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ABSTRACT: A stereospecific convergent peptide arginine glycosylation method is reported for the first time. A recently discovered
arginine glycosylation invigorated the interests of arginine modification, which has been challenging, because of the inertness of the
guanidino side chain. The approach renders the arginine glycoside construction convergently. Catalyzed by palladium complex,
glycals modify arginine guanidino groups in one step with high functional group tolerance at ambient temperature. The glycosylated

products may be converted to glycopeptide analogues in few steps.

rginine is structurally unique and a critical role in
biological systems." Its guanidino side chain is protonated
at physiological pH, which makes arginine a charged species.
Functionalization of the arginine side chain during the protein
post-translational modification (PTM) is a commonly
observed occurrence, such as citrullination” and methylation.’
Recently, a novel PTM of arginine was reported, where
guanidinium side chain was glycosylated by N-acetylglucos-
amine® and rhamnose’ in pathogenic bacteria. Meanwhile,
other arginine modifications are extensively investigated and
well-understood.® The investigations of arginine glycosylation
have been limited and establishing a chemical methodology
that could rapidly construct arginine glycosides motifs could
certainly accelerate the biomedical studies of arginine PTM.
Glycosylation is one of the most opulent and critical protein
PTMs. Commonly observed saccharides attachments occur at
Ser/Thr/Tyr (O-Link) and Asn (N-Link) residues,” whereas
the arginine glycosylation has been a much less known process
and under-utilized. Perhaps such rare occurrences are
attributed to the inertness of the guanidino group.® From a
synthetic standpoint, the inability to functionalize guanidinium
motifs became more compelling. Transformations involving
arginine side chains often employed strong electrophiles to
compensate for the relatively weak nucleophilicity of
ketimine.” The challenge of glycosylation is elevated because
of the steric and electronic properties of glycosyl donors. As a
case in point, in the reports of the chemical synthesis of
arginine Glc N-acylation by Shao, Liu and Hu,'" the strategy
for installing carbohydrates was illustrated as the union of
thiourea glycosides and ornithine-bearing peptides (Figure 1a).
Such maneuvers elegantly circumvent the difficulties in
connecting canonical glycosyl donors and acceptors; however,
the introduction of nonproteinogenic amino acid ornithine and
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Figure 1. Convergent arginine glycosylation.

elaborated multistep preparation of glycosyl thiourea hampers
its general application. Ideally, direct construction of
glycopeptides using a native arginine bearing peptide with a
commonly used glycosyl donor at the reducing end would
significantly improve the efficiency of arginine glycoside
chemical preparation. Herein, we report a catalytic method
that provides stereoselective arginine glycosylation in a
convergent fashion for the first time, using glycals and
commercially available arginine precursors (Figure 1b).

In the past decades, the palladium-catalyzed glycosylation
reaction has been extensively developed and successfully
applied in the synthesis."' Our previous studies have revealed
the extraordinary ability of glycals toward glycosyl acceptors.'”
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Under palladium-mediated conditions, external nucleophiles
such as Ts-NR moieties could achieve exclusive stereo-
selectivity and excellent yields."”” In order to fine-tune the
N-glycosyl acceptor’s nucleophilicity, the T's sulfonyl group is
required as an activator, which is extremely difficult to
remove'® without degrading the construct of the carbohydrates
(Figure 2). We speculate that the 2,2,4,6,7-pentamethyldihy-
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Figure 2. Removal of sulfonyl activating groups.

drobenzofuran-S-sulfonyl (pbf) group could replace the Ts
functional group, and the protocol for pbf removal is well-
documented and mild under acidic conditions'* (cf. Figure 2).
If successful, arginine glycosylation could be achieved via
routinely utilized, commercially available Fmoc-Arg(pbf) and
Boc-Arg(pbf) building blocks, which could significantly
improve the efficiency for preparing arginine glycopeptides.
We believed that glycal 1a would be an ideal glycosyl donor
for initial evaluation, which was prepared via a quick two-step
sequence from commercially available saccharide (Scheme 1).

Scheme 1. Reaction Optimization for Arginine
Glycosylation

NHBoc

NHBOC
o OMe
gss ﬂ _ P (10mol%) OTBSH
N
ligand (10 mol%)
NHF'bf CHCly, 1t I NPbf
PPhy PPh,
PPh2 PPh, \© PPh,
DPEphos N-Xantphos Xantphos
entry? [Pd] loading ligand t yield?
1 Pd(OAc), 10 mol% Xantphos 24 h 29%
2 Pd(PPh3),Cl, 10 mol% Xantphos 24 h ND°
3 Pd(PPhs), 10 mol% Xantphos 2h 54%
4 Pd,dbaz s« CHCI3 5 mol% Xantphos 24h 60%
5 Pd,dbaz « CHCl3 5 mol% dppb 24 h 21%
6 Pd,dbaz « CHCI3 5 mol% dppe 24 h ND°¢
7 Pd,dbaz « CHCI3 5 mol% dppp 24h 10%
8 Pd,dbag « CHCly 5mol% dppf 24h 20%
9 Pd,dbaz « CHCI3 5 mol% (R)-BINAP 24h ND¢
10 Pd,dbaz « CHCI3 5 mol% DPEphos 24h 31%
11 Pd,dbaz « CHCl3 5 mol% N-Xantphos 24 h 36%
129 Pdydbag « CHCl, 5 mol% L 24h 23%
13°  Pd,dbag« CHCI, 5mol% Xantphos 24h 69%
14¢ Pd(PPhg)s 10 mol% Xantphos 2h 73%
15 Pd,dbaz « CHCI3 5 mol% — 24h ND¢
16 — — Xantphos 24h ND®

“0.1 mmol 1a, 0.05S mmol 2a, 10 mol % [Pd] and 10 mol% ligand, 4
mL of CH,CI, were used. “Isolated yield. “Not detected. %20 mol %
ligand was used. “0.15 mmol 1a and 0.05 mmol 2a were used.
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Glycosylation of pbf protected arginine methyl ester 2a with
glycal 1a under palladium catalyzed conditions was evaluated.
The combination of Pd(OAc), and xantphos as a ligand was
first investigated, and the reaction produced desired product 3a
with exclusive f-stereochemistry and 29% vyield after 24 h at
ambient temperature (Scheme 1, entry 1). The structure of 3a
was identified by extensive one-dimensional (1D) and two-
dimensional (2D) NMR experiments (see the SI for
stereochemistry and regiochemistry assignments). When
divalent palladium catalyst Pd(PPh,),Cl, was employed,
however, we did not observe glycosylation product (Scheme
1, entry 2). To our surprise, zerovalent Pd(PPh;),, or Pd,dba;-
CHCI;, improved the reaction yields significantly (Scheme 1,
entries 3 and 4). Next, several phosphine bidentate ligands,
such as dppb, dppe, dppp, and dppf were screened (Scheme 1,
entries 5—8), yet the yields were inferior (0%—21%). Chiral
biaryl BINAP was evaluated, and no product was found
(Scheme 1, entry 9). DPEPhos, N-xantphos, and monodentate
phosphine ligand were less effective than xantphos (Scheme 1,
entries 10—12). When 3 equiv of glycal 1a was used, a higher
yield of 3a was obtained (Scheme 1, entry 13). Switching to
Pd(PPh;), afforded a comparable yield but much faster
reaction time (2 h). Although Pd(PPh;), rendered a slightly
higher yield (73%) and shorter reaction time, the formation
the trace amount of byproduct [(O)PPh;] from the ligand
complicates the silica gel purification (same rf with certain
products). Our further studies use both conditions when
appropriate. Without palladium catalyst or ligand, the reaction
could not occur (Scheme 1, entries 15 and 16).

With the optimized conditions in hand, we subsequently
investigated the arginine glycosylation in a more-complicated
system (Scheme 2). The commercially available Fmoc-
Arg(pbf)-OMe successfully provided product in comparable
yield (71%). We then explored a dipeptide system. Arginine—
valine produced 3¢ smoothly with 71% yield, indicating that
dipeptides could be glycosylated. Other amino acid residues
with hydrophobic side chains were well-tolerated, such as
arginine—alanine, in which the carboxyl was protected by Bn
and produced 3d with 75% yield. For arginine—leucine with
‘Bu, 3e was generated with 64% yield. Even for compounds
with a rigid proline substrate, glycosylation had no issue and
generated 3f with 70% yield. Arginine—phenylalanine afforded
corresponding product 3g with moderate 53% yield. Next, we
implemented glycosylations using different dipeptides involv-
ing hydrophilic side chains. Arginine—aspartic acid with a
methyl-protected carboxyl group, arginine—tyrosine with a ‘Bu-
protected phenol, and arginine—lysine with a Boc-protected
amine were demonstrated to be tolerated and gave good yield.
Among them, arginine—lysine dipeptide generated 77% of 3j
under similar conditions. In addition, we found that placing
Arg(pbf) at the C-terminus of the peptides did not alter the
reaction outcomes. Valine—arginine showed no difference in
yield, when compared with arginine—valine. Under the
reaction conditions, glycopeptide 3k was furnished with 72%
yield. N-methyl-alanine-arginine and phenylalanine as glycosyl
acceptors provided good results. The yield of 31 was 72% and
3m was 69%. Glycine—arginine generated product 3n with
41% yield. Dipeptide aspartic acid—arginine with a hydrophilic
side chain gave a good result. Cysteine-derived dithio substrate
delivered product 3p. Lastly, we found glycosylation, using
tripeptide as an acceptor, produced glycoside 3q with 44%
isolation yield.
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Scheme 2. Reaction Scope Evaluations
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Reactlon conditions: 0.15 mmol 1a, 0.05S mmol 2, 10 mol % Pd(PPh;),, 10 mol % xantphos, and 4 mL of CH,Cl, were used, rt, 2 h, isolated yield.

bS mol % Pd,dbay"CHCl,, 24 h, isolated yield.

Subsequently, we examined the scope of glycosyl donors
(Scheme 3). Under reaction conditions, glycals 1 with
dipeptide 2f furnished a variety of glycosides 3. The
substituent groups such as TIPS, TBDPS, Bn, Bz, tBu and

Scheme 3. Glycosyl Donor Evaluation®
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24 h, isolated yield. “Reaction time: 2 h. “Reaction time: 1 h.
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adamantyl were well-tolerated, the dipeptide glycosides 3r—3x
were produced in comparable yields (41%—73%). Lipidic and
fluorescein side chains could also be managed and afforded 3y
and 3z. The excellent stereoselectivity of arginine glycosylation
was illustrated again by introducing an exclusive a-glycosidic
bond in glycopeptide 3aa, utilizing p-allal carbohydrate as the
donor, albeit wth a lower yield (35%).

The practicality of the arginine glycosylation method was
illustrated in Scheme 4. Glycopeptide 3a was reduced via Pd/C
and H, to generate a deoxy-sugar 4 in excellent yield.
Furthermore, transformation of 3a with catalytic OsO, and
N-methylmorpholine-N-oxide afforded the corresponding

Scheme 4. Functionalization of Arginine Glycosides
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glycopeptide Sa in 87% yield as a single diastereomer, which
offered a chiral scaffold that could be mimicking N-
acetylglucosamine or rhamnose. We expected that dihydrox-
ylation occurred at the less sterically hindered a-face. Finally, a
one-pot, two-step protocol successfully converts Arg glycoside
3g to a protecting- group- -free dipeptide 6 in high yield as a
single diastereomer. 15 During the transformation, the pbf
moiety was removed along with other common peptidyl
protecting groups under acidic conditions. This protocol
underscores the efliciency of our convergent arginine
glycosylation methodology.

Based on the experimental data and our previously reported
result,’' the arginine glycosylatlon should undergo a classic
Tsuji—Trost reaction mechanism.'® (see Figure 3) The less
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Figure 3. Proposed arginine glycosylation mechanism.

sterically demanding face of glycal 1 forms a z-allyl Pd(0)
species II, which should be the reaction intermediate and
governs the stereoselectivity. The N-glycoside 3 can be
produced upon attacking of arginine(pbf) 2 toward z-allyl
Pd complex II. We do not fully understand why the xantphos
attains superior reactivities, compared with other bidentate
phosphine ligands. According to literature reports, we
speculated that a larger cone angle between xantphos and
palladium is attributed to the superior reactivity during
allylation. It is well-documented that the Xantphos has a
cone angle of 247° with palladium, compared to that obtained
with dppe (225°), dppf (230°), and other bidentate ligands."”
The studies from van Leeuwen et al.'"® suggested that a larger
ligand cone angle not only promotes a faster oxidative
addition, but also enhances the reaction rate of nucleophilic
addition to 7z-allyl species and subsequent product dissociation.

In summary, we have established a convergent method that
renders challenging peptide arginine glycosylation for the first
time. This practical approach could establish the glycosidic
bonds of arginine with exclusive regioselectivities, and
stereoselectivities. The mild reaction processes were catalyzed
by a palladium complex and enjoy high amino acid residue
tolerance. Both glycosyl donors and acceptors are either easily
obtained or commercially available. The dual functionality of
the pbf construct was highlighted as a protecting as well as a
specific activating group, which could be smoothly removed
along with other commonly used amino acid protecting
moieties. Compared with extant methods, our convergent
approach provides a facile alternative strategy for highly
efficient glycosylation, which potentially could assist the
biological studies toward arginine glycosides. Further inves-
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tigations of the glycosylation toward other protein modifica-
tions will be reported in due course.
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