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Generation of simulated data is essential for data analysis in particle physics, but current Monte Carlo

methods are very computationally expensive. Deep-learning-based generative models have successfully

generated simulated data at lower cost, but struggle when the data are very sparse. We introduce a novel

deep sparse autoregressive model (SARM) that explicitly learns the sparseness of the data with a tractable

likelihood, making it more stable and interpretable when compared to generative adversarial networks

(GANs) and other methods. In two case studies, we compare SARM to a GAN model and a nonsparse

autoregressive model. As a quantitative measure of performance, we compute the Wasserstein distance

(Wp) between the distributions of physical quantities calculated on the generated images and on the training

images. In the first study, featuring images of jets in which 90% of the pixels are zero valued, SARM

produces images withWp scores that are 24%–52% better than the scores obtained with other state-of-the-

art generative models. In the second study, on calorimeter images in the vicinity of muons where 98% of the

pixels are zero valued, SARM produces images with Wp scores that are 66%–68% better. Similar

observations made with other metrics confirm the usefulness of SARM for sparse data in particle physics.
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I. INTRODUCTION

Experiments in particle physics seek to uncover the

building blocks of matter and their interactions, which

determine the structure of the Universe from subatomic to

cosmic distances. Analyses of the data produced by these

experiments make extensive use of simulations to predict

the experimental signature of particle interactions under

various theoretical hypothesis. These simulations are used

in likelihood-free inference as well as in the development of

data selection and analysis strategies which optimize the

statistical power of the data. Current state-of-the-art sim-

ulators apply Monte Carlo techniques to the microphysical

processes governing individual particles’ propagation

and interaction [1], making them computationally expen-

sive [2,3].

Detectors in particle physics experiments have a multi-

layer architecture which produces highly structured data.

One essential layer, the calorimeter, measures the energy of

passing particles, and is subdivided into small cells to

ensure spatial resolution. In collider experiments, the

calorimeter is typically cylindrical [4], while in fixed-target

experiments it may be a surface [5]. In both cases, the data

can be represented as an image, allowing for the application

of image-processing methods initially developed for natural

images. However, in contrast to natural images, pixels in

calorimeter images (Fig. 1) are very sparse, where usually

90% or more of the pixel values are zero. In addition, these

images are not as uniform as natural images, featuring

clusters in the center and noise in the periphery.

Recently, deep generative models [8–10] have produced

high-quality artificial natural images [11–13] at a relatively

low computational cost. The successful application of

machine learning in high-energy physics [14–21] and

generative models in natural images have inspired the

use of these models for generating imagelike data in

physical sciences applications [6,22–32], often employing

generative adversarial networks (GANs) [8] or, less fre-

quently, variational autoencoders (VAEs) [9]. However,

the extreme sparsity of the images in particle physics and

other areas of the physical sciences [33] presents unique

challenges for generative models.

The leading applications of GAN-based generative

models for sparse image synthesis in high-energy physics,

LAGAN [6] and CaloGAN [34], make use of the ReLU

activation function in the final layer to induce sparsity in the

output image. The flat portion of the ReLU activation

function can lead to many error gradients being zero at the

output layer, creating challenges [35] for stochastic gra-

dient descent [36,37] methods. In addition, GANs are

notoriously unstable during training [38] and can suffer
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from mode collapse, which restricts the diversity of events

in the generated data [39,40]. Despite these difficulties,

GANs have been one of the most popular deep generative

models in particle physics.

However, other generative models may be better suited

for sparse data. For example, deep autoregressive models

(ARMs) have also demonstrated impressive performance

for generating natural images among likelihood-based

generative models [10,41]. In this paper, we develop sparse

autoregressive models (SARMs), a class of ARMs specifi-

cally tuned to produce sparse images. We present a

systematic approach for designing SARMs and demon-

strate their effectiveness through multiple experiments.

SARMs are stable during training with respect to hyper-

parameter variations and weight initializations. SARMs are

also interpretable in the sense that it is possible for these

models to produce an analytic likelihood for any given

sample. We then evaluate SARMs on two benchmark

datasets. Given their flexibility, SARMs may be applicable

to areas beyond particle physics where sparse images must

be generated.

II. DATASETS

An important statistical task in the analysis of particle

physics data is identifying the particle source of a particular

detector signature. Below, we describe two datasets, one

which distinguishes between the detector signatures of

single quarks and collimated pairs of quarks, and a second

which distinguishes between muons produced in isolation

and those produced as part of a shower of particles.

A. Jet substructure study

Quarks or gluons produced in collisions leave a particu-

lar detector signature: a jet, or shower of collimated

particles, which deposit most of their energy in a tight

core. In many applications, it is important to distinguish the

signatures of a single quark or gluon from that of a

collimated pair of quarks, which may leave two potentially

overlapping cores. This task is a natural setting for image-

recognition algorithms, and has been the focus of many

deep learning studies [33,42–45] which rely on simplified

calorimeter simulations due to the cost of generating

realistic samples. Thus, an inexpensive generation of

realistic datasets would be very valuable as a classification

training sample.

We use a set of benchmark jet images from Ref. [6],

where a full description of this dataset can be found as well

as the code to generate it. In this dataset, quark pairs from

W-boson decay are labeled as signal and single quark or

gluon jets are labeled as background images. The intensity

of each pixel value represents the sum of the momenta

transverse to the beam (PT) over the particles which strike a

particular cell. The images are generated using PYTHIA8.219

[46] simulations of proton collisions at a center-of-mass

energy
ffiffiffi

s
p ¼ 14 TeV, selecting jets with 250 < PT <

300 GeV. Instead of a realistic detector simulation, the

calorimeter response is mimicked via a regular 0.1 × 0.1

grid in the η and ϕ coordinates. The jet images are

constructed and preprocessed as described in [43], includ-

ing the centering and rotations of the images. The resulting

images are 25 × 25 pixels, with intensity values in the

[0,276] range. We divide them into a training set containing

400,000 images for the signal and 400,000 images for the

background, and a testing set containing 36,000 images for

the signal and 36,000 images for the background. A typical

image from this dataset is shown in Fig. 1. This dataset has

a high degree of sparseness: more than 90% of its pixels are

zero valued.

B. Muon isolation study

Muons leave a very clear detector signature which is

difficult to mimic. However, physicists must distinguish

between two modes of muon production: a rare mode in

which muons are produced from the decay of a heavy

boson and are isolated in the detector, and a second prolific

mode in which muons are produced inside a jet, surrounded

by other particles. Fluctuations in the jet can occasionally

produce apparently isolated muons.

We use a set of benchmark calorimeter images from [7],

where muons from heavy bosons are labeled as signal

and muons produced within jets are labeled as background.

The signal muons are generated with the process pp →

Z0
→ μþμ− with a Z0 mass of 20 GeV=c2. Background

muons are generated with the process pp→ bb̄. Both

signal and background datasets are generated at a center-of-

mass energy
ffiffiffi

s
p ¼ 13 TeV. The collisions and immediate

decays are simulated with MADGRAPH5 2.3.3 [47], showering

and hadronization with PYTHIA6.428 [46], and detector

response with DELPHES3.4.0 [48] using the DELPHES

ATLAS detector model. Additional proton interactions

are overlaid on top of the primary process, at a rate of 50

additional interactions per event. This dataset only considers

muons with PT in the range: PT ∈ ½10; 15� GeV=c. The
signal events are weighted to match the transverse muon

momentum distribution of the background events. The

calorimeter images in the vicinity of the muon are created

from the calorimeter deposits within the η − ϕ radius of

R < 0.4, where each pixel represents the momentum trans-

verse to the beam axis. The deposits are preprocessed by

centering the image on the coordinates of the identified

muon propagated to the calorimeter. The images are pixe-

lated using a 32 × 32grid to roughlymatch thegranularity of

the calorimeters of ATLAS and CMS, and the pixels have

values in the range [0, 172]. The training set contains 41,250

signal images and 41,246 background images, and the

testing set contains 41,344 signal images and 41,151 back-

ground images.A typical image from this dataset is shown in

Fig. 1. This dataset has an even greater level of sparsity:

more than 98% of its pixels have zero value.
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III. AUTOREGRESSIVE MODELS

ARMs approximate a high-dimensional data distribution

PdataðxÞ with PðxÞ, the distribution induced by the model

where x ∈ RD. For example, when working with images,

PdataðxÞ represents the distribution of the values ofD pixels

in the image. ARMs are generative models that create

outputs sequentially, where each new output is conditioned

on the previous output [49]. Formally, ARMs transform the

problem of learning the joint distribution PdataðxÞ into

learning a sequence of tractable conditional distributions

Pðxijxj<iÞ. The ordering of the pixels can influence the

model’s performance and will be discussed later in the

paper. ARMs rely on the basic factorization

PðxÞ¼Pðx0;x1;…;xDÞ
¼Pðx0ÞPðx1jx0ÞPðx2jx0;x1Þ…PðxD−1jx0…xD−2Þ:

ð1Þ

The conditional densities Pðxijxj<iÞ can be parametrized by

deep neural networks [10,41,50,51] so that (1) Pðxijxj<iÞ¼
PðxijθiÞ, where θi represents the parameters of a

distribution (e.g., mean and standard deviation); (2) θi ¼
fiðx0;…; xi−1Þ, such that θi depends on previous output;

and (3) the function fi is implemented by a neural network.

At generation time, the pixel values xi are generated

sequentially by sampling in order from the distributions

PðxijθiÞ. A simplified implementation of this process using

a single neural network is depicted in Fig. 2. The weights of

the neural networks that compute the θi’s are shared across

different values of i, for regularization [51] purposes and to
reduce computational costs, hence the zero padding of the

input vector.

A common concern with ARMs is that by generating

pixels in sequence, conditioning only on previously visited

pixels, the model may not be able to take into account the

dependence of a current pixel on subsequent pixels.

However, this is not the case because the weights are

trained using all the data (i.e., “past” and “future” pixels)

and the model always learns to generate the joint marginal

distribution of previous and current pixels. This idea is

further illustrated with a toy example in Appendix A.

Learning in ARMs is different from learning in other

generative models such as GANs and VAEs. ARMs

directly minimize the discrepancy, in terms of Kullback-

Leibler (KL) divergence, between the data distribution

PdataðxÞ and the model distribution PðxÞwhich is produced
explicitly. In contrast, neither GANs nor VAEs produce a

tractable marginal likelihood model PðxÞ and, as a result,

they have to resort to approximations for minimizing the

KL divergence between the data and model distributions.

ARMs avoid this issue by sequentially modeling each

conditional probability distribution, allowing them to

minimize the KL divergence directly with a tractable

likelihood PðxÞ. Leveraging the flexibility of deep neural

networks to learn each conditional probability, ARMs are

able to approximate a large family of continuous distribu-

tions in RD [52].

The implementation of ARMs for images can follow

several approaches [10,41,50,53]. For scalability during

training and generation, we use a single neural network to

model the parameters of the conditional probabilities at

each step, where some connections are intentionally dis-

abled to preserve the autoregressive structure (see

Appendix B), similar to the structure used in [50]. Given

x0

Pixels

P(xi | i)

xi-1

0

0

i

Parameters Density Prediction

DNN

~       xi

FIG. 2. Pixel generation process by a deep ARM to create an

image with D pixels. For the pixel xi, a deep neural network

(DNN) is evaluated on a vector with values x0;…; xi−1, zero
padded to length D. The output of the network is the parameters

θi of a parametric probability density PðxijθiÞ, from which xi is
sampled.

FIG. 1. Calorimeter images in particle physics are often very sparse, where most of their pixels have very small values. Left panel:

typical signal image of a hadronic jet from [6]. Right panel: typical signal image of the vicinity of a muon from [7].
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a training image, this makes it possible to calculate all the

parameters θ0;…; θD−1 in parallel, instead of calculating

each θi sequentially. During generation, the model gen-

erates the output elements one by one as illustrated

in Fig. 3.

IV. SPARSE AUTOREGRESSIVE MODELS

To deal with sparsity in images, we introduce SARMs in

which each conditional distribution is a mixture comprising

a Dirac delta distribution at the zero-pixel value, as one of

its components. The probability associated with the zero-

pixel value is learnable by gradient descent, providing a

flexible and efficient way of modeling and fitting highly

sparse datasets. The other components of the mixture can

be modeled in different ways, as described below.

A. Sparse image likelihood models

In SARMs, the likelihood function for the ith pixel xi is
formulated as

pðxijθiÞ ¼ γi · δxi¼0 þ ð1 − γiÞ · δxi≠0 · pðxijϕiÞ; ð2Þ

where the parameters θi ¼ fγi;ϕig are predicted by the

underlying neural network taking x0;…; xi−1 as its inputs.
Since the pixel values in the calorimeter images represent

the physical deposition of energy, they must be non-

negative, i.e., pðxijϕiÞ > 0 only when xi > 0. To satisfy

this constraint, we explore two options. First, we use a

mixture of a Dirac delta distribution at zero with a discrete

distribution for the nonzero pixels (Dþ D). Second, we use

a mixture of Dirac delta distribution at zero with a

continuous distribution for the nonzero pixels (Dþ C).

Discrete mixture model (Dþ D).—We discretize each

pixel value xi by rounding it to the nearest value in a

predetermined grid with points f0; g1;…; gNg, where

gj > 0 for j from 1 to N, and gN corresponds to the largest

pixel value after rounding. The model learns the probability

of each discrete value as a categorical distribution:

pðxijθiÞ ¼ γi;0 · δxi¼0 þ
X

N

j¼1

γi;j · δxi¼gj
; ð3Þ

where each γi;j is predicted by the parameter θi ¼
ðθi0;…; θiNÞ using a softmax function. When the grid is

uniform, this likelihood is the same as the discretized

softmax likelihood used by Pixel RNN [10], which has

achieved state-of-the-art results on benchmark datasets of

natural images [54]. However, in particle physics the

distribution of pixel values is typically far from uniform.

In many typical cases, there is a large number of pixels with

small values, and a few pixels with large values, as seen in

Fig. 5. To better represent the pixel distribution and

minimize the error due to quantization, we assign more

grid points to the region of low pixel values. We achieve

this by using a power transformation x̂ ¼ x1=p on the pixel

values, where p is a hyperparameter such that p ≥ 1.

Discrete and continuous mixture model (Dþ C).—The

pixel values of natural images are usually represented by

unsigned integer values between 0 and 255. However, in

particle physics images, the pixel values are typically

real valued. To avoid explicit rounding, SARM (Dþ C)

is built with a truncated logistic distribution that models the

nonzero distribution component of each pixel. To generate

the Dþ C mixture, we reparametrize each pixel as

xi ¼ x̃i · zi, where x̃i follows a truncated logistic distribu-

tion TLðμi; siÞ with mean μi and scale parameter si. Here
zi ∼ BernðγiÞ is a Bernoulli random variable with proba-

bility pðzi ¼ 1Þ ¼ γi, which controls the sparsity level. By

assuming independence of x̃i and zi, the likelihood function
of xi becomes

pðxijθiÞ ¼ γi · δzi¼0 þ ð1 − γiÞ · δzi≠0 · pðx̃ijμi; siÞ; ð4Þ

where θi ¼ fμi; si; γig are functions of the previous pixel

values x0∶i−1, to ensure the autoregressive structure. In

order to allow for unconstrained optimization, we treat

logðsiÞ as the learning parameter and take its exponential in

the likelihood equation (4). Since the pixel distribution

could be multimodal, we use a mixture of truncated logistic

distributions for x̃i which is more flexible. An example of

the generation process is depicted in Fig. 4

The mixture of truncated logistic likelihood differs from

the discretized logistic mixture used in Pixel CNNþþ
[41] in the way it handles continuous pixel values. Pixel

CNNþþ requires discretizing xi and then maximizing the

probability on the discretized grid. In contrast, SARMs can

directly maximize the probability density function of xi,

FIG. 3. Generation process of a deep autoregressive

model. During generation, the first pixel x0 is sampled

from x0 ∼ Pðx0jθ0Þ. Next, the pixel x0 is zero padded to a

D-dimensional vector and passed to the neural network ARM

model, which evaluates the parameters θ ¼ fθ0;…; θD−1g,
though only θ1 is needed to sample the next pixel x1 ∼
Pðx1jθ1Þ. The pixels x0 and x1 are again zero padded to create

aD-dimensional vector which is passed into the neural network to

generate the next pixel. This process is repeated until all pixels are

generated. Note that the same neural network is used at each

generation step, and part of its weight connections are disabled to

preserve the autoregressive structure.
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allowing it to handle continuous pixel values without

incurring quantization errors.

There are several differences between the Dþ D and the

Dþ C models. The Dþ D model allows enough flexibility

to represent multimodal distributions, as each grid point has

its own learnable probability. However, there is a price for

this flexibility. It is significantly more time consuming to

generate an (N þ 1)-way softmax vector and sample from a

discrete mixture (Dþ D) than it is to generate the para-

meters of γ, μ, s and then sample from a discrete and

continuous mixture (Dþ C). Other constrained domain

distributions such as the exponential and the gamma

distributions were also considered but led to inferior results.

The exponential distribution suffers from a lack of flexi-

bility due to having only one learnable parameter.

B. Multistage generation for heterogeneous areas

In many ARM applications, a single network is used to

predict the parameters θi of the conditional probability

distribution PðxijθiÞ. This approach works well if the

distribution of pixel values is similar across pixels, as is

often the case in natural images. However, as shown in

Fig. 5 (left panel), the pixel value distribution in the central

square of a calorimeter image containing a jet is very

different from the distribution in the rest of the image (see

also [43]). In order to handle these heterogeneous regions,

FIG. 4. Generation process for the Dþ C model. The blue circle dots represent the value sampled for each pixel. For example, given

the first pixel value of 6.7, sampled from the empirical distribution of the dataset, the neural network outputs the distribution parameters

γ1 ¼ 0.1, μ1 ¼ 3.1, s1 ¼ 3.9 to generate the second pixel. Then a Bernoulli random variable is sampled from z1 ∼ BernðγiÞ and a logistic
random variable is sampled from x̃i ∼ Logisticðμi; siÞ. The value of the second pixel xi is produced by the product of these two variables
as xi ¼ zi · x̃i ¼ 0 · 2.9 ¼ 0. This sequential process is repeated until every pixel is generated.

Central Stage

Peripheral Stage

FIG. 5. Left panel: Distribution of pixel values in the jet substructure dataset for the nine pixels in the center of the images (central

region) and the rest of the pixels (peripheral region). Note that the majority of the pixels in the peripheral region are zero valued and in

general have lower variance than pixels in the central region. Right panel: Two-stage generation for the central and peripheral regions

using a spiral path and two different SARM modules. Using different networks for each region improves performance.
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we use a two-stage approach by stacking two distinct deep

SARM modules, one for the center and one for the

periphery. When the model generates the image from the

inside out, the outer module generates pixels conditioned

on the outputs of the center module, as illustrated in

Fig. 5 (right panel). We refer to this model as SARM-2

while the single-stage model is SARM-1. Since the center

may not have a clear border, we treat the size of the center

relative to the periphery as a hyperparameter during

training. Note that in general the number of stages depends

on the structure of the data and is not limited to two.

Furthermore, it is possible to learn the SARMs associated

with each region in any order.

Thus, in summary, through the experiments to be

presented, we show that a good heuristic approach for

SARM design is to (1) decompose the images into relevant

regions (e.g., center vs background); (2) use a different

SARM for each region type; and (3) within each region

type, preferably choose a systematic and congruent order

for generating the pixels, as these compare favorably to

random generation orders. By systematic and congruent

orders we mean orders that have some kind of continuity

for the location of the pixels being generated—subsequent

generated pixels should be close in the image—while

respecting the geometry of the highly activated region

(e.g., a spiral order for a globular region, a linear order for a

linear region).

V. EVALUATION METHODS

The goal is to train generative models which create

images indistinguishable from images created by the slower

Monte Carlo methods. We compare the performance of our

models, both in terms of image quality and generation time,

against two other generative models: LAGAN [6], the current

state-of-the-art generative model for sparse images in

particle physics; and Pixel CNNþþ [41], a widely used

autoregressive model for natural images not tuned for

sparse images. We evaluate all models on both datasets

described above; note that LAGAN was designed to handle

images typically found in the jet substructure dataset, while

the muon dataset features extreme sparsity in comparison.

We measure the quality of the generated images both

qualitatively and quantitatively.

Qualitative evaluation.—We examine typical images

generated by each model, as well as the pixelwise average

intensity of the generated images, using the images

produced by the Monte Carlo methods, which in the jet

substructure study are referred to as the PYTHIA images.

Additional qualitative comparisons are described in

Appendixes C and D.

Quantitative evaluation.—Comparisons of distributions

in high-dimensional datasets should focus on the scientific

context and potential applications. In particle physics, the

calorimeter information is typically used to calculate

physical quantities, such as invariant mass or transverse

momentum (PT), which are especially revealing as metrics

because they have not been explicitly optimized by the

models. In addition, calorimeter images are used to train

classifiers which can identify particles from their patterns

of depositions.

One-dimensional distributions of mass and PT can be

evaluated in comparison to the distributions from

Monte Carlo generators using the Wasserstein distance,

the minimum cost to transform one distribution into the

other one, expressed by

WpðP;QÞ ¼
�

infJ∈J ðP;QÞ

Z

kx − ykpdJðx; yÞ
�

1=p

; ð5Þ

where J ðx; yÞ is the family of joint probability distribu-

tion of x and y, P and Q are marginal distributions, and

p ≥ 1. When p ¼ 1, this metric is also known as the earth

mover’s distance [55]. To match the results in [6], we

computed W1ðP;QÞ, where P represents one of the jet

observable distributions from the PYTHIA images, and Q
represents the corresponding jet observable distribution

from the generated images.

An important motivation for developing generative

models for fast simulations is to provide a computationally

inexpensive method to augment existing datasets in clas-

sification tasks [43,56]. The jet substructure dataset was

generated to train classifiers to distinguish between jets

fromW-boson decays (signal) and those from single quarks

and gluons, a well-known classification task [43,56]. The

muon isolation dataset was generated to train classifiers to

distinguish isolated muons from those due to heavy-flavor

jet production. Therefore, an essential test for the quality of

the generated images is whether they can be used in these

classification tasks. To quantify this, the generated images

were used as training sets to develop a classifier whose

performance was assessed using the Monte Carlo images.

The same convolutional neural network architecture was

trained with the same hyperparameters on five different

datasets: Monte Carlo images, images generated by

SARM-2 (DþC) images generated by SARM-2 (Dþ D),

images generated by LAGAN, and images generated by

Pixel CNNþþ. Because higher quality images should lead

to improved classification of the Monte Carlo images, we

used the classification performance as the evaluationmetric.

Speed.—Each generative model was used to generate

batches of images multiple times to measure the average

speed of image generation.

VI. RESULTS

A. Jet substructure study

1. Qualitative analysis

An example image from each generative model and from

the PYTHIA Monte Carlo generator is shown in Fig. 6. It is

clear that SARM-2 (Dþ C) excels at generating pixels with
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small values around the periphery in comparison to the

other models. Additional samples for each model can be

seen in Appendix H. To assess the overall quality of the

generated images, Fig. 7 shows the pixelwise average of

each dataset. The autoregressive models, SARMs and Pixel

CNNþþ, are able to model the peripheral radial region

around the center more accurately. This region has higher

degree of sparseness than the center region, making it more

challenging for the generative models to accurately capture.

We note that the images from the SARM-2 (Dþ C) model

appear to be the most similar to the PYTHIA images, while

the other models are less able to generate the peripheral

region faithfully. In addition, Pixel CNNþþ struggles to

achieve the radial structure present in the PYTHIA images

and creates a squarelike structure instead. In general, the

images from Fig. 7 generated by the autoregressive models

show a smooth transition from the highly activated center to

the sparse border, similar to that seen in the PYTHIA dataset.

In contrast, the border of the LAGAN images is irregular,

which could be due to its reliance on the ReLU activation

function to induce the sparsity, making the model unable to

estimate the sparseness level directly.

2. Quantitative analysis: Jet observables

as metrics for quality

To quantify the fidelity of the images generated by each

model as compared with the original samples, we insert

them into typical applications in particle physics. In the

context of collisions that produce jets, it is common to

calculate the invariant mass of the jet, and the transverse

momentum. Distributions of jet mass and PT are shown in

FIG. 6. Example of jet images generated from each model. Notice that SARM-2 (Dþ C) is able to produce small value pixels in the

periphery of the images. The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.

FIG. 7. Pixelwise average of the images generated by each model. Notice that LAGAN struggles to capture the distribution of low value

pixels in the periphery of the images and has a nonsmooth radial transition compared to the autoregressive models. The intensity of each

pixel is shown on a log scale, where the white space represents pixels with value zero.
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Fig. 8 for all models, which all succeed in matching the

general shape, though discrepancies are visible, and

Wasserstein distances are shown in Table I.

All SARM variants achieve lower distances in the

PT distributions than LAGAN and Pixel CNNþ, and

comparable or better distances in jet mass. The best results

in all categories are obtained by the SARM-2 (Dþ D).

Compared to the best of Pixel CNNþþ and LAGAN,

SARM-2 (Dþ D) provides a 51.92% improvement for PT,

and a 23.79% improvement for mass, averaged over the

signal and background sets. These results demonstrate

the effectiveness of taking sparseness into account during

learning and generation. Secondly, the SARM-2 models

clearly outperform the SARM-1 models for both the

(Dþ D) and (Dþ C) likelihoods, which shows the effec-

tiveness of the multistage approach in modeling hetero-

geneous areas in the images.

3. Classification of generated images

An important application of generated calorimeter

images is to augment training sets for networks learning

to perform vital signal-background classification tasks.

As a high-level test of the image quality, we train networks

using images generated by each model (2 × 105 signal,

2 × 105 background), and evaluate the performance on the

original images from PYTHIA (2 × 104 signal, 2 × 104

FIG. 8. Distributions of jet observables (top panels: mass, bottom panels: PT) calculated from images generated by several generative

models and from the original images generated by PYTHIA. Signal images, with two collimated quarks, are on the left; background

images, with a single quark or gluon, are on the right.

TABLE I. Comparison of images created by various generative

models with original images from PYTHIA, evaluated using the

Wasserstein distance (with p ¼ 1) between one-dimensional

distributions of physical quantities calculated from the images:

jet PT and invariant mass, also shown in Fig. 8. Smaller values

indicate a closer match to the PYTHIA images. Four SARMs

are evaluated, those with either one-stage (SARM-1) or two-

stage (SARM-2) models, and those with either discrete and

continuous distributions (Dþ C) or a mixture of discrete dis-

tributions (Dþ D). The boldface is used to highlight the best

performances and thereby also the best models.

PT Mass

Model Signal Background Signal Background

LAGAN 3.15 3.29 1.45 1.39

Pixel CNNþþ 3.46 3.59 1.09 1.56

SARM-1 (Dþ C) 2.33 2.46 1.07 1.54

SARM-2 (Dþ C) 2.32 2.71 1.06 1.39

SARM-1 (Dþ D) 1.95 2.52 1.34 2.45

SARM-2 (Dþ D) 1.44 1.66 0.94 0.92
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background). Training sets which best mimic the original

PYTHIA images should lead to networks which most closely

match the performance of a network trained on PYTHIA

images. Detailed information about the classifier and

training procedure is given in Appendix F. The receiver

operating characteristic (ROC) curves for networks trained

on images from PYTHIA, SARM-2 (Dþ C), SARM-2

(Dþ D), Pixel CNNþþ, and LAGAN are shown in

Fig. 9. Classifiers trained on both SARM generated datasets

have higher area under the ROC curve (AUC) scores than

the classifiers trained on the LAGAN images and Pixel

CNNþþ images.

4. Generation order

SARMs generate images pixel by pixel, conditioning

each step on the previously generated pixels. The order

of the pixel generation corresponds to a dependency

decomposition in Eq. (1), which may impact training

performance. The traversal path is especially important

for images containing heterogeneous areas. For natural

images, Ref. [50] uses an ensemble of models with random

paths, while Pixel CNNþþ and other models [10,41] use

the row-by-row pixel ordering.

The average performance of various pixel orderings

for SARM-1 (Dþ D) over ten repeated runs is shown in

Table II. Each order is evaluated by using the Wasserstein

distance between the distributions of the generated signal

images and the PYTHIA signal images for the jet PT and

invariant mass.

The spiral paths, clockwise (CW) and counterclockwise

(CCW), achieve the stronger results. This could be under-

stood in terms of mutual information between neighboring

pixels. Unlike the other orderings, the spiral ordering is

continuous, i.e., it always generates a pixel adjacent to the

previously generated pixel. Furthermore, the spiral order is

congruent with the globular shape of the highly activated

region in the jet images, e.g., Fig. 7. Starting the spiral from

the center outperforms inward spirals, indicating that it may

be easier to learn the correlations between the pixels

starting with pixels that are more active (more nonzero

pixel values). The difference between CW and CCW is

likely due to asymmetries generated by the rotation and

centering steps in the preprocessing of the data. We use this

asymmetric version of the data in order to enable direct

comparison to the LAGANmodel. These results confirm that

nonrandom, systematic generation orders that have good

continuity and congruence properties perform well (and

outperform random orders). A full exploration of the

ordering dependency is beyond the scope of this work

and computationally challenging due to the factorial

number of possible orderings.

5. Computational costs

Table III shows the speed of the generative models in

comparison to the Monte Carlo method (PYTHIA). The

SARM-2 models are 5 times slower than LAGAN, which is

mainly due to the extra computational cost of the autor-

egressive structure. On the other hand, the SARM-2 models

FIG. 9. Evaluation of the fidelity of images generated by several

models in the context of a classification task. Images generated by

the model are used to train a network to discriminate between

signal and background, but performance is measured using the

original PYTHIA images.

TABLE II. Quality of jet substructure signal images generated

by SARM-1 (Dþ D) with various pixel-generation orderings.

The quality is measured by the Wasserstein distance for the

physical observables (PT and mass) between the generated

images and the original PYTHIA images. Spiral-in clockwise/

counterclockwise (CW/CCW), spiral-out CW/CCW, column-

wise, row-wise, and two random approaches are compared.

The outward spiral orders show good performance due to the

radial structure of the images.

PT (std.) Mass (std.)

Spiral-out CCW 1.94 (0.09) 1.38 (0.10)

Spiral-out CW 2.47 (0.23) 1.53 (0.22)

Spiral-in CCW 3.64 (0.32) 1.62 (0.14)

Spiral-in CW 3.20 (0.22) 1.45 (0.16)

Row-wise 3.06 (0.30) 2.01 (0.11)

Columnwise 3.38 (0.39) 1.90 (0.08)

Random I 4.05 (0.51) 1.74 (0.53)

Random II 3.41 (0.33) 1.25 (0.26)

TABLE III. Comparison of image generation speed between

the Monte Carlo approach (PYTHIA) and various generative

models. The SARM-2 models are slower than LAGAN, but still

considerably faster than PYTHIA and Pixel CNN þþ.

Model Speed (images/sec)

PYTHIA [6] 34

Pixel CNNþþ 50

SARM-2 (Dþ D) 1612

SARM-2 (Dþ C) 2480

LAGAN 10,176
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are 2 orders of magnitude faster than PYTHIA and Pixel

CNNþþ. The forward pass of the Pixel CNNþþ model

is computationally expensive due to the ResNet blocks with

convolutional layers and skip connections [41,57]. In

contrast, SARMs use a simple feed forward network with

disabled connections to preserve autoregressive structure.

The speed of the generative models is measured on a

machine with 4 TITANX graphics processing unit (GPU)

cards each with 12 gigabytes of memory. The speed of

PYTHIA was assessed in [6] using Amazon Web Services

and an IntelR XeonR E5-2686 v4 at 2.30 GHz CPU.

There is room to further optimize the speed of the SARM

models. For instance, we find that reducing the size of the

intermediate upsampling layer of the SARM (Dþ D)

drastically reduces the memory requirements and improves

the generation speed. Another direction is to explore model

pruning and compression.

B. Muon isolation study

1. Qualitative analysis: Average generated images

Typical calorimeter images in the vicinity of a muon

generated by the standard Monte Carlo method, Pixel

CNNþþ as well as two SARMs are shown in Fig. 10.

In this context, LAGAN suffered from mode collapse and

failed to generate reasonable quality images (see Fig. 18 in

the Appendix). This is a well-known problem when train-

ing GANs [6,38,39], especially with sparse data.

Figure 11 shows the pixelwise average images.

The SARM-2 models and the Pixel CNNþþ reproduce the

radial symmetry seen in the original images. However,

the average images produced by Pixel CNNþþ contain

noticeable artifacts, potentially due to the convolutional

layers in the model [58].

2. Quantitative analysis: Calorimeter observables

as metrics for quality

To assess the fidelity of the images quantitatively, we

calculate physical quantities which summarize the content

of the images and allow for comparison of one-dimensional

distributions. While calorimeter images in the vicinity of a

muon do not necessarily contain a clustered jet, the total PT

and invariant mass of the entire image do have physical

meaning. Figure 12 shows the distributions of these

quantities for the original Monte Carlo images, as well

as for the generated images, and Table IV provides the

corresponding Wasserstein distances.

The datasets generated by both SARM-2 models have

considerably smaller Wasserstein distances than the data-

sets generated by the Pixel CNNþþ model for both signal

and background. The distributions of all the generated

datasets approximate the shape of the Monte Carlo dis-

tributions quite well for PT and mass, but the distributions

of the Pixel CNNþþ dataset have a small shift toward

higher values, for both the signal and the background. In

addition, for the background they are more concentrated

around the mean. This is potentially due to the fact that

Pixel CNNþþ fails to model the right tail of the pixel

distribution, where the pixels have higher values but appear

much less frequently in the data (Fig. 21 in the Appendix).

The SARM-2 (Dþ D) has the best overall performance,

with improvements of 68.08% for PT and 66.44% for mass,

averaged over the signal and background datasets.

FIG. 10. Example calorimeter images in the vicinity of a muon from the generative models as well as the original Monte Carlo

generator. The top row shows isolated muons (signal), while the bottom shows muons produced in association with a jet (background).

The intensity of each pixel is shown on a log scale, where the white space represents pixels with value zero.
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FIG. 12. Distributions of calorimeter observables (top panels: invariant mass, bottom panels: total PT) calculated from images

generated by several generative models and the originals generated by a Monte Carlo generator. Signal images, in the vicinity of an

isolated muon, are on the left. Background images, in the vicinity of a muon produced with an associated jet, are on the right.

FIG. 11. Pixelwise averages of calorimeter images in the vicinity of a muon from the generative models as well as the original

Monte Carlo generator. The top row shows isolated muons (signal), where little calorimeter activity is expected. The bottom row shows

muons produced in association with a jet (background), which deposits significant energy near the muon. A linear scale is used to reveal

the differences between signal and background images.
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3. Classification of generated images

The fidelity of the images can be evaluated in the context

of the data analysis task for which they were created,

training a network to distinguish between signal (calorim-

eter images near isolated muons) and background (calo-

rimeter images near nonisolated muons).

A convolutional neural network classifier was

trained using images generated exclusively by each of

the models [SARM-2 (Dþ C), SARM-2 (Dþ D), or Pixel

CNNþþ]; one additional network was trained using

images from the Monte Carlo generator. The quality of

the images is measured by comparing the classification

performance of these networks on images from the

Monte Carlo generator, see Fig. 13. The classifiers

trained on each SARM dataset have higher AUC

scores than the classifier trained on the Pixel CNNþþ
dataset, providing additional evidence that the SARM

datasets are more similar to the Monte Carlo images and

thus better suited for downstream tasks such as data

augmentation.

4. Generation order

In this section, we discuss the impact of the pixel order

for SARMs associated with the signal dataset of the muon

isolation study. Similarly to Sec. VI A 4, we conducted ten

repeated experiments for each of the orders and summa-

rized the results in Table V.

In contrast to the jet substructure study, the muon

isolation data is not rotated and the pixel value distribution

is quite uniform. Therefore we see that different generation

orders have a similar performance in terms of mass and PT

distances. In addition, all the models trained using sys-

tematic orders that have some continuity in the sequence of

pixels slightly outperform the models trained using random

orders. In combination, these results confirm the validity of

the heuristic strategy outlined at the end of Sec. IV,

providing general guidelines for SARM design and pixel

generation when applying these models to other datasets.

5. Computational costs

Calorimeter image generation speeds in the context

of the muon isolation study are shown in Table VI for

FIG. 13. Evaluation of the fidelity of images generated by

several models in the context of a classification task, distinguish-

ing muons produced in isolation from those produced in

association with a jet. Images generated by the model are used

to train a network to discriminate between signal and back-

ground, but performance is measured using the original

Monte Carlo images.

TABLE IV. Comparison of images created by various gener-

ative models to the original Monte Carlo images using the

Wasserstein distance (with p ¼ 1) between one-dimensional

distributions of physical quantities calculated from the images:

PT and invariant mass, also shown in Fig. 12. Smaller values

indicate a closer match to the Monte Carlo images. Two SARMs

are evaluated, with either discrete and continuous distributions

(Dþ C) or a mixture of discrete distributions (Dþ D). The

boldface is used to highlight the best performances and thereby

also the best models.

PT Mass

Model Signal Background Signal Background

PixelCNN þþ 1.75 2.92 0.58 0.82

SARM-2 (Dþ C) 0.79 0.97 0.25 0.21

SARM-2 (Dþ D) 0.56 0.93 0.17 0.31

TABLE V. Quality of images generated by SARM-1 models

with various pixel-generation orderings for the muon isolation

signal dataset. The quality is measured by the Wasserstein

distance for the physical observables (PT and mass) between

the generated images and the original Monte Carlo images.

PT (std.) Mass (std.)

Spiral-out CCW 0.99 (0.37) 0.27 (0.10)

Spiral-out CW 0.92 (0.33) 0.26 (0.09)

Spiral-in CCW 0.81 (0.23) 0.20 (0.05)

Spiral-in CW 0.95 (0.24) 0.24 (0.07)

Row-wise 0.99 (0.28) 0.20 (0.05)

Columnwise 0.90 (0.26) 0.22 (0.05)

Random I 1.17 (0.30) 0.32 (0.08)

Random II 1.34 (0.41) 0.37 (0.11)

TABLE VI. Comparison of image generation speed between

the Monte Carlo approach and various generative models. The

SARM-2 models are considerably faster than Pixel CNNþþ
and the Monte Carlo generator.

Model Speed (images= sec)

Monte Carlo 5

Pixel CNNþþ 10

SARM-2 (Dþ D) 625

SARM-2 (Dþ C) 1136
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the SARM models, Pixel CNNþþ, and the Monte Carlo

generator. The SARM models are 1 to 2 orders of

magnitude faster than Pixel CNNþþ, similar to the

observation of the jet substructure study. The generation

speed of each generative model is measured with the same

hardware as described in Sec. VI A 5. The speed for the

Monte Carlo generator is measured on an Intel(R) Xeon(R)

E5-2680 at 2.70 GHz CPU.

VII. CONCLUSION

Sparse images, prevalent in particle physics datasets,

present unique challenges for generative models. We have

developed and applied a new class of models, deep

SARMs, specifically designed to handle extreme sparse-

ness. These compositional models are also able to take

advantage of the structure present in particle physics

images by using a multistage generation approach.

Using several different metrics, we compared SARMs to

other generative models, in particular to Pixel CNNþþ, a

popular autoregressive model not adapted for sparsity, and

to LAGAN, a state-of-the-art GAN for sparse images. The

comparisons were carried using two benchmark datasets.

In the first case study on jet substructure, the adaptation to

sparseness enables SARMs to produce qualitatively and

quantitatively higher quality images than Pixel CNNþþ
and LAGAN. SARM are also orders of magnitude faster than

traditional Monte Carlo methods and Pixel CNNþþ, but

slower than the nonautoregressive model LAGAN, showing a

trade-off between speed and quality. The second case study

features extremely sparse images corresponding to calorim-

eter images in thevicinity ofmuons.While competingmodels

produce artifacts or suffer from mode collapse, SARMs are

able to handle and model extreme degrees of sparseness.

In sum, given the prevalence of sparse images in particle

physics and beyond, SARMs can be expected to provide an

important option for rapid, high-quality, image generation

from training data. Because of their quality, the generated

images in turn will be able to benefit a variety of down-

stream data analyses.

Original data and software will be made available from

the UCI Machine Learning in Physics Web portal [59].
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APPENDIX A: 2D TOY EXAMPLE

We simulate a dataset containing pairs of two variables

x0 and x1, such that x0 ∼ pðx0jx1Þ and x1 ∼ pðx1Þ. In this

toy example we show that the autoregressive model is

still able to learn to generate the joint distribution of x0 and
x1, even though during training it is forced to learn

x0 ∼ pðx0Þ first, and then to learn the dependency

pðx1jx0Þ. The simulated training data contains 1000 pairs

of fx0; x1g according to x1 ∼ Nð0; 1Þ and x0 ¼ x1 þ ϵ,

where ϵ ∼ Nð0; 1Þ, a standard normal distribution indepen-

dent of x1. The joint distribution of x0, x1 is shown in

Fig. 14. The toy autoregressive model learns to generate x0
using two learnable parameters, μ0 and logðσ0Þ, corre-

sponding to the mean and log standard deviation of x0. It
has a single linear layer for predicting μ0 and logðσ0Þ,
which corresponds to the mean and log standard deviation

of x1. The model is trained for 5000 iterations, by

maximizing the likelihood pðx0; x1Þ. During the generation
stage, the model generates x0 without knowing x1. Since
the goal of the model is to generate the joint distribution of

ðx0; x1Þ ∼ Pðx0; x1Þ, to do this it only needs to learn the

marginal distribution, which is x0 ∼ Nð0; 2Þ and the rela-

tionship x1 ¼ x0 − ϵ. Figure 14 shows the result of training

FIG. 14. Left panel: density plot of training data. Right panel: density plot of generated data. The two distributions are very close,

showing that the ARM is able to learn the joint distribution of x0 and x1 well.
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this model and we can see it correctly learns the means

and variances of fx0; x1g along with the data distribution

despite the fact that it has to generate x0 before generat-

ing x1.

APPENDIX B: MADE STRUCTURE

The masked autoencoder for distribution estimation

(MADE) structure enforces the autoregressive property

on fully connected layers by using a carefully selected

binary mask on the weights of the layer. The joint like-

lihood of the MADE structure can be evaluated in one

forward pass of the network during training, which is not

possible in other models like Pixel-RNN [10] and Pixel

CNNþþ [41]. This allows MADE to take advantage of

the GPU acceleration. In our SARM implementation, we

consider a simple MADE structure with input x and a stack
of multiple hidden layers hðxÞ, where each hðxÞ follows

hðxÞ ¼ fðbþ ðW ⊙ MWÞxÞ;
θ ¼ fðcþ ðV ⊙ MVÞhðxÞÞ: ðB1Þ

Here θ is the output, and f is the activation function of

the hidden layer. In practice, we found Gaussian Error

Linear Units [60] work better in our experiments than other

activations such as sigmoid and tanh. Both W and V are

weight matrices, with corresponding masks: the hidden

mask MW , and the output mask MV . Each matrix is

multiplied elementwise with each mask.

Suppose x ∈ RD, it can be shown that for the input mask

MW

k;d ¼ 1k mod D≤d ¼
�

1 if k mod D ≤ d;

0 otherwise:
ðB2Þ

Likewise, suppose hðxÞ ∈ RH, then for the output mask

MV

k;d ¼ 1k mod D<d ¼
�

1 if k mod D < d;

0 otherwise:
ðB3Þ

Then the output θ satisfies autoregressive structure:

for any i, θi only depends on xj<i. As shown in Fig. 3,

the parameter θi is used to generate the ith pixel during

generation. For example, if the likelihood is a logistic

distribution, then θi ¼ ½μi; si�, where μi, si corresponds to
the mean and scale of a logistic distribution.

During generation, at step i we take the previously

generated x0; x1;…; xi−1 and pad the remaining xi;…; xD−1

with zeros. Thenwe input this vector in theMADE structure

so that the output θi depends only on x0;…; xi−1. Finally, we
sample the pixel xi conditioned on θi and repeat this process
until every pixel is generated.

APPENDIX C: FURTHER ANALYSIS OF THE

JET STRUCTURE STUDY

Figure 15 shows the subtraction between the pixelwise

average of the images from each generative model and the

pixelwise average from PYTHIA. Notice the differences are

concentrated in the middle of the images where there are

higher value pixels. The images generated by both SARM

models have small differences compared to the ones

FIG. 15. Error measured by subtracting of the pixelwise average of the images created by each generative model and the pixelwise

average of the images generated with PYTHIA. The SARM models have lower error than both Pixel CNNþþ and LAGAN with most of

the errors are concentrated in the center of the image.
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generated by LAGAN for both signal and background and by

Pixel CNNþþ for background. Also, Pixel CNNþþ has

higher errors in background images compared to signal

images.

Figure 16 shows the distribution of pixel values across all

the generated images. For the signal images, all the models

match the PYTHIA distribution for pixel values below 200

but the models have difficulties at higher values. SARM-2

(Dþ D) and LAGAN have the closest match at high pixel

values while SARM-2 (Dþ C) and Pixel CNNþþ
overestimate them. For the background images, most of

the models accurately predict low value pixels, but LAGAN

FIG. 16. Distribution of aggregated pixel intensity in the generated images for jet substructure study. Notice most of the differences

happen at high pixel values where there are fewer events. LAGAN also has a harder time replicating the distribution of background images

across all pixel values compared to the other models.

FIG. 17. Typical muon images generated using LAGAN. The figures are plotted in log scale, where the white space represents pixels

with value zero.

FIG. 18. Pixelwise average of muon images from LAGAN for signal and background. The average images generated by LAGAN fail to

reproduce the radial structure present in the average Monte Carlo images (Fig. 11).

SPARSE AUTOREGRESSIVE MODEL FOR SCALABLE … PHYS. REV. D 103, 036012 (2021)

036012-15



slightly overestimates pixels in the range 50 to 100 and

underestimates them afterward. For high pixel values,

Pixel CNNþþ strongly overestimates pixels in the

range 250–300 while the other models remain reasonably

close to PYTHIA. In both cases the models have diffi-

culties learning the high value pixels, which is expected

since there are very few pixels in this range in the PYTHIA

distribution.

APPENDIX D: FURTHER ANALYSIS OF THE

MUON ISOLATION STUDY

1. LAGAN

Despite our best efforts, the LAGAN model performed

poorly every time it was trained on the muon isolation

dataset. As seen in Figs. 17 and 18 the pixelwise average

image does not capture the radial structure present in the

dataset and some of the pixels with high values seem to be

present in many of the images. This seems to be due to a low

amount of variability in the generated images, typical of

mode collapse in GANs. This performance is also reflected

in the distributions of PT and mass (Fig. 19) and the

respective Wasserstein distances which are 1 order of

magnitude worse than the values for the other models

(Table VII).

2. SARM vs Pixel CNN+ +

Figure 20 shows the subtraction between the pixelwise

average of the images from each generative model and the

pixelwise average from PYTHIA in the muon isolation

dataset. For the signal data, all models show very small

differences, evenly distributed across the radial structure

of the images. In particular, Pixel CNNþþ is overrep-

resenting most of the pixels in the artificial checkerboard

pattern noted before. For the background data the

errors are slightly higher for all models. The SARM

models have more difficulties with the pixels in the

FIG. 19. Comparison of the mass and PT distributions of the images generated by LAGAN, SARM-2 (Dþ D), and the Monte Carlo

simulations for both signal and background muons.

TABLE VII. Wasserstein distance of the physical constituents

jet PT and mass distributions between the original muon images

from the Monte Carlo generator and the images created by

the generative models. A small distance signifies a good agree-

ment. SARM-2 (Dþ D) is the two-stage SARM model with a

discrete mixture. The boldface is used to highlight the best

performances and thereby also the best models.

PT Mass

Signal Background Signal Background

LAGAN 4.81 10.88 1.81 2.17

SARM-2 (Dþ D) 0.56 0.93 0.17 0.31
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center and tend to overrepresent them while Pixel

CNNþþ underrepresents the center and overrepresents

the periphery.

Figure 21 shows the distribution of pixel values across

all the generated images. For both signal and background

the Pixel CNNþþ model is underrepresenting pixels

with high intensity, while the SARM models match the

distribution quite well. Like in the jet substructure study,

most of the errors correspond to pixels with high

intensity values, which is expected since these values

are rare in the training data, making it difficult to

correctly learn their distribution.

FIG. 20. Subtraction between the pixelwise average of generated images vs Monte Carlo images. The errors are evenly distributed in

the signal images, while they are concentrated in the center for the background images. In the center there is larger number of high

intensity pixels.

FIG. 21. Distribution of pixel intensity for muon isolation study. Pixel CNNþþ underrepresents the distribution while the SARM

models miss the high pixel values where there are fewer events.
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APPENDIX E: SOFTWARE MODIFICATIONS

1. LAGAN

The code and weights of the original LAGAN model for

the jet substructure study dataset are publicly available.

This makes it possible to generate new images using the

original model’s weights for this dataset, but the model

needs to be retrained to generate images of a different

dataset. The model was retrained for the muon isolation

study and it also had to be modified to adapt it to the larger

images of 32 × 32 pixels since it has upsampling layers in

the generator part of the GAN.

2. PixelCNN+ +

As a baseline for autoregressive models we used the

Pixel CNNþþ [41]. Due to speed and memory restric-

tions, we had to modify the original model by reducing

the number of filters in the masked convolutional layers

and the number of residual blocks compared to the

original model. Both the number of filters and the

number of residual blocks are optimized as hyperpara-

meters using grid search with 5, 10, or 20 filters and 2 or

3 residual blocks. However, we found most hyperpara-

meter combinations to have similar performance. The

model with 20 filters and 3 blocks performs slightly

better in the jet substructure study, and the model with

10 filters and 5 blocks performs slightly better in the

muon isolation study. Even though the models we used

are smaller than the original model in [41], they are

almost as slow as the traditional Monte Carlo methods

(Tables III and VI).

APPENDIX F: ARCHITECTURE AND

HYPERPARAMETER OPTIMIZATION

We performed a search over the architectures of the

SARMs including the number of hidden layers structure,

the size of the central area for the two-stage approach and

the size of the intermediate upsampling layer using SHERPA

[61]. We also conducted search of the transformation

parameter p with values [1, 1.1, 1.2, 1.3, 1.5, 2] for the

Dþ D models. All models were implemented in PyTorch

[62], and were trained for 300 epochs with outward spiral

(CCW) order using the Adam optimizer [37] with learning

rate 3e-4, decreased by half every 100 epochs and mini-

batch size 128.

For the jet substructure study, the best SARM-2

configuration had a center area of side length 3. For the

Dþ D models, we used five hidden layers with an

upsampling layer of size 10 and found that a power

transformation with p ¼ 1.0 yields slightly better results.

For the Dþ C models, we found that the model with three

hidden layers and a mixture of five truncated logistic for

the C component works well for both signal and back-

ground images. In the generation order experiments,

similarly we used SARM-1 (Dþ D) models with five

hidden layers, an upsampling layer of size 10 and a power

transformation with p ¼ 1.0, effectively no transforma-

tion. And all models are trained with identical settings:

learning rate of 3e-4, decreased by half every 100 epochs

and minibatch size 128. For the LAGAN model we used the

publicly available version of LAGAN optimized by the

original authors.

For the muon isolation study, the best model we found

had five hidden layers, and a center area of side length 7 for

both Dþ D and Dþ C models. For the SARM-2 (Dþ D),

we used an upsampling layer of size 10 and found that a

power transformation with p ¼ 1.2 for signal and p ¼ 1.3

for background provided the best results. And for the

Dþ C models, we found again that a mixture of five

truncated logistic for the C component works well for both

signal and background images.

For the classification tasks, we trained five convolu-

tional neural networks with the same structure on each of

the datasets. We randomly split the data into a 90% subset

for training and a 10% subset for validation. The vali-

dation set is used for early stopping during training to

avoid overfitting. The convolutional neural network

model has two convolutional blocks, two fully connected

layers with 100 rectified linear units, and a sigmoid unit at

the end to predict the probability of the image being

signal. Each convolutional block contains two convolu-

tional layers with 3 × 3 kernels and 30 filters with rectified

linear units followed by a maxpooling layer with 2 × 2

kernel. All models were trained in PyTorch using the

Adam optimizer, with a learning rate of 0.001 and a batch

size of 128.

APPENDIX G: COMPLEXITY ANALYSIS

Next we compare the number of parameters for the

different models in Table VIII. Note that the original Pixel

CNNþþ model [41] uses 160 convolutional filters. With

all these filters, each forward pass takes more than 1 sec on

four NVIDIA TITANX GPU cards, resulting in a gener-

ation speed that is 1 order of magnitude slower than the

traditional Monte Carlo methods, thus defeating the origi-

nal purpose. Therefore, in our implementation of the Pixel

CNNþþ model, we limit the number of its filters to 20 to

speed up the generation process and reduce the memory

requirements.

TABLE VIII. Model complexity comparison in terms of num-

ber of parameters in the Jet substructure study.

Model Number of parameters

PYTHIA [6] � � �
Pixel CNNþþ 0.7 × 106

SARM-2 (Dþ D) 6 × 106

SARM-2 (Dþ C) 7 × 106

LAGAN 5 × 106
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APPENDIX H: SAMPLE IMAGES

In this section, we show more generated images from both the jet substructure study and the muon isolation study in

Figs. 22 and 23.

FIG. 22. Additional typical images from the jet substructure study.

SPARSE AUTOREGRESSIVE MODEL FOR SCALABLE … PHYS. REV. D 103, 036012 (2021)

036012-19



[1] S. Agostinelli et al. (GEANT4 Collaboration), GEANT4: A
simulation toolkit, Nucl. Instrum. Methods Phys. Res., Sect.
A 506, 250 (2003).

[2] G. Aad et al. (ATLAS Collaboration), The ATLAS
simulation infrastructure, Eur. Phys. J. C 70, 823 (2010).

[3] R. Rahmat, R. Kroeger, and A. Giammanco, The fast

simulation of the CMS experiment, J. Phys. Conf. Ser.

396, 062016 (2012).

[4] N. Nikiforou (ATLAS Collaboration), Performance
of the ATLAS liquid argon calorimeter after three years
of LHC operation and plans for a future upgrade, in
Proceedings of the 3rd International Conference on Ad-

vancements in Nuclear Instrumentation Measurement

Methods and Their Applications (ANIMMA), Marseille,

2013 (IEEE, 2013), https://doi.org/10.1109/ANIMMA
.2013.6728060.

FIG. 23. Additional typical images from the muon isolation study.

LU, COLLADO, WHITESON, and BALDI PHYS. REV. D 103, 036012 (2021)

036012-20



[5] LHCb Collaboration, LHCb calorimeters, Technical Design

Report No. LHCb-TDR-2 (CERN, Geneva, 2000), https://

cds.cern.ch/record/494264.

[6] L. de Oliveira, M. Paganini, and B. Nachman, Learning

particle physics by example: Location-aware generative

adversarial networks for physics synthesis, Comput. Softw.

Big Sci. 1, 4 (2017).

[7] Y. Lu, J. Collado, K. Bauer, D. Whiteson, and P. Baldi,

Sparse image generation with decoupled generative models,

in Proceedings of the 33rd Conference on Neural Informa-

tion Processing Systems: Machine Learning and the Physi-

cal Sciences Workshop, 2019, https://ml4physicalsciences

.github.io/2019/files/NeurIPS_ML4PS_2019_161.pdf.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio,

Generative adversarial networks, in Advances in Neural

Information Processing Systems 27, edited by Z. Ghahra-

mani, M. Welling, C. Cortes, N. Lawrence, and K. Q.

Weinberger (Curran Associates, New York, 2014), https://

proceedings.neurips.cc/paper/2014.

[9] D. P. Kingma and M. Welling, Auto-encoding variational

Bayes, in Proceedings of the 2nd International Conference

on Learning Representations (ICLR), 2014, arXiv:

1312.6114.

[10] A. V. Oord, N. Kalchbrenner, and K. Kavukcuoglu, Pixel

recurrent neural networks, in Proceedings of the 33rd

International Conference on Machine Learning (ICML),

Proceedings of Machine Learning Research Vol. 48 (PMLR,

New York, 2016), pp. 1747–1756.

[11] J. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-

to-image translation using cycle-consistent adversarial net-

works, arXiv:1703.10593.

[12] A. Brock, J. Donahue, and K. Simonyan, Large scale GAN

training for high fidelity natural image synthesis, in Pro-

ceedings of the 7th International Conference on Learning

Representations (ICLR), New Orleans, 2019, https://

openreview.net/forum?id=B1xsqj09Fm.

[13] D. P. Kingma and P. Dhariwal, Glow: Generative flow with

invertible 1 × 1 convolutions, in Advances in Neural Infor-

mation Processing Systems 31, edited by S. Bengio, H.

Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and

R. Garnett (Curran Associates, NewYork, 2018), pp. 10,215–

10,224, https://proceedings.neurips.cc/paper/2018.

[14] P. Baldi, P. Sadowski, and D.Whiteson, Searching for exotic

particles in high-energy physics with deep learning, Nat.

Commun. 5, 4308 (2014).

[15] S. Delaquis et al., Deep neural networks for energy and

position reconstruction in EXO-200, J. Instrum. 13, P08023

(2015).

[16] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson,

E. Goul, and A. Sgaard, Decorrelated jet substructure

tagging using adversarial neural networks, Phys. Rev. D

96, 074034 (2017).

[17] P. Baldi, J. Bian, L. Hertel, and L. Li, Improved energy

reconstruction in NOvA with regression convolutional

neural networks, Phys. Rev. D 99, 012011 (2019).

[18] D. Guest, J. Collado, P. Baldi, S.-C. Hsu, G. Urban, and D.

Whiteson, Jet flavor classification in high-energy physics

with deep neural networks, Phys. Rev. D 94, 112002 (2016).

[19] P. Sadowski, J. Collado, D. Whiteson, and P. Baldi, Deep

learning, dark knowledge, and dark matter, in Proceedings

of the NIPS 2014 Workshop on High-energy Physics and

Machine Learning, Proceedings of Machine Learning Re-

search Vol. 42 (PMLR, Montreal, 2015), pp. 81–87, http://

proceedings.mlr.press/v42/sado14.html.

[20] I. Seong, L. Hertel, J. Collado, L. Li, N. Nayak, J. Bian, and

P. Baldi, Convolutional neural networks for energy and

vertex reconstruction in DUNE, in Proceedings of the 33rd

Conference on Neural Information Processing Systems

(NeurIPS): Machine Learning and the Physical Sciences

Workshop, 2019, https://ml4physicalsciences.github.io/

2019/files/NeurIPS_ML4PS_2019_77.pdf.

[21] P. Baldi, Deep Learning in Science: Theory, Algorithms,

and Applications (Cambridge University Press, Cambridge,

England, 2020).

[22] M. Mustafa, D. Bard, W. Bhimji, Z. Lukić, R. Al-Rfou,

and J. M. Kratochvil, CosmoGAN: Creating high-fidelity

weak lensing convergence maps using generative adversa-

rial networks, Comput. Astrophys. Cosmol. 6, 1 (2019).

[23] P. Musella and F. Pandolfi, Fast and accurate simulation of

particle detectors using generative adversarial networks,

Comput. Softw. Big Sci. 2, 8 (2018).

[24] K. Zhou, G. Endrődi, L.-G. Pang, and H. Stöcker, Regres-

sive and generative neural networks for scalar field theory,

Phys. Rev. D 100, 011501 (2019).

[25] G. r. Khattak, S. Vallecorsa, and F. Carminati, Three

dimensional energy parametrized generative adversarial

networks for electromagnetic shower simulation, in Pro-

ceedings of the 25th IEEE International Conference on

Image Processing (ICIP), Athens, 2018 (IEEE, New York,

2018), pp. 3913–3917, https://ieeexplore.ieee.org/document/

8451587.

[26] S. Alonso Monsalve and L. Whitehead, Image-based model

parameter optimization using model-assisted generative

adversarial networks, IEEE Trans. Neural Networks Learn.

Syst. 31, 5645 (2020).

[27] K. Deja, T. Trzciński, and Ł. Graczykowski, Generative

models for fast cluster simulations in the TPC for the

ALICE experiment, EPJ Web Conf. 214, 06003 (2019).

[28] F. Carminati, M. P. Gulrukh Khattak, B. H. Amir Farbin,

W. Wei, M. Zhang, V. B. Pacela, S. Vallecorsafac, M.

Spiropulu, and J.-R. Vlimant, Calorimetry with deep learn-

ing: Particle classification, energy regression, and simula-

tion for high-energy physics, Proceedings of the 31st

Conference on Neural Information Processing Systems

(NeurIPS): Deep Learning for Physical Sciences Workshop,

Long Beach, CA, 2017 (Curran Associates, Red Hook, NY,

2017).

[29] V. Shah, A. Joshi, S. Ghosal, B. S. S. Pokuri, S. Sarkar, B.

Ganapathysubramanian, and C. Hegde, Encoding invarian-

ces in deep generative models, arXiv:1906.01626.

[30] K. Cranmer, S. Gadatsch, A. Ghosh, T. Golling, D. R. Gilles

Louppe, and D. Salamani (G. S. on behalf of the ATLAS

Collaboration), Deep generative models for fast shower

simulation in ATLAS, Proceedings of the 32nd Conference

on Neural Information Processing Systems (NeurIPS):

Bayesian Deep Learning Workshop, Montreal, 2018,

http://bayesiandeeplearning.org/2018/papers/24.pdf.

SPARSE AUTOREGRESSIVE MODEL FOR SCALABLE … PHYS. REV. D 103, 036012 (2021)

036012-21



[31] B. Hashemi, N. Amin, K. Datta, D. Olivito, and M. Pierini,

LHC analysis-specific datasets with generative adversarial

networks, arXiv:1901.05282.

[32] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L.

Hendriks, C. van Leeuwen, D. Podareanu, R. R. de Austri,

and R. Verheyen, Event generation and statistical sampling

for physics with deep generative models and a density

information buffer, arXiv:1901.00875.

[33] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-

images: Computer vision inspired techniques for jet tagging,

J. High Energy Phys. 02 (2015) 118.

[34] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN:

Simulating 3D high energy particle showers in multi-layer

electromagnetic calorimeters with generative adversarial

networks, Phys. Rev. D 97, 014021 (2018).

[35] S. Chintala, How to train a GAN? in Proceedings of the

Workshop on Generative Adversarial Networks, Barcelona,

2016, https://github.com/soumith/ganhacks.

[36] L. Bottou, Large-scale machine learning with stochastic

gradient descent, in Proceedings of the 19th International

ConferenceonComputational Statistics (COMPSTAT), Paris,

2010, https://leon.bottou.org/publications/pdf/compstat-

2010.pdf.

[37] D. P. Kingma and J. Ba, Adam: A method for stochastic

optimization, in Proceedings of the 3rd International

Conference on Learning Representations (ICLR), San

Diego, 2014.

[38] M. Arjovsky and L. Bottou, Towards principled methods for

training generative adversarial networks, in Proceedings of

the 5th International Conference on Learning Representa-

tions (ICLR), Toulon, France, 2017, arXiv:1701.04862.

[39] V. Nagarajan and J. Z. Kolter, Gradient descent GAN

optimization is locally stable, in Advances in Neural

Information Processing Systems 30 (Curran Associates,

Inc., New York, 2017), pp. 5585–5595.

[40] A. Radford, L. Metz, and S. Chintala, Unsupervised

representation learning with deep convolutional generative

adversarial networks, arXiv:1511.06434.

[41] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma,

PixelCNN þþ: Improving the PixelCNN with discretized

logistic mixture likelihood and other modifications, arXiv:

1701.05517.

[42] L. G. Almeida, M. Backovi, M. Cliche, S. J. Lee, and M.

Perelstein, Playing tag with ANN: Boosted top identifica-

tion with pattern recognition, J. High Energy Phys. 07

(2015) 086.

[43] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and

A. Schwartzman, Jet-images deep learning edition, J. High

Energy Phys. 07 (2016) 069.

[44] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, Parton

shower uncertainties in jet substructure analyses with deep

neural networks, Phys. Rev. D 95, 014018 (2017).

[45] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, Deep

learning in color: Towards automated quark/gluon jet

discrimination, J. High Energy Phys. 01 (2017) 110.

[46] T. Sjostrand, S. Mrenna, and P. Z. Skands, PYTHIA6.4

physics and manual, J. High Energy Phys. 05 (2006) 026.

[47] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,

O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro,

The automated computation of tree-level and next-to-leading

order differential cross sections, and their matching to parton

shower simulations, J. High Energy Phys. 07 (2014) 079.

[48] J. de Favereau et al. (DELPHES 3 Collaboration), DEL-

PHES3, A modular framework for fast simulation of a generic

collider experiment, J. High Energy Phys. 02 (2014) 057.

[49] H. Larochelle and I. Murray, The neural autoregressive

distribution estimator, in Proceedings of the Fourteenth

International Conference on Artificial Intelligence and

Statistics, Proceedings of Machine Learning Research

Vol. 15 (PMLR, Fort Lauderdale, 2011), pp. 29–37, http://

proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf.

[50] M. Germain, K. Gregor, I. Murray, and H. Larochelle,

MADE: Masked autoencoder for distribution estimation,

arXiv:1502.03509.

[51] B. Uria, I. Murray, and H. Larochelle, RNADE: The real-

valued neural autoregressive density-estimator, in Advances

in Neural Information Processing Systems 26 (Curran

Associates, New York, 2013), pp. 2175–2183.

[52] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville,

Neural autoregressive flows, in Proceedings of the 35th

International Conference on Machine Learning, Proceed-

ings of Machine Learning Research Vol. 80 (PMLR,

Stockholm, 2018), pp. 2078–2087, http://proceedings.mlr

.press/v80/huang18d/huang18d.pdf.

[53] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D.

Wierstra, Deep autoregressive networks, in Proceedings of

the 31st International Conference on Machine Learning,

Proceedings of Machine Learning Research Vol. 32

(PMLR, Beijing, China, 2014), pp. 1242–1250.

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,

ImageNet: A large-scale hierarchical image database, in

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Miami, 2009 (IEEE, New York,

2009), http://www.image-net.org/papers/imagenet_cvpr09.

[55] Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover’s

distance as a metric for image retrieval, Int. J. Comput. Vis.

40, 99 (2000).

[56] P. Baldi, K. Bauer, C. Eng, P. Sadowski, and D. Whiteson,

Jet substructure classification in high-energy physics with

deep neural networks, Phys. Rev. D 93, 094034 (2016).

[57] K.He,X. Zhang, S. Ren, and J. Sun,Deep residual learning for

image recognition, in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

Las Vegas, 2016 (IEEE, New York, 2016), pp. 770–778.

[58] A. Odena, V. Dumoulin, and C. Olah, Deconvolution and

checkerboard artifacts, Distill, http://distill.pub/2016/

deconv-checkerboard.

[59] See http://mlphysics.ics.uci.edu/.

[60] D. Hendrycks and K. Gimpel, Bridging nonlinearities and

stochastic regularizers with Gaussian error linear units,

arXiv:1606.08415.

[61] L. Hertel, J. Collado, P. Sadowski, J. Ott, and P. Baldi,

Sherpa: Robust hyperparameter optimization for machine

learning, SoftwareX 12, 100591 (2020); software available

at https://github.com/sherpa-ai/sherpa.

[62] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.

DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer,

Automatic differentiation in PyTorch, in Proceedings of the

NIPS Workshop on Autodiff, Long Beach, CA, 2017, https://

openreview.net/forum?id=BJJsrmfCZ.

LU, COLLADO, WHITESON, and BALDI PHYS. REV. D 103, 036012 (2021)

036012-22


