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Generation of simulated data is essential for data analysis in particle physics, but current Monte Carlo
methods are very computationally expensive. Deep-learning-based generative models have successfully
generated simulated data at lower cost, but struggle when the data are very sparse. We introduce a novel
deep sparse autoregressive model (SARM) that explicitly learns the sparseness of the data with a tractable
likelihood, making it more stable and interpretable when compared to generative adversarial networks
(GANSs) and other methods. In two case studies, we compare SARM to a GAN model and a nonsparse
autoregressive model. As a quantitative measure of performance, we compute the Wasserstein distance
(W) between the distributions of physical quantities calculated on the generated images and on the training
images. In the first study, featuring images of jets in which 90% of the pixels are zero valued, SARM
produces images with W, scores that are 24%-52% better than the scores obtained with other state-of-the-
art generative models. In the second study, on calorimeter images in the vicinity of muons where 98% of the
pixels are zero valued, SARM produces images with W, scores that are 66%-68% better. Similar
observations made with other metrics confirm the usefulness of SARM for sparse data in particle physics.
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I. INTRODUCTION

Experiments in particle physics seek to uncover the
building blocks of matter and their interactions, which
determine the structure of the Universe from subatomic to
cosmic distances. Analyses of the data produced by these
experiments make extensive use of simulations to predict
the experimental signature of particle interactions under
various theoretical hypothesis. These simulations are used
in likelihood-free inference as well as in the development of
data selection and analysis strategies which optimize the
statistical power of the data. Current state-of-the-art sim-
ulators apply Monte Carlo techniques to the microphysical
processes governing individual particles’ propagation
and interaction [1], making them computationally expen-
sive [2,3].

Detectors in particle physics experiments have a multi-
layer architecture which produces highly structured data.
One essential layer, the calorimeter, measures the energy of
passing particles, and is subdivided into small cells to
ensure spatial resolution. In collider experiments, the
calorimeter is typically cylindrical [4], while in fixed-target
experiments it may be a surface [5]. In both cases, the data
can be represented as an image, allowing for the application
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of image-processing methods initially developed for natural
images. However, in contrast to natural images, pixels in
calorimeter images (Fig. 1) are very sparse, where usually
90% or more of the pixel values are zero. In addition, these
images are not as uniform as natural images, featuring
clusters in the center and noise in the periphery.

Recently, deep generative models [8—10] have produced
high-quality artificial natural images [11-13] at a relatively
low computational cost. The successful application of
machine learning in high-energy physics [14-21] and
generative models in natural images have inspired the
use of these models for generating imagelike data in
physical sciences applications [6,22—32], often employing
generative adversarial networks (GANs) [8] or, less fre-
quently, variational autoencoders (VAEs) [9]. However,
the extreme sparsity of the images in particle physics and
other areas of the physical sciences [33] presents unique
challenges for generative models.

The leading applications of GAN-based generative
models for sparse image synthesis in high-energy physics,
LAGAN [6] and CaloGAN [34], make use of the ReLU
activation function in the final layer to induce sparsity in the
output image. The flat portion of the ReLU activation
function can lead to many error gradients being zero at the
output layer, creating challenges [35] for stochastic gra-
dient descent [36,37] methods. In addition, GANs are
notoriously unstable during training [38] and can suffer
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from mode collapse, which restricts the diversity of events
in the generated data [39,40]. Despite these difficulties,
GANSs have been one of the most popular deep generative
models in particle physics.

However, other generative models may be better suited
for sparse data. For example, deep autoregressive models
(ARMs) have also demonstrated impressive performance
for generating natural images among likelihood-based
generative models [10,41]. In this paper, we develop sparse
autoregressive models (SARMs), a class of ARMs specifi-
cally tuned to produce sparse images. We present a
systematic approach for designing SARMs and demon-
strate their effectiveness through multiple experiments.
SARMs are stable during training with respect to hyper-
parameter variations and weight initializations. SARMs are
also interpretable in the sense that it is possible for these
models to produce an analytic likelihood for any given
sample. We then evaluate SARMs on two benchmark
datasets. Given their flexibility, SARMs may be applicable
to areas beyond particle physics where sparse images must
be generated.

II. DATASETS

An important statistical task in the analysis of particle
physics data is identifying the particle source of a particular
detector signature. Below, we describe two datasets, one
which distinguishes between the detector signatures of
single quarks and collimated pairs of quarks, and a second
which distinguishes between muons produced in isolation
and those produced as part of a shower of particles.

A. Jet substructure study

Quarks or gluons produced in collisions leave a particu-
lar detector signature: a jet, or shower of collimated
particles, which deposit most of their energy in a tight
core. In many applications, it is important to distinguish the
signatures of a single quark or gluon from that of a
collimated pair of quarks, which may leave two potentially
overlapping cores. This task is a natural setting for image-
recognition algorithms, and has been the focus of many
deep learning studies [33,42—45] which rely on simplified
calorimeter simulations due to the cost of generating
realistic samples. Thus, an inexpensive generation of
realistic datasets would be very valuable as a classification
training sample.

We use a set of benchmark jet images from Ref. [6],
where a full description of this dataset can be found as well
as the code to generate it. In this dataset, quark pairs from
W-boson decay are labeled as signal and single quark or
gluon jets are labeled as background images. The intensity
of each pixel value represents the sum of the momenta
transverse to the beam (Pr) over the particles which strike a
particular cell. The images are generated using PYTHIA8.219
[46] simulations of proton collisions at a center-of-mass

energy /s = 14 TeV, selecting jets with 250 < Py <
300 GeV. Instead of a realistic detector simulation, the
calorimeter response is mimicked via a regular 0.1 x 0.1
grid in the # and ¢ coordinates. The jet images are
constructed and preprocessed as described in [43], includ-
ing the centering and rotations of the images. The resulting
images are 25 x 25 pixels, with intensity values in the
[0,276] range. We divide them into a training set containing
400,000 images for the signal and 400,000 images for the
background, and a testing set containing 36,000 images for
the signal and 36,000 images for the background. A typical
image from this dataset is shown in Fig. 1. This dataset has
a high degree of sparseness: more than 90% of its pixels are
zero valued.

B. Muon isolation study

Muons leave a very clear detector signature which is
difficult to mimic. However, physicists must distinguish
between two modes of muon production: a rare mode in
which muons are produced from the decay of a heavy
boson and are isolated in the detector, and a second prolific
mode in which muons are produced inside a jet, surrounded
by other particles. Fluctuations in the jet can occasionally
produce apparently isolated muons.

We use a set of benchmark calorimeter images from [7],
where muons from heavy bosons are labeled as signal
and muons produced within jets are labeled as background.
The signal muons are generated with the process pp —
Z' — ptyu~ with a Z’ mass of 20 GeV/c?. Background
muons are generated with the process pp — bb. Both
signal and background datasets are generated at a center-of-
mass energy /s = 13 TeV. The collisions and immediate
decays are simulated with MADGRAPH52.3.3 [47], showering
and hadronization with PYTHIA6.428 [46], and detector
response with DELPHES34.0 [48] using the DELPHES
ATLAS detector model. Additional proton interactions
are overlaid on top of the primary process, at a rate of 50
additional interactions per event. This dataset only considers
muons with Py in the range: Py € [10,15] GeV/c. The
signal events are weighted to match the transverse muon
momentum distribution of the background events. The
calorimeter images in the vicinity of the muon are created
from the calorimeter deposits within the # — ¢ radius of
R < 0.4, where each pixel represents the momentum trans-
verse to the beam axis. The deposits are preprocessed by
centering the image on the coordinates of the identified
muon propagated to the calorimeter. The images are pixe-
lated using a 32 x 32 grid to roughly match the granularity of
the calorimeters of ATLAS and CMS, and the pixels have
values in the range [0, 172]. The training set contains 41,250
signal images and 41,246 background images, and the
testing set contains 41,344 signal images and 41,151 back-
ground images. A typical image from this dataset is shown in
Fig. 1. This dataset has an even greater level of sparsity:
more than 98% of its pixels have zero value.
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Calorimeter images in particle physics are often very sparse, where most of their pixels have very small values. Left panel:

typical signal image of a hadronic jet from [6]. Right panel: typical signal image of the vicinity of a muon from [7].

ITII. AUTOREGRESSIVE MODELS

ARMs approximate a high-dimensional data distribution
Pgaa(x) with P(x), the distribution induced by the model
where x € RP. For example, when working with images,
P a2 (X) represents the distribution of the values of D pixels
in the image. ARMs are generative models that create
outputs sequentially, where each new output is conditioned
on the previous output [49]. Formally, ARMs transform the
problem of learning the joint distribution Pgy,,(X) into
learning a sequence of tractable conditional distributions
P(x|x;<;). The ordering of the pixels can influence the
model’s performance and will be discussed later in the
paper. ARMs rely on the basic factorization

P(x) = Xp)
= P(x0) P(x1|x0) P(x2]x0, x1)..

P(x0, X1,
Xp_2)-

(1)

The conditional densities P(x;|x;.;) can be parametrized by
deep neural networks [10,41,50,51] so that (1) P(x;|x;.;) =
P(x;|0;), where 6; represents the parameters of a
distribution (e.g., mean and standard deviation); (2) 9, =
fi(xo, .-, xi_1), such that 0; depends on previous output;
and (3) the function f; is implemented by a neural network.
At generation time, the pixel values x; are generated
sequentially by sampling in order from the distributions
P(x;|0;). A simplified implementation of this process using
a single neural network is depicted in Fig. 2. The weights of
the neural networks that compute the 6;’s are shared across
different values of i, for regularization [51] purposes and to
reduce computational costs, hence the zero padding of the
input vector.

A common concern with ARMs is that by generating
pixels in sequence, conditioning only on previously visited
pixels, the model may not be able to take into account the
dependence of a current pixel on subsequent pixels.
However, this is not the case because the weights are
trained using all the data (i.e., “past” and “future” pixels)

~P(xD—1 |X0. .

and the model always learns to generate the joint marginal
distribution of previous and current pixels. This idea is
further illustrated with a toy example in Appendix A.

Learning in ARMs is different from learning in other
generative models such as GANs and VAEs. ARMs
directly minimize the discrepancy, in terms of Kullback-
Leibler (KL) divergence, between the data distribution
P a2 (x) and the model distribution P(x) which is produced
explicitly. In contrast, neither GANs nor VAEs produce a
tractable marginal likelihood model P(x) and, as a result,
they have to resort to approximations for minimizing the
KL divergence between the data and model distributions.
ARMs avoid this issue by sequentially modeling each
conditional probability distribution, allowing them to
minimize the KL divergence directly with a tractable
likelihood P(x). Leveraging the flexibility of deep neural
networks to learn each conditional probability, ARMs are
able to approximate a large family of continuous distribu-
tions in R” [52].

The implementation of ARMs for images can follow
several approaches [10,41,50,53]. For scalability during
training and generation, we use a single neural network to
model the parameters of the conditional probabilities at
each step, where some connections are intentionally dis-
abled to preserve the autoregressive structure (see
Appendix B), similar to the structure used in [50]. Given

Pixels Parameters Density Prediction
Xo P(xil 0) ~ Xi

0

0

FIG. 2. Pixel generation process by a deep ARM to create an
image with D pixels. For the pixel x;, a deep neural network
(DNN) is evaluated on a vector with values x, ..., x;_;, zero
padded to length D. The output of the network is the parameters
0, of a parametric probability density P(x;|6;), from which x; is
sampled.
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FIG. 3. Generation process of a deep autoregressive
model. During generation, the first pixel x, is sampled
from xq ~ P(x|6y). Next, the pixel xy is zero padded to a
D-dimensional vector and passed to the neural network ARM
model, which evaluates the parameters 6 = {6,,...,0p_},
though only 6; is needed to sample the next pixel x; ~
P(x1|6;). The pixels x, and x; are again zero padded to create
a D-dimensional vector which is passed into the neural network to
generate the next pixel. This process is repeated until all pixels are
generated. Note that the same neural network is used at each
generation step, and part of its weight connections are disabled to
preserve the autoregressive structure.

a training image, this makes it possible to calculate all the
parameters 6y, ...,0p_; in parallel, instead of calculating
each 6; sequentially. During generation, the model gen-
erates the output elements one by one as illustrated
in Fig. 3.

IV. SPARSE AUTOREGRESSIVE MODELS

To deal with sparsity in images, we introduce SARMs in
which each conditional distribution is a mixture comprising
a Dirac delta distribution at the zero-pixel value, as one of
its components. The probability associated with the zero-
pixel value is learnable by gradient descent, providing a
flexible and efficient way of modeling and fitting highly
sparse datasets. The other components of the mixture can
be modeled in different ways, as described below.

A. Sparse image likelihood models

In SARMs, the likelihood function for the ith pixel x; is
formulated as

p(xi]0;) =vi-6uco+ (L =vi) - 6pz0 - P(xilhi), (2)

where the parameters 0; = {y;,¢;} are predicted by the
underlying neural network taking x, ..., x;_; as its inputs.
Since the pixel values in the calorimeter images represent
the physical deposition of energy, they must be non-
negative, i.e., p(x;|¢;) > 0 only when x; > 0. To satisfy
this constraint, we explore two options. First, we use a
mixture of a Dirac delta distribution at zero with a discrete
distribution for the nonzero pixels (D + D). Second, we use
a mixture of Dirac delta distribution at zero with a
continuous distribution for the nonzero pixels (D + C).
Discrete mixture model (D + D).—We discretize each
pixel value x; by rounding it to the nearest value in a

predetermined grid with points {0, g,,...,gy}, where
gj > O for j from 1 to N, and gy corresponds to the largest
pixel value after rounding. The model learns the probability
of each discrete value as a categorical distribution:

N
p(xil60;) = 7vio- Oy,—0 T Z Vij- 5":':9./’ (3)

j=1

where each y;; is predicted by the parameter 6; =
(60, ..., 0;y) using a softmax function. When the grid is
uniform, this likelihood is the same as the discretized
softmax likelihood used by Pixel RNN [10], which has
achieved state-of-the-art results on benchmark datasets of
natural images [54]. However, in particle physics the
distribution of pixel values is typically far from uniform.
In many typical cases, there is a large number of pixels with
small values, and a few pixels with large values, as seen in
Fig. 5. To better represent the pixel distribution and
minimize the error due to quantization, we assign more
grid points to the region of low pixel values. We achieve
this by using a power transformation ¥ = x!/? on the pixel
values, where p is a hyperparameter such that p > 1.

Discrete and continuous mixture model (D + C).—The
pixel values of natural images are usually represented by
unsigned integer values between 0 and 255. However, in
particle physics images, the pixel values are typically
real valued. To avoid explicit rounding, SARM (D + C)
is built with a truncated logistic distribution that models the
nonzero distribution component of each pixel. To generate
the D4 C mixture, we reparametrize each pixel as
x; = X; - z;, where X; follows a truncated logistic distribu-
tion TL(u;, s;) with mean u; and scale parameter s;. Here
z; ~ Bern(y;) is a Bernoulli random variable with proba-
bility p(z; = 1) = y,, which controls the sparsity level. By
assuming independence of X; and z;, the likelihood function
of x; becomes

p(xi|0;) =vi 6,0+ (1 =7:) - 6,20 - P(Xilpin5:),  (4)

where 0; = {p;, s;,7;} are functions of the previous pixel
values xj.;,_;, to ensure the autoregressive structure. In
order to allow for unconstrained optimization, we treat
log(s;) as the learning parameter and take its exponential in
the likelihood equation (4). Since the pixel distribution
could be multimodal, we use a mixture of truncated logistic
distributions for ¥; which is more flexible. An example of
the generation process is depicted in Fig. 4

The mixture of truncated logistic likelihood differs from
the discretized logistic mixture used in Pixel CNN++
[41] in the way it handles continuous pixel values. Pixel
CNN + + requires discretizing x; and then maximizing the
probability on the discretized grid. In contrast, SARMs can
directly maximize the probability density function of x;,
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FIG. 4. Generation process for the D + C model. The blue circle dots represent the value sampled for each pixel. For example, given
the first pixel value of 6.7, sampled from the empirical distribution of the dataset, the neural network outputs the distribution parameters
y1 = 0.1, = 3.1, s; = 3.9 to generate the second pixel. Then a Bernoulli random variable is sampled from z; ~ Bern(y;) and a logistic
random variable is sampled from X; ~ Logistic(y;, s;). The value of the second pixel x; is produced by the product of these two variables
as x; = z; - X; = 0-2.9 = 0. This sequential process is repeated until every pixel is generated.

allowing it to handle continuous pixel values without
incurring quantization errors.

There are several differences between the D + D and the
D + C models. The D + D model allows enough flexibility
to represent multimodal distributions, as each grid point has
its own learnable probability. However, there is a price for
this flexibility. It is significantly more time consuming to
generate an (N + 1)-way softmax vector and sample from a
discrete mixture (D 4+ D) than it is to generate the para-
meters of y, u, s and then sample from a discrete and
continuous mixture (D + C). Other constrained domain
distributions such as the exponential and the gamma
distributions were also considered but led to inferior results.

The exponential distribution suffers from a lack of flexi-
bility due to having only one learnable parameter.

B. Multistage generation for heterogeneous areas

In many ARM applications, a single network is used to
predict the parameters 6; of the conditional probability
distribution P(x;|6;). This approach works well if the
distribution of pixel values is similar across pixels, as is
often the case in natural images. However, as shown in
Fig. 5 (left panel), the pixel value distribution in the central
square of a calorimeter image containing a jet is very
different from the distribution in the rest of the image (see
also [43]). In order to handle these heterogeneous regions,

Central Region
Peripheral Region

Density (log scale)
=
o

Y

. Central Stage
l:' Peripheral Stage

A

0 50 100 150 200 250 300
Pixel value

FIG. 5. Left panel: Distribution of pixel values in the jet substructure dataset for the nine pixels in the center of the images (central
region) and the rest of the pixels (peripheral region). Note that the majority of the pixels in the peripheral region are zero valued and in
general have lower variance than pixels in the central region. Right panel: Two-stage generation for the central and peripheral regions
using a spiral path and two different SARM modules. Using different networks for each region improves performance.
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we use a two-stage approach by stacking two distinct deep
SARM modules, one for the center and one for the
periphery. When the model generates the image from the
inside out, the outer module generates pixels conditioned
on the outputs of the center module, as illustrated in
Fig. 5 (right panel). We refer to this model as SARM-2
while the single-stage model is SARM-1. Since the center
may not have a clear border, we treat the size of the center
relative to the periphery as a hyperparameter during
training. Note that in general the number of stages depends
on the structure of the data and is not limited to two.
Furthermore, it is possible to learn the SARMs associated
with each region in any order.

Thus, in summary, through the experiments to be
presented, we show that a good heuristic approach for
SARM design is to (1) decompose the images into relevant
regions (e.g., center vs background); (2) use a different
SARM for each region type; and (3) within each region
type, preferably choose a systematic and congruent order
for generating the pixels, as these compare favorably to
random generation orders. By systematic and congruent
orders we mean orders that have some kind of continuity
for the location of the pixels being generated—subsequent
generated pixels should be close in the image—while
respecting the geometry of the highly activated region
(e.g., a spiral order for a globular region, a linear order for a
linear region).

V. EVALUATION METHODS

The goal is to train generative models which create
images indistinguishable from images created by the slower
Monte Carlo methods. We compare the performance of our
models, both in terms of image quality and generation time,
against two other generative models: LAGAN [6], the current
state-of-the-art generative model for sparse images in
particle physics; and Pixel CNN + + [41], a widely used
autoregressive model for natural images not tuned for
sparse images. We evaluate all models on both datasets
described above; note that LAGAN was designed to handle
images typically found in the jet substructure dataset, while
the muon dataset features extreme sparsity in comparison.
We measure the quality of the generated images both
qualitatively and quantitatively.

Qualitative evaluation.—We examine typical images
generated by each model, as well as the pixelwise average
intensity of the generated images, using the images
produced by the Monte Carlo methods, which in the jet
substructure study are referred to as the PYTHIA images.
Additional qualitative comparisons are described in
Appendixes C and D.

Quantitative evaluation—Comparisons of distributions
in high-dimensional datasets should focus on the scientific
context and potential applications. In particle physics, the
calorimeter information is typically used to calculate
physical quantities, such as invariant mass or transverse

momentum (Pr), which are especially revealing as metrics
because they have not been explicitly optimized by the
models. In addition, calorimeter images are used to train
classifiers which can identify particles from their patterns
of depositions.

One-dimensional distributions of mass and Pt can be
evaluated in comparison to the distributions from
Monte Carlo generators using the Wasserstein distance,
the minimum cost to transform one distribution into the
other one, expressed by

1/
W,(P.Q) = (infjem,@ / ||x—y||PdJ<x,y>) )

where J(x,y) is the family of joint probability distribu-
tion of x and y, P and Q are marginal distributions, and
p > 1. When p = 1, this metric is also known as the earth
mover’s distance [55]. To match the results in [6], we
computed W (P, Q), where P represents one of the jet
observable distributions from the PYTHIA images, and Q
represents the corresponding jet observable distribution
from the generated images.

An important motivation for developing generative
models for fast simulations is to provide a computationally
inexpensive method to augment existing datasets in clas-
sification tasks [43,56]. The jet substructure dataset was
generated to train classifiers to distinguish between jets
from W-boson decays (signal) and those from single quarks
and gluons, a well-known classification task [43,56]. The
muon isolation dataset was generated to train classifiers to
distinguish isolated muons from those due to heavy-flavor
jet production. Therefore, an essential test for the quality of
the generated images is whether they can be used in these
classification tasks. To quantify this, the generated images
were used as training sets to develop a classifier whose
performance was assessed using the Monte Carlo images.
The same convolutional neural network architecture was
trained with the same hyperparameters on five different
datasets: Monte Carlo images, images generated by
SARM-2 (D +C) images generated by SARM-2 (D + D),
images generated by LAGAN, and images generated by
Pixel CNN + +. Because higher quality images should lead
to improved classification of the Monte Carlo images, we
used the classification performance as the evaluation metric.

Speed—FEach generative model was used to generate
batches of images multiple times to measure the average
speed of image generation.

VI. RESULTS
A. Jet substructure study

1. Qualitative analysis

An example image from each generative model and from
the PYTHIA Monte Carlo generator is shown in Fig. 6. It is
clear that SARM-2 (D + C) excels at generating pixels with
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FIG. 6. Example of jet images generated from each model. Notice that SARM-2 (D + C) is able to produce small value pixels in the
periphery of the images. The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.

small values around the periphery in comparison to the
other models. Additional samples for each model can be
seen in Appendix H. To assess the overall quality of the
generated images, Fig. 7 shows the pixelwise average of
each dataset. The autoregressive models, SARMs and Pixel
CNN + +, are able to model the peripheral radial region
around the center more accurately. This region has higher
degree of sparseness than the center region, making it more
challenging for the generative models to accurately capture.
We note that the images from the SARM-2 (D + C) model
appear to be the most similar to the PYTHIA images, while
the other models are less able to generate the peripheral
region faithfully. In addition, Pixel CNN + 4 struggles to
achieve the radial structure present in the PYTHIA images
and creates a squarelike structure instead. In general, the
images from Fig. 7 generated by the autoregressive models

SARM-2 (D+C)

Pythia

SARM-2 (D+D)

show a smooth transition from the highly activated center to
the sparse border, similar to that seen in the PYTHIA dataset.
In contrast, the border of the LAGAN images is irregular,
which could be due to its reliance on the ReLU activation
function to induce the sparsity, making the model unable to
estimate the sparseness level directly.

2. Quantitative analysis: Jet observables
as metrics for quality

To quantify the fidelity of the images generated by each
model as compared with the original samples, we insert
them into typical applications in particle physics. In the
context of collisions that produce jets, it is common to
calculate the invariant mass of the jet, and the transverse
momentum. Distributions of jet mass and Pt are shown in

Pixel CNN++ LAGAN
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pixels in the periphery of the images and has a nonsmooth radial transition compared to the autoregressive models. The intensity of each
pixel is shown on a log scale, where the white space represents pixels with value zero.
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Fig. 8 for all models, which all succeed in matching the
general shape, though discrepancies are visible, and
Wasserstein distances are shown in Table 1.

TABLE I. Comparison of images created by various generative
models with original images from PYTHIA, evaluated using the
Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the images:
jet Pt and invariant mass, also shown in Fig. 8. Smaller values
indicate a closer match to the PYTHIA images. Four SARMs
are evaluated, those with either one-stage (SARM-1) or two-
stage (SARM-2) models, and those with either discrete and
continuous distributions (D 4 C) or a mixture of discrete dis-
tributions (D + D). The boldface is used to highlight the best
performances and thereby also the best models.

Pr Mass
Model Signal Background Signal Background
LAGAN 3.15 3.29 1.45 1.39
Pixel CNN + + 3.46 3.59 1.09 1.56
SARM-1 D+C) 233 2.46 1.07 1.54
SARM-2 D+C) 232 2.71 1.06 1.39
SARM-1 D+D) 1.95 2.52 1.34 2.45
SARM-2 (D+D) 144 1.66 0.94 0.92

All SARM variants achieve lower distances in the
Pr distributions than LAGAN and Pixel CNN+, and
comparable or better distances in jet mass. The best results
in all categories are obtained by the SARM-2 (D + D).
Compared to the best of Pixel CNN + + and LAGAN,
SARM-2 (D + D) provides a 51.92% improvement for Pr,
and a 23.79% improvement for mass, averaged over the
signal and background sets. These results demonstrate
the effectiveness of taking sparseness into account during
learning and generation. Secondly, the SARM-2 models
clearly outperform the SARM-1 models for both the
(D + D) and (D + C) likelihoods, which shows the effec-
tiveness of the multistage approach in modeling hetero-
geneous areas in the images.

3. Classification of generated images

An important application of generated calorimeter
images is to augment training sets for networks learning
to perform vital signal-background classification tasks.
As a high-level test of the image quality, we train networks
using images generated by each model (2 x 10° signal,
2% 10° background), and evaluate the performance on the
original images from PYTHIA (2 x 10* signal, 2 x 10*
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FIG.9. Evaluation of the fidelity of images generated by several
models in the context of a classification task. Images generated by
the model are used to train a network to discriminate between
signal and background, but performance is measured using the
original PYTHIA images.

background). Training sets which best mimic the original
PYTHIA images should lead to networks which most closely
match the performance of a network trained on PYTHIA
images. Detailed information about the classifier and
training procedure is given in Appendix F. The receiver
operating characteristic (ROC) curves for networks trained
on images from PYTHIA, SARM-2 (D + C), SARM-2
(D+ D), Pixel CNN++, and LAGAN are shown in
Fig. 9. Classifiers trained on both SARM generated datasets
have higher area under the ROC curve (AUC) scores than
the classifiers trained on the LAGAN images and Pixel
CNN + + images.

4. Generation order

SARMs generate images pixel by pixel, conditioning
each step on the previously generated pixels. The order
of the pixel generation corresponds to a dependency
decomposition in Eq. (1), which may impact training
performance. The traversal path is especially important
for images containing heterogeneous areas. For natural
images, Ref. [50] uses an ensemble of models with random
paths, while Pixel CNN + + and other models [10,41] use
the row-by-row pixel ordering.

The average performance of various pixel orderings
for SARM-1 (D + D) over ten repeated runs is shown in
Table II. Each order is evaluated by using the Wasserstein
distance between the distributions of the generated signal
images and the PYTHIA signal images for the jet Pt and
invariant mass.

The spiral paths, clockwise (CW) and counterclockwise
(CCW), achieve the stronger results. This could be under-
stood in terms of mutual information between neighboring
pixels. Unlike the other orderings, the spiral ordering is
continuous, i.e., it always generates a pixel adjacent to the
previously generated pixel. Furthermore, the spiral order is

TABLE II. Quality of jet substructure signal images generated
by SARM-1 (D + D) with various pixel-generation orderings.
The quality is measured by the Wasserstein distance for the
physical observables (Pp and mass) between the generated
images and the original PYTHIA images. Spiral-in clockwise/
counterclockwise (CW/CCW), spiral-out CW/CCW, column-
wise, row-wise, and two random approaches are compared.
The outward spiral orders show good performance due to the
radial structure of the images.

Py (std.) Mass (std.)
Spiral-out CCW 1.94 (0.09) 1.38 (0.10)
Spiral-out CW 2.47 (0.23) 1.53 (0.22)
Spiral-in CCW 3.64 (0.32) 1.62 (0.14)
Spiral-in CW 3.20 (0.22) 1.45 (0.16)
Row-wise 3.06 (0.30) 2.01 (0.11)
Columnwise 3.38 (0.39) 1.90 (0.08)
Random I 4.05 (0.51) 1.74 (0.53)
Random II 3.41 (0.33) 1.25 (0.26)

congruent with the globular shape of the highly activated
region in the jet images, e.g., Fig. 7. Starting the spiral from
the center outperforms inward spirals, indicating that it may
be easier to learn the correlations between the pixels
starting with pixels that are more active (more nonzero
pixel values). The difference between CW and CCW is
likely due to asymmetries generated by the rotation and
centering steps in the preprocessing of the data. We use this
asymmetric version of the data in order to enable direct
comparison to the LAGAN model. These results confirm that
nonrandom, systematic generation orders that have good
continuity and congruence properties perform well (and
outperform random orders). A full exploration of the
ordering dependency is beyond the scope of this work
and computationally challenging due to the factorial
number of possible orderings.

5. Computational costs

Table III shows the speed of the generative models in
comparison to the Monte Carlo method (PYTHIA). The
SARM-2 models are 5 times slower than LAGAN, which is
mainly due to the extra computational cost of the autor-
egressive structure. On the other hand, the SARM-2 models

TABLE III. Comparison of image generation speed between
the Monte Carlo approach (PYTHIA) and various generative
models. The SARM-2 models are slower than LAGAN, but still
considerably faster than PYTHIA and Pixel CNN + +.

Model Speed (images/sec)
PYTHIA [6] 34
Pixel CNN + + 50
SARM-2 (D + D) 1612
SARM-2 (D + C) 2480
LAGAN 10,176
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FIG. 10. Example calorimeter images in the vicinity of a muon from the generative models as well as the original Monte Carlo
generator. The top row shows isolated muons (signal), while the bottom shows muons produced in association with a jet (background).
The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.

are 2 orders of magnitude faster than PYTHIA and Pixel
CNN + +. The forward pass of the Pixel CNN + + model
is computationally expensive due to the ResNet blocks with
convolutional layers and skip connections [41,57]. In
contrast, SARMs use a simple feed forward network with
disabled connections to preserve autoregressive structure.
The speed of the generative models is measured on a
machine with 4 TITANX graphics processing unit (GPU)
cards each with 12 gigabytes of memory. The speed of
PYTHIA was assessed in [6] using Amazon Web Services
and an IntelR XeonR E5-2686 v4 at 2.30 GHz CPU.

There is room to further optimize the speed of the SARM
models. For instance, we find that reducing the size of the
intermediate upsampling layer of the SARM (D + D)
drastically reduces the memory requirements and improves
the generation speed. Another direction is to explore model
pruning and compression.

B. Muon isolation study

1. Qualitative analysis: Average generated images

Typical calorimeter images in the vicinity of a muon
generated by the standard Monte Carlo method, Pixel
CNN++ as well as two SARMs are shown in Fig. 10.
In this context, LAGAN suffered from mode collapse and
failed to generate reasonable quality images (see Fig. 18 in
the Appendix). This is a well-known problem when train-
ing GANs [6,38,39], especially with sparse data.

Figure 11 shows the pixelwise average images.
The SARM-2 models and the Pixel CNN++ reproduce the
radial symmetry seen in the original images. However,
the average images produced by Pixel CNN+ + contain

noticeable artifacts, potentially due to the convolutional
layers in the model [58].

2. Quantitative analysis: Calorimeter observables
as metrics for quality

To assess the fidelity of the images quantitatively, we
calculate physical quantities which summarize the content
of the images and allow for comparison of one-dimensional
distributions. While calorimeter images in the vicinity of a
muon do not necessarily contain a clustered jet, the total Py
and invariant mass of the entire image do have physical
meaning. Figure 12 shows the distributions of these
quantities for the original Monte Carlo images, as well
as for the generated images, and Table IV provides the
corresponding Wasserstein distances.

The datasets generated by both SARM-2 models have
considerably smaller Wasserstein distances than the data-
sets generated by the Pixel CNN + + model for both signal
and background. The distributions of all the generated
datasets approximate the shape of the Monte Carlo dis-
tributions quite well for Pt and mass, but the distributions
of the Pixel CNN ++ dataset have a small shift toward
higher values, for both the signal and the background. In
addition, for the background they are more concentrated
around the mean. This is potentially due to the fact that
Pixel CNN + + fails to model the right tail of the pixel
distribution, where the pixels have higher values but appear
much less frequently in the data (Fig. 21 in the Appendix).
The SARM-2 (D + D) has the best overall performance,
with improvements of 68.08% for Pt and 66.44% for mass,
averaged over the signal and background datasets.
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FIG. 11. Pixelwise averages of calorimeter images in the vicinity of a muon from the generative models as well as the original
Monte Carlo generator. The top row shows isolated muons (signal), where little calorimeter activity is expected. The bottom row shows
muons produced in association with a jet (background), which deposits significant energy near the muon. A linear scale is used to reveal
the differences between signal and background images.
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036012-11



LU, COLLADO, WHITESON, and BALDI

PHYS. REV. D 103, 036012 (2021)

TABLE IV. Comparison of images created by various gener-
ative models to the original Monte Carlo images using the
Wasserstein distance (with p = 1) between one-dimensional
distributions of physical quantities calculated from the images:
Pr and invariant mass, also shown in Fig. 12. Smaller values
indicate a closer match to the Monte Carlo images. Two SARMs
are evaluated, with either discrete and continuous distributions
(D + C) or a mixture of discrete distributions (D + D). The
boldface is used to highlight the best performances and thereby
also the best models.

Pr Mass
Model Signal Background Signal Background
PixelCNN + + 1.75 2.92 0.58 0.82
SARM-2 (D+C) 0.79 0.97 0.25 0.21
SARM-2 (D+D) 0.56 0.93 0.17 0.31

3. Classification of generated images

The fidelity of the images can be evaluated in the context
of the data analysis task for which they were created,
training a network to distinguish between signal (calorim-
eter images near isolated muons) and background (calo-
rimeter images near nonisolated muons).

A convolutional neural network classifier was
trained using images generated exclusively by each of
the models [SARM-2 (D + C), SARM-2 (D + D), or Pixel
CNN + +]; one additional network was trained using
images from the Monte Carlo generator. The quality of
the images is measured by comparing the classification
performance of these networks on images from the
Monte Carlo generator, see Fig. 13. The classifiers
trained on each SARM dataset have higher AUC

1.0
o 08
o
2 06
=
%]
o
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2 e Monte Carlo (AUC = 0.816)
To2l 7 —— SARM-2 (D+D) (AUC = 0.808)
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FIG. 13. Evaluation of the fidelity of images generated by

several models in the context of a classification task, distinguish-
ing muons produced in isolation from those produced in
association with a jet. Images generated by the model are used
to train a network to discriminate between signal and back-
ground, but performance is measured using the original
Monte Carlo images.

TABLE V. Quality of images generated by SARM-1 models
with various pixel-generation orderings for the muon isolation
signal dataset. The quality is measured by the Wasserstein
distance for the physical observables (Pt and mass) between
the generated images and the original Monte Carlo images.

Pr (std.) Mass (std.)
Spiral-out CCW 0.99 (0.37) 0.27 (0.10)
Spiral-out CW 0.92 (0.33) 0.26 (0.09)
Spiral-in CCW 0.81 (0.23) 0.20 (0.05)
Spiral-in CW 0.95 (0.24) 0.24 (0.07)
Row-wise 0.99 (0.28) 0.20 (0.05)
Columnwise 0.90 (0.26) 0.22 (0.05)
Random 1 1.17 (0.30) 0.32 (0.08)
Random II 1.34 (0.41) 0.37 (0.11)

scores than the classifier trained on the Pixel CNN + 4
dataset, providing additional evidence that the SARM
datasets are more similar to the Monte Carlo images and
thus better suited for downstream tasks such as data
augmentation.

4. Generation order

In this section, we discuss the impact of the pixel order
for SARMs associated with the signal dataset of the muon
isolation study. Similarly to Sec. VI A 4, we conducted ten
repeated experiments for each of the orders and summa-
rized the results in Table V.

In contrast to the jet substructure study, the muon
isolation data is not rotated and the pixel value distribution
is quite uniform. Therefore we see that different generation
orders have a similar performance in terms of mass and Py
distances. In addition, all the models trained using sys-
tematic orders that have some continuity in the sequence of
pixels slightly outperform the models trained using random
orders. In combination, these results confirm the validity of
the heuristic strategy outlined at the end of Sec. IV,
providing general guidelines for SARM design and pixel
generation when applying these models to other datasets.

5. Computational costs

Calorimeter image generation speeds in the context
of the muon isolation study are shown in Table VI for

TABLE VI. Comparison of image generation speed between
the Monte Carlo approach and various generative models. The
SARM-2 models are considerably faster than Pixel CNN + +
and the Monte Carlo generator.

Model Speed (images/ sec)
Monte Carlo 5
Pixel CNN + + 10
SARM-2 (D + D) 625

SARM-2 (D + C) 1136
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the SARM models, Pixel CNN + +, and the Monte Carlo
generator. The SARM models are 1 to 2 orders of
magnitude faster than Pixel CNN + 4, similar to the
observation of the jet substructure study. The generation
speed of each generative model is measured with the same
hardware as described in Sec. VIA 5. The speed for the
Monte Carlo generator is measured on an Intel(R) Xeon(R)
E5-2680 at 2.70 GHz CPU.

VII. CONCLUSION

Sparse images, prevalent in particle physics datasets,
present unique challenges for generative models. We have
developed and applied a new class of models, deep
SARMs, specifically designed to handle extreme sparse-
ness. These compositional models are also able to take
advantage of the structure present in particle physics
images by using a multistage generation approach.
Using several different metrics, we compared SARMs to
other generative models, in particular to Pixel CNN + +, a
popular autoregressive model not adapted for sparsity, and
to LAGAN, a state-of-the-art GAN for sparse images. The
comparisons were carried using two benchmark datasets.

In the first case study on jet substructure, the adaptation to
sparseness enables SARMSs to produce qualitatively and
quantitatively higher quality images than Pixel CNN + +
and LAGAN. SARM are also orders of magnitude faster than
traditional Monte Carlo methods and Pixel CNN -+ +, but
slower than the nonautoregressive model LAGAN, showing a
trade-off between speed and quality. The second case study
features extremely sparse images corresponding to calorim-
eter images in the vicinity of muons. While competing models
produce artifacts or suffer from mode collapse, SARMs are
able to handle and model extreme degrees of sparseness.

In sum, given the prevalence of sparse images in particle
physics and beyond, SARMsS can be expected to provide an
important option for rapid, high-quality, image generation
from training data. Because of their quality, the generated

4 2 0 2 a4
X0

images in turn will be able to benefit a variety of down-
stream data analyses.

Original data and software will be made available from
the UCI Machine Learning in Physics Web portal [59].
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APPENDIX A: 2D TOY EXAMPLE

We simulate a dataset containing pairs of two variables
xo and xy, such that xy ~ p(xg|x;) and x; ~ p(x;). In this
toy example we show that the autoregressive model is
still able to learn to generate the joint distribution of x; and
x1, even though during training it is forced to learn
xo~ p(xg) first, and then to learn the dependency
p(x1]xg). The simulated training data contains 1000 pairs
of {xg,x,} according to x; ~N(0,1) and xy = x; +¢,
where ¢ ~ N(0, 1), a standard normal distribution indepen-
dent of x;. The joint distribution of x,, x; is shown in
Fig. 14. The toy autoregressive model learns to generate x
using two learnable parameters, y, and log(c), corre-
sponding to the mean and log standard deviation of x. It
has a single linear layer for predicting u, and log(oy),
which corresponds to the mean and log standard deviation
of x;. The model is trained for 5000 iterations, by
maximizing the likelihood p(xy, x;). During the generation
stage, the model generates x, without knowing x;. Since
the goal of the model is to generate the joint distribution of
(xg,x1) ~ P(xg,x;), to do this it only needs to learn the
marginal distribution, which is xq ~ N(0,2) and the rela-
tionship x; = xy — €. Figure 14 shows the result of training

X1
o

-1

-2

-3

6 -4 2 0 2 a
Xo

FIG. 14. Left panel: density plot of training data. Right panel: density plot of generated data. The two distributions are very close,
showing that the ARM is able to learn the joint distribution of x, and x; well.
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this model and we can see it correctly learns the means
and variances of {xg,x;} along with the data distribution
despite the fact that it has to generate x, before generat-
ing x;.

APPENDIX B: MADE STRUCTURE

The masked autoencoder for distribution estimation
(MADE) structure enforces the autoregressive property
on fully connected layers by using a carefully selected
binary mask on the weights of the layer. The joint like-
lihood of the MADE structure can be evaluated in one
forward pass of the network during training, which is not
possible in other models like Pixel-RNN [10] and Pixel
CNN + + [41]. This allows MADE to take advantage of
the GPU acceleration. In our SARM implementation, we
consider a simple MADE structure with input x and a stack
of multiple hidden layers h(x), where each h(x) follows

(b+(WoMY)x),
(¢ + (Vo MY)h(x)).

- .

(B1)

Here 0 is the output, and f is the activation function of
the hidden layer. In practice, we found Gaussian Error
Linear Units [60] work better in our experiments than other
activations such as sigmoid and tanh. Both W and V are
weight matrices, with corresponding masks: the hidden
mask MW, and the output mask M. Each matrix is
multiplied elementwise with each mask.

Suppose x € RP, it can be shown that for the input mask

1 if kmod D <d,

0 otherwise.

MY, = Lk mod p<a = { (B2)

Likewise, suppose h(x) € R, then for the output mask

1 if k mod D < d,

. (B3)
0 otherwise.

vV _ _
Mk,d - 1k mod D<d — {

Then the output @ satisfies autoregressive structure:
for any i, 6; only depends on x;_;. As shown in Fig. 3,
the parameter 6; is used to generate the ith pixel during
generation. For example, if the likelihood is a logistic
distribution, then 0; = [y;, 5], where y;, s; corresponds to
the mean and scale of a logistic distribution.

During generation, at step i we take the previously
generated x, X, ..., x;,_; and pad the remaining x;, ..., Xp_,
with zeros. Then we input this vector in the MADE structure
so that the output 0; depends only on x, ..., x;_;. Finally, we
sample the pixel x; conditioned on 6; and repeat this process
until every pixel is generated.

APPENDIX C: FURTHER ANALYSIS OF THE
JET STRUCTURE STUDY

Figure 15 shows the subtraction between the pixelwise
average of the images from each generative model and the
pixelwise average from PYTHIA. Notice the differences are
concentrated in the middle of the images where there are
higher value pixels. The images generated by both SARM
models have small differences compared to the ones
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FIG. 15. Error measured by subtracting of the pixelwise average of the images created by each generative model and the pixelwise

average of the images generated with PYTHIA. The SARM models have lower error than both Pixel CNN + + and LAGAN with most of

the errors are concentrated in the center of the image.
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FIG. 16. Distribution of aggregated pixel intensity in the generated images for jet substructure study. Notice most of the differences
happen at high pixel values where there are fewer events. LAGAN also has a harder time replicating the distribution of background images

across all pixel values compared to the other models.

generated by LAGAN for both signal and background and by
Pixel CNN + + for background. Also, Pixel CNN + + has
higher errors in background images compared to signal
images.

Figure 16 shows the distribution of pixel values across all
the generated images. For the signal images, all the models

match the PYTHIA distribution for pixel values below 200
but the models have difficulties at higher values. SARM-2
(D + D) and LAGAN have the closest match at high pixel
values while SARM-2 (D+ C) and Pixel CNN + +
overestimate them. For the background images, most of
the models accurately predict low value pixels, but LAGAN

FIG. 17. Typical muon images generated using LAGAN. The figures are plotted in log scale, where the white space represents pixels

with value zero.
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reproduce the radial structure present in the average Monte Carlo images (Fig. 11).
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FIG. 19. Comparison of the mass and Py distributions of the images generated by LAGAN, SARM-2 (D + D), and the Monte Carlo

simulations for both signal and background muons.

slightly overestimates pixels in the range 50 to 100 and
underestimates them afterward. For high pixel values,
Pixel CNN + + strongly overestimates pixels in the
range 250-300 while the other models remain reasonably
close to PYTHIA. In both cases the models have diffi-
culties learning the high value pixels, which is expected
since there are very few pixels in this range in the PYTHIA
distribution.

APPENDIX D: FURTHER ANALYSIS OF THE
MUON ISOLATION STUDY

1. LAGAN

Despite our best efforts, the LAGAN model performed
poorly every time it was trained on the muon isolation
dataset. As seen in Figs. 17 and 18 the pixelwise average
image does not capture the radial structure present in the
dataset and some of the pixels with high values seem to be
present in many of the images. This seems to be due to a low
amount of variability in the generated images, typical of
mode collapse in GANs. This performance is also reflected
in the distributions of Pr and mass (Fig. 19) and the
respective Wasserstein distances which are 1 order of
magnitude worse than the values for the other models
(Table VII).

2. SARM vs Pixel CNN + +

Figure 20 shows the subtraction between the pixelwise
average of the images from each generative model and the
pixelwise average from PYTHIA in the muon isolation
dataset. For the signal data, all models show very small
differences, evenly distributed across the radial structure
of the images. In particular, Pixel CNN + + is overrep-
resenting most of the pixels in the artificial checkerboard
pattern noted before. For the background data the
errors are slightly higher for all models. The SARM
models have more difficulties with the pixels in the

TABLE VII. Wasserstein distance of the physical constituents
jet Pt and mass distributions between the original muon images
from the Monte Carlo generator and the images created by
the generative models. A small distance signifies a good agree-
ment. SARM-2 (D + D) is the two-stage SARM model with a
discrete mixture. The boldface is used to highlight the best
performances and thereby also the best models.

Pr Mass
Signal Background Signal Background
LAGAN 4.81 10.88 1.81 2.17
SARM-2 (D+D) 0.56 0.93 0.17 0.31
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FIG. 20. Subtraction between the pixelwise average of generated images vs Monte Carlo images. The errors are evenly distributed in
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FIG. 21.
models miss the high pixel values where there are fewer events.

center and tend to overrepresent them while Pixel
CNN + + underrepresents the center and overrepresents
the periphery.

Figure 21 shows the distribution of pixel values across
all the generated images. For both signal and background
the Pixel CNN + + model is underrepresenting pixels
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Distribution of pixel intensity for muon isolation study. Pixel CNN + 4 underrepresents the distribution while the SARM

with high intensity, while the SARM models match the
distribution quite well. Like in the jet substructure study,
most of the errors correspond to pixels with high
intensity values, which is expected since these values
are rare in the training data, making it difficult to
correctly learn their distribution.
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APPENDIX E: SOFTWARE MODIFICATIONS

1. LAGAN

The code and weights of the original LAGAN model for
the jet substructure study dataset are publicly available.
This makes it possible to generate new images using the
original model’s weights for this dataset, but the model
needs to be retrained to generate images of a different
dataset. The model was retrained for the muon isolation
study and it also had to be modified to adapt it to the larger
images of 32 x 32 pixels since it has upsampling layers in
the generator part of the GAN.

2. PixelCNN + +

As a baseline for autoregressive models we used the
Pixel CNN + + [41]. Due to speed and memory restric-
tions, we had to modify the original model by reducing
the number of filters in the masked convolutional layers
and the number of residual blocks compared to the
original model. Both the number of filters and the
number of residual blocks are optimized as hyperpara-
meters using grid search with 5, 10, or 20 filters and 2 or
3 residual blocks. However, we found most hyperpara-
meter combinations to have similar performance. The
model with 20 filters and 3 blocks performs slightly
better in the jet substructure study, and the model with
10 filters and 5 blocks performs slightly better in the
muon isolation study. Even though the models we used
are smaller than the original model in [41], they are
almost as slow as the traditional Monte Carlo methods
(Tables III and VI).

APPENDIX F: ARCHITECTURE AND
HYPERPARAMETER OPTIMIZATION

We performed a search over the architectures of the
SARMs including the number of hidden layers structure,
the size of the central area for the two-stage approach and
the size of the intermediate upsampling layer using SHERPA
[61]. We also conducted search of the transformation
parameter p with values [1, 1.1, 1.2, 1.3, 1.5, 2] for the
D + D models. All models were implemented in PyTorch
[62], and were trained for 300 epochs with outward spiral
(CCW) order using the Adam optimizer [37] with learning
rate 3e-4, decreased by half every 100 epochs and mini-
batch size 128.

For the jet substructure study, the best SARM-2
configuration had a center area of side length 3. For the
D + D models, we used five hidden layers with an
upsampling layer of size 10 and found that a power
transformation with p = 1.0 yields slightly better results.
For the D + C models, we found that the model with three
hidden layers and a mixture of five truncated logistic for
the C component works well for both signal and back-
ground images. In the generation order experiments,
similarly we used SARM-1 (D + D) models with five

hidden layers, an upsampling layer of size 10 and a power
transformation with p = 1.0, effectively no transforma-
tion. And all models are trained with identical settings:
learning rate of 3e-4, decreased by half every 100 epochs
and minibatch size 128. For the LAGAN model we used the
publicly available version of LAGAN optimized by the
original authors.

For the muon isolation study, the best model we found
had five hidden layers, and a center area of side length 7 for
both D + D and D + C models. For the SARM-2 (D + D),
we used an upsampling layer of size 10 and found that a
power transformation with p = 1.2 for signal and p = 1.3
for background provided the best results. And for the
D + C models, we found again that a mixture of five
truncated logistic for the C component works well for both
signal and background images.

For the classification tasks, we trained five convolu-
tional neural networks with the same structure on each of
the datasets. We randomly split the data into a 90% subset
for training and a 10% subset for validation. The vali-
dation set is used for early stopping during training to
avoid overfitting. The convolutional neural network
model has two convolutional blocks, two fully connected
layers with 100 rectified linear units, and a sigmoid unit at
the end to predict the probability of the image being
signal. Each convolutional block contains two convolu-
tional layers with 3 x 3 kernels and 30 filters with rectified
linear units followed by a maxpooling layer with 2 x 2
kernel. All models were trained in PyTorch using the
Adam optimizer, with a learning rate of 0.001 and a batch
size of 128.

APPENDIX G: COMPLEXITY ANALYSIS

Next we compare the number of parameters for the
different models in Table VIII. Note that the original Pixel
CNN + + model [41] uses 160 convolutional filters. With
all these filters, each forward pass takes more than 1 sec on
four NVIDIA TITANX GPU cards, resulting in a gener-
ation speed that is 1 order of magnitude slower than the
traditional Monte Carlo methods, thus defeating the origi-
nal purpose. Therefore, in our implementation of the Pixel
CNN + + model, we limit the number of its filters to 20 to
speed up the generation process and reduce the memory
requirements.

TABLE VIII. Model complexity comparison in terms of num-
ber of parameters in the Jet substructure study.

Model Number of parameters
PYTHIA [6] e

Pixel CNN + + 0.7 x 10°
SARM-2 (D + D) 6 x 10°
SARM-2 (D + C) 7 x 100
LAGAN 5 x 100
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APPENDIX H: SAMPLE IMAGES

In this section, we show more generated images from both the jet substructure study and the muon isolation study in
Figs. 22 and 23.
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FIG. 22. Additional typical images from the jet substructure study.
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FIG. 23. Additional typical images from the muon isolation study.
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