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We investigate whether state-of-the-art classification features commonly used to distinguish electrons
from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional
neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the
performance of typical features, revealing a ~5% gap which indicates that these lower-level data do
contain untapped classification power. To reveal the nature of this unused information, we use a recently
developed technique to map the deep network into a space of physically interpretable observables. We
identify two simple calorimeter observables which are not typically used for electron identification, but
which mimic the decisions of the convolutional network and nearly close the performance gap.
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I. INTRODUCTION

Production of electrons in high-energy collisions pro-
vides an essential handle on precision studies of the
Standard Model [1,2] of particle physics as well as for
searches for new physics [3,4]. The identification of
electrons, and their separation from backgrounds which
mimic their signature, is therefore a critical element in the
data analysis toolkit, especially at lower transverse momen-
tum, where the backgrounds rise rapidly [5].

In collider experiments, electrons are identified by an
isolated track which aligns with a localized energy deposition,
primarily in the electromagnetic calorimeter. The primary
source of backgrounds is the production of hadronic jets,
which typically feature multiple tracks and extended energy
deposition in both electromagnetic and hadronic calorimeters,
but can fluctuate to mimic electrons. The tracker and
calorimeters, however, are very finely segmented, producing
high-dimensional data which is difficult to analyze directly.
A mature literature [6-8] contains higher-level features
designed by physicists to highlight the distinct signature of
the electron and suppress the backgrounds. The higher-level
features define a lower-dimensional feature space.

Recent strides in machine learning for physics, particu-
larly the advent of deep learning [9-15] and image-
processing techniques [16-21], have demonstrated that
high-level features designed by domain experts may not
always fully capture the information available in the lower-
level high-dimensional data. Specifically, the rich but subtle
structure of the deposition of energy by jets provides
a powerful potential handle for discrimination. Given
their role as the dominant background, this suggests that
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additional classification power may be gained by applying
image-based deep learning techniques to electrons.

In this study, we apply deep convolutional neural net-
works (CNNs) to the task of distinguishing between
electrons and jets, using separate images from the electro-
magnetic and hadronic calorimeters. Due to the black-box
nature of their operation, we do not propose to use CNNs in
place of the high-level features. Instead, we apply CNNs to
probe the information content of the low-level data in
comparison to the high-level features. We show that the
classification performance of the image-based CNNs
exceeds the performance of the high-level features in
common use by Large Hadron Collider (LHC) experi-
ments, by a small, but significant, margin. We then identify
the source of the untapped information and construct novel
high-level features that capture it.

This paper is organized as follows. In Sec. II, we outline
our approach. In Sec. III, we discuss the details of our
image generation process and the corresponding dataset
used for CNN experiments. In Sec. IV, we review the
existing state-of-the-art ATLAS and CMS high-level fea-
tures, which we combine to derive our benchmark perfor-
mance. In Sec. V, we provide details of neural network
architectures and training. In Sec. VI, we discuss the
performance of these networks. In Sec. VII, we search
for new high-level features to bridge the gap between
CNNs and standard features. In Sec. VIII, we summarize
and discuss the results, providing an intuitive understand-
ing of the underlying landscape.

II. OVERVIEW

This study explores whether low-level, high-dimensional,
O(10%), calorimeter data contains information useful for
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distinguishing electrons from a major background not
captured by the standard suite of high-level features designed
by physicists. Similar studies in jets or flavor tags have
revealed such gaps [10,17].

We probe this issue using a simulated dataset created
with publicly available fast simulations tools [22]; while
such samples do not typically match the fidelity of those
generated with full simulations [23], we refine the calo-
rimeter description for this study and find the modeling
sufficiently realistic for a proof-of-principle analysis. Our
focus is on comparing physically motivated, high-level
features to low-level image techniques on equal footing.
While we anticipate that the numerical results will be
different when evaluated in a fully realistic scenario, the
broad picture will likely remain the same. The technique
described here is fairly general and applicable to more
realistic experimental scenarios, so that valuable lessons
can be learned in the present context.

We reproduce the standard suite of electron identification
features, as described in Refs. [6,7], in the context of our
simulated description. We then compare their combined
performance to that of deep convolutional neural networks
(CNNGs) which have been trained to analyze the lower-level
calorimeter cells using image recognition techniques
[16-18]. We do not advocate for the use of CNNs to replace
high-level features whose designs are grounded in physics;
CNNs are difficult to interpret and the low level and large
dimensionality of the input makes validation of the features
and definition of systematic uncertainties nearly impossible.
Instead, here we use the power of CNNs as a probe, to test
whether further information is present in the low-level data.
Having identified a gap, we then explore a complete space of
novel high-level features, Energy flow polynomials (EFPs)
[24] to interpret and bridge the gap.

III. DATASET GENERATION

In this section, we describe the process of generating
simulated signal and background datasets, reproducing the
standard suite of high-level features, and forming pixelated
images from the electromagnetic and hadronic calorimeter
deposits.

A. Processes and simulation

Simulated samples of isolated electrons are generated
from the production and electronic decay of a Z’' boson
in hadronic collisions, pp — Z' — eTe™ at /s = 13 TeV.
We set my to 20 GeV in order to efficiently produce
electrons in the range pp = [10,30] GeV, where hadronic
backgrounds are significant. Simulated samples of back-
ground jets are generated via generic dijet production.
Events were generated with MadGraph v2.6.5 [25], decayed
and showered with PYTHIA v8235 [26], with detector
response described by DELPHES v34.1 [22] using ROOT

version 6.0800 [27].

Our configuration of DELPHES approximates the
ATLAS detector [28]. For this initial study, we model only
the central layer of the calorimeters where most energy is
deposited; future work will explore more detailed and
realistic detector simulation. However, we maintain the
critical separation between the electromagnetic and had-
ronic calorimeters and their distinct segmentation.
Our simulated electromagnetic calorimeter (ECal) has
segmentation of (Ag, An) = (3¢.0.025) while our simu-
lated hadronic calorimeter (HCal) is coarser, (A¢, An) =
(37,0.1). This approach allows us to investigate whether
information about the structure of the many-particle jet is
useful for suppressing their contribution. See Ref [19] for
an analysis of the information contained in the shape of
shower for individual particles.

No pile-up simulation was included in the generated
data, as pileup subtraction techniques have been shown to
be effective [29]. In total, we generated 107k signal and
107k background objects.

B. Electron candidate selection

We use DELPHES’ standard electron identification pro-
cedures where loose electron candidates are selected
from charged particle tracks which align with energy
deposits in the ECal. We required the object to have track
pr > 10 GeV and || < 2.125, to avoid edge effects when
forming calorimeter images, see Fig. 1. For later training,
the background objects are reweighted to match the pr
distribution of the signal.

C. Image formation

The cells of the calorimeter can be naturally organized as
pixels of an image, allowing for use of powerful image-
processing techniques. Each pixel contains the energy (E)
deposited in one cell. Alternatively, one may form images
in which each cell represents Er = E/ cosh#, which folds
in the location of the object relative to the collision point.
For completeness we initially consider images in which
pixels represent E and images where pixels represent Er.
Additionally, we create separate images for the ECal and
HCal, in order to preserve the separate and powerful
information they offer. In total, four images are created
for each electron candidate: ECal E, ECal Ey, HCal E,
HCal Ey. The pixels in the images were scaled to values
between zero and one by dividing by the maximum pixel
value in each image dataset. All standard classification and
EFP variables were scaled by substracting the mean and
dividing by the standard deviation.

The center of a calorimeter image is chosen to be the
ECal cell with largest transverse energy deposit in the 9 x 9
cell region surrounding the track of the highest pr electron
in that event. This accounts for the curvature in the path of
the electron as it propagates between the tracker and the
calorimeter. The ECal image extends fifteen pixels in either
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FIG. 1. Distribution of generated electron candidate py and n
for simulated signal and background samples, before reweighting
to match spectra.

direction, forming a 31 x 31 image. The HCal granularity
is four times as course, and an 8 x 8 image covers the same
physical region. Figures 2 and 3 show example and mean
images for the ECal and HCal, respectively.

IV. STANDARD CLASSIFICATION FEATURES

To assess the performance of the high-level classifica-
tions features typically used by ATLAS [7] and CMS [6]
which identify electrons and reject jet backgrounds, we
reproduce their form here, where relevant.

Since electron candidates are confined to the longi-
tudinal range || < 2.125, we only consider variables that
are well-defined in this range. Additionally, we only
consider variables which are based on information included
in our simulation, to ensure the comparison uses informa-
tion on equal footing. In addition, we do not perform
clustering because it is unnecessary given the simplified
nature of DELPHES’ simulation; where a feature calls for
the cluster energy, we replace it with the total energy of
the candidate image. This is a reasonable proxy since the
simplified simulation of the calorimeter response in
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FIG. 2. Images in the electromagnetic calorimeter for signal
electrons (top) and background jets (bottom). On the left are
individual examples, on the right are mean images. See Fig. 3 for
corresponding hadronic calorimeter images.

DELPHES is unlikely to deposit the electron’s energy in
multiple disconnected clusters. All high-level features are
calculated from the ECal and HCal images, using E or Et
images where appropriate.

Hadronic Calorimeter Images
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FIG. 3. Images in the hadronic calorimeter for signal electrons
(top) and background jets (bottom). On the left are individual
examples, on the right are mean images. See Fig. 2 for
corresponding electromagnetic calorimeter images.
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FIG. 4. Distribution of signal electron (red) and background jets
(blue) for seven existing typically-used high-level features, as
well as for mass.

We reproduce seven features: Ry, @0, Ry, R,, 6,,, and
two isolation quantities. Together, these capture the typical
strategies of suppressing objects with significant hadronic
energy or extended energy deposits. Definitions of each
feature are below, and distributions for signal and back-
ground samples are shown in Fig. 4.

A. Ratio of HCal and ECal energy: Ry .4

The feature R;,q4 relates the transverse energy (Et) in the
electromagnetic calorimeter to that in the hadronic calo-
rimeter. Specifically,

HCal
_ 2iETJ

had — ECal
LBt

(1)

where i and j run over the pixels in the HCal and ECal
images, respectively.

B. Lateral width of the ECal energy shower: w,,

The lateral width of the shower in the ECal, w,,, is
calculated as

. \/2,-151A(A;7,-)2 ~ <E,~E,~Ani)2 o)

LE; LE;

where E; is the energy of the ith pixel in the ECal image
and Ay, is the pseudorapidity of the ith pixel in the ECal
image measured relative to the image’s center. The sum is
calculated within an (An x A¢) = (3 x5) cell window
centered on the image’s center.

C. Azimuthal and longitudinal energy distributions:
R, and R,

To probe the distribution of energy in azimuthal (¢) and
longitudinal () directions, we calculate two features R,
and R,,. Qualitatively, these relate the total ECal energy in a
subset of cells to the energy in a larger subset of cells
extended in either ¢ or 7, respectively. Specifically,

where the subscript indicates the number of cells included
in the sum in  and ¢ respectively. For example, (7 X ¢) =
(3 x 7) is a subset of cells which extends 3 cells in 7 and 7
in ¢ relative to the center of the image.

D. Lateral shower extension: G

An alternative probe of the distribution of energy in 7 is
o, [6]. Specifically,

where w; is the weighting factor | In(E;)| with E; being the
ECal energy of the ith pixel. The sum runs over the non-
zero cells in the (7 x ¢) = (5 x 5) subset of cells centered
on the highest energy cell in the ECal. Here, i, is measured
in units of cells away from center, i_n’ asi, €0, £1, or £2if

we choose 1, = 0.

E. Isolation

Jets typically deposit significant energy surrounding the
energetic core, while electrons from heavy boson decays
are typically isolated in the calorimeter. To assess the
degree of isolation, we sum the ECal energy in cells within

the angular range AR = \/An? + A¢? < 0.3 or 0.4, where
An and A¢ are measured from a given cell’s center and the

center of the image.

'Electrons may also appear inside jets in decays of B-mesons
for example, but here we focus on decays from real W and Z
bosons.
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V. NEURAL NETWORK ARCHITECTURES
AND TRAINING

We construct multilayer neural networks that accept
low-level images, or high-level features, or both, with a
sigmoid unit as their output to classify between signal and
background.

Each image input is passed through a number of
convolutional blocks, with each block consisting of two
convolutional layers with 3 x 3 kernels, rectified linear
units [30] as the activation function, and a final 2 x 2
maxpooling layer. Finally, the outputs of the maxpooling
layer are flattened and concatenated with the high-level
inputs to form a high-dimensional vector. This high-
dimensional vector is then processed by a sequence of
fully connected layers with rectified linear units, using
dropout [31,32]. The final output is produced by a single
logistic unit and it can be interpreted as the probability of
the input belonging to the signal class. The entire archi-
tecture is trained by stochastic gradient descent to minimize
the relative entropy between the targets and the outputs,
across all training examples. For each combination of high-
level variables, we also train and tune multilayer, fully
connected, neural networks with a similar sigmoid unit at
the top.

All models were implemented using KERAS [33] with
TENSORFLOW [34] as the backend and trained with a batch
size of 128 with the ADAM optimizer [35]. The weights for
all the models were initialized using Glorot [36] uniform
weights and each network was tuned using 150 iterations
of bayesian optimizaton with the SHERPA hyperparameter
optimization library [37]. Additional details about the
hyperparameters and their optimization are given in
Tables IV-VIL.

VI. PERFORMANCE

Initial studies indicated that having images that reflect
both E and Ep provided no performance boost, so only
results with Ep-based images are shown here and used for
further studies. A comparison of the performance of the
image networks and the seven standard high-level features
(Rhad» @yp> Ry, Ry, 6, I1s0(AR < 0.3), Iso(AR < 0.4)) is
shown in Fig. 5 and described in Table I.

Networks combining the standard high-level features
(AUC of 0.945) do not match the performance of a network
which analyzes the lower-level data expressed as images
(0.972), indicating that the images contain additional,
untapped information relevant to the identification of
electrons. This is not unexpected, and is in line with similar
results for jet substructure or flavor tagging [10,17].
Networks which see only one of the ECal or HCal images
but not both do not match this performance, supporting
the intuition that both calorimeters contribute valuable
information. Adding the HL features to the CNN, how-
ever, gives an almost negligible boost in performance,

10° 4 | High-Level+Mass+pr+ EFP, AUC=0.973
| —-— Images(ECal+HCal), AUC=0.972
10° 5 —— High-Level Features, AUC=0.945
—— Image(ECal), AUC=0.918
10%5 |t —— Image(HCal), AUC=0.825

Background rejection
=
o

100 -
0.0 0.2 0.4 0.6 0.8 1.0
Signal efficiency
FIG. 5. Comparison of the performance in electron identifica-

tion for networks with varying sets of input features. Shown is the
signal efficiency versus background rejection, and the AUC, for
networks which use a set of seven expert high-level features (see
text for details), networks which use HCal and/or ECal images,
and a network which combines the high-level features with jet
mass, pr and an energy-flow polynomial identified by a scan
which aims to match the decisions of the image network.

suggesting that the CNN has succeeded in capturing the
power of the HL features.

VII. BRIDGING THE GAP

The performance of the deep CNN reveals that there
is information in the low-level image that is not captured
by the suite of existing high-level features. The goal,
however, is not to replace the suite of features with an
image-based network whose decisions are opaque to us and
may not align with real physical principles. Instead, our
aim is to identify new high-level features which bridge the
gap between the existing performance and the superior
performance of the CNN.

TABLE 1. Electron classification power (AUC) for networks
with various feature sets. Images refer to low-level pixel data.
Standard features are the high-level (HL) features typically used
[Rhad7 0),72, R¢, Rl1’ (7,7,7, ISO(AR <O3), ISO(AR <04)], as
described in the text. The uncertainty on AUC values was
evaluated using bootstrapping to +0.001, unless otherwise

specified.

Network Features AUC
Images 7 Standard
ECal HCal HL Features Mg
v 0.82 +£0.02

v 0.918
v v 0.972
v v v 0.973
v v v v 0.973
v 0.945
v v 0.956
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We note that the design of the high-level features focuses
on highlighting the characteristics of the signal electrons,
localized energy depositions primarily in the ECal without
significant structure. The background, however, is due to
jets, which potentially can exhibit a rich structure and
comprise a mixture of jets from gluons, light quarks, and
heavy quarks. Each parton may produce jets with a distinct
structure and varying probability to mimic electrons. We
hypothesize that features which are sensitive to the struc-
ture of the jet, or subclasses of jets, may provide additional
discrimination power.

We first consider the powerful feature of jet mass, M,
which is not often applied to electron identification, but has
a distinct marginal distribution for electrons and jets, see
Fig. 4. Including it in a network of HL features provides a
small but distinct boost in performance, see Table I,
indicating that it contains useful information for this
classification task not duplicated by the standard seven
HL features. This encourages us to explore further the
space of jet observables as a way to understand the source
of additional classification power of the CNN.

A. Set of observables

One could in principle consider an infinite number of jet
observables. To organize our search, we use the energy
flow polynomials (EFPs) [24], a large (formally infinite) set
of parametrized engineered functions, inspired by previous
work on energy correlation functions [38], which sum over
the contents of the cells scaled by relative angular distances.

These parametric sums are described as the set of all
isomorphic multigraphs where:

each node =

N
Zis (5)

i=1
each edge = (6;;)". (6)

The observable corresponding to each graph can be
modified with parameters («, 3), where

0 = (8o + Ag7 P2 ®)

Here, pr; is the transverse momentum of cell 7, and Ay;;
(Ag;;) is pseudorapidity (azimuth) difference between cells
i and j. The original IRC-safe EFPs require x = 1, however
we consider examples with x # 1 to explore a broader
space of observables. Also, note that x > 0 generically
corresponds to IR-safe but C-unsafe observables.’

*For k < 0, empty cells are omitted from the sum.

In principle, the space is complete, such that any jet
observable can be described by one or more EFPs of some
degree; in practice, the space is infinite and only a finite
subset can be explored. We consider EFPs with up to
seven edges and with § values of [§,1,2] and « values of
[-1,0, 1, 2]. We consider each graph as applied to the ECal
or the HCal separately, effectively doubling the number of
graphs, for a total of 12,0722

B. Searching for observables

Rather than conduct a brute-force search of this large
space, we aim to leverage the success of the CNN and find
observables which mimic its decisions. We follow the
black-box guided algorithm of Ref. [39], which isolates the
portion of the input space where the CNN and existing
HL features disagree and searches for a new observable
that matches the decisions of the CNN algorithm in that
subspace.

The subspace is defined as input pairs (x, x’) that have a
different relative ordering between the CNN and the net-
work of n HL features (HLN,,). Mathematically, we express
this using the decision ordering (DO)

DO[f’ g](x, X') = O((f(x) = f(¥))(9(x) = g(x))), ~ (9)

where f(x) and g(x) are classification functions such as
the CNN or the HLN,,, such that DO = 0 corresponds to
inverted ordering and DO = 1 corresponds to the same
ordering. The focus of our investigation are the set of pairs
X, where the two classifiers disagree, defined as

X, = {(x,x)|DO[CNN, HL,](x,x') = 0}.  (10)

As prescribed in Ref. [39], we scan a sub-space of EFPs
to find the observable that has the highest average decision
ordering (ADO) with the CNN when averaged over the
disordered pairs X,,. The selected EFP is then incorporated
into the new network of HL features, HLN, ,, and the
process is repeated until the ADO or AUC plateaus.

For all HLN,, used in this search, models were trained
with KERAS [33] using TENSORFLOW [34] as the backend.
Each model was built as a fully connected neural network
of simple one dimensional input features and a single
logistic unit output. The guided search requires training a
new HLN,, after each new EFP selection. Performing a full
Bayesian optimization with Sherpa and bootstrapping each
network becomes computationally expensive. Instead, a
simpler architecture was found to be provide consistent,
stable, performance. These networks consisted of 3 hidden
layers, each with 50 rectified linear units, separated by 2

*We also explored a version where ECal and HCal information
were used simultaneously by each graph, but found no
improvement.
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dropout layers using a dropout value of 0.25 and trained
with a batch size of 128.

The ADAM optimizer [35] was used with learning rate of
0.001 and initialized with Glorot [36] normal weights.

C. IRC safe observables

We begin our search by considering only the observables
which are IRC safe, with k = 1, a total of 3,018 graphs.
Beginning with the seven HL features, the first graph

selected is
N 1
(r=1,=3) = Z Zazp02,
a,b=1

This graph has an ADO of 0.802 with the CNN over the
input subspace where the CNN disagrees with the seven HL,
suggesting that it is well aligned with the CNN’s strategy.
Adding it to the seven HL features achieves an AUC of
0.970 £ 0.001, very nearly closing the gap with the CNN
performance of 0.972. This graph is very closely related to
jet mass, a pairwise sum over cells which folds in angular
separation, but more closely resembles the Les Houches
Angularity variable [40], which similarly is sensitive to the
distribution of energy away from the center, though with a
smaller power of the angularity than jet mass, which
suggests that it enhances small angles. Additional scans
do not identify EFP observables with a useful ADO and do
not contribute to the AUC, within our defined EFP subspace.

If instead, we begin with the seven HL features as well as
the jet mass, the procedure selects two graphs:

N
%(“=175=1) = Z Za-~-Zheabeaceadeaeeafeageah
b=

a 1

and

N
111
J— 2 2 2
I>(n:1,ﬁ:%)— E Za2p2c0 2,020

a,b,c=1

When combined with the seven HL features and Mjg,
this set of ten observables achieves an AUC of
0.971 £ 0.001, almost matching the CNN performance.
Distributions of these observables for signal and back-
ground samples are shown in Fig. 6.

As the EFPs are normalized, they are sensitive to relative
distributions of energy rather than the overall scale. As
suggested in Ref. [39], we add the jet p observable to
provide this information, which when combined with the
M, and seven HL features, achieves an AUC of 0.965.
Searching the IRC safe EFPs, the guided search identifies
the familiar graph .~ withxk = 1,8 = %and reaches an AUC

of 0.973 +0.001, completely closing the gap.

B background
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FIG. 6. log;, distributions of the selected IRC-safe EFPs as
chosen by the black-box guided strategy, for signal electrons and
background jets.

D. Broader scan

In this section, we present a scan of a larger set of EFPs,
including values of x which lead to IRC unsafe observ-
ables, k = [-1,0,1,2].

Beginning from the seven standard HL features, the first
pass selects a simple observable:
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N
° (=)= 22
a=1

with no angular terms at all, but k = 2. This is known in the
jet substructure literature as p? [41,42] and was originally
developed to help distinguish between quark and gluon jets.
When combined with the other seven HL features, this
observable also reaches a performance of 0.970 £ 0.001.
Further scans do not lead to statistically significant
improvements in AUC.

If instead, we begin from the seven standard HL features
and M, we find 3}, this time with x = 2 as well as the

simpler p2. Distributions of these two IRC unsafe EFP
observables for signal and background are shown in Fig. 7.
Together with the seven HL. and Mjet, these 10 observables
reach a performance of 0.971 £ 0.001. Further scans do not
lead to statistically significant improvements in AUC.
However, beginning from the seven HL observables
together with M, and pr, the same EFP graphs are chosen
by the guided search, reaching an AUC of 0.973 + 0.001

I background
0.351 =3 signal

o

Density
(=]
N
(=]

-12 -10 -8
log1o [EFP Observable]

B background —
204 =3 signal

154

Density

logyo [EFP Observable]

FIG.7. log distributions of the selected EFPs as chosen by the
black-box guided strategy, regardless of IRC safety, for signal
electrons and background jets.

TABLE II. Summary of the performance of various networks
considered. Uncertainty in the AUC value is £0.001, estimated
using bootstrapping.

Base Additions (k, ) (AUC)
7HL 0.945
7HL ) 0.970
7HL - (2,-) 0.970
THL + M, 0.956
THL + M, = X(B)) > (1.9 0.971
THL + M =3 (2,1 < (2,-) 0.971
THL + Mie, + pr 0.965
THL + Mo + pr P! 0.973
THL + Mo + pr = XN} < (2,-) 0.973
CNN 0.972
CNN + 7HL ) 0.972
CNN + 7HL -(2,-) 0.973
TABLE III. Performance of selected networks, in terms of the

AUC value as well as background rejection (R) at several choices
of signal efficiency (¢).

Features AUC R6:0.5 Rs:0.75 R€:049
THL 0.945 32.98 15.78 8.80
THL + " (1,1) 0.970 88.63 34.73 15.07
CNN 0.973 94.07 36.89 15.93

See Table II for a summary of the additional observables
needed to reach the performance of 20.97 in each case, and
Table III for background rejection factors for several
choices of signal efficiency.

VIII. DISCUSSION

Our deep neural networks indicate that low-level calo-
rimeter data represented as images contains information
useful for the task of electron identification that is not
captured by the standard set of high-level features as
implemented here.

A guided search [39] through the EFP space identified
two EFP observables calculated on the ECal cells which
mimic the CNN strategy and bridge the gap. Observables
on the HCal information were not helpful to the classi-
fication task. The first,

N 1
(k=1,8=3) = Z Za2p0 2,
a,b=1

is closely related to the Les Houches angularity [40],
and confirms our suspicion that the nontrivial structure
of the background object provides a useful handle for
classification. The second observable, p? [41,42],
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N
®  (x—2) = Z 22
a=1

is not IRC safe, and was originally developed to help
distinguish between quark and gluon jets. It effectively
counts the number of hard particles, which is sensitive to
the amount of color charge, where electrons and jets are
clearly distinct.

Both Les Houches angularity and p? display power to
separate electrons from the jet backgrounds, by exploiting the
structure and nature of the jet energy deposits. The studies
performed here use a simplified simulation of the detector,
and notably lack an accurate description of the radiation of
photons from electrons, which may result in an unrealistic
pattern of energy deposition and secondary clusters. While
the precise performance obtained here may depend at some
level on the fidelity of the simulation used and the resulting
limitations on the implementation of state-of-the-art high-
level features, these results strongly suggest that these
observables be directly studied in experimental contexts
where more realistic simulation tools are available, or directly
in data samples, using weakly supervised learning [43].

More broadly, the existence of a gap between the
performance of state-of-the-art high-level features and
CNN represents an opportunity to gather additional power
in the battle to suppress lepton backgrounds. Rather than
employing black-box CNNs directly, we have demonstrated
the power of using them to identify the relevant observables
from a large list of physically interpretable options. This
allows the physicist to understand the nature of the infor-
mation being used and to assess its systematic uncertainty.

Any boost in electron identification performance is
extremely valuable to searches at the LHC, especially
those with multiple leptons, where event-level efficiencies
depend sensitively on object-level efficiencies.

All code and data used in this project is available at:
https://github.com/TDHTTTT/EID, as well as through the
UCI Machine Learning in Physics web portal at: http:/
mlphysics.ics.uci.edu/.
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FIG. 8. Diagram of convolutional block appearing in network
architecture, see Fig 9.
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FIG. 9. Diagram of the architecture of the convolutional neural
network.

APPENDIX: NEURAL NETWORK
HYPERPARAMETERS AND ARCHITECTURE

Figures 8 and 9 show the architecture of the convolu-
tional neural network.

TABLE IV. Hyperparameter ranges for Bayesian optimization
of convolutional networks.

Parameter Range
Num. of conv. blocks [1, 4]
Num. of filters [8, 128]
Num. of dense layers [1, 3]
Num. of hidden units [1, 200]
Learning rate [0.0001, 0.01]
Dropout [0.0, 0.5]
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TABLE V. Hyperparameter ranges for Bayesian optimization
of fully connected networks.

Parameter Range
Num. of dense layers [1, 8]
Num. of hidden units [1, 200]
Learning rate [0.0001, 0.01]
Dropout [0.0, 0.5]

TABLE VI. Best hyperparameters found per model.

Features Conv. Filters Dense Hidden LR DP
ECal 3 117 2 160  0.0001 0.0
Hcal 2 27 2 84  0.01 0.5
Ecal + HCal 3 47 2 146 0.0001 0.0
HL .. 5 149  0.001 0.0019
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