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We investigate whether state-of-the-art classification features commonly used to distinguish electrons

from jet backgrounds in collider experiments are overlooking valuable information. A deep convolutional

neural network analysis of electromagnetic and hadronic calorimeter deposits is compared to the

performance of typical features, revealing a ≈5% gap which indicates that these lower-level data do

contain untapped classification power. To reveal the nature of this unused information, we use a recently

developed technique to map the deep network into a space of physically interpretable observables. We

identify two simple calorimeter observables which are not typically used for electron identification, but

which mimic the decisions of the convolutional network and nearly close the performance gap.
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I. INTRODUCTION

Production of electrons in high-energy collisions pro-

vides an essential handle on precision studies of the

Standard Model [1,2] of particle physics as well as for

searches for new physics [3,4]. The identification of

electrons, and their separation from backgrounds which

mimic their signature, is therefore a critical element in the

data analysis toolkit, especially at lower transverse momen-

tum, where the backgrounds rise rapidly [5].

In collider experiments, electrons are identified by an

isolated trackwhich alignswith a localized energydeposition,

primarily in the electromagnetic calorimeter. The primary

source of backgrounds is the production of hadronic jets,

which typically feature multiple tracks and extended energy

deposition in both electromagnetic andhadronic calorimeters,

but can fluctuate to mimic electrons. The tracker and

calorimeters, however, are very finely segmented, producing

high-dimensional data which is difficult to analyze directly.

A mature literature [6–8] contains higher-level features

designed by physicists to highlight the distinct signature of

the electron and suppress the backgrounds. The higher-level

features define a lower-dimensional feature space.

Recent strides in machine learning for physics, particu-

larly the advent of deep learning [9–15] and image-

processing techniques [16–21], have demonstrated that

high-level features designed by domain experts may not

always fully capture the information available in the lower-

level high-dimensional data. Specifically, the rich but subtle

structure of the deposition of energy by jets provides

a powerful potential handle for discrimination. Given

their role as the dominant background, this suggests that

additional classification power may be gained by applying

image-based deep learning techniques to electrons.

In this study, we apply deep convolutional neural net-

works (CNNs) to the task of distinguishing between

electrons and jets, using separate images from the electro-

magnetic and hadronic calorimeters. Due to the black-box

nature of their operation, we do not propose to use CNNs in

place of the high-level features. Instead, we apply CNNs to

probe the information content of the low-level data in

comparison to the high-level features. We show that the

classification performance of the image-based CNNs

exceeds the performance of the high-level features in

common use by Large Hadron Collider (LHC) experi-

ments, by a small, but significant, margin. We then identify

the source of the untapped information and construct novel

high-level features that capture it.

This paper is organized as follows. In Sec. II, we outline

our approach. In Sec. III, we discuss the details of our

image generation process and the corresponding dataset

used for CNN experiments. In Sec. IV, we review the

existing state-of-the-art ATLAS and CMS high-level fea-

tures, which we combine to derive our benchmark perfor-

mance. In Sec. V, we provide details of neural network

architectures and training. In Sec. VI, we discuss the

performance of these networks. In Sec. VII, we search

for new high-level features to bridge the gap between

CNNs and standard features. In Sec. VIII, we summarize

and discuss the results, providing an intuitive understand-

ing of the underlying landscape.

II. OVERVIEW

This study explores whether low-level, high-dimensional,

Oð103Þ, calorimeter data contains information useful for*
pfbaldi@ics.uci.edu
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distinguishing electrons from a major background not

captured by the standard suite of high-level features designed

by physicists. Similar studies in jets or flavor tags have

revealed such gaps [10,17].

We probe this issue using a simulated dataset created

with publicly available fast simulations tools [22]; while

such samples do not typically match the fidelity of those

generated with full simulations [23], we refine the calo-

rimeter description for this study and find the modeling

sufficiently realistic for a proof-of-principle analysis. Our

focus is on comparing physically motivated, high-level

features to low-level image techniques on equal footing.

While we anticipate that the numerical results will be

different when evaluated in a fully realistic scenario, the

broad picture will likely remain the same. The technique

described here is fairly general and applicable to more

realistic experimental scenarios, so that valuable lessons

can be learned in the present context.

We reproduce the standard suite of electron identification

features, as described in Refs. [6,7], in the context of our

simulated description. We then compare their combined

performance to that of deep convolutional neural networks

(CNNs) which have been trained to analyze the lower-level

calorimeter cells using image recognition techniques

[16–18]. We do not advocate for the use of CNNs to replace

high-level features whose designs are grounded in physics;

CNNs are difficult to interpret and the low level and large

dimensionality of the input makes validation of the features

and definition of systematic uncertainties nearly impossible.

Instead, here we use the power of CNNs as a probe, to test

whether further information is present in the low-level data.

Having identified a gap, we then explore a complete space of

novel high-level features, Energy flow polynomials (EFPs)

[24] to interpret and bridge the gap.

III. DATASET GENERATION

In this section, we describe the process of generating

simulated signal and background datasets, reproducing the

standard suite of high-level features, and forming pixelated

images from the electromagnetic and hadronic calorimeter

deposits.

A. Processes and simulation

Simulated samples of isolated electrons are generated

from the production and electronic decay of a Z0 boson
in hadronic collisions, pp→ Z0

→ eþe− at
ffiffiffi

s
p ¼ 13 TeV.

We set mZ0 to 20 GeV in order to efficiently produce

electrons in the range pT ¼ ½10; 30� GeV, where hadronic
backgrounds are significant. Simulated samples of back-

ground jets are generated via generic dijet production.

Events were generated with MadGraph v2.6.5 [25], decayed

and showered with PYTHIA v8.235 [26], with detector

response described by DELPHES v3.4.1 [22] using ROOT

version 6.0800 [27].

Our configuration of DELPHES approximates the

ATLAS detector [28]. For this initial study, we model only

the central layer of the calorimeters where most energy is

deposited; future work will explore more detailed and

realistic detector simulation. However, we maintain the

critical separation between the electromagnetic and had-

ronic calorimeters and their distinct segmentation.

Our simulated electromagnetic calorimeter (ECal) has

segmentation of ðΔϕ;ΔηÞ ¼ ð π
126

; 0.025Þ while our simu-

lated hadronic calorimeter (HCal) is coarser, ðΔϕ;ΔηÞ ¼
ð π
31
; 0.1Þ. This approach allows us to investigate whether

information about the structure of the many-particle jet is

useful for suppressing their contribution. See Ref [19] for

an analysis of the information contained in the shape of

shower for individual particles.

No pile-up simulation was included in the generated

data, as pileup subtraction techniques have been shown to

be effective [29]. In total, we generated 107k signal and

107k background objects.

B. Electron candidate selection

We use DELPHES’ standard electron identification pro-

cedures where loose electron candidates are selected

from charged particle tracks which align with energy

deposits in the ECal. We required the object to have track

pT > 10 GeV and jηj < 2.125, to avoid edge effects when

forming calorimeter images, see Fig. 1. For later training,

the background objects are reweighted to match the pT

distribution of the signal.

C. Image formation

The cells of the calorimeter can be naturally organized as

pixels of an image, allowing for use of powerful image-

processing techniques. Each pixel contains the energy (E)
deposited in one cell. Alternatively, one may form images

in which each cell represents ET ¼ E= cosh η, which folds

in the location of the object relative to the collision point.

For completeness we initially consider images in which

pixels represent E and images where pixels represent ET.

Additionally, we create separate images for the ECal and

HCal, in order to preserve the separate and powerful

information they offer. In total, four images are created

for each electron candidate: ECal E, ECal ET, HCal E,
HCal ET. The pixels in the images were scaled to values

between zero and one by dividing by the maximum pixel

value in each image dataset. All standard classification and

EFP variables were scaled by substracting the mean and

dividing by the standard deviation.

The center of a calorimeter image is chosen to be the

ECal cell with largest transverse energy deposit in the 9 × 9

cell region surrounding the track of the highest pT electron

in that event. This accounts for the curvature in the path of

the electron as it propagates between the tracker and the

calorimeter. The ECal image extends fifteen pixels in either
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direction, forming a 31 × 31 image. The HCal granularity

is four times as course, and an 8 × 8 image covers the same

physical region. Figures 2 and 3 show example and mean

images for the ECal and HCal, respectively.

IV. STANDARD CLASSIFICATION FEATURES

To assess the performance of the high-level classifica-

tions features typically used by ATLAS [7] and CMS [6]

which identify electrons and reject jet backgrounds, we

reproduce their form here, where relevant.

Since electron candidates are confined to the longi-

tudinal range jηj < 2.125, we only consider variables that

are well-defined in this range. Additionally, we only

consider variables which are based on information included

in our simulation, to ensure the comparison uses informa-

tion on equal footing. In addition, we do not perform

clustering because it is unnecessary given the simplified

nature of DELPHES’ simulation; where a feature calls for

the cluster energy, we replace it with the total energy of

the candidate image. This is a reasonable proxy since the

simplified simulation of the calorimeter response in

DELPHES is unlikely to deposit the electron’s energy in

multiple disconnected clusters. All high-level features are

calculated from the ECal and HCal images, using E or ET

images where appropriate.

FIG. 2. Images in the electromagnetic calorimeter for signal

electrons (top) and background jets (bottom). On the left are

individual examples, on the right are mean images. See Fig. 3 for

corresponding hadronic calorimeter images.

FIG. 3. Images in the hadronic calorimeter for signal electrons

(top) and background jets (bottom). On the left are individual

examples, on the right are mean images. See Fig. 2 for

corresponding electromagnetic calorimeter images.

FIG. 1. Distribution of generated electron candidate pT and η

for simulated signal and background samples, before reweighting

to match spectra.
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We reproduce seven features: Rhad, ωη2, Rϕ, Rη, σηη, and

two isolation quantities. Together, these capture the typical

strategies of suppressing objects with significant hadronic

energy or extended energy deposits. Definitions of each

feature are below, and distributions for signal and back-

ground samples are shown in Fig. 4.

A. Ratio of HCal and ECal energy: Rhad

The feature Rhad relates the transverse energy (ET) in the

electromagnetic calorimeter to that in the hadronic calo-

rimeter. Specifically,

Rhad ¼
ΣiE

HCal
T;i

ΣjE
ECal
T;j

ð1Þ

where i and j run over the pixels in the HCal and ECal

images, respectively.

B. Lateral width of the ECal energy shower: wη2

The lateral width of the shower in the ECal, wη2, is

calculated as

wη2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣiEiðΔηiÞ2
ΣiEi

−

�

ΣiEiΔηi

ΣiEi

�

2

s

ð2Þ

where Ei is the energy of the ith pixel in the ECal image

and Δηi is the pseudorapidity of the ith pixel in the ECal

image measured relative to the image’s center. The sum is

calculated within an ðΔη × ΔϕÞ ¼ ð3 × 5Þ cell window

centered on the image’s center.

C. Azimuthal and longitudinal energy distributions:

Rϕ and Rη

To probe the distribution of energy in azimuthal (ϕ) and

longitudinal (η) directions, we calculate two features Rϕ

and Rη. Qualitatively, these relate the total ECal energy in a

subset of cells to the energy in a larger subset of cells

extended in either ϕ or η, respectively. Specifically,

Rϕ ¼ E3×3

E3×7

; Rη ¼
E3×7

E7×7

ð3Þ

where the subscript indicates the number of cells included

in the sum in η and ϕ respectively. For example, ðη × ϕÞ ¼
ð3 × 7Þ is a subset of cells which extends 3 cells in η and 7

in ϕ relative to the center of the image.

D. Lateral shower extension: σηη

An alternative probe of the distribution of energy in η is

σηη [6]. Specifically,

σηη ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Σiwiðiη − īηÞ2
Σiwi

s

ð4Þ

where wi is the weighting factor j lnðEiÞj with Ei being the

ECal energy of the ith pixel. The sum runs over the non-

zero cells in the ðη × ϕÞ ¼ ð5 × 5Þ subset of cells centered
on the highest energy cell in the ECal. Here, iη is measured

in units of cells away from center, īη, as iη ∈ 0,�1, or�2 if

we choose īη ¼ 0.

E. Isolation

Jets typically deposit significant energy surrounding the

energetic core, while electrons from heavy boson decays

are typically isolated in the calorimeter.
1
To assess the

degree of isolation, we sum the ECal energy in cells within

the angular range ΔR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δη2 þ Δϕ2
p

< 0.3 or 0.4, where

Δη and Δϕ are measured from a given cell’s center and the

center of the image.

FIG. 4. Distribution of signal electron (red) and background jets

(blue) for seven existing typically-used high-level features, as

well as for mass.

1
Electrons may also appear inside jets in decays of B-mesons

for example, but here we focus on decays from real W and Z
bosons.
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V. NEURAL NETWORK ARCHITECTURES

AND TRAINING

We construct multilayer neural networks that accept

low-level images, or high-level features, or both, with a

sigmoid unit as their output to classify between signal and

background.

Each image input is passed through a number of

convolutional blocks, with each block consisting of two

convolutional layers with 3 × 3 kernels, rectified linear

units [30] as the activation function, and a final 2 × 2

maxpooling layer. Finally, the outputs of the maxpooling

layer are flattened and concatenated with the high-level

inputs to form a high-dimensional vector. This high-

dimensional vector is then processed by a sequence of

fully connected layers with rectified linear units, using

dropout [31,32]. The final output is produced by a single

logistic unit and it can be interpreted as the probability of

the input belonging to the signal class. The entire archi-

tecture is trained by stochastic gradient descent to minimize

the relative entropy between the targets and the outputs,

across all training examples. For each combination of high-

level variables, we also train and tune multilayer, fully

connected, neural networks with a similar sigmoid unit at

the top.

All models were implemented using KERAS [33] with

TENSORFLOW [34] as the backend and trained with a batch

size of 128 with the ADAM optimizer [35]. The weights for

all the models were initialized using Glorot [36] uniform

weights and each network was tuned using 150 iterations

of bayesian optimizaton with the SHERPA hyperparameter

optimization library [37]. Additional details about the

hyperparameters and their optimization are given in

Tables IV–VI.

VI. PERFORMANCE

Initial studies indicated that having images that reflect

both E and ET provided no performance boost, so only

results with ET-based images are shown here and used for

further studies. A comparison of the performance of the

image networks and the seven standard high-level features

(Rhad, ωη2, Rϕ, Rη, σηη, IsoðΔR < 0.3Þ, IsoðΔR < 0.4Þ) is
shown in Fig. 5 and described in Table I.

Networks combining the standard high-level features

(AUC of 0.945) do not match the performance of a network

which analyzes the lower-level data expressed as images

(0.972), indicating that the images contain additional,

untapped information relevant to the identification of

electrons. This is not unexpected, and is in line with similar

results for jet substructure or flavor tagging [10,17].

Networks which see only one of the ECal or HCal images

but not both do not match this performance, supporting

the intuition that both calorimeters contribute valuable

information. Adding the HL features to the CNN, how-

ever, gives an almost negligible boost in performance,

suggesting that the CNN has succeeded in capturing the

power of the HL features.

VII. BRIDGING THE GAP

The performance of the deep CNN reveals that there

is information in the low-level image that is not captured

by the suite of existing high-level features. The goal,

however, is not to replace the suite of features with an

image-based network whose decisions are opaque to us and

may not align with real physical principles. Instead, our

aim is to identify new high-level features which bridge the

gap between the existing performance and the superior

performance of the CNN.

FIG. 5. Comparison of the performance in electron identifica-

tion for networks with varying sets of input features. Shown is the

signal efficiency versus background rejection, and the AUC, for

networks which use a set of seven expert high-level features (see

text for details), networks which use HCal and/or ECal images,

and a network which combines the high-level features with jet

mass, pT and an energy-flow polynomial identified by a scan

which aims to match the decisions of the image network.

TABLE I. Electron classification power (AUC) for networks

with various feature sets. Images refer to low-level pixel data.

Standard features are the high-level (HL) features typically used

[Rhad, ωη2, Rϕ, Rη, σηη, IsoðΔR < 0.3Þ, IsoðΔR < 0.4Þ], as

described in the text. The uncertainty on AUC values was

evaluated using bootstrapping to �0.001, unless otherwise

specified.

Network Features AUC

Images 7 Standard

ECal HCal HL Features Mjet

✓ 0.82� 0.02

✓ 0.918

✓ ✓ 0.972

✓ ✓ ✓ 0.973

✓ ✓ ✓ ✓ 0.973

✓ 0.945

✓ ✓ 0.956
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We note that the design of the high-level features focuses

on highlighting the characteristics of the signal electrons,

localized energy depositions primarily in the ECal without

significant structure. The background, however, is due to

jets, which potentially can exhibit a rich structure and

comprise a mixture of jets from gluons, light quarks, and

heavy quarks. Each parton may produce jets with a distinct

structure and varying probability to mimic electrons. We

hypothesize that features which are sensitive to the struc-

ture of the jet, or subclasses of jets, may provide additional

discrimination power.

We first consider the powerful feature of jet mass, Mjet,

which is not often applied to electron identification, but has

a distinct marginal distribution for electrons and jets, see

Fig. 4. Including it in a network of HL features provides a

small but distinct boost in performance, see Table I,

indicating that it contains useful information for this

classification task not duplicated by the standard seven

HL features. This encourages us to explore further the

space of jet observables as a way to understand the source

of additional classification power of the CNN.

A. Set of observables

One could in principle consider an infinite number of jet

observables. To organize our search, we use the energy

flow polynomials (EFPs) [24], a large (formally infinite) set

of parametrized engineered functions, inspired by previous

work on energy correlation functions [38], which sum over

the contents of the cells scaled by relative angular distances.

These parametric sums are described as the set of all

isomorphic multigraphs where:

each node⇒
X

N

i¼1

zi; ð5Þ

each edge⇒ ðθijÞk: ð6Þ

The observable corresponding to each graph can be

modified with parameters ðκ; βÞ, where

ðziÞκ ¼
�

pTi
P

jpTj

�

κ

; ð7Þ

θ
β
ij ¼ ðΔη2ij þ Δϕ2

ijÞβ=2: ð8Þ

Here, pTi is the transverse momentum of cell i, and Δηij
(Δϕij) is pseudorapidity (azimuth) difference between cells

i and j. The original IRC-safe EFPs require κ ¼ 1, however

we consider examples with κ ≠ 1 to explore a broader

space of observables. Also, note that κ > 0 generically

corresponds to IR-safe but C-unsafe observables.
2

In principle, the space is complete, such that any jet

observable can be described by one or more EFPs of some

degree; in practice, the space is infinite and only a finite

subset can be explored. We consider EFPs with up to

seven edges and with β values of ½1
2
; 1; 2� and κ values of

½−1; 0; 1; 2�. We consider each graph as applied to the ECal

or the HCal separately, effectively doubling the number of

graphs, for a total of 12,072.
3

B. Searching for observables

Rather than conduct a brute-force search of this large

space, we aim to leverage the success of the CNN and find

observables which mimic its decisions. We follow the

black-box guided algorithm of Ref. [39], which isolates the

portion of the input space where the CNN and existing

HL features disagree and searches for a new observable

that matches the decisions of the CNN algorithm in that

subspace.

The subspace is defined as input pairs ðx; x0Þ that have a
different relative ordering between the CNN and the net-

work of nHL features (HLNn). Mathematically, we express

this using the decision ordering (DO)

DO½f; g�ðx; x0Þ ¼ ΘððfðxÞ − fðx0ÞÞðgðxÞ − gðx0ÞÞÞ; ð9Þ

where fðxÞ and gðxÞ are classification functions such as

the CNN or the HLNn, such that DO ¼ 0 corresponds to

inverted ordering and DO ¼ 1 corresponds to the same

ordering. The focus of our investigation are the set of pairs

Xn where the two classifiers disagree, defined as

Xn ¼ fðx; x0ÞjDO½CNN;HLn�ðx; x0Þ ¼ 0g: ð10Þ

As prescribed in Ref. [39], we scan a sub-space of EFPs

to find the observable that has the highest average decision

ordering (ADO) with the CNN when averaged over the

disordered pairs Xn. The selected EFP is then incorporated

into the new network of HL features, HLNnþ1, and the

process is repeated until the ADO or AUC plateaus.

For all HLNn used in this search, models were trained

with KERAS [33] using TENSORFLOW [34] as the backend.

Each model was built as a fully connected neural network

of simple one dimensional input features and a single

logistic unit output. The guided search requires training a

new HLNn after each new EFP selection. Performing a full

Bayesian optimization with Sherpa and bootstrapping each

network becomes computationally expensive. Instead, a

simpler architecture was found to be provide consistent,

stable, performance. These networks consisted of 3 hidden

layers, each with 50 rectified linear units, separated by 2

2
For κ < 0, empty cells are omitted from the sum.

3
We also explored a version where ECal and HCal information

were used simultaneously by each graph, but found no
improvement.
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dropout layers using a dropout value of 0.25 and trained

with a batch size of 128.

The ADAM optimizer [35] was used with learning rate of

0.001 and initialized with Glorot [36] normal weights.

C. IRC safe observables

We begin our search by considering only the observables

which are IRC safe, with κ ¼ 1, a total of 3,018 graphs.

Beginning with the seven HL features, the first graph

selected is

This graph has an ADO of 0.802 with the CNN over the

input subspace where the CNN disagrees with the seven HL,

suggesting that it is well aligned with the CNN’s strategy.

Adding it to the seven HL features achieves an AUC of

0.970� 0.001, very nearly closing the gap with the CNN

performance of 0.972. This graph is very closely related to

jet mass, a pairwise sum over cells which folds in angular

separation, but more closely resembles the Les Houches

Angularity variable [40], which similarly is sensitive to the

distribution of energy away from the center, though with a

smaller power of the angularity than jet mass, which

suggests that it enhances small angles. Additional scans

do not identify EFP observables with a useful ADO and do

not contribute to the AUC, within our defined EFP subspace.

If instead, we begin with the seven HL features as well as

the jet mass, the procedure selects two graphs:

and

When combined with the seven HL features and Mjet,

this set of ten observables achieves an AUC of

0.971� 0.001, almost matching the CNN performance.

Distributions of these observables for signal and back-

ground samples are shown in Fig. 6.

As the EFPs are normalized, they are sensitive to relative

distributions of energy rather than the overall scale. As

suggested in Ref. [39], we add the jet pT observable to

provide this information, which when combined with the

Mjet and seven HL features, achieves an AUC of 0.965.

Searching the IRC safe EFPs, the guided search identifies

the familiar graph with κ ¼ 1; β ¼ 1

2
and reaches an AUC

of 0.973� 0.001, completely closing the gap.

D. Broader scan

In this section, we present a scan of a larger set of EFPs,

including values of κ which lead to IRC unsafe observ-

ables, κ ¼ ½−1; 0; 1; 2�.
Beginning from the seven standard HL features, the first

pass selects a simple observable:

FIG. 6. log10 distributions of the selected IRC-safe EFPs as

chosen by the black-box guided strategy, for signal electrons and

background jets.
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with no angular terms at all, but κ ¼ 2. This is known in the

jet substructure literature as pD
T [41,42] and was originally

developed to help distinguish between quark and gluon jets.

When combined with the other seven HL features, this

observable also reaches a performance of 0.970� 0.001.

Further scans do not lead to statistically significant

improvements in AUC.

If instead, we begin from the seven standard HL features

and Mjet, we find , this time with κ ¼ 2 as well as the

simpler pD
T . Distributions of these two IRC unsafe EFP

observables for signal and background are shown in Fig. 7.

Together with the seven HL and Mjet, these 10 observables

reach a performance of 0.971� 0.001. Further scans do not

lead to statistically significant improvements in AUC.

However, beginning from the seven HL observables

together withMjet and pT, the same EFP graphs are chosen

by the guided search, reaching an AUC of 0.973� 0.001

See Table II for a summary of the additional observables

needed to reach the performance of ≈0.97 in each case, and

Table III for background rejection factors for several

choices of signal efficiency.

VIII. DISCUSSION

Our deep neural networks indicate that low-level calo-

rimeter data represented as images contains information

useful for the task of electron identification that is not

captured by the standard set of high-level features as

implemented here.

A guided search [39] through the EFP space identified

two EFP observables calculated on the ECal cells which

mimic the CNN strategy and bridge the gap. Observables

on the HCal information were not helpful to the classi-

fication task. The first,

is closely related to the Les Houches angularity [40],

and confirms our suspicion that the nontrivial structure

of the background object provides a useful handle for

classification. The second observable, pD
T [41,42],

FIG. 7. log10 distributions of the selected EFPs as chosen by the

black-box guided strategy, regardless of IRC safety, for signal

electrons and background jets.

TABLE II. Summary of the performance of various networks

considered. Uncertainty in the AUC value is �0.001, estimated

using bootstrapping.

Base Additions (κ, β) (AUC)

7HL 0.945

7HL (1; 1
2
) 0.970

7HL (2;−) 0.970

7HLþMjet 0.956

7HLþMjet (1,1) (1; 1
2
) 0.971

7HLþMjet (2,1) (2;−) 0.971

7HLþMjet þ pT 0.965

7HLþMjet þ pT (1; 1
2
) 0.973

7HLþMjet þ pT (2,1) (2;−) 0.973

CNN 0.972

CNNþ 7HL (1; 1
2
) 0.972

CNNþ 7HL (2;−) 0.973

TABLE III. Performance of selected networks, in terms of the

AUC value as well as background rejection (R) at several choices
of signal efficiency (ϵ).

Features AUC Rϵ¼0.5 Rϵ¼0.75 Rϵ¼0.9

7HL 0.945 32.98 15.78 8.80

0.970 88.63 34.73 15.07

CNN 0.973 94.07 36.89 15.93
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is not IRC safe, and was originally developed to help

distinguish between quark and gluon jets. It effectively

counts the number of hard particles, which is sensitive to

the amount of color charge, where electrons and jets are

clearly distinct.

Both Les Houches angularity and pD
T display power to

separate electrons from the jet backgrounds, by exploiting the

structure and nature of the jet energy deposits. The studies

performed here use a simplified simulation of the detector,

and notably lack an accurate description of the radiation of

photons from electrons, which may result in an unrealistic

pattern of energy deposition and secondary clusters. While

the precise performance obtained here may depend at some

level on the fidelity of the simulation used and the resulting

limitations on the implementation of state-of-the-art high-

level features, these results strongly suggest that these

observables be directly studied in experimental contexts

wheremore realistic simulation tools are available, or directly

in data samples, using weakly supervised learning [43].

More broadly, the existence of a gap between the

performance of state-of-the-art high-level features and

CNN represents an opportunity to gather additional power

in the battle to suppress lepton backgrounds. Rather than

employing black-box CNNs directly, we have demonstrated

the power of using them to identify the relevant observables

from a large list of physically interpretable options. This

allows the physicist to understand the nature of the infor-

mation being used and to assess its systematic uncertainty.

Any boost in electron identification performance is

extremely valuable to searches at the LHC, especially

those with multiple leptons, where event-level efficiencies

depend sensitively on object-level efficiencies.

All code and data used in this project is available at:

https://github.com/TDHTTTT/EID, as well as through the

UCI Machine Learning in Physics web portal at: http://

mlphysics.ics.uci.edu/.
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APPENDIX: NEURAL NETWORK

HYPERPARAMETERS AND ARCHITECTURE

Figures 8 and 9 show the architecture of the convolu-

tional neural network.

FIG. 8. Diagram of convolutional block appearing in network

architecture, see Fig 9.

FIG. 9. Diagram of the architecture of the convolutional neural

network.

TABLE IV. Hyperparameter ranges for Bayesian optimization

of convolutional networks.

Parameter Range

Num. of conv. blocks [1, 4]

Num. of filters [8, 128]

Num. of dense layers [1, 3]

Num. of hidden units [1, 200]

Learning rate [0.0001, 0.01]

Dropout [0.0, 0.5]
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