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We are building HALO, a flexible ultralow-power processing architecture for
implantable brain– computer interfaces (BCIs) that directly communicate with
biological neurons in real time. This article discusses the rigid power, performance,
and flexibility tradeoffs that BCI designers must balance, and how we overcome
them via HALO’s palette of domain-specific hardware accelerators, general-
purpose microcontroller, and configurable interconnect. Our evaluations using
neuronal data collected in vivo from a nonhuman primate, along with full-stack
algorithm to chip codesign, show that HALO achieves flexibility and superior
performance per watt versus existing implantable BCIs.

By enabling direct brain-computer communica-
tion, brain–computer interfaces (BCIs) can
accelerate the process of scientific discovery,

restore sensory capabilities, mitigate symptoms of
movement disorders like Parkinson’s disease, treat
pharmacologically resistant depression and anxiety,
and even restore motor capabilities for spinal cord
injury, brain strokes, and amyotropic lateral sclero-
sis.1–3 BCIs interrogate biological neurons and decode
pathological behavior or the user’s intent, guiding
stimulation of the brain to mitigate seizures, control
prostheses, actuate assistive devices, and more. BCIs
have even been shown to augment human capabili-
ties; e.g., enhancing short-term memory capacity,
monitoring attention and mental state to enhance
performance, navigating augmented realities via sig-
nals from the motor cortex, and reading signals from
the visual cortex to infer words, pictures, and videos.4

Consequently, Facebook and Microsoft are competing

with Neuralink, Kernel, Neuropace, and Medtronic to
build BCIs that read/stimulate an ever-increasing
number of biological neurons with high signal fidelity.5

Modern BCIs designs are of two types. While
some are noninvasive in the form of headsets or
other external devices,1 invasive BCIs surgically
implanted on, around, and in the brain tissue are able
to record and stimulate large numbers of neurons
with higher signal fidelity, spatial resolution, and
tighter real-time characteristics.6 Low-power hard-
ware for onboard processing is critical to the success
of implantable BCIs, especially because elevating tis-
sue temperature by just 1� can damage the brain’s
cellular structure.7

CHALLENGES OF BCI DESIGN
BCI applications must read the electrophysiological activ-
ity of asmanybiological neuronsaspossiblewithhigh spa-
tial and temporal resolution to be useful. Modern BCIs
extract neuronal activity at data rates of 10–50Mbps, with
Neuralink demonstrating even orders ofmagnitude higher
data rates,5 and DARPA’s NESD program targeting com-
municationwithmillions of neurons.8 These large volumes
of data may need to be processed in real time. For
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example, BCIs that treat seizuresmust read the activity of
biological neurons, process it to detect signs of a seizure
or its imminent arrival, predict the movement of the sei-
zure through different brain regions, determine where to
apply electrical stimulus (and for how long) tomitigate sei-
zure symptoms, and then stimulate brain tissue.9 All of
thismust bedoneaccurately, necessitating significant sig-
nal processing of many neuronal channels of data, and
quickly, within milliseconds of seizure detection.9 At the
same time, BCIs may not exceed 15 mW for safe chronic
implantation, a target that is notoriously challenging given
the high data rates that BCIsmust support.

BCI APPLICATIONS MUST READ THE
ELECTROPHYSIOLOGICAL ACTIVITY
OF AS MANY BIOLOGICAL NEURONS
AS POSSIBLEWITH HIGH SPATIAL
AND TEMPORAL RESOLUTION TO BE
USEFUL.

Designers have responded by building BCIs that
either achieve power efficiency via specialization for a
restricted set of applications/treatments for specific
disorders in specific brain regions, or more flexible
multiuse designs that achieve power efficiency but
only by restricting the number of neurons they read/
stimulate. Consequently, the modern BCI ecosystem
is fragmented, with many different single-use devices,
and lacks standardization of computational capabili-
ties. Table 1 captures this predicament by

summarizing the limitations of the current state-of-
the-art commercial and research BCIs.

OUR APPROACH: THE HALO
PROJECT

An ideal BCI must be flexible as its operation may
need to be personalized, there may be multiple neuro-
logical conditions to treat, and several brain–com-
puter interactions to support. In response, we are
building HALO, a high-performance, ultralow-power,
and flexible BCI processing architecture. HALO is a
full-stack design effort that uses electrophysiological
data collected in vivo from a nonhuman primate’s
motor cortex (specifically, from the regions responsi-
ble for arm and leg movement) to evaluate a BCI archi-
tecture that balances a palette of power-efficient
accelerators with configurable dataflow to support
frequently used neural processing kernels. We are
realizing HALO via several tape-outs, with Figure 1(a)
illustrating a chip diagram of our HALO architecture in
a 12-nm technology, after augmenting over the 28-nm
technology from the original paper.3 Furthermore,
Figure 1(b) shows how the processing architecture
integrates with the remainder of a typical implantable
BCI device.

In realizing HALO, we make several research contri-
butions. First, we systematically map the design space of
BCI applications to identify a list of target capabilities to
support. Because commercial BCIs are generally single-
use devices, identification of a canonical set of applica-
tions that more flexible BCIs should strive to support has
hitherto remained unanswered. This list includes disease

TABLE 1. Existing commercial and research BCIs meet target power budgets by either restricting their scope to a single use

case, or by dropping brain–computer communication bandwidth. HALO is the first flexible implantable BCI architecture to

overcome this tradeoff.

Medtronic Neuropace Aziz Kassiri Neuralink NURIP HALOHALO

2 2 10 2 5 11

Tasks supported

Spike detection • • • • • • @

Compression • • @ • • • @

Seizure prediction • @ • @ • @ @

Movement intent @ • • • • • @

Encryption • • • • • • @

Technical capabilities

Programmable @ Limited • @ • Limited @

Read channels 4 8 256 24 3072 32 96

Data rate (Mbps) 0.01 0.02 9.76 1.32 545 0.13 46

Safety (< 15 mW) @ @ @ @ • @ @
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treatment, signal processing, and secure transmission of
neuronal data (e.g., compression and encryption of extra-
cellular voltage streams). As BCIs are an active area of
research, this list is nonexhaustive. Nevertheless, it iden-
tifies a broader set of tasks needed for a flexible BCI plat-
form as a starting point, while also offering a viable path
to integrate these tasks.

Second, we navigate a large design space of architec-
ture and integration options to realize this list of BCI capa-
bilities by using principled hardware–software codesign.
Standard low-power design dictates that we realize one
accelerator per BCI task in the form of a dedicated ASIC.
We refer to this as amonolithic ASIC design, and find that
they often exceed the 15 mW power budget. In response,
we refactor the underlying algorithm of the original BCI
tasks into distinct pieces that realize different phases of
the algorithm. We refer to these pieces as kernels, and
show that they facilitate design of ultralow-power hard-
ware processing elements (PEs) via novel hardware–soft-
ware codesign approaches. We round out the design with
a low-power RISC-V microcontroller to configure PEs into
processing pipelines and support computation for which
there are currently no PEs. The result is an unconventional

style of heterogeneity, where a family of accelerator PEs,
each of which is identified in our chip tape-out diagram in
Figure 1(a), operates in unrelated clock domains with low-
power asynchronous circuit-switched communication.

Third, we devise several hardware–software codesign
techniques that raise the level of abstraction of BCI
design from “bits andwires” to architectural choices that
take inspiration from the world of software engineering.
Table 2 summarizes these techniques, which we
discuss in the next section. These approaches
enable HALO to achieve 4–57� and 2� lower power
dissipation than software alternatives and mono-
lithic ASICs, respectively.

COMPUTATIONAL TASKS
SUPPORTED BY HALO

Figure 2 presents an overview of the HALO architec-
ture. The block diagram on the left shows the PEs in
our design and the configurable interconnect used to
assemble PEs to realize the task pipelines shown on
the right. HALO supports BCI tasks ranging from those
that require real-time closed-loop support for treat-
ment of neurological disorders to those that exfiltrate
neural recordings to external systems for postprocess-
ing and batch analysis. The first category consists of
support for seizure treatment and amelioration of
movement disorders. Seizure prediction/stimulation
pipelines that break neuronal feedback loops are
responsible for seizure severity present cutting-edge
capabilities of FDA-approved clinical BCIs. So do algo-
rithms to detect/stimulate the brain to counteract
movement disorders associated with essential tremor
and Parkinson’s disease. HALO supports FFTs, cross-
correlation, and bandpass filters over linear models to
support closed-loop treatment of these neurological
disorders.

FIGURE 1. Chip diagram on the left shows our HALO tape-out in a 12-nm technology. The block diagram on the right shows other key

componentsof implantableBCIs, including thesensors,whichconsists of conductiveneedles that penetratemillimeters of cortical tissue,

analog components, a radio, and power sources. ImplantableBCIs are packaged in a hermetically fused silica capsule or titaniumcapsule.

TABLE 2. Overview of hardware–software codesign

techniques used to realize HALO.

Technique Direction

Kernel PE decomposition SW! HW

PE reuse generalization SW! HW

PE locality refactoring SW HW

Spatial reprogramming SW HW

Counter saturation SW$ HW

NoC route selection SW! HW
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The second workload category includes compres-
sion to reduce radio transmission bandwidth. Apart
from some specific and well-understood forms of lossy
compression—such as spike sorting—BCIs generally
require lossless compression. HALO supports spike
detection via the near-energy operator (NEO) PE, and
also implements several lossless compression var-
iants as their effectiveness can change across brain
regions and patient activity. We support lossless LZ4
and LZMA compression, as well as discrete wavelet
transform (DWT) compression. Compression ratios
vary by as much as 40% depending on compression
algorithm and target brain region.3

Finally, although state-of-the-art BCIs do not cur-
rently support encryption, we foresee it as necessary
in future BCIs for secure data exfiltration. HIPAA,
NIST, and NSA require using AES with an encryption
key of at least 128 bits.

HALO ARCHITECTURE
HALO supports five tasks, and can set up two of them
in multiple ways, leading to a total of eight distinct
pipelines configurable by a doctor or technician. The
RISC-V microcontroller is used to configure these pipe-
lines via the programmable switches. With the conven-
tional monolithic ASIC approach, this means that we
would implement eight ASICs. However, we decom-
pose these pipelines into the PEs of Figure 2.

Decomposing BCI Tasks Into PEs
Kernel PE Decomposition: Some BCI tasks consist of
distinct computational kernels naturally amenable to
PE decomposition. For example, seizure prediction
combines kernels for FFT, cross-correlation (XCOR),
Butterworth bandpass filtering (BBF), and a support
vector machine (SVM). We realize each as a PE, as
shown in Figure 2. As FFT, XCOR, and BBF have no
data dependencies, they can operate in parallel. This
approach saves power because XCOR contains com-
plex computation (e.g., divisions and square roots)

that scales quadratically with channel count. In con-
trast, BBF is a simple filter with minimal arithmetic
that scales linearly with channel count. Separating
XCOR and BBF into separate PEs ensures that BBF’s
filtering logic is clocked over an order of magnitude
slower than the logic for cross-correlation.

PE Reuse Generalization: Many BCI tasks use
computational kernels slightly differently. We develop
configurable PEs that can be shared among BCI tasks.
Consider movement intent, which can be decom-
posed into FFT, followed by logic that checks whether
the FFT output is in a particular spectral range. We
create a threshold PE (THR) to determine when a PE’s
output is within a specified numerical range and
enable sharing of the FFT between movement intent
and seizure prediction tasks. The FFT PE is configura-
ble because movement intent requires 14–25-point
FFTs to detect drops in signal power, while seizure pre-
diction requires 1024-point FFTs.

Algorithm 1. LZMA pseudocode

1: Function LZMA_compress_blockinput
2: output ¼ listðlzma headerÞ;
3: while data ¼ input:getðÞdo
4: best match ¼ find best matchðdataÞ;
5: Probmatch ¼ countðtablematch;best matchÞ
6: =count totalðtablematchÞ;
7: r1 ¼ range encodeðProbmatchÞ;
8: output:push backðr1Þ;
9: increment counterðtablematch;best matchÞ;
10: end while
11: Return output;
12: end function

Major Refactoring: PE decomposition can require
significant refactoring of the original algorithm. Con-
sider LZMA and DWTMA compression. Both algo-
rithms use Markov (MA) chains to calculate the
probability of the current input value based on
observed history, which is used to pick more efficient
encoding of the input signal. We found that using the

FIGURE 2. HALO consists of low-power hardware PEs and a RISC-V microcontroller. The PEs are configured into pipelines to

realize tasks ranging from compression (in blue) to spike detection (in green). Optional PEs (e.g., AES encryption) are shown in

square brackets. PEs operating in parallel (e.g., FFT, XCOR, and BBF for seizure prediction) are shown in curly brackets.
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combined MA PE overshoots the 15-mW power bud-
get. To solve this problem, we refactored the original
algorithm to make it more amenable for PE decompo-
sition. To separate algorithmic phases, we realize that
data locality (i.e., following routines that manipulate
major data structures) is a good indicator of kernel
boundaries within programs. This observation is tied
to the fact that PEs in HALO have only local memories
and cannot share large amounts of data. Locality
refactoring highlights how design decisions about the
architecture (i.e., use of PE-local memories) guided
refactoring of our algorithms.

Algorithm 1 demonstrates how we use this insight
to change LZMA. The second half of this algorithm
can be separated into probability calculations and fre-
quency information updates centered around the
maintenance of the core MA data structure, the fre-
quency table (in green), as well as efficient encoding
(in blue). This refactoring permits bringing together
phases that operate on the same data structures
within the hardware, allowing us to separate the PEs
since they can now operate independently with mini-
mal data movement. This permits clocking each com-
ponent at significantly lower frequency, leading to
power savings of 2�.

PE Optimizations
Unchanged PE Output: Some of the PEs (e.g., XCOR
and LZ) process data in blocks instead of samples and
wait for all inputs in the block to arrive, before comput-
ing in a bursty manner. Bursty computation is problem-
atic as it requires either large buffers to sink the bursts
or high PE frequency to meet data rates while sustain-
ing periods of bursty activity. Neither is ideal from the
perspective of saving power. To achieve power
improvements, we spatially reprogram the original
algorithm and codesign it with the hardware. Consider
the XCOR PE. The original algorithm performs compu-
tation at the end once all data have been filled into the
block. We refactor the algorithm to process inputs as
early as they are available. The final form in Algorithm 2
reduces the amount of computation needed in the final
step, as well as the number of buffers needed to store
the inputs. This translates to a power savings of 2.2�
over the original algorithm. This technique also extends
to other PEs like LZ to achieve 1.5� power reduction.

Finally, LZ and MA PEs require initialization of data
structures at the beginning of every compressed
block. We found that dedicated circuits are necessary
to meet the 15 mW power budget. These circuits use
only combinational logic and reduce PE power con-
sumption by 1:8�.

Modified PE Output: Although initialization circuits
decrease the direct power/performance cost of start-
ing a new compression block, there is also an indirect
cost of using uninitialized internal structures, which
leads to lower compression rates. This presents a prob-
lem with respect to the choice of block size. Large
block sizes lead to better estimates of frequencies, but
small block sizes allow the use of smaller data types
and reduce the memory footprint and power of the MA
PE. One might balance power/compression ratio for an
ideal design, but such an approach does not find a
design point that fits within the constrained power
budget. Instead, we observe that the frequencies of
values within a block remain largely unchanged after
they have stabilized. Consequently, we allow the fre-
quency counters to saturate and set block size inde-
pendently of counter bit width. Overall, counter
saturation modification allows HALO to benefit both
from reduced memory footprint of 16 bit counters, and
better compression ratio of larger blocks.

On-Chip Network
Each PE operates at the lowest frequency needed for
data processing rates, and synthesize with established
synchronous design flows. While running PEs in sepa-
rate clock domains saves power, it can potentially com-
plicate inter-PE communication. Prior work on globally
asynchronous locally synchronous (GALS) architec-
tures12 encountered these issues for packet-switched
on-chip networks. Unfortunately, we cannot repurpose
their solutions as our analysis with the DSENT tool

Algorithm2.XCOR spatial programming refactoring

1: function XCORinput;output
2: // channel[][] stores input in appropriate channel location
3: channel½channel num�½sample num� ¼ input
4: // data[] stores sums of input received so far

5: data½count�þ ¼ input
6: // data_lag[] stores sums of input till LAG
7: If count 2 ¼¼ LAGthen
8: data lag½count� ¼ data½count�
9: end if
10: // Finish correlation computation
11: if channel:filledðÞthen
12: for eachi; j 2 channels do
13: avg i ¼ data½i�=SIZE
14: avg j ¼ ðdata½j� � data lag½j�Þ=SIZE
15: output:push backðavg i;avg jÞ
16: end for
17: return output
18: end if
19: end function
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estimates that a simple packet-switched mesh net-
work consumes over 50 mW, well over our 15-mW
power budget. Instead, we codesign inter-PE communi-
cation with the BCI algorithms. The decomposition of
BCI tasks into kernels creates static and well-defined
data-flows between PEs. NoC route selection allows
replacement of a packet-switched network to a far
lower power circuit-switched network built on an
asynchronous communication fabric.

FIFO Interfaces
Since the publication of our original paper on HALO,3

one challenge that we encountered is that our GALS-
based approach requires careful data rate matching
between PEs in separate clock domains. We use per-PE
FIFO buffers to transfer data from the network into the
form expected by the PE and to perform this rate
matching. Consider PEs f and g. If their computation is
regular—i.e., the functions produce and consume data
in a perfectly periodic fashion—then a simple interface
between the two for clock domain conversion suffices.
However, if f produces bursty data or g consumes data
in bursts, then a FIFO is needed between f and g to
smooth out producer–consumer patterns. The size of
this FIFO is determined by the computational proper-
ties of f and g, and the frequencies at which they oper-
ate. Increasing the frequency of g beyond the
minimum operating point to meet data throughput
needs would reduce the FIFO size required. We have
found that balancing FIFO size with PE frequency is key
tomeeting the 15-mWpower budget.

EVALUATION
Our 15-mW target power budget includes the HALO
chip, sensors, ADC, amplifier, and radio technologies.
We assume a microelectrode array with 96 channels,
each of which records each sample encoded in 16 bits
at a frequency of 30 kHz, yielding a data rate of
46 Mbps. After accounting for all analog components,
HALO’s processing pipelines (including the radio)
must consume no more than 12 mW. All results pre-
sented use a commercial 28-nm fully depleted silicon-
on-insulator (FD-SOI) CMOS process except when
noted otherwise. Synthesis and power analysis is per-
formed using Cadence synthesis tools with standard
cell libraries from STMicroelectronics.

We use electrophysiological data collected from the
brain of a non-human primate. Microelectrode arrays
were implanted in two locations in the motor cortex,
corresponding to the left upper and lower limbs. We use
recordings of brain activity while the animal performed
tasks such aswalking on a treadmill, reaching for a treat,

and overcoming a moving styrofoam obstacle. All
research protocols were approved and monitored by
Brown University’s Institutional Animal Care and Use
Committee, and all research was performed in accor-
dancewith relevant guidelines and regulations.

HALO PRESENTS AWET LAB-TO-CHIP
DESIGN PROJECT THAT EXPLORES
THE QUESTION OF HOW TO BUILD A
FLEXIBLE ULTRALOW-POWER
PROCESSING ARCHITECTURE FOR
NEXT-GENERATION BCIS.

Figure 3 compares HALO’s power versus ASICs
and software alternatives on RISC-V. Software tasks
can execute on microcontroller cores in both single-
core and multicore designs, where we divide the 96
channel data streams and operate on them in paral-
lel. We study 1–64 RISC-V core counts and report the
best configuration per task. We also show an ideal-
ized version of HALO where the on-chip interconnect
is removed to quantify the power penalty for the con-
figurability that the network offers. Both HALO var-
iants use the optimizations from the ones described
in the “PE Optimization” section. HALO uses less
power than monolithic ASICs and RISC-V approaches.

FIGURE 3. Power (in log-scale) of PEs, control logic, and

radios for HALO versus RISC-V and monolithic ASICs. To

meet the 15-mW device power budget, these components

(without ADCs and amplifiers) need to be under 12 mW (the

red line). We compare HALO against the lowest power RISC-

V and HALO-no-NoC, which shows how much power would

be saved if HALO’s configurability were sacrificed.
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Finally, as we have been extending our chip design
efforts, we have discovered the crucial impact of FIFO
design on total power. For each PE, we have evaluated
the power utilized for various configurations with fre-
quency and input and output FIFO buffers. For each
frequency, we select the lowest FIFO size required for
the design, and report its power. For example, for the
LIC PE, we have found that the lowest power configu-
ration is achieved at 24 MHz, with an 8-entry input
FIFO and no output FIFO. We also note that power
consumed can vary by as much as 1 mW depending on
these configuration options.

CONCLUSION
HALO presents a wet lab-to-chip design project that
explores the question of how to build a flexible ultra-
low-power processing architecture for next-genera-
tion BCIs. While this work performs an initial explora-
tion of workloads that are important for neuroscience,
the list of tasks can be expanded. Future BCIs will
implement other workloads, with different pipelines
targeting different research and medical objectives.
Because of its modular design, HALO will be able to
support such workloads seamlessly.
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