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Multiple Resource Network Voronoi Diagram
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Abstract—Given a spatial network and a set of service centers from k different resource types, a Multiple Resource Network Voronoi
Diagram (MRNVD) partitions the spatial network into a set of Service Areas that can minimize the total cycle-distances of graph-nodes
to allotted k service centers with different resource types. The MRNVD problem is important for critical societal applications such as
assigning essential survival supplies (e.g., food, water, gas, and medical assistance) to residents impacted by man-made or natural
disasters. The MRNVD problem is NP-hard; it is computationally challenging due to the large size of the transportation network.
Previous work proposed the Distance bounded Pruning (DP) approach to produce an optimal solution for MRNVD. However, we found
that DP can be generalized to reduce the computational cost for the minimum cycle-distance. In this paper, we extend our prior work
and propose a novel approach that reduces the computational cost. Experiments using real-world datasets from five different regions
demonstrate that the proposed approach creates MRNVD and significantly reduces the computational cost.

Index Terms—Network Voronoi Diagram, Resource Allocation, Route Optimization
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1 INTRODUCTION

IVEN a spatial network and a set of service centers

from k different resource types (e.g., gas stations, gro-
cery stores, shelters, hospitals, etc.), a Multiple Resource
Network Voronoi Diagram (MRNVD) partitions the spatial
network into a set of Service Areas (SAs) that can minimize
the total cycle-distances of graph-nodes to allotted k service
centers with different resource types. Fig. 1a shows an exam-
ple input of MRNVD consisting of a graph with 25 graph-
nodes (i.e., A4, B,...,Y) and service centers with four types
(ie., Typel:(I, P,Y), Type2:(N,Q, V), Type3:(B, G, X ), and
Type4:(C, M, W)). Fig. 1b shows an example output of
MRNVD where the graph is partitioned such that every
graph-node is allotted to four service centers with different
types. The objective is to minimize the total cycle-distances
of graph-nodes to allotted k service centers with different
types. The MRNVD problem is NP-hard (a proof is provided
in Section 1.3). Intuitively, the problem is computationally
challenging because of the large size of the transportation
network.

1.1

The MRNVD problem is important for critical societal ap-
plications such as assigning essential resources (e.g., food,
water, gas, and medical assistance) to residents impacted by
man-made or natural disasters. The objective of MRNVD
is to minimize the total cycle-distances such that residents
can quickly visit their allotted service centers and back to
their original locations. MRNVD can help us to identify the
most efficient route to visit all required service centers. The
objective will help reduce traffic because it will encourage
more people to use the shortest driving route. The multiple
resource constraint also helps law enforcement agencies to
manage an emergency easier and more effectively.

In addition, the simple format of the information is vital
to communicate effectively during an emergency. MRNVD
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provides a compact and simple representation of Service
Areas (SAs) that can mitigate panic and chaos, and allow
for efficient delivery of critical information to the public.
Planners in an emergency can allocate enough resources to
service areas based on the number of residents and provide
clear and concise explanations of service areas for the emer-
gency first response. Policymakers can look at service areas
and take actions to mitigate the potential traffic congestion.
Due to the inherent risk of service disruptions or changes
during an emergency, people may choose alternative routes
for available service centers. MRNVD can help us quickly
identify the nearest service areas that can provide better re-
liable services. Examples of the benefits of MRNVD Service
Areas are provided in Table 1.

TABLE 1
Applications of MRNVD.

[ Applications ][ Benefit of MRNVD Service Areas 1]
Emergency Develop an emergency plan to help citizens to
Resource minimize their travel times to obtain all required
Allocation resources.

Store Provide an efficient route to save time and gas
Choices while shopping.

Tourist Site Recommend a tourist route that can visit attrac-
Selection tions with different types.

The fast response is crucial to mitigating the impacts
of a pandemic and improving the safety of the traveling
public and emergency responders. Scalable algorithms for
MRNVD can ensure the timely and accurate delivery of
useful emergency information and response for disastrous
events. Moreover, planners can recalculate MRNVD after
unpredictable changes to the transportation network (e.g.
an incident that makes a service center nonfunctional or
a wildfire that hinders the accessibility through certain
roads). A faster algorithm has an advantage over a slower
one in adapting to such changes, and hence improves the
emergency response.

The importance of transportation resilience grows as
the frequency and magnitude of extreme events increases
(e.g., hurricanes, wildfires, etc.) [1], [2], [3]. MRNVD can
allocate multiple resources to enhance the resilience against
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(a) Input with four types of service centers. (b) Output (Polygons show Service Areas).
Fig. 1. Example of Input and Output of MRNVD (Best in Colors).
disasters. These resource types could range from medical Constraints:

services (e.g. hospitals and pharmacies) to essential survival
items (e.g. grocery stores and gas stations). Since MRNVDs
enhance the efficiency of resource allocation in disaster sit-
uations, a fast algorithm that calculates MRNVD improves
transportation resilience planning.

MRNVD is also useful for another societal application
such as providing better store choices to reduce travel time
for shoppers. It is most useful during seasonal sales (e.g.
labor day and black Friday). Reduced travel time between
shopping centers and retail stores translates to a higher
probability of benefiting from offers and buying more items
on sales. Tourists and travelers could also benefit from
MRNVD if the available time for sightseeing is limited. They
can utilize their limited time in exploring sites of different
types (e.g. historic sites, museums, galleries, botanical gar-
dens, zoos, ... etc.) in their area of interest. The shortest cycle-
distance between the sites is more economic in terms of
transportation cost. Furthermore, tourists will have a higher
exposure to available activities in the visited place.

1.2 Problem Definition

In our formulation of the MRNVD problem, a transportation
network is represented and analyzed as an undirected graph
composed of graph-nodes and edges. Every graph-node
represents a spatial location in geographic space (e.g., road
intersections), which can be used as a proxy for locations of
residents. Every edge between two graph-nodes represents
a road segment and has a travel distance. Every service cen-
ter has a resource type (e.g., water, food, gas, medicine, etc.).
The MRNV D(N, E, S, D) problem is defined as follows:
Input: A transportation network G with

a set of graph-nodes IV and a set of edges F,

a set of service center locations with k different
resource types S C N, and

a set of nonnegative real distances of edges D
E—-RS

Output: A Multiple Resource Network Voronoi Diagram
(MRNVD)
Objective:

e Min-sum: Minimize the total cycle-distances of
graph-nodes to their allotted £ service centers with

different types of resources.

o Service Area (SA) allotment must be k service centers

with different types of resources.

Definition 1. Cycle-Distance: Given a starting point and a set
of k different service centers, the cycle-distance is the distance of
the shortest route that visits k service centers and returns to the
starting point.

1.3 Problem Hardness

The NP-hardness of MRNVD follows from a well-known
result about the NP-hardness of the traveling salesman
problem.

Theorem 1. The MRNVD problem is NP-hard.

Proof. The NP-hardness of MRNVD can be proven by reduc-
tion from a well-known NP-hardness problem, the traveling
salesman problem (TSP) [4], [5]. Given a starting point o
and a set of service centers S, TSP finds the shortest cycle-
distance of o. Let A = (0, .5) be an instance of TSP, where
o is the starting point and S is a set of service centers. Let
B = (0, 5) be an instance of the MRNVD problem, where
O is a set of starting points and S is a set of service centers.
Assume that every service center has a different type. Let
O = {o}. Then the instance of TSP is a special case of
MRNVD, where O is a set with a single element (i.e., o).
Since A is constructed from B in polynomial-bounded time,
the proof is complete. O

1.4 Our Contribution

Our previous work proposed the Distance bounded Pruning
(DP) algorithm to produce the optimal solution of MRNVD,
as reviewed in Section 2 [6]. DP consists of two main novel
components: (a) Straight-Distance bounded Pruning (SDP)
and (b) Triangle-Distance bounded Pruning. The core idea
of DP is to prune the exponential search space of the optimal
cycle-distances with the lower and upper bound constraint.

DP used the straight-distance bound and the triangle-
distance bound to define the lower and upper bounds of
the optimal cycle-distance. However, we found that the
pruning efficiency of DP decreases as the number of service
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types increases. In this paper, we propose a novel Cycle-

Distance bounded Pruning (CDP) and CDP with Neighbor-

ing Bounds (CDP-NB) algorithms to reduce the computa-

tional cost of the DP algorithm. In addition, we experimen-

tally and theoretically evaluated all proposed algorithms.
In summary, our new contributions are as follows:

e We propose a novel Cycle-Distance bounded Prun-
ing (CDP) algorithm to reduce the computational
cost of MRNVD.

We propose a more scalable solution that uses the
allotments of neighboring nodes.

We theoretically evaluate all proposed algorithms
through a cost model and proofs of algorithm prop-
erties (e.g. termination, correctness).

We experimentally evaluate all proposed algorithms
using five different real-world road maps.

1.5 Related Work

Network Voronoi Diagram (NVD) is extensively used to
identify the nearest service center [7], [8], [9], [10], [11].
Capacity Constrained Network Voronoi Diagram (CCNVD)
honors the capacity constraint of each service center and
creates contiguous service areas that can minimize the sum
of the shortest distances of graph-nodes to their allotted
service centers [12]. However, the application of NVD and
CCNVD is limited to a single type of resource [13]. Consider
the example of a resident who is looking for gas, water,
and medicine at the same time. Both NVD and CCNVD
cannot minimize the travel time to visit a series of service
centers, one from each resource. Recently two-site network
Voronoi diagrams were proposed to identify the best route
for two different resources [14], [15]. The general idea is
to find the minimum triangle-perimeter to partition the
spatial network into a set of Service Areas. However, two-
site network Voronoi diagrams cannot be generalized into
MRNVD due to the hardness of the cycle-distance compu-
tation [16]. The Voronoi based k-nearest neighbor search
for spatial network databases was proposed to identify k
different nearest service centers [17], [18], [19], [20]. How-
ever, the Voronoi k-nearest neighbor cannot produce the
minimum cycle-distance because it considers only the direct
distance of the graph-node to service centers as shown in
Fig. 2. Furthermore, none of these methods honor multiple
resource types and guarantees the minimum cycle-distance
for graph-nodes to allotted service centers. In this work, we
propose a novel approach for creating the optimal MRNVD
that can minimize the total cycle-distances of graph-nodes
to their allotted k service centers with different types.

Network Voronoi Diagram

T~

Multi-Site NVD

~

Direct Distance

Single-Site NVD
Cycle Distance
Voronoi-Based

NVD KNN

CONVD MRNVD
Fig. 2. Types of Network Voronoi Diagram.

(Our Approach)

Two-Site
NVD

The Multiple Resource Network Voronoi Diagram
(MRNVD) problem is an extension of the Generalized Trav-
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eling Salesman Problem (GTSP). Given a weighted complete
undirected graph G' with a set of nodes N and a set of
edges I/, and a set of node clusters N = N; U N, ... Ny, the
objective of the GTSP problem is to find a minimum weight
cycle containing exactly one node from each cluster [21].
Various approaches to GTSP have been studied in the litera-
ture. We can classify these approaches into three categories:
(1) Graph Transformation methods, (2) Integer program-
ming (IP) methods, and (3) Heuristic methods. The Graph
Transformation methods convert the instance of GTSP to an
equivalent instance of TSP and apply the traditional TSP
solvers as black boxes to find the solution of GTSP [22], [23].
However, these transformation techniques increase the size
of the input network and may yield the degeneracy of the
TSP problem representation [24]. The GTSP problem can be
formulated as an Integer Programming (IP) problem [23].
The Integer Programming (IP) methods utilize the Inte-
ger Programming (IP) solver with Lagrangian relaxation,
branch-and-bound, or branch-and-cut techniques to find an
optimal solution [23], [25], [26]. However, these methods
require an exponential number of intermediate variables
and constraints to shrink the feasible region and execute
multiple IP solvers to obtain the feasible solutions [27].
This issue arises from a lack of a complexity analysis and
comprehensive cost model for the IP solver [28]. The heuris-
tic methods perform a predefined number of iterations of
local improvement algorithms and produce the sub-optimal
solution. Notable examples of heuristics include k-opt local
search, genetic algorithm, and neighborhood search [29],
[30], [31]. However, the heuristic methods mainly focus
on the average empirical behavior of the local improve-
ment algorithms, resulting in a lack of provable guarantees
on the solution quality and optimality [16]. The MRNVD
problem may be solved using the methods used for GTSP.
However, these methods requires n number of IP instances
for n graph-nodes, which is not scalable for a large-sized
transportation network. In contrast with these methods, our
methods utilizes the topological connectivity of the trans-
portation network and minimizes the total cycle-distances of
graph-nodes to their allotted service centers with different
types of resources. The proposed approaches relies neither
on the IP solvers nor the heuristic methods and finds the
optimal solution for a large-sized transportation network.

1.6 Scope and Outline

In constructing our novel algorithms for MRNVD, we as-
sume undirected edges. Additionally, in this work, the loca-
tions of service centers are known a priori and the goal is to
create an MRNVD based on service center locations. Finding
optimal locations for new or additional service centers (e.g.
Facility Location Problems) [32], [33] is beyond the scope
of the present research. Moreover, the capacity of service
centers (e.g. CCNVD [12]) is not discussed in this research
and might be addressed in future work.

The rest of the paper is organized as follows: Section 2.1
describes the Baseline approach for MRNVD. Section 2.2
explains the Distance bounded Pruning (DP) algorithm.
Section 3 describes our proposed approaches. We provide
correctness proofs of the proposed approaches in Section 4.
Section 5 presents the experimental observations and re-
sults. Finally, Section 6 concludes the paper.
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2 BASELINE & DISTANCE BOUNDED PRUNING

In this section, we first introduce our Baseline algorithm
that can produce the optimal solution of MRNVD. We then
describe the Distance bounded Pruning (DP) approach to
reduce the computational cost for the MRNVD problem.

2.1

In this subsection, we introduce the Baseline approach using
the dynamic programming technique [34], [35]. The Baseline
approach examines all graph-nodes n € N and finds the
shortest cycle of graph-node n. It starts by (1) generating
all service center combinations of k different service types,
then (2) identifying a cycle that can produce the shortest
cycle-distance of graph-node n, and (3) finally, assigning
service centers on the shortest cycle to graph-node n. The
core component of the Baseline approach is to construct a
k-partite graph for service centers, materialize the shortest
path distance on ordered k service centers, and reuse it for
the cycle-distance computation.

Consider the example input of MRNVD in Fig. 1a. Let
us identify the cycle-distance for graph-node F'. First, the
Baseline approach creates the k-partite graph for service
centers and generates all service center combinations with k
different types (see Fig 3).

Baseline approach

Type 2

Fig. 3. k-partite graph for service center combinations (graph-node F)

Second, the Baseline approach uses the Held-Karp al-
gorithm and computes the cycle-distance for graph-node
F with every combination [35], [36]. In this example, the
service center combination {G, M, Q, P} can produce the
shortest cycle with a distance of 345 for graph-node F’ (i.e.,
F—-G— M — @Q — P — F). Therefore, the Baseline
approach assigns service centers {G, M, Q, P} to graph-
node F. The path distance of G -+ M — ) — P can be
materialized and reused for computing the cycle distance
for other graph-nodes. The Baseline approach produces
the optimal solution for MRNVD [6]. However, since the
number of service center combinations is exponential in
terms of the number of service centers and the number of
resource types, the Baseline approach is challenging for a
large-size transportation network [36].

2.2 Distance bounded Pruning Algorithm

The limitation of the Baseline approach is that the search
space becomes exponential due to the large size of service
center combinations. In this section, we describe the Dis-
tance bounded Pruning (DP) algorithm that can efficiently

4

prune the search space [6]. The DP algorithm consists of two
novel components: (a) Straight-Distance bounded Pruning
(SDP) and (b) Triangle-Distance bounded Pruning (TDP).
SDP identifies a subset of service centers that can produce
the optimal cycle-distance. TDP can rule out the service cen-
ter combinations that cannot produce the optimal solution.
Both approaches can reduce the search space for finding
the optimal cycle-distance without examining all possible
combinations of service centers.

2.2.1 Straight-Distance bounded Pruning

In this subsection, we describe the Straight-Distance
bounded Pruning (SDP) method that can prune the search
space for service center combinations using a Set Window.
A Set Window is defined as follows.

Definition 2. Set Window(S,n,t): Given a set of service centers
S, a graph-node n, and the number of service centers t, a Set
Window (SW) is defined as a subset of service centers SW C S
that are the t nearest neighboring service centers from the given
graph-node n.

SDP finds the lower and upper bounds of the cycle-
distance of a graph-node n and utilizes the two bounds
to identify a subset of service centers that can produce the
optimal cycle-distance of graph-node n. SDP expands the
SW by changing the value of ¢ and testing if the current
SW meets the lower and upper bound constraint. If the SW
violates the lower and upper bound constraint, SDP rules
out service centers located outside of the SW. This approach
can eliminate unnecessary service centers for finding the
optimal cycle [6].

SDP follows three main steps: 1) constructing an initial
SW, 2) expanding the SW until it violates the bound con-
straint, and 3) finding the optimal cycle-distance.

Definition 3. Initial Set Window: Given a set of service centers
S and a graph-node n, the Initial Set Window is defined as
the minimum set of closest service centers to graph-node n that
contain all types of service centers.

SDP starts by creating an initial SW for each graph-node.
Given a graph-node n € N, SDP constructs an ordered-list
of service centers based on the distance from graph-node
n. Then, it identifies the minimum-sized SW that includes
all types of service centers [6]. We refer to this as the initial
SW. Since the initial SW contains k different service types,
it produces the cycle-distance that is feasible but may not
be optimal. Given a Set Window (SW), the lower-bound
of the cycle-distance is obtained by doubling the distance
of graph-node n to the farthest service center in the SW.
The upper-bound of the cycle-distance is the minimum
cycle-distance among all service center combinations in the
SW [6]. SDP then expands the SW and updates the lower-
bound of the optimal cycle-distance. If the lower-bound is
greater than the upper-bound, SDP produces all possible
combinations of service centers in the current SW. Finally,
SDP identifies the minimum cycle-distance using the Held-
Karp algorithm [35].

Property 1. Lower and Upper bounds Property: As the size
of a SW increases, the lower-bound of the SW monotonically
increases and the upper-bound of the SW monotonically decreases.
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Fig. 4. Initial Set Window (SW) for graph-node F' with bound constraints.

Consider again graph-node F' in Fig. 1a. Fig. 4 shows an
example of the initial SW for graph-node F'. Given graph-
node F', all service centers are ordered by the distance from
graph-node F. The vertical bar splits the ordered-list into
the left and right parts; The left part becomes the initial SW
(e, {G,B,M,Q,I}) whose size is minimal and includes
all types of service centers. SDP then computes the lower
and upper bounds of the cycle-distance of graph-node F'.
Since service center I is the farthest service center from
graph-node I in the SW, the lower-bound becomes 276. SDP
examines all possible combinations of four different types
and identifies the minimum cycle-distance among these
combinations. In this example, SDP produces two service
center combinations (i.e.,, {B,I,M,Q} and {G,I,M,Q})
and computes the cycle-distance for each combination (see
Table 2). The minimum cycle-distance is 451 and therefore it
can serve as the upper-bound of the optimal cycle-distance.

TABLE 2
Cycle-Distances of graph-node F' using the initial SW (The highlighted
cell shows the minimum value).

ombinations ortest Cycle cle-Distance

Combinati Sh Cycl Cycle-Di
{B,I,M,Q} | FB—>T—-M—>Q—>F 554
{G,I,M,Q} F-G—=I—-M—-Q—F 451

Since the upper-bound (i.e., 451) is greater than the
lower-bound (i.e., 276), SDP can expand the SW until it
violates the bound constraint (see Fig. 5). SDP then produces
all possible service center combinations in the current SW
and finds the optimal cycle-distance of graph-node F'. In
this example, the number of service center combinations is
24 (2 x 3 x 2 x 2 = 24), and the optimal cycle-distance is 345
(e, F -G — M — @ — P — F). Finally, SDP assigns

148 182 198

rrrrrrr 0 rrrrrr rrrrrrr ®

306 | 536

451}

Fig. 5. Set Window (SW) for graph-node F' with bound constraints.

2.2.2 Triangle-Distance bounded Pruning

In this subsection, we describe the Triangle-Distance
bounded Pruning (TDP) method that can prune the search
space for service center combinations using the max-min
triangle-distance.

Definition 4. Triangle-Distance(n, s,, s): Given a starting
graph-node n and two service centers s, and s, the triangle-
distance is defined as the cycle-distance of n — s, — s — n.

Definition 5. Min Triangle-Distance(n, s,, t): Given a start-
ing graph-node n, a service center s,, and a service center type
t, the min triangle-distance is defined as the minimum Triangle-
Distance(n, s, s), where type(s,) # t and type(s) = t.

Definition 6. Max-Min Triangle-Distance(n, s,): Given a
starting graph-node n, a service center s,, and a set of service

5

center types T, the max-min triangle-distance is defined as the
maximum of Min Triangle-Distance(n, s,, t € T).

The core idea of TDP is that when Max-Min Triangle-
Distance(n, s,) is greater than the upper-bound of the
optimal cycle-distance, the algorithm will not compute the
cycle-distance of the service center combinations that in-
clude service center s, [6]. We refer to s, as the anchor-node.

The TDP method follows three main steps: 1) creating a
triangle-distance table, 2) computing the max-min triangle-
distance for every anchor-node, and 3) identifying anchor-
nodes that violate the upper bound constraint and rule out
the service center combinations that include these anchor-
nodes.

Typc 2 Type 4 in Triangle-Distance Max-Min

Z Z|

vpe Type 3

N = = Triangle-

@ @ N) Q)| v " " @ Type 1 | Type 2 | Type 3 | Type 4 Distunce
" 276 321 364 258 396 296 202 276 258 202 276
‘E’ 379 447 174 384 522 297 328 379 384 297 384
371 | 345 | 364 | 282 | 420 | 328 | 202 315 | 282 | 202 345
Q 51 | 321 384 | 258 | 497 | 282 321 258 282 321
@ 371 451 589 379 276 378 371 371 276 371 371
@ 507 321 159 585 321 560 345 321 321 345 345
<©> 378 | 560 | 473 | 497 | 635 | 207 | 206 318 | 413 | 206 473
J\( 371 507 — — 474 364 473 364 371 — 364 364 ‘ 371
‘/7 589 159 522 396 635 420 159 396 120 459

Fig. 6. Triangle-Distance Table for graph-node F' (The highlighted cells
violate the upper-bound cycle-distance constraint).

Given a Set Window (SW), TDP starts by constructing
a triangle-distance table for anchor-nodes (i.e., service cen-
ters) and computes the max-min triangle-distance for every
anchor-node. Consider the Set Window (SW) in Fig. 5. First,
TDP groups a set of service centers based on types and
constructs the triangle-distance table for anchor-nodes (i.e.,
service centers G, B, M, Q, I, P, C, N, and V) (see Fig. 6).
In this example, the group of type 1 is {I, P}, the group
of type 2 is {N,Q,V}, the group of type 3 is {B, G}, and
the group of type 4 is {C, M}. Next, TDP computes the
min triangle-distance for every type of service centers. For
instance, the min triangle-distance of the anchor-node B
with Type 1 becomes 379. After that, TDP defines the max-
min triangle-distance for all anchor-nodes.

TABLE 3
Cycle-Distances for Graph-node F' using the Triangle Distance Table
(The shaded rows show the new additions and the highlighted cell
shows the minimum value).

[[ Combinations | Shortest Cycle | Cycle-Distance ]|
{BLILN,M} | FoBo>I—>N—>M—F 474
{B,I,M,Q} F—-B—>I—->M-—->Q—F 554
{B,N,M,P} | F4=B—-N—-M—P—F 617
B,M,Q,P} | FB—-M—>Q—P—F 471
G,M,N, I F—-G—M-—N-—=I—F 371
G,I,M,Q F-G—>I—-M-—->Q—F 451
{G,M,N,P} | FG—->M—>N—P—F 507
{G,M,Q,P} | F>G—>M—>Q—P—F 345

Note that the upper-bound of the optimal cycle-distance
in SW is 451 (see Fig. 5). Since the max-min triangle-
distances of anchor-nodes C' and V' are greater than the
upper-bound of the optimal cycle-distance (i.e., 451), these
anchor-nodes cannot be a part of the shortest cycle [6].
Therefore, TDP rules out the service center combinations
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containing service centers C' or V because these combi-
nations cannot produce the optimal cycle-distance. Finally,
TDP computes the cycle-distance for the remaining service
center combinations and finds the optimal cycle-distance of
graph-node F'. Table 3 shows the remaining service center
combinations and the minimum cycle for these combina-
tions. In this example, the number of service center combina-
tions is 8. Since the service center combination {G, M, Q, P}
produces the minimum cycle-distance, TDP allots service
centers {G, M, @, P} to graph-node F' for MRNVD.

Algorithm 1 DP algorithm (Pseudo-code)

Inputs:

- A transportation network G(N, E) with graph-nodes N and edges
E.

- A set of service center locations with k different resource types S C
N.

- Every edge has a distance d(e)
Output: Multiple Resource Network Voronoi Diagram
Steps:

1: Compute the distance matrix for graph-nodes in G.

2: for graph-node n € N in G(N, E) do

3:  Construct the initial Set Window (SW) for n.

4

Compute the initial lower and upper bounds of the cycle-
distance.
5:  while the lower and upper bound constraint is not violated do
6: Increase the size of the SW by one.
7 Update the lower and upper bounds and prune search space.
8:  end while
9:  Identify the cycle-distance of n and allot service centers to n.
10: end for
11: return MRNVD (i.e., allotment of graph-nodes to their service
centers).

Algorithm 1 presents the pseudo-code for the Distance
bounded Pruning (DP) algorithm. DP computes the distance
matrix for graph-nodes in the transportation network G
(Line 1). For each graph-node n, DP computes the cycle-
distance of n (Line 2-10). First, it constructs the initial Set
Window (SW) and computes the lower and upper bounds
of the optimal cycle-distance (Line 3-4). Next, it changes the
size of the SW and updates the lower-bound of the optimal
cycle-distance (Line 5-8). When the SW violates the lower
and upper bound constraint, DP rules out the non-optimal
service center combinations using the TDP method (Line 7).
Then DP finds the optimal cycle-distance of graph-node n
and assigns service centers on the cycle to graph-node n
(Line 9). This process continues until all graph-nodes are
allotted (Line 2). Finally, MRNVD is returned (Line 11).

2.2.3 Limitations of Distance bounded Pruning

Even though the DP approach has a performance gain over
the baseline approach, it has a limitation for two reasons.
First, as the number of service centers increases, the size of
the Triangle Distance Table becomes very large. Second, the
effect of pruning on search space decreases as the number
of service types increases. Therefore, the DP approach may
be inapplicable for sizable road networks. Thus we propose
more scalable algorithms that hierarchically construct the
distance tables and efficiently reduce the search space to
construct an MRNVD.

3 PROPOSED APPROACH

In this section, we introduce two novel approaches, namely
(a) Cycle-Distance bounded Pruning (CDP) and (b) CDP

6

with Neighboring Bounds (CDP-NB). CDP constructs and
updates cycle-distance tables in a hierarchical fashion to
reduce the computational cost of identifying the optimal
cycle. CDP-NB uses a more strict upper bound based on
neighboring allotments and further reduces the size of cycle
distance tables.

3.1

The Cycle-Distance bounded Pruning (CDP) approach
uses anchor-sets to construct hierarchical multi-level cycle-
distance tables and efficiently rules out the number of ser-
vice center combinations that cannot produce the optimal
cycle-distance.

Cycle-Distance bounded Pruning

Definition 7. Anchor-Set(S, i): Given a set of service centers
S and the size of anchor-set i, the anchor-set is a subset of .S,
where its cardinality is © and every element in the anchor-set has
a unique type.

The basic structure of the CDP algorithm involves major
and minor iterations. The major iterations start with an
initial SW and expand the SW until it violates the lower
and upper bound constraint. Each major iteration updates
the lower-bound of the current SW and the upper-bound
of the next SW. The lower-bound of the cycle-distance is
obtained by doubling the distance of graph-node n to the
farthest service center in the SW. The upper-bound of the
cycle-distance is the minimum cycle-distance in the SW.
The algorithm terminates when the current SW violates
the lower and upper bound constraint or the current SW
includes all service centers.

Each major iteration requires minor iterations that con-
struct multi-level cycle-distance tables based on the size of
anchor-sets. If the max-min cycle-distance of an anchor-set
does not meet the upper-bound constraint, CDP ignores all
the supersets of the anchor-set when it creates or updates
the next-level cycle-distance tables.

Definition 8. Cycle-Distance(n, Sa, s): Given a starting
graph-node n, an Anchor-Set S 4, and a service center s ¢ S 4, the
cycle-distance(n, S a, s) is defined as the cycle-distance of graph-
node n that visits every service center in {S4 U s} and returns to
the starting graph-node n.

Definition 9. Min Cycle-Distance(n, S, t): Given a starting
graph-node n, an Anchor-Set S 4, and a service center type t, the
min cycle-distance(n, Sa, t) is defined as the minimum cycle-
distance(n, Sa, s ¢ Sa), where type(s) = t and type(sa €
Sa) #t.

Definition 10. Max-Min Cycle-Distance(n, S4): Given a
starting graph-node n, an Anchor-Set S4, and a set of service
center types T, the max-min cycle-distance is defined as the
maximum of min cycle-distance(n, Sa, t € T).

Given an SW, CDP increases the size of an anchor-
set (i.e., 7), creates or updates cycle-distance tables in a
hierarchical fashion, and rules out anchor-sets and service
centers that violate the upper-bound constraint. The core
idea of CDP is that it prunes the search space in two ways:
1) Vertical pruning and 2) Horizontal pruning. The Vertical
pruning rules out service center combinations that include
anchor-sets whose Max-Min Cycle-Distance is greater than
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the upper-bound of the optimal cycle-distance. The Hor-
izontal pruning constructs a k-partite graph to eliminate
unnecessary service centers for creating the next level cycle
distance table.

Property 2. Monotone Property: For all n € N, if Sa, C
Sa,, then Max-Min Cycle-Distance(n, S 4,) < Max-Min Cycle-
Distance(n, S 4,) (see Lemma 3).

Property 3. Max-Min Cycle-Distance Principal: If an anchor-
set S cannot be a part of the optimal cycle of graph-node n in a
SW, then the supersets of S 4 cannot be a part of the optimal cycle
in the SW.

Distance

Lower
Bound

Upper
Bound

Fig. 7. Initial Set Window (SW) for graph-node F': iteration 1.

We illustrate the algorithm using the initial Set Window
(SW) shown in Fig. 7 (reproduced from Fig. 4). The lower-
bound of the optimal cycle-distance in the initial SW is 276.
Since the number of service center types is 4, CDP changes
the value of ¢ from 1 to 3 and creates multi-level cycle-
distance tables with Anchor-Set(SW,i). Figs. 8-10 show
the minor iterations that construct multi-level cycle-distance
tables with the initial SW.

Anchor [ Type I | Type 2 Min Cycle-Distance
Sets

Q

258 202 276 258 202 276

Max-Min
Cycle-
Distance

Type 2 | Type 3 | Type 4

384 328 379 384 328 384

Q1) 371 282 328 | 202 371 282 202 371

Q 451 384 258 282 451 258 282 151
@ 151 379 276 31 151 276 37 151
Fig. 8. 1st-level Cycle-Distance Table using the initial SW.

Auchor | Type 1 | Type2 | Typed | Typed Min Cycle-Distance Max-Min
L) o
Oy

OB | @ D | 1| vvez | ves | 1ypes | Ditanee
371 282 371 282 371
451 282 451 282 451
451 371 451 371 451
474 408 a4 | 408 474

554 108 554 108 551

554 | 451 151 151 151 151

Fig. 9. 2nd-level Cycle-Distance Table using the initial SW.

Achor Sets R L] Type 2| Tvpe Min CycloDistance e

Q Type 1| Type 2 | Type s | Type s | Distance
Q 451 451 1451
@ 451 451 451
Q @ 451 51 51
@ Q| w1 554 554
@ 554 554 554
Q @ 554 554 554
Q @ 554 | 451 451 451

Fig. 10. 3rd-level Cycle-Distance Table using the initial SW.

Fig. 10 shows that the minimum max-min cycle-distance
with Anchor-Set(SW,3) is 451, and it can serve as the

1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.o
Authorized licensed use limited to: Florida Atlantic University. Downloadlgg)on

7

upper-bound of the optimal cycle-distance. CDP then adds
service center P to the SW, sets the lower-bound to 290 for
the next SW, and performs the next major iteration.

Node

Lower
Bound
Upper
Bound

Fig. 11. Set Window (SW) for graph-node F : iteration 2.

In the second major iteration, CDP updates the multi-
level cycle-distance tables for service center P. Let a be the
new addition of a service center to the SW and let s4 be an
anchor-set. The update rule is following.

1) If the anchor set s34 has no existing max-min cycle-
distance, then CDP computes all possible min cycle-
distances and adds the max-min cycle-distance for
54 to the cycle-distance table.

2) If the anchor set s4 produces a cycle-distance less
than the already found max-min cycle-distance,
then CDP updates min cycle-distances and the max-
min cycle-distance for sj4.

Fig. 12 shows the updated 1st-level cycle-distance table
after the addition of service center P. Gray-shaded fields
represent the updated values. Since all anchor-sets meet
the upper-bound constraint, CDP generates new anchor-sets
with P and updates the 2nd-level cycle-distance table.

Anchor|__Type I | Type2 | Typed | Typed Min Cycle-Distance Max-Min

Sota — Cycle-
D) 3
@ @ Q ‘@) ‘) D 1y pe 1 | Type 2 | Type 3 | Type 4 | Distance

(G) | 276 | 320 | 258 202 276 258 202 276

(B) | 370 | w47 | 34 328 379 384 328 384

Q) | 311 | 345 282 328 | 202 345 282 202 345

Q 151 | 321 384 | 258 282 321 258 282 321
@ — 151 379 | 276 371 151 276 371 151
@ = = 321 447 | 321 345 = 321 321 345 345

Fig. 12. 1st-level Cycle-Distance Table after the addition of P.

Fig. 13 shows the updated 2nd-level cycle-distance table.
At this level, CDP utilizes the special structure of a k-
partite graph and applies the Horizontal pruning to remove
the service centers that cannot be a part of the optimal
cycle-distance. The creation of the k-partite graph takes the
following steps (Lemma 1).

1) Creates a node for every service center and groups
them based on their type.

2) Creates an edge between two different type service
centers (i.e., s, and s;) when the minimum Max-
Min Cycle-Distance(n, Sy4), for all {s,, sp} C Sa, is
less than the upper bound.

3) Removes a node that cannot connect to k£ — 1 differ-
ent type nodes and removes the edges of the node.

Consider the example 4-partite graph produced from the
Cycle-Distance Table in Fig. 13. Every node represents a
service center, and every edge connects two different type
service centers. Every edge (i.e., 5,5;) has a value that rep-
resents the minimum Max-Min Cycle-Distance(n, S4), V.Sa
such that {s,, $5} C S4. In this example, we do not create
an edge for anchor-sets { B, [ },{ B, M }, and { B, P} because
these anchor-sets violate the upper-bound constraint (see
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Anchor Type 1 Typc2 | Type3 | Typed Min Cycle-Distance Max-Min
s Q ‘E’ " Type 1 | Type 2 | Type 3 | Type 4 Di‘r?l‘m
371 345 [ o2s2 345 282 345
451 321 282 321 282 321
451 371 451 371 451
321 345 321 345 345
4447l | 408 471 408 471
Q)| 551 447 408 447 408 447
@ 554 474 554 474 554
@ 447 471 447 41 4
Q)| 451 345 08 | 282 345 282 345
@ @ — 451 474 371 451 371 451
‘@V @ — — 345 471 345 — — 345 345 — 345
Q @ — 554 151 151 ‘ ‘ 151 451 451
Q @ — — — 447 321 345 — — 321 345 345

Fig. 13. 2nd-level Cycle-Distance Table after the addition of P.

Fig. 14). Since service center B is not neighboring to three
different type nodes, CDP ignores anchor-sets that contain
B for the next-level cycle-distance table. (see Lemma 2).

Fig. 14. k-partite graph for the Horizontal pruning.

Fig. 15 shows the updated 3rd-level cycle-distance table.
The minimum max-min cycle-distance is 345, and therefore
it serves as the upper-bound for the next major iteration.

U Type 1 1\8 3 [ Tyve 3 [ Tvpe © NMin CycleDistance e Vi
Type 1 | Type 2 | Type 3 | Type 4 | Distance
Q)| 41 | 385 345 345
(] @ = 451 451 451
@ — | =] s — — — 345 - — 345
7 = 451 451 451
Q @ 345 345 345
Q @ 451 451 451
Q @ 345 345 345

Fig. 15. 3rd-level Cycle-Distance Table after the addition of P.

In the third major iteration, CDP adds service center C'
to the SW and updates the lower and upper bounds for the
optimal cycle-distance (see Fig. 16). Since the SW does not
violate the lower and upper bound constraint, CDP updates
the cycle-distance tables for the addition of service center C'.

Node

Distance 22 85 101 129 138 145 s

Lower

Bound

Upper
Bound

Fig. 16. Set Window (SW) for graph-node F': iteration 3.

Fig. 17 shows the update of the 1st-level cycle-distance
table after the addition of service center C'. It is important
to note that service center C violates the upper bound
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constraint. Therefore, we do not need to update the next-
level cycle-distance tables through the rest of the minor
iterations.

Anchor]  Type L Type 2 Type 3 Type 4 Min Cycle Distance Max-Min
s @ @ Q W Type 1 | Type 2 | Type 3 | Type 4 l)(i;"vi\]!"v;‘“
1} 276 | 321 [ 258 296 | 202 | 276 258 202 276
1@} 379 | w7 | 384 297 | 328 | 379 384 207 381
Q| 871 | 345 | 282 [ 328 | 202 345 282 202 345
Q 151 | 321 384 | 258 | 497 | 282 | 321 258 282 321
@ 451 | 379 | 276 | 878 | 871 451 276 371 451
@ 321 17 | 321 [ 560 | 345 321 321 315 315
@ 378 | 560 | 497 | 207 | 206 378 497 296 497

Fig. 17. 3rd-level Cycle-Distance Table after the addition of C'.

Lastly, CDP adds service center N into the SW, but
this addition violates the lower and upper bound con-
straint (see Fig. 18). Therefore, CDP assigns service centers
{G,M,Q, P} to graph-node F and terminates the major
iteration.

Node

Distance

Lower
Bound

Upper
Bound i

Fig. 18. Set Window (SW) for the graph-node F: iteration 4.

Algorithm 2 presents the pseudo-code for the Cycle-
Distance bounded Pruning (CDP) algorithm. CDP computes
the distance matrix for graph-nodes in the transportation
network G (Line 1). For each graph-node n, CDP computes
the cycle-distance of n (Line 2-11). First, it constructs the
initial Set Window (SW) and initial cycle-distance tables and
computes the lower and upper bounds of the optimal cycle-
distance (Line 3-4). Next, it changes the size of the SW and
updates the lower-bound of the optimal cycle-distance as
well as cycle-distance tables (Line 6-7). It also updates the
upper bound of the cycle-distance from the cycle-distance
table with Anchor-Set(SW,k — 1) (Line 8). CDP uses the
lower and upper bound constraint and the k-partite graph
to rule out the non-optimal combinations for the cycle-
distance computation. CDP then finds the optimal cycle-
distance of graph-node n and assigns service centers on
the cycle to graph-node n (Line 10). This process continues
until all graph-nodes are allotted (Line 2). Finally, MRNVD
is returned (Line 12).

3.2 CDP with Neighboring Bounds

In this section, we introduce the CDP with Neighboring
Bounds (CDP-NB) approach that utilizes the allotments of
neighboring nodes to find a more strict upper bound for the
cycle distance computation. The upper-bound of the cycle-
distance of n can be defined as:

UB(n) = argmin 2-dist(n,a) + cycle_dist(a),
a€nbr(n)

M

where nbr(n) is neighboring nodes of n, dist(n,a) is the
shortest distance between n and a, and cycle_dist(a) is the
cycle-distance of a.

Consider graph-node F' in Fig.la. Graph-node F' has
three neighbors (i.e., 4, G and K). Assume that we know
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Algorithm 2 CDP algorithm (Pseudo-code)

Inputs:

- A transportation network G(N, E) with graph-nodes N and edges
E.

- A set of service center locations with k different resource types S C
N.

- Every edge has a distance d(e)
Output: Multiple Resource Network Voronoi Diagram
Steps:

1: Compute the distance matrix for graph-nodes in G.

2: for graph-node n € N in G(N, E) do
3:  Construct the initial SW and cycle-distance tables for n.
4:  Compute the initial lower and upper bounds of the cycle-

distance.

5:  while the bound constraints are not violated do
6 Increase the size of the SW by one and update the lower-
bound.
7: Update the cycle-distance tables and prune search space.
8: Update the upper-bound.
9:  end while
10:  Identify the cycle-distance of n and allot service centers to n.

11: end for
12: return MRNVD (i.e., allotment of graph-nodes to their service
centers).

the cycle distances of the neighboring nodes of F. In this
example, the cycle-distances of A, G, and K are 452, 327,
and 345, respectively. According to Equation 1, the upper-
bound is min(630,371,521) = 371.

Note that a more strict upper bound can reduce the size
of multi-level cycle-distance tables. Consider the 1st-level
cycle-distance table in Fig 8. Since only nodes G and M meet
the upper-bound constraint (i.e., 371), the cycle-distance
table cannot include four different type service centers.
Therefore, we can skip the remaining minor iterations and
move to the next major iteration. Consider again the 1st-
level cycle-distance table after the addition of service center
P to the SW (see Fig 12). Since service centers B and [
violate the upper-bound constraint, we can exclude B and /
to construct the 2nd-level cycle-distance table, as shown in
Fig. 19.

Anchor
Sets

Q
o0
n(Q
D) @
D[]

Fig. 19. 2nd-level Cycle-Distance Table after the addition of P.

Min Cycle Distance

2 | Type 3 | Typed

321 321

345 345

Fig. 19 shows that no anchor-sets violate the upper
bound constraint. CDP-NB then generates the anchor-sets
with size of 3 and constructs the 3rd-level cycle-distance
table (see Fig. 20). In this example, we can clearly see that
CDP-NB reduces the size of the multi-level cycle distance
tables.

Ny Type 1] Type 2 [ Type 3 | Type 4 Min Cycle-Distance Nax-Nin
Anchor Sets e KL

s 2 Q1 yele-

@ Q| @ Type 1 | Type 2 | Type 3 | Type 4 | Distance
|D Q 345 345 345
(@) @ — 345 — — — 345 — — 315
(G) (@ @ 345 345 345
Q @ — . 345 . . . 315 . 315

Fig. 20. 3rd-level Cycle-Distance Table after the addition of P.
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4 ANALYSIS ON THE QUALITY OF THE PROPOSED
APPROACHES TO MRNVD

In this section, we prove that the proposed approaches
are correct, i.e., the algorithms create the optimal MRNVD.
We also provide the algebraic cost model of the proposed
approaches.

4.1 Analysis of CDP Approach to MRNVD

The following lemmas prove the correctness of the Cycle-
Distance bounded Pruning algorithm.

Lemma 1. If service center s is not connected to at least k — 1
service centers, each from a different type, in the k-partite graph
derived from the cycle-distance table with Anchor-Set(SW,2),
it cannot be a part of the optimal cycle.

Proof. We prove this lemma by contradiction. Assume that
service center s is not connected to any center of type x
in the k-partite graph and can be a part of the optimal
cycle. The max-min cycle-distance of any anchor-set should
be less than or equal to the optimal cycle according to the
triangle inequality theorem. The service center combination
that includes center s should include a service center of
type x as well. If service center s is not connected to any
center of type x in the k-partite graph, we need to include
a deleted edge to connect service center s to a center of
type z. Since the weight of the deleted edge is greater than
the upper-bound of the cycle-distance, this contradicts the
assumption. O

Lemma 2. If service center s is not connected to at least k — 1
service centers in the k-partite graph derived from a cycle-distance
table with Anchor-Set(SW,i > 2), it cannot be a part of the
optimal cycle.

Proof. We prove this lemma by contradiction. Let s be a
service center in Set-Window SW. The k-partite graph is
composed of nodes and weighted edges. The nodes are
service centers in SW. An edge between two service cen-
ters s; and sy has the weight of the minimum of max-
min cycle-distance for Anchor-Set(SW,i) = Sy, such that
{S 1, 82} C Sa.

Assume at all the edges connecting center s to all other
centers of type z are removed because the weights of
these edges are greater than the upper-bound cycle-distance.
Therefore, we have to include deleted edges to produce
service center combinations that have service center s and
a service center of type z. Since the weight of the deleted
edge is greater than the upper-bound of the cycle-distance,
this contradicts the assumption. O

Consider, for example, the 4-partite graph in Fig. 21. The
graph is derived from the cycle-distance table in Fig. 15. Two
anchor-sets are supersets of {G, @}, which are {G, @, I} and
{G, Q, P}. The max-min cycle-distance for both Anchor-Sets
are 451 and 345, respectively. Therefore, the edge weight
between G and @ is 345. Furthermore, all edges incident to
service center I have a cost greater than the upper bound of
the next major iteration (i.e., 345). Therefore, we are sure that
service center I cannot be part of the optimal cycle distance
in the SW shown in Fig. 16 with the updated upper bound.
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Fig. 21. k-partite graph from Cycle-Distance Table in Fig. 15

Lemma 3. If S5, C Sa,, then Max-Min Cycle-Distance(n,
Sa,) < Max-Min Cycle-Distance(n, Sa, ).

Proof. Let Sa,\a, be Sa, \ Sa,. Assume s, € Sa\a,
Let S be Sa, U {sn}. Then Min Cycle-Distance(n,S,t)
for every type t € T should be greater or equal to
Min Cycle-Distance(n, S a,, t). Therefore, Max-Min Cycle-
Distance(n, S4,) < Max-Min Cycle-Distance(n, S4, ). Since
the max-min cycle-distance monotonically increases by
adding s, € Sj,\a,, we complete the proof by induc-
tion. O

Lemma 4. The CDP approach to the MRNVD problem creates
the optimal solution.

Proof. CDP starts with the initial SW that can produce the
feasible solution. CDP then expands the SW and updates
the lower and upper bounds for the SW. CDP removes
anchor-sets and service centers that cannot produce the
optimal cycle-distance (Lemma 2). Since CDP terminates
when the lower and upper bound constraint is violated
or all service centers are included in SW, it produces the
optimal solution. O

4.2 Algebraic Cost Model of Proposed Approaches to
MRNVD

The goal of this subsection is to present cost models for our
proposed approaches. Let n be the number of graph-nodes,
let £ be the number of types in service centers, let ¢ be the
maximum number of service centers for a service type.

4.2.1

The Baseline approach starts by generating all possible
combinations of k different service centers. This takes O(c¥).
Given a combination, the cost of computation for the cycle-
distance is 2* - k2 [16]. Since the number of combinations
is bounded by O(c*), the minimum cycle-distance for a
graph-node can be obtained by the cost of O(c* - 2% - k2).
The number of graph-nodes is n. Therefore, the Baseline
approach takes O(ck - 2% . k2 . n).

Baseline Approach

4.2.2 Distance Bounded Pruning (DP) Approach

The Distance bounded Pruning (DP) approach starts by
sorting service centers based on the distance from the start-
ing graph-node. This takes O(c - k - log(c - k)) [37]. Next,
SDP creates an initial Set Window (SW) and expands the
SW. The size of the SW is bounded by O(c - k). During
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this incremental process, the cost for computing the lower-
bounds is O(c - k) and the cost for computing the upper-
bound is O(c* - 2% - k2) [16]. TDP creates a triangle-distance
table to compute the max-min triangle-distances. This takes
O(c? - k?). Thus, the total cost of the allotment for each
graph-node is O(c-k+c?-k?+cF-2k.k?) =~ O(cF-2%-k?). Since
the number of graph-nodes is n, DP takes O(c* - 2% - k2 - n).
In the worst case, the cost model of DP is the same as the
cost model of the Baseline approach. However, DP can rule
out the non-optimal combinations and reduce the number
of computations of the cycle-distances using SDP and TDP.

4.2.3 Cycle-Distance bounded Pruning (CDP) Approach

The Cycle-Distance bounded Pruning (CDP) approach starts
by sorting service centers based on the distance from the
starting graph-node. This takes O(c - k - log(c - k)) [37].
Next, it creates an initial Set Window (SW) and initial cycle-
distance tables. CDP expands the SW and updates the cycle-
distance tables. During this incremental process, the size of
the SW is bounded by O(c - k). The cost for computing
the lower-bound for the SW is O(c - k). The size of the
cycle-distance tables is bounded by O(c**) if ¢ > 1. The
cost for updating a cycle-distance table entry is bounded by
O(2*-k?) [16]. The total cost of the allotment for each graph-
node is O(c-k+c?#.2%.k2) = O(c¥-2% k?). Since the number
of graph-nodes is n, CDP takes O(c¥-2*-k%-n). In the worst
case, the cost model of CDP is the same as the cost model
of our preliminary work [6]. However, CDP can rule out the
non-optimal anchor-sets and service center combinations,
and significantly reduce the number of computations of
the cycle-distances using cycle-distance tables and k-partite
graphs.

4.2.4 CDP with Neighboring Bounds (CDP-NB) Approach

The main difference with CDP is to use the cycle-distance
of neighboring nodes and apply a more strict bound for
computing the cycle-distance. Therefore, the cost model of
CDP-NB is the same as the cost model of CDP.

TABLE 4
Algebraic Comparison of Computational Cost

[ Algorithm [ Computational Cost ]|

Baseline O(cF - 2F . k2. n)
DP O(cF - 2F k% . n)
CDP O(cF - 2F k2. n)
CDP-NB O(cF - 2F . k2. n)

4.3 Storage Model for MRNVD

Trip and route planning information is a crucial component
for resource allocation. In our study, we use the dictionary-
based compression technique to store and provide the per-
sonalized route to individual drivers. MRNVD partitions
the spatial network into a set of Service Areas that share the
same service centers. MRNVD models the date hierarchy
that plays a key role in processing and monitoring time-
critical information. We can organize the clustered index
based on Service Areas to fast access to individual route
information in data pages. A data page stores the detailed
routing information including intersections, roadway, traffic
signal, etc. This hierarchy allows us to analyze and simplify
huge volumes of traffic data for emergency preparedness.

ublications_standards/publications/rights/index.html for more

erg:ember 22, 6 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE TRANSACTIONS ON KNOWLEDGE ANIIDO'D

5 EXPERIMENTAL EVALUATION

We conducted experiments to evaluate the performances
of Cycle-Distance bounded Pruning (CDP) and CDP with
Neighboring Bounds (CDP-NB) approaches and compare
them to the Distance bounded Pruning (DP) from our
preliminary work [6]. The overall goal was to show the
performance improvements to create an MRNVD that can
be obtained by the CDP and CDP-NB approaches. We
wanted to answer four questions: (1) What is the effect of
the number of service types? (2) What is the effect of the
number of service centers? (3) What is the effect of the size
of the network (i.e., number of graph-nodes)? (4) Are CDP
and CDP-NB algorithms correct, and is the solution quality
preserved?

5.1

Fig. 22 shows our experimental setup. We chose five differ-
ent municipal areas in the U.S. from OpenStreetMap [38] (as
shown in Table 5). We retrieved the real locations of service
centers and created a Multiple Resource Network Voronoi
Diagram (MRNVD). We tested three approaches: (1) Dis-
tance bounded Pruning (DP), (2) Cycle-Distance bounded
Pruning (CDP), and (3) CDP with Neighboring Bounds
(CDP-NB) approaches.

Experiment Layout

Number of Nodes Number of Service Types Number of Centers Per Type
L 1

v
OpenStreetMap —>| Transportation Network |
|

7 v v
| DP CDP CDP-NB |
¢ Create ¢ Create ¢Create
| MRNVD | | MRNVD | | MRNVD |
—
Run time
Sum of Cycle Distance
| Comparative Analysis
Fig. 22. Experiment Layout
TABLE 5
Transportation Network Datasets (Source: OpenStreetMap [38])
Area No. of No. of Edges
Graph-nodes (| N|) (1E))
Fort Lauderdale, FL 30, 668 84,598
Miami, FL 40,484 114,822
Cape Cod, MA 42,104 107, 566
Boston, MA 44,298 125,040
New Orleans, LA 55,107 166, 184

5.2 Experiment Results and Analysis

We experimentally evaluated the proposed algorithms by
comparing the impact on the performance of (1) the number
of service types, (2) the number of centers per service type,
and (3) the size of the transportation network. We used Di-
jkstra’s algorithm to compute the shortest distance between
nodes [37]. We extracted the locations of service centers from
OpenStreetMap datasets and then chose a set of service
centers from extracted ones to vary the number of service
centers. The algorithms were implemented in Java 1.8 with
a 32 GB memory run-time environment. All experiments
were performed on an Intel Core i5 machine running Linux
with 32 GB of RAM.
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5.2.1

The first set of experiments evaluated the effect of the num-
ber of service types on the performance of the algorithms.
We fixed the number of graph-nodes to 10,000 and the
number of service centers to 9. The average number of edges
is 28, 654. We varied the number of service types from 3 to 6.
We chose the locations of service centers (e.g., gas stations,
grocery stores, shelters, hospitals, etc.) from OpenStreetMap
and constructed 20 test cases. Performance measurements
were execution time and the sum of the cycle-distances. The
performance measurements were averaged over 100 test
runs. Fig. 23a gives the execution times. As can be seen,
the CDP approach outperforms the DP approach. This is
because the number of combinations for the cycle-distance
computation increases as the number of service types in-
creases. CDP-NB outperforms other approaches because the
upper-bound based on allotments of neighboring nodes can
reduce the size of multi-level cycle-distance tables. When
comparing the sum of the cycle-distances, we see that both
CDP and CDP-NB approaches produce the optimal solution
(see Fig. 23b). This means that our proposed approaches
do not affect the solution quality. As the number of service
types increases, the sum of the cycle-distances increases.

Effect of Number of Service Types

10000

o
a

o
t=1

1000

© ©
o a

®
a

Runtime in Seconds (log scale)
Sum of Cycle Distances (Mm)

®
o

75

5
Number of Service Types

3 4 4 5

Number of Service Types

6

(a) Run Time Comparison (b) Comparison of Solution Quality

Fig. 23. Effect of number of service types (n = 10,000, ¢ = 9)

9

5.2.2 Effect of Number of Service Centers

The second set of experiments evaluated the effect of the
number of service centers on the performance of the al-
gorithms. We fixed the number of graph-nodes to 10,000
and the number of service types to 5. The average number
of edges is 28,654. We varied the number of centers per
service type from 3 to 15. Locations of service centers
were chosen from OpenStreetMap to construct 25 test cases.
Performance measurements were execution time and the
sum of the cycle-distances. The performance measurements
were averaged over 125 test runs. Fig. 25a gives the exe-
cution times. As can be seen, CDP approach significantly
outperforms the DP approach. This is because the number of
combinations for the cycle-distance computation increases
as the number of service centers increases. CDP-NB ap-
proach outperforms other approaches because it can reduce
the size of multi-level cycle-distance tables. Fig. 24b shows
that both CDP and CDP-NB approaches perform the same
as the DP approach, and do not affect the solution quality.
As the number of service centers increases, the sum of cycle-
distances decreases.
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Fig. 24. Effect of number of service centers (n = 10,000, k = 5).
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5.2.3 Effect of Network Size

The third set of experiments evaluated the effect of the net-
work size on algorithm performance. We fixed the number
of service types to 5 and the number of centers per service
type to 9. We varied the number of nodes from 5,000
to 20,000 (ie. 5,000, 10,000, 15,000 and 20,000). The
average number of edges are 14,291, 28,654, 43,141, and
57,468, respectively. Service center locations were chosen
from OpenStreetMap to construct 20 test runs for each
road network. Performance measurements were execution
time and the sum of the cycle-distances. The performance
measurements were averaged over 100 test runs. Fig. 25a
gives the execution times. We can see that the CDP approach
significantly outperforms the DP approach. This is because
CDP prunes the search space for service center combinations
more efficiently than DP. CDP-NB outperforms other ap-
proaches because it can utilize the allotment of neighboring
nodes to reduce the size of cycle-distance tables. Fig. 25b
shows that the performances of CDP and CDP-NB are
identical to the performance of DP. This means that CDP and
CDP-NB do not affect the solution quality. As the number of
graph-nodes increases, the sum of cycle-distances increases.

1000

w
S
S

DP  m—

CDP-NB
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N
a
=]
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Sum of Cycle Distances (Mm)
=]
o

Runtime in Seconds (log scale)

o
1=}
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Number of Graph-Nodes
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(a) Run Time Comparison (b) Comparison of Solution Quality
Fig. 25. Effect of network size (k = 5, ¢ = 9).

5.2.4 Number of Cycle-Distance Computations of MRNVD
Approaches

The fourth set of experiments measured the efficiency of
pruning algorithms in reducing the number of service center
combinations used for the cycle-distance computation. We
tested four approaches: (1) Baseline, (2) Distance bounded
Pruning, (3) Cycle-Distance bounded Pruning and (4) CDP
with Neighboring Bounds. For performance measurement,
we averaged the number of cycle-distance computations

12

for an input graph over the number of graph-nodes. We
used five road maps (see Table 5) to perform the pruning
efficiency analysis. Service center locations were chosen
from OpenStreetMap [38]. First, we fixed the number of
graph-nodes (i.e., n) to 10,000 and the number of centers
per service type (i.e., ¢) to 9. We then varied the number
of service types from 3 to 6. Fig. 26a shows that CDP uses
a lower number of service center combinations for cycle-
distance calculation than the Baseline and DP approaches.
CDP-NB outperforms other approaches because it reduces
the size of multi-level cycle-distance tables. As the number
of service types increases, the average number of cycle-
distance computations increases for all approaches. Second,
we fixed the number of graph-nodes (i.e., n) to 10,000 and
the number of service types (i.e., k) to 5. We then varied
the number of centers per service type (i.e., ¢) from 3 to 15.
Fig. 26b shows that CDP-NB uses lower number of service
center combinations for cycle-distance calculation than the
Baseline, DP, and CDP approaches. As the number of centers
per service type increases (i.e., ¢), the average number
of cycle-distance calculations increases for all approaches.
Lastly, we fixed the number of service types (i.e., k) to 5 and
the number of centers per service type (i.e., ¢) to 9. We then
varied the number of graph-nodes from 5,000 to 20, 000.
Fig. 26c shows that on average, CDP-NB uses a lower
number of combinations for the cycle-distance calculation
than the Baseline, DP, and CDP approaches. As the number
of graph-nodes increases, the average number of combina-
tions does not change. The results of the average number
of cycle-distance computations analysis clearly shows that
CDP efficiently prunes the search space of service center
combinations. Furthermore, the CDP-NB approach utilizes
the allotment of neighboring nodes to further prune the
search space and reduce the number of service center
combinations. Pruning service center combinations yields
a reduction in the cost of the cycle-distances computation as
the number of graph-nodes (or service centers) increases.

5.2.5 Comparison with Integer Programming Method

The fifth set of experiments compared our proposed ap-
proaches with existing approaches for GTSP. We built an IP
formulation of MRNVD based on the GTSP approaches [25],
[26] and run the IP solver using OjAlgo [39]. We fixed the
number of service types to 5 and the number of centers
per service type to 9. We varied the number of graph-
nodes from 100 to 500. Service center locations were chosen
from OpenStreetMap to construct 15 test runs for each road
network. Performance measurements were execution time
and the sum of cycle-distances. The performance measure-
ments were averaged over 75 test runs. Fig. 27a gives the
execution times. As can be seen, both CDP and CDP-NB
outperforms others. The IP formulation of MRNVD uses
Lagrangian relaxation, branch-and-bound, and branch-and-
cut techniques to find the optimal cycle distance [25], [26].
However, it cannot utilize the topological connectivity of
road maps and prune the search space for service center
combinations. The results show that the IP method was
not scalable for sizable road maps. The performance gap
increases as the number of graph-nodes increases. When
comparing the sum of the cycle-distances, we see that all
approaches produce the optimal solution (see Fig. 27b).
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5.2.6 Discussion

The proposed CDP approach achieves a significant compu-
tation performance gain over our preliminary work [6]. This
improvement was obtained by using three key components:
1) Set-Window, 2) Multi-level Cycle-Distance Tables, and 3)
Vertical and Horizontal pruning. The DP approach uses only
two service centers to define the lower and upper bound
of the optimal cycle-distance. The DP constructs Triangle-
Distance Tables to identify the optimal cycle distance. How-
ever, the size of Triangle-Distance Tables becomes very large
as the size of network increases. This limitation reduces
the efficiency of pruning for service center combinations.
To remedy this issue, CDP uses multi-level Cycle-Distance
Tables to eliminate unnecessary service center combinations
and reduces the search space based on Vertical and Hori-
zontal pruning. This novel approach significantly reduces
the computational cost because in each iteration, CDP elimi-
nates unnecessary service centers to reduce the size of multi-
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level Cycle-Distance Tables and generates a set of service
center combinations that are smaller than those of DP. We
also proposed the CDP-NB approach that can utilize the
allotments of neighboring nodes to find a more strict upper
bound for the cycle distance computation. The experimental
results show that the CDP-NB approach reduced the size
of multi-level Cycle-Distance Tables and improved the effi-
ciency of Vertical and Horizontal pruning. We also see that
the output (i.e., MRNVD) of CDP and CDP-NB is optimal
and is the same as that of the DP approach.

6 CONCLUSION AND FUTURE WORK

We presented the problem of creating a Multiple Resource
Network Voronoi Diagram (MRNVD). An important so-
cietal application of MRNVD is promoting transportation
resilience before or after a disaster. The MRNVD problem is
challenging due to multiple different types of resources. Tra-
ditional Network Voronoi Diagram (NVD) uses the shortest
distances and divides the region based on the closest service
center. However, the application of NVDs is limited to a
single type of resource. In this paper, we describe our novel
Cycle-Distance bounded Pruning (CDP) approach for creat-
ing an MRNVD that can minimize the total cycle-distances
of graph-nodes to allotted % service centers. In addition,
we proposed the CDP with Neighboring Bounds (CDP-
NB) approach that can utilize the allotments of neighboring
nodes to reduce the computation cost of CDP. Experiments
using five different road maps demonstrated that our pro-
posed algorithms significantly reduce the computational
cost against our prior work.

In future work, we will develop a parallel formula-
tion of the proposed approaches to handle continental-
sized transportation networks. We will also investigate the
effect of applying spatial filters on reducing the size of
the network and improving the performance of MRNVD.
MRVND with Monte Carlo simulation may solve the facility
location problem [32], [33]. We will study new methods that
determine the near-optimal positions of service facilities.
Lastly, we plan to design a new MRNVD problem that
includes the capacity constraint for each service center and
the directional constraint based on directed graphs.
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