managing
cloud server. We choose to implement the edge-based
scenario as we believe that edge servers will be a preva-
lent choice for use as gateways for managing IoT net-
works. Also note that our implementation focused on
developing a generic software architecture that is ag-
nostic to the application or type of sensory data being
negotiated and evaluating the impact of the group pri-
vacy filter choice on the performance.

The situation involving group of users requires acti-
vating different kinds of filters depending on the privacy
preferences of the group members who happen to be at
the scene. We describe in this section a flexible plug-
and-play architecture to support this requirement. We
choose to implement this architecture using the widely
advocated microservices architecture (Dragoni et al.,
2017). We also adapted a pipeline architecture similar
to Eclipse Kura (The Eclipse Foundation, 2018). By us-
ing microservices, it is possible to implement different
privacy filters independently (each as a microservice)
and bring up/down the filters as required during run-
time. Our solution architecture resembling a pipeline
structure implemented on the edge server is shown in
Figure 3.

As seen in the figure, the overall service is decom-
posed into four microservices interacting via message
queues. Using messages and message queues is neces-
sary in order to achieve independence (Dragoni et al.,

Edge Server @/E
Preferences I #

Data Data Data Data
Ca pture Store Filter Publisher

=
) u

Msg Persistent Msg
IOT Queue DataStore Queue
Device

g)

Fig. 3: Microservices Architecture

2017), hence the benefit of the portability that the mi-
croservices architecture provides. First, the Data Cap-
ture Service starts the pipeline architecture by read-
ing data from the IoT device. The microservices archi-
tecture hides the implementation details for the type
of communication used between the edge and the IoT
devices which can be based on Bluetooth LE or WiFi
depending on the IoT device preferred communication
protocol. Note that each microservice is implemented
using docker a container (Docker, Inc., 2013). Upon
capturing the sensory data, it will be forwarded via
the message queue, which is implemented using Java
Messaging Service (JMS) (Oracle Corporation, 2012),
to the Data Store Service. The latter is responsible
for saving any captured data into a persistent data store
for future access. We used docker volumes as a means
to implement the persistent data store for the system.
The Data Filter Component is responsible for im-
plementing a privacy filter after consulting the privacy
preferences of available users. The framework provides
an API for users to submit their preferences immedi-
ately upon joining the IoT environment. Received indi-
vidual preferences are used by the group privacy nego-
tiation protocol described in Section 4.4 to achieve an
agreed privacy preference vector for the group to apply
on the collected data items. Analogous to the individ-
ual context, in case one or more members of the group
have a conflicting privacy preferences, the privacy filter
component can contact the user for an alternative pri-
vacy preference (i.e. plan B). We describe a specific data
filtering implementation based on camera sensor in Sec-
tion 5.4. Finally, only filtered data is forwarded to the
data publisher, which publishes the data to the cloud
to be accessed by other users. The Data Publisher
microservice component (or container) is implemented
using the desired data communication plugin for the
preferred cloud provider (Amazon AWS or Microsoft
Azure).
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5.4 Group Privacy Involving Camera Sensor Scenario

To evaluate the group privacy architecture, we imple-
mented an IoT scenario involving a group of IoT users
negotiating the data collection policy of an IoT cam-
era. The hardware setup for this experiment is shown
in Figure 2c.

The experiment consists of an Arduino Uno ESP2866
board that is capable of connecting to Wi-Fi interfaced
with an Arducam 2MP camera. The microcontroller
with the camera and the edge server communicate over
Wi-Fi to resemble an edge-managed environment. We
focused in our experiments on evaluating the effect of
applying the privacy filter on the time required to be
ready for reporting the image to the cloud. That is,
the time from capturing the data until reaching the
Data Publisher components. The results of the fol-
lowing three situations are reported in Section 6:

1. No privacy: This baseline situation assumes no re-
quired privacy filtering, which means that the group
of users didn’t specify any concern about the data
collection practice being carried by the IoT owner.
In this case, no data filter container is launched and
the data publisher container reads the information
to report to the cloud provider directly from the
persistent data store.

2. Privacy-with data update: In this situation, a
privacy negotiation takes place and the group pref-
erence requires that some private information to be
filtered from the sensor data before reporting to the
cloud. In particular, we use face filtering for cap-
tured images in the experiment as an example of a
user requesting a privacy measure. The face filter
detect all faces in the picture and blur their corre-
sponding pixels.

3. Privacy-no data update: In this situation, a pri-
vacy negotiation will take place where the privacy
preferences of the group is merged together and con-
sidered by the IoT owner. However, contrary to the
previous situation, the outcome of the negotiation
doesn’t require any update for the data.

We report the results for these three scenarios for
our choice of data filter (i.e. face detection and blur)
in Section 6. Note that the overhead of the data filter
is dependent on the application or sensory interface at
hand. Therefore, it is the responsibility of the designer
or solution architect to ensure that any kind of applied
privacy filters doesn’t negatively impact the user ex-
perience of the whole IoT application or service. We
report in our results the time efficiency for the face de-
tection and blur to demonstrate by an example how
a particular application such as the surveillance appli-

cation could be affected by one possible corresponding
privacy filter which is the face detection and blur.

6 Evaluation
6.1 User-Managed IoT

The negotiation protocol in user-managed IoT utilizes
BLE to communicate and serve requests for data shar-
ing. A star network is formed whenever an acceptable
request arrives from a IoT user in which the IoT owner
becomes the central node and the IoT user and any
future IoT users will become host nodes. The com-
plexity and time\energy efficiency of this process are
reported in our previous work (Alanezi et al., 2017).
Note that the IoT owner can serve simultaneous IoT
users by simply joining new users to this BLE star net-
work. Also note that we choose to implement this com-
munication mechanism using BLE as it is becoming a
standard communication protocol for IoT devices. Nev-
ertheless, the negotiation protocol can be implemented
over other communication standards such as ZigBee or
NFC. Figure 4 shows the aggregate time taken for ev-
ery phase in the negotiation. The aggregate time is cal-
culated from the beginning of the request (i.e. send-
ing BLE broadcast embedded with data request infor-
mation) and involves the time taken for the previous
phases. We performed each experiment five times and
report the average with the standard error on each bar.
The figure shows that, after broadcasting a request in a
BLE beacon, it takes around 800 ms to be connected to
an IoT owner in the place who is willing to support this
request. Recall from the design section that after estab-
lishing a connection two situations might occur. First,
The IoT owner accepts the utility of the request and
sends the required sensor data in what we call 1-phase
negotiation. The total time for this situation is reported
in Figure 6 along with the total time for the other two
scenarios of no-privacy and 2-phases negotiation. Sec-
ond, the IoT owner might offer an alternative proposal
that is suitable for them. The total time for the IoT
user to receive the alternative proposal is 1400 ms on
average. We note here that the additional time of 600
ms is dominated by the time required by the BLE to in-
terrogate the IoT user’s device after connecting to it to
be able to call its services. Assuming that the proposal
is accepted, replying to the proposal and receiving the
sensor value requires an additional 30 ms only. Figure 5
reports aggregate time for the negotiation protocol from
the IoT owner’s perspective. The average total time to
connect to a device after detecting a supported request
in a BLE broadcast is 400 ms. This is followed by an
almost 600 ms for discovering services on the IoT user’s
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device. We report the connect time and the service dis-
covery separately. The time taken from the moment a
beacon is detected to sending an alternative proposal is
around 1200 ms on on average. It takes an additional
30 ms on average for the IoT owner’s device to receive
a reply to their proposal. Finally, we report in Figure 6
the average overall time to receive the sensor data for
1-phase communication and 2-phases communication.
This time is measured from the moment the IoT user
sends a beacon with embedded request information to
the moment they actually receives the required sensor
data (i.e. the temperature sensor reading). We also in-
clude a no-negotiation scenario in which the sensor data
is sent to the requester immediately without matching
the specification of the request with the privacy require-
ments of the IoT owner. As expected, the results show
that the 1-phase negotiation adds negligible time over-
head compared to the negotiation scenario as it only
adds information to the beacon and process them at
the IoT owner’s side. On the other hand, the 2-phases
negotiation adds on average 350 ms, which includes the
time required to receive an alternative proposal from
the IoT owner, reply by accepting the proposal, then
receiving the sensor value.

6.2 Edge-Managed and Cloud-Managed IoT

In this subsection, we repeat the experiments in the
previous subsection but with the IoT now being man-
aged by either an edge or a cloud server. First, we begin
by describing the results of the edge-managed scenario.
The IoT user needs to negotiate with and access the IoT
infrastructure through the edge server and all commu-
nication is happening over wireless LAN network. Fig-
ure 7 shows the major milestones from the IoT user’s
side in this negotiation situation. We note two things in

Fig. 6: Total time to receive sen-
sor reading for no-negotiation, 1-
phase & 2-phases negotiation in
user-managed IoT.

(IoT

this experiment. First, as opposed to the user-managed
negotiation scenario, there is no connect phase since
the IoT owner is now a server that continuously listens
to a network port to reply to requests from IoT users.
Hence, there is no connect phase per se. Second, un-
like the user-managed IoT experiment, we don’t report
in this experiment results from the IoT owner’s side
since the owner is now a server with presumably abun-
dant resources. We see from the figure that the time
to receive an alternative proposal from the IoT owner
is now less than 400 ms. This time includes the time
to send a request to the edge server with an unaccept-
able privacy settings and receiving back an alternative
proposal. Furthermore, the time to receive the sensor
value if the IoT user accepted the IoT owner’s proposal
is around 500 ms. We conclude that managing the IoT
infrastructure using an edge server provided much bet-
ter time efficiency than the user-managed IoT scenario
using BLE. We also report in Figure 8 a comparison be-
tween three situations for negotiating privacy require-
ments. There are two important lessons that can be
learned from this figure. First, when comparing the no-
negotiation scenario with the 1-phase negotiation sce-
nario, we see a difference of around 20 ms. This differ-
ence is negligible as it is attributed to the variability
of the performance of the wireless LAN, which can be
realized from the standard errors. Therefore, similar to
the results from the user-managed IoT, these two sit-
uations have similar time performance. Second, we see
that adding a second negotiation phase added an aver-
age of 200 ms attributed to sending the proposal from
the IoT owner and receiving a reply back before sending
the required sensor reading. Overall, the performance is
still better than the same scenario for the user-managed
IoT. Finally, Figure 9 reports similar results for the pre-
vious figure but with a cloud-based server now used to
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manage IoT as opposed to an edge-based server. We no-
tice from the figure that the latency doubled in all three
scenarios due the need of routing the communication
through the Internet. This result is in harmony with
other research (Satyanarayanan, 2017) that highlighted
the benefits that cloudlets proximity brings for better
management of IoT infrastructure but highlighted var-
ious challenges for this paradigm to become a reality.

6.3 Camera Sensor Group Privacy Scenario Evaluation

The evaluation of the group-based scenario focuses on
the effect of various privacy negotiation outcomes on
the overall performance. For example, if the group de-
cides to apply some filter to amend the sensory informa-
tion before reporting to the cloud, this decision incurs
an overhead of activating the component responsible
for the negotiation as well as the overhead for applying
the filter. We measure in our experiment three possi-
ble scenarios. First, a baseline situation of no-privacy
where the collection of images from the camera sensor
is acceptable by definition and there is no privacy ne-
gotiation option given to the users. This scenario might
correspond to a situation where the IoT owner enforces
full image collection due to security reasons or to public
places where capturing and publishing of full images is
not considered a breach of user privacy (e.g. cameras in
public streets). Second, a privacy-no-data-update in
which a negotiation had taken place but the result was
to report the camera images to the cloud as is without
applying a privacy filter. Third, a privacy-with-data-
update scenario where the results of the negotiation
requires applying face detection and filtering before re-
porting the images to the cloud.

Fig. 8: Total time to receive sen-
sor reading for no-negotiation, 1-
phase & 2-phases negotiation in
edge-managed IoT.

Fig. 9: Total time to receive sensor
reading for no-negotiation, 1-phase
& 2-phases negotiation in cloud-
managed IoT.

Figure 10 shows the performance for the two mile-
stones required when no privacy is activated in the
pipeline architecture. First, we see that the time needed
to read the image form the camera sensor by the edge
server over Wi-Fi is 2.2 seconds. Afterwards, passing
the image over the message queue to data store compo-
nent to save it to the persistent data store and reading
it by the data publisher for reporting to the cloud re-
quires an addition 100 milliseconds. Hence, the overall
time required for preparing the data for reporting to the
cloud is 2.3 seconds. The experiment in Figure 11 re-
ports the time performance for the different milestones
when privacy negotiation is activated. Note here that
this situation requires full blown activation of all com-
ponents of the pipeline architecture. Hence, the number
of milestones is four in this situation which is double
the number of milestones in the previous figure. We see
from the figure that the first two milestones have taken
similar time to the same two milestones in the previous
experiment, which is logical since these are the same
steps. We also note that activating the data filter com-
ponent required reading the data from the persistent
data store and passing it to the data filter component
to perform the negotiation thereby adding an additional
145 milliseconds time overhead to the pipeline. Finally,
an extra 100 milliseconds is required to pass the data
from the data filter to data publisher via the message
queue dedicated for communication between the two
components. When comparing the previous two situa-
tions we see that the activation of the data filter com-
ponent to perform the privacy filtering incurred an ad-
ditional time overhead of 250 milliseconds. We turn into
Figure 12 which reports the time performance for a situ-
ation similar to the previous figure with one difference
where faces are detected in the image and face blur
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must be applied. We see from the figure that data fil-
ter component has taken 240 milliseconds compared to
145 milliseconds in the previous figure. The additional
100 milliseconds can be attributed to the time need
to perform the privacy filtering, which is the face blur
code in our specific scenario. We learn from this results
that privacy filtering can be costly in terms of time
overhead and hence must be planned carefully when
introduced to any application. Finally, Figure 13, com-
pares the overall timing for all three scenarios. When
compared to the baseline scenario of No Privacy, we
see that privacy negotiation and its application incurs
some overhead, about 10% in Privacy-No Update sce-
nario and 13% in Privacy - Data Update scenario.

7 Discussion

This paper promotes a solution to cover key issues re-
lated to system architecture for supporting privacy in
the IoT domain. However, the privacy concern in IoT
systems is a complex research topic and other open re-
search problems remain at large. In this section, we
point out these research challenges and point the reader
to possible future directions.

First, learning the privacy preferences of users is a
challenging process. User privacy depends on various
factors including the type of the data being collected,
the usage scenario and location context (i.e. public vs.
private spaces). Fortunately, studies have shown that
the privacy preferences can be predicted by observing
the user behavior towards privacy using limited num-
ber of scenarios (Naeini et al., 2017). Also, social cues
can be given to users to allow them to make informed
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decisions about their privacy decisions in an IoT envi-
ronment (Emami Naeini et al., 2018). Despite the great
benefits these studies provide, a missing piece of the
puzzle is to observe the user behavior in a real IoT
environment, as these studies depend largely on user
questionnaires. By learning from studies from a real
world IoT platform, solutions like our framework can
adapt techniques for learning users privacy preferences
without depending on cumbersome preferences collec-
tion screens. The learned privacy preference that can
resemble a trained prediction model can be pushed from
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the cloud, where the model training happened, to users’
mobile devices, where inference for privacy preferences
can happen based on the input from the environment,
such as the current location or social context of the user
and the data collection requirements.

Another important IoT challenge that is also appli-
cable to our framework is scalability. An IoT environ-
ment can involve large number of devices and it is nec-
essary that the preferences of users are negotiated and
applied to these devices in a timely manner. Our frame-
work uses BLE as the communication medium between
the IoT owner, IoT users and IoT devices in the user-
managed scenario. Besides its great energy efficiency,
BLE is under continuous improvements with BLE 5
(Bluetooth SIG, 2016) providing double the bandwidth
and 4-fold increase in communication range compared
to the previous BLE version. The framework also uti-
lizes Wi-Fi, which has also seen recent improvements by
introducing the IEEE 802.11ah standard (IEEE Work-
ing Group for WLAN Standards, 2017) aimed at ad-
dressing issues relevant to the IoT, such as energy effi-
ciency and scalability.

Finally, a challenge that also must be considered
is the added overhead for applying privacy filters. IoT
sensors data filtering mechanisms are dependent on the
type of sensor being filtered, and their associated cost
can vary from adding negligible to adding substantial
time or energy overhead. For example, detecting and re-
moving particular sounds or specific faces from a video
feed requires running pre-trained models, which can be
costly, thereby negatively impacting the quality of the
service. Hence, it is important that system designers
choose the right filtering mechanism that preserves the
quality of the service while achieving the needed privacy
for user data. There are various research efforts aimed
at efficiently introducing privacy measures to collected
data from an IoT environment without impacting the
utility of the service provided. For example, an edge-
based infrastructure is proposed in an IoT environment
(Das et al., 2017) to detect and denature faces from a
video feed based on user privacy preference. In addi-
tion, privacy-aware offloading is used in healthcare IoT
environments (Min et al., 2018) to protect the user lo-
cation and usage patterns while utilizing resources from
the mobile-edge.

8 Conclusion

This paper presented a privacy negotiation scheme to
address the privacy requirements of users in IoT en-
vironments. The proposed approach is practical as it
negotiates the privacy policy of the user with the IoT

owner without user intervention and supports the se-
lection from among multiple predefined IoT user and
owner privacy policies. The paper addresses privacy ne-
gotiation in both individual and group contexts. The
feasibility of the negotiation protocol was demonstrated
by means of a thorough implementation and evaluation
over three widely accepted IoT scenarios.
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