SoftwareX 12 (2020) 100591

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

Sherpa: Robust hyperparameter optimization for machine learning R

Lars Hertel **, Julian Collado ", Peter Sadowski ¢, Jordan Ott ", Pierre Baldi®

Check for
updates

2 Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine Bren Hall 2019

Irvine, CA 92697-1250, USA

b Department of Computer Science, Donald Bren School of Information and Computer Sciences, University of California, Irvine 3019 Donald Bren Hall

Irvine, CA 92697-3435, USA

¢ Information and Computer Science, University of Hawai'i at Mdnoa, 1680 East-West Rd, Honolulu, HI 96822, USA

ARTICLE INFO ABSTRACT

Article history:

Received 23 October 2019

Received in revised form 9 July 2020
Accepted 14 September 2020

Keywords:

Hyperparameter optimization

Machine learning

Deep neural networks
ai/sherpa.

Sherpa is a hyperparameter optimization library for machine learning models. It is specifically designed
for problems with computationally expensive, iterative function evaluations, such as the hyperparam-
eter tuning of deep neural networks. With Sherpa, scientists can quickly optimize hyperparameters
using a variety of powerful and interchangeable algorithms. Sherpa can be run on either a single
machine or in parallel on a cluster. Finally, an interactive dashboard enables users to view the
progress of models as they are trained, cancel trials, and explore which hyperparameter combinations
are working best. Sherpa empowers machine learning practitioners by automating the more tedious
aspects of model tuning. Its source code and documentation are available at https://github.com/sherpa-

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version
Permanent link to code/repository used for this code version
Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies

If available Link to developer documentation/manual
Support email for questions

1.0.5

https://github.com/ElsevierSoftwareX/SOFTX_2019_328
https://codeocean.com/capsule/cba6686e-f3d8-47fa-801f-
leb21b4c44c2/tree?ID=12baab1195e9445784ebed345f722b1f

GPL v3

git

Python, JavaScript, HTML, CSS

Python, pandas>0.20.3, pymongo>3.5.1, numpy>1.8.2, scipy>1.0.0,
scikit-learn>0.19.1, flask>0.12.2, GPyOpt>1.2.5, matplotlib, MongoDB for
parallel mode

https://parameter-sherpa.readthedocs.io

lhertel@uci.edu

1. Motivation and significance

Hyperparameters are tuning parameters of machine learning
models. Hyperparameter optimization refers to the process of
choosing optimal hyperparameters for a machine learning model.
This optimization is crucial to obtain optimal performance from
the machine learning model. Since hyperparameters cannot be

* Corresponding author.
E-mail addresses: lhertel@uci.edu (L. Hertel), colladou@uci.edu (J. Collado),
peter.sadowski@hawaii.edu (P. Sadowski), jott1@uci.edu (J. Ott),
pfbaldi@ics.uci.edu (P. Baldi).

https://doi.org/10.1016/j.s0ftx.2020.100591

directly learned from the training data, their optimization is often
a process of trial and error conducted manually by the researcher.
There are two problems with the trial and error approach. Firstly,
it is time consuming and can take days or even weeks of the re-
searcher’s attention. Secondly, it is dependent on the researcher’s
ability to interpret results and choose good hyperparameter set-
tings. These limitations lead to a large need to automate this
process. Sherpa is a software that addresses this need.

Existing hyperparameter optimization software can be di-
vided into bayesian optimization software, bandit and evolution-
ary algorithm software, framework specific software, and all-
round software. Software that implements bayesian optimization

2352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2020.100591
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100591&domain=pdf
https://github.com/sherpa-ai/sherpa
https://github.com/sherpa-ai/sherpa
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_328
https://codeocean.com/capsule/cba6686e-f3d8-47fa-801f-1eb21b4c44c2/tree?ID=12baab1195e9445784ebed345f722b1f
https://codeocean.com/capsule/cba6686e-f3d8-47fa-801f-1eb21b4c44c2/tree?ID=12baab1195e9445784ebed345f722b1f
https://parameter-sherpa.readthedocs.io
mailto:lhertel@uci.edu
mailto:lhertel@uci.edu
mailto:colladou@uci.edu
mailto:peter.sadowski@hawaii.edu
mailto:jott1@uci.edu
mailto:pfbaldi@ics.uci.edu
https://doi.org/10.1016/j.softx.2020.100591
http://creativecommons.org/licenses/by/4.0/

L. Hertel, J. Collado, P. Sadowski et al.

started with SMAC [1], Spearmint [2], and HyperOpt [3]. More
recent software in this regime has been GPyOpt [4], RoBo [5],
DragonFly [6], Cornell-MOE [7,8], and mIrMBO [9]. These soft-
ware packages have high quality, stand-alone bayesian optimiza-
tion implementations, often with unique twists. However, most
of these do not provide infrastructure for parallel training.

As an alternative to bayesian optimization, multi-armed ban-
dits and evolutionary algorithms have recently become popular.
HpBandSter implements Hyperband [10] and BOHB [11], Pbt im-
plements Population Based Training [12], PyCMA implements
CMA-ES [13], and TPot [14,15] provides hyperparameter search
via genetic programming.

A number of framework specific libraries have also been pro-
posed. Auto-Weka [16] and Auto-Sklearn [17] focus on WEKA [18]
and Scikit-learn [19], respectively. Furthermore, a number of
packages have been proposed for the machine learning frame-
work Keras [20]. Hyperas [21], Auto-Keras [22], Talos, Kopt, and
HORD each provide hyperparameter optimization specifically for
Keras. These libraries make it easy to get started due to their
tight integration with the machine learning framework. However,
researchers will inevitably run into limitations when a different
machine learning framework is needed.

Lastly, a number of implementations aim at being framework
agnostic and also support multiple optimization algorithms. Ta-
ble 1 shows a detailed comparison of these “all-round” packages
to Sherpa. Note that we excluded Google Vizier [23] and similar
frameworks from other cloud computing providers since these
are not free to use.

Sherpa is already being used in a wide variety of applications
such as machine learning methods [29], solid state physics [30],
particle physics [31], medical image analysis [32], and cyber
security [33]. Due to the fact that the number of machine learning
applications is growing rapidly we can expect there to be a
growing need for hyperparameter optimization software such as
Sherpa.

2. Software description
2.1. Hyperparameter optimization

We begin by laying out the components of a hyperparameter
optimization. Consider the training of a machine learning model.
A user has a model that is being trained with data. Before training
there are hyperparameters that need to be set. At the end of the
training we obtain an objective value.

This workflow can be illustrated via the training of a neural
network. The model is a neural network. The data are images that
the neural network is trained on. The hyperparameter setting is
the number of hidden layers of the neural network. The objective
is the prediction accuracy, prediction error, or loss on a hold-out
dataset obtained at the end of training.

For automated hyperparameter optimization we also need
hyperparameter ranges, a results table, and a hyperparameter
optimization algorithm. The hyperparameter ranges define what
values each hyperparameter is allowed to take. The results store
hyperparameter settings and their associated objective value.
Finally, the algorithm takes results and ranges and produces a
new suggestion for a hyperparameter setting. We refer to this
suggestion as a trial.

For the neural network example the hyperparameter range
might be 1, 2, 3, or 4 hidden layers. We might have previous
results that 1 corresponds to 80% accuracy and 3 to 90% accuracy.
The algorithm might then produce a new trial with 4 hidden
layers. After training the neural network with 4 hidden layers we
find it achieves 88% accuracy and add this to the results. Then the
next trial is suggested.

SoftwareX 12 (2020) 100591

1*/'| Sherpa. Parameter|

1\>| Sherpa.Algorithm |

- Pandas.DataFrame|

Sherpa.Study

+parameters

+algorithm

+lower_is_better

+results

+get_suggestion()
+add_observation()
+finalize()

Fig. 1. Diagram showing Sherpa’s Study class.

2.2. Components

We now describe how Sherpa implements the components de-
scribed in Section 2.1. Sherpa implements hyperparameter ranges
as sherpa.Parameter objects. The algorithm is implemented
as a sherpa.algorithms.Algorithm object. A list of hyper-
parameter ranges and an algorithm are combined to create a
sherpa.Study (Fig. 1). The study stores the results. Trials are
implemented as sherpa.Trial objects.

Sherpa implements two user interfaces. We will refer to the
two interfaces as API mode and parallel mode.

2.3. API mode

In API mode the user interacts with the Study object. Given a
study s:

1. A new trial of name t is obtained by calling
s.get_suggestion() or by iterating over the study
(e.g. for t in s).

2. First, t.parameters is used to initialize and train a ma-
chine learning model. Then s.add_observation(t, ob-
jective=o) is called to add objective o for trial t. Invalid
observations are automatically excluded from the results.

3. Finally, s.finalize(t) informs Sherpa that the model
training is finished.

Interacting with the Study class is easy. It also requires minimal
setup. The limitation in API mode is that it cannot evaluate trials
in parallel.

2.4. Parallel mode

In parallel-mode multiple trials can be evaluated in parallel.
The user provides two scripts: a server script and a machine
learning (ML) script. The server script defines the hyperparameter
ranges, the algorithm, the job scheduler, and the command to
execute the machine learning script. The optimization starts by
calling sherpa.optimize.

In the machine learning script the user trains the machine
learning model given some hyperparameters and adds the result-
ing objective value to Sherpa. Using a sherpa.Client called c
a trial t is obtained by calling c.get_trial(). To add observa-
tions c.send_metrics(trial=t, objective=o) is used.

Internally, sherpa.optimize runs a loop that uses the Study
class. Fig. 2 illustrates the parallel-mode architecture.

1. The loop submits new trials if resources are available by
submitting a job to the scheduler. Furthermore, the new
trials are added to a database. From there they can be
retrieved by the client.

2. The loop updates results by querying the database for new
results.

3. Finally, the loop checks whether jobs have finished. This
means resources are free again. In addition, the corre-
sponding trials can be finalized.

https://github.com/automl/SMAC3
https://github.com/HIPS/Spearmint
https://github.com/hyperopt/hyperopt
https://github.com/SheffieldML/GPyOpt
https://github.com/automl/RoBO
https://github.com/dragonfly/dragonfly
https://github.com/wujian16/Cornell-MOE
https://github.com/mlr-org/mlrMBO
https://github.com/automl/HpBandSter
https://github.com/MattKleinsmith/pbt
https://github.com/CMA-ES/pycma
https://github.com/EpistasisLab/tpot
https://github.com/automl/autoweka
https://github.com/automl/auto-sklearn
https://github.com/maxpumperla/hyperas
https://github.com/keras-team/autokeras
https://github.com/autonomio/talos
https://github.com/Avsecz/kopt
https://github.com/joeddav/devol

L. Hertel, J. Collado, P. Sadowski et al.

Table 1

SoftwareX 12 (2020) 100591

Feature comparison of hyperparameter optimization frameworks. Bayesian optimization, evolutionary, and
bandit/early-stopping refer to the support of hyperparameter optimization algorithms based on these methods.

Software Distributed Visualizations Bayesian-optimization Evolutionary Bandit/early-stopping
Sherpa Yes Yes Yes Yes Yes
Advisor Yes No Yes Yes Yes
Chocolate Yes No Yes Yes No
Test-Tube[24] Yes No No No No
Ray-Tune[25] Yes No No Yes Yes
Optuna[26] Yes Yes Yes No Yes
BTB [27] No No Yes No Yes
Hyperas [21] Yes No Yes No No
Keras-Tuner [28] Yes No Yes No Yes

If the user’s machine learning script does not submit an objective
value such as when it crashed, Sherpa continues with the next
trial.

3. Software functionalities
3.1. Available hyperparameter types

Sherpa supports four hyperparameter types:

sherpa.Continuous
sherpa.Discrete
sherpa.Choice
sherpa.0Ordinal.

These correspond to a range of floats, a range of integers, an un-
ordered categorical variable, and an ordered categorical variable,
respectively. Each parameter has name and range arguments.
The range expects a list defining lower and upper bound for con-
tinuous and discrete variables. For choice and ordinal variables
the range expects the categories.

3.2, Diversity of algorithms

Sherpa aims to help researchers at various stages in their
model development. For this reason, it provides a choice of hy-
perparameter tuning algorithms. The following optimization al-
gorithms are currently supported.

e sherpa.algorithms.RandomSearch:
Random Search [34] samples hyperparameter settings uni-
formly from the specified ranges. It is a robust algorithm
because it explores the space uniformly. Furthermore, with
the dashboard the user can make their own inference on the
results.

e sherpa.algorithms.GridSearch:
Grid Search follows a grid over the hyperparameter space
and evaluates all combinations. It is useful to systematically
explore one or two hyperparameters. It is not recommended
for more than two hyperparameters.

e sherpa.algorithms.bayesian_optimization
.GPyOpt:
Bayesian optimization is a model-based search. For each
trial it picks the most promising hyperparameter setting
based on prior results. Sherpa’s implementation wraps the
package GPyOpt [4].

e sherpa.algorithms.successive_halving
.SuccessiveHalving:
Asynchronous Successive Halving (ASHA) [35] is a hyper-
parameter optimization algorithm based on multi-armed
bandits. It allows the efficient exploration of a large hyper-
parameter space. This is accomplished by the early stopping
of unpromising trials.

e sherpa.algorithms.PopulationBasedTraining:
Population-based Training (PBT) [12] is an evolutionary al-
gorithm. The algorithm jointly optimizes a population of
models and their hyperparameters. This is achieved by ad-
justing hyperparameters during training. It is particularly
suited for neural network training hyperparameters such as
learning rate, weight decay, or batch size.

e sherpa.algorithms.LocalSearch:

Local Search is a heuristic algorithm. It starts with a seed
hyperparameter setting. During optimization it randomly
perturbs one hyperparameter at a time. If a setting improves
on the seed then it becomes the new seed. This algorithm is
particularly useful if the user already has a well performing
hyperparameter setting.

All implemented algorithms allow parallel evaluation and can be
used with all available parameter types. An empirical comparison
of the algorithms can be found in the documentation.!

3.3. Accounting for random variation

Sherpa can account for variation via the Repeat algorithm.
The objective value of a model may vary between training runs.
Reasons for this can be random initialization or stochastic train-
ing. The Repeat algorithm runs each hyperparameter setting
multiple times. Thus variation can be taken into account when
analyzing results.

3.4. Visualization dashboard

Sherpa provides an interactive web-based dashboard. It allows
the user to monitor progress of the hyperparameter optimization
in real time. Fig. 3 shows a screenshot of the dashboard.

At the top of the dashboard is a parallel coordinates plot [36,
37]. It allows exploration of relationships between hyperparam-
eter settings and objective values (Fig. 3 top). Each vertical axis
corresponds to a hyperparameter or the objective. The axes can
be brushed over to select subsets of trials. The plot is imple-
mented using the D3.js parallel-coordinates library by [38]. At
the bottom right is a line chart. It shows objective values against
training iteration (Fig. 3 bottom right). This chart allows to mon-
itor training progress of each trial. It is also useful to analyze
whether a trial’s training converged. At the bottom left is a table
of all completed trials (Fig. 3 bottom left). Hovering over trials in
the table highlights the corresponding lines in the plots. Finally,
the dashboard has a stopping button (Fig. 3 top right corner). This
allows the user to cancel the training for unpromising trials.

The dashboard runs automatically during a hyperparameter
optimization. It can be accessed in a web-browser via a link
provided by Sherpa. The dashboard is useful to quickly evaluate
questions such as:

1 https://parameter-sherpa.readthedocs.io/en/latest/algorithms/algorithms.
html

https://github.com/tobegit3hub/advisor
https://github.com/AIworx-Labs/chocolate
https://github.com/williamFalcon/test-tube
https://github.com/ray-project/ray/tree/master/python/ray/tune
https://github.com/pfnet/optuna
https://github.com/HDI-Project/BTB
https://github.com/maxpumperla/hyperas
https://github.com/keras-team/keras-tuner
https://parameter-sherpa.readthedocs.io/en/latest/algorithms/algorithms.html
https://parameter-sherpa.readthedocs.io/en/latest/algorithms/algorithms.html

L. Hertel, J. Collado, P. Sadowski et al.

User Sherpa Script

sherpa . SCheduler‘ Submit
Job

| Rangesl Algorithm I Command |Scheduler|
T

v v

I
v

v

sherpa.optimize ()

get_suggestion()

SoftwareX 12 (2020) 100591

User ".:Ruﬂ Job statué"n,‘ #1.Submit < >y

in parallel < new trials el

ML ; 5
Script 2.Update add_observation() V!

; et results] &

Trial Objective Add trial o 9

_ < W 3.Update / . e

‘sherpa .Client* Trals active trials naize) | &

=

Objective Values "‘%

sherpa.Database

Fig. 2. Architecture diagram for parallel hyperparameter optimization in Sherpa. The user only interacts with Sherpa via the solid red arrows, everything else happens

internally.

= SHERPA

Experiments

TriallD Status

83
20
6

61
21
56
39
43
29
32
25
84

COMP...
COMP...
COMP...
COMP...
COMP...
COMP...
COMP...
COMP...
COMP...

COMP.

COMP...
COMP..

Iterati...
14
14
14
14
14
14
14
14
14
14
14
14

dropo...

cococoooococoooooo

Irdecay
0.0000990...
0.00009
0.0001
0.0000990..
0.0001
0.00009
0.0001
0.0001
0.0001
0.0001100
0.0001
0.0000990...

om0y

oo

Irinit
0.0376200000...
0.0342

0.0342

0.0342
0.0376200000...
0.0342

0.0342
0.0376200000...
0.0342

0.0342
0.0376200000...
0.0376200000...

mome...
0.828...

0.92
0.92

0.828...

0.92
0.828.

0.745...
0.828...
0.828...

0.92
0.92

0.828...

Objective

0.06400...
0.07722...
0.07562...
0.06663...
0.07823...

0.06448.

0.06537...
0.06645...
0.06494...

0.07321,

0.07651...
0.06580...

val_acc
0.9828
0.9823
0.9822
0.9821
0.982

0.9819
0.9818
0.9817
0.9817
0.9816
0.9816
0.9816

smpAmm

e oo

Fig. 3. The dashboard provides a parallel coordinates plot (top) and a table of finished trials (bottom left). Trials in progress are shown via a progress line chart

(bottom right). Figure recommended to be viewed as PDF and via zooming in.

e Are the selected hyperparameter ranges appropriate?

e [s training unstable for some hyperparameter settings?

e Does a particular hyperparameter have little impact on the
performance of the machine learning algorithm?

e Are the best observed hyperparameter settings consistent?

Based on these observations the user can refine the hyperparam-
eter ranges or choose a different algorithm, if appropriate.

3.5. Scaling up with a cluster

In parallel mode Sherpa can run parallel evaluations. A job
scheduler is responsible for running the user’s machine learning
script. The following job schedulers are implemented.

e The LocalScheduler evaluates parallel trials on the same
computation node. This scheduler is useful for running on
multiple local CPU cores or GPUs. It has a simple resource
handler for GPU allocation (see Fig. 5 for an example).

e The SGEScheduler uses Sun Grid Engine (SGE) [39]. Sub-
mission arguments and an environment profile can be spec-
ified via arguments to the scheduler.

e The SLURMScheduler is based on SLURM [40]. Its interface
is similar to the SGEScheduler.

Concurrency between workers is handled via MongoDB, a NoSQL
database program. Parallel mode expects that MongoDB is in-
stalled on the system.

4. Illustrative examples
4.1. Handwritten digits classification with a neural network

The following is an example of a Sherpa hyperparameter op-
timization. It uses the MNIST handwritten digits dataset [41]. A
Keras neural network is used to classify the digits. The neural
network has one hidden layer and a softmax output. The hyper-
parameters are the learning rate of the Adam [42] optimizer, the
number of hidden units, and the hidden layer activation function.
The search is first conducted using Sherpa’s API mode. After that
we show the same example using Sherpa’s parallel mode.

4.1.1. API mode

Fig. 4 shows the hyperparameter optimization in Sherpa’s API
mode. The script starts with imports and loading of the MNIST
dataset. Next, the hyperparameters learning_rate, num_units, and
activation are defined. These refer to the Adam learning rate,

L. Hertel, J. Collado, P. Sadowski et al.

import sherpa

SoftwareX 12 (2020) 100591

import sherpa.algorithms.bayesian_optimization as

bayesian_optimization
import keras
from
from
from
from
epochs =
(x_train,
X_train,

keras.layers import Dense,

15
y_train),
xX_test =

(x_test,

Sherpa setup

keras.datasets import mnist
keras.optimizers import Adam

y_test) =
x_train/255.0,

keras.models import Sequential

Flatten

mnist.load_data ()
X_test/255.0

parameters = [sherpa.Continuous(’learning_rate’, [le-4, le-2]),
sherpa.Discrete (' num_units’, [32, 128]),
sherpa.Choice (’activation’,
["relu’, ’"tanh’, ’sigmoid’])]
algorithm = bayesian_optimization.GPyOpt (max_num_trials=50)
study = sherpa.Study (parameters=parameters,

algorithm=algorithm,
lower_is_better=False)

for trial in study:

lr = trial.parameters|[’learning_rate’]
num_units = trial.parameters[’num_units’]
act = trial.parameters[’activation’]

Create model
model =

optimizer = Adam(lr=1r)

Sequential ([Flatten (input_shape=(28,
Dense (num_units,
Dense (10,

28)),
activation=act),
activation=’softmax’)])

model.compile (loss=’sparse_categorical_crossentropy’,
optimizer=optimizer,
metrics=[’accuracy’])

my_callbacks =

Train model

for i in range (epochs) :
model.fit (x_train,

[ModelCheckpoint (filepath="myModel.h5")]

y_train,

callbacks=my_callbacks)

loss, accuracy =

model.evaluate (x_test,
study.add_observation (trial=trial,

y_test)
iteration=i,

objective=accuracy,

context={’loss’:

study.finalize (trial=trial)

loss})

Fig. 4. An example showing how to tune the hyperparameters of a neural network on the MNIST dataset using Sherpa in API mode.

number of hidden layer units, and hidden layer activation func-
tion, respectively. As optimization algorithm the GPyOpt algo-
rithm is chosen. Hyperparameter ranges and algorithm are com-
bined via the Study. The lower_is_better flag indicates that
lower objective values are not better. This is because we will
be maximizing the classification accuracy. After that a for-loop
iterates over the study. The for-loop yields a trial at each iteration.
A Keras model is instantiated using the hyperparameter settings.
Any Keras callbacks can be added to the model, here we add
a model checkpointer. The Keras model is iteratively trained
and evaluated via an inner for-loop. We add an observation for
each iteration and use finalize after the training is finished.
Note that we pass the loss as context to add_observation. The
context accepts a dictionary with any additional metrics that the
user wants to record. Code to replicate this example is available

as a Jupyter notebook.? and on Google Colab® A video tutorial is
also available on YouTube.* Tutorials using the Successive Halving
and Population Based Training algorithms are also available.”®

4.1.2. Parallel mode

We now show the same hyperparameter optimization using
Sherpa’s parallel mode. Fig. 5 (top) shows the server script. First,
the hyperparameters and search algorithm are defined. This time

2 https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_
mlp.ipynb

3 https://colab.research.google.com/drive/1119R1GfKPjlgNdHIxJwNC4PitvySsd
on

4 https://youtu.be/-exnF3uvOWs

5 https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_
mlp_successive_halving.ipynb

6 https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_
mlp_population_based_training.ipynb

https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp.ipynb
https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp.ipynb
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://colab.research.google.com/drive/1I19R1GfKPjlgNdHlxJwNC4PitvySsdon
https://youtu.be/-exnF3uv0Ws
https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp_successive_halving.ipynb
https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp_successive_halving.ipynb
https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp_population_based_training.ipynb
https://github.com/sherpa-ai/sherpa/blob/master/examples/keras_mnist_mlp_population_based_training.ipynb

L. Hertel, J. Collado, P. Sadowski et al.

import sherpa

SoftwareX 12 (2020) 100591

import sherpa.algorithms.bayesian_optimization as

bayesian_optimization

from sherpa.schedulers import LocalScheduler

params = [sherpa.Continuous (’learning_rate’,

[le-4, le-2]),

sherpa.Discrete (' num_units’, [32, 128]),
sherpa.Choice (’activation’,
["relu’, ’"tanh’, ’sigmoid’])]
alg = bayesian_optimization.GPyOpt (max_num_trials=50)
sched = LocalScheduler (resources=[0,11)

sherpa.optimize (parameters=params,
scheduler=sched,

algorithm=alg,

lower_is_better=False,

command='python trial.py’, max_concurrent=2)

import sherpa
import os

GPU_ID = os.environ[’ SHERPA_ RESOURCE’]

os.environ[’CUDA_VISIBLE_DEVICES’]

import keras

= GPU_ID

from keras.models import Sequential

from keras.layers import Dense, Flatten
from keras.datasets import mnist
from keras.optimizers import Adam

epochs = 15
(x_train, y_train),

Xx_train, x_test = x_train/255.0,

Sherpa client
client = sherpa.Client ()
trial = client.get_trial()

(x_test, y_test) = mnist.load_data()
X_test/255.0

lr = trial.parameters[’learning_rate’]
num_units = trial.parameters[’num_units’]
act = trial.parameters[’activation’]

Create model

model = Sequential ([Flatten (input_shape=(28, 28)),
Dense (num_units, activation=act),
Dense (10, activation=’softmax’)])

optimizer = Adam(lr=1r)

model.compile (loss='sparse_categorical_crossentropy’,

optimizer=optimizer,

metrics=[’accuracy’])

Train model
for i in range (epochs) :
model.fit (x_train, y_train)

loss, accuracy = model.evaluate (x_test, y_test)
client.send_metrics(trial=trial, iteration=i,
objective=accuracy,

context={’loss’:

loss})

Fig. 5. A code listing showing how to use Sherpa in parallel mode to tune the hyperparameters of a neural network trained on the handwritten digits dataset MNIST.
The top code listing shows the server-script. The bottom listing shows the trial-script.

we also define a LocalScheduler instance. Hyperparameters,
algorithm, and scheduler are passed to the sherpa.optimize
function. We also pass a command “python trial.py”. The com-
mand indicates how to execute the user’s machine learning script.
Furthermore, the argument max_concurrent=2 indicates that
two evaluations will be running at a time. Fig. 5 (bottom) shows
the machine learning script. First, we set environment variables
for GPU configuration. Next we create a Client. To obtain hyper-
parameters we call the client’s get_trial method. Furthermore,
during training we call the client’s send_metrics method. This
replaces add_observation in parallel mode. Also, in parallel
mode no finalize call is needed.

4.2. Deep learning for cloud resolving models

4.2.1. Introduction

The following illustrates an example of a Sherpa hyperparam-
eter optimization in the field of climate modeling, specifically
cloud resolving models (CRM). We apply Sherpa to optimize the
deep neural network (DNN) proposed by [43].

The input to the model is a 94-dimensional vector. Features
include temperature, humidity, meridional wind, surface pres-
sure, incoming solar radiation, sensible heat flux, and latent heat
flux. The output of the DNN is a 65-dimensional vector. It is
composed of the sum of the CRM and radiative heating rates,
the CRM moistening rate, the net radiative fluxes at the top

L. Hertel, J. Collado, P. Sadowski et al.

= SHERPA

Experiments

Saus banrom gopow ayer 0 tayer_1 layer_10 ayer2 layer3 Tayor

280 280

260 2604
£TED
2404
20 2204

20 220

00
Status

COMP...
COMP...
COMP...
COMP...
COMP...
COMP...
COMP...
COMP...

20
dropo...
0.010...
0.007...
0.039..
0.030...
0.014...
0.014...
0.047...
0.049...

2004
layer_.
281
243
236
213
252
272
270
222

TriallD
23

26

9

13

43

37.

55

75

batch... layer_...
223
245
292
240
210
298
268
269

layer_...
239
216
230
296
282
242
275
231

HH RO R R

Fig. A.6. Screenshot of the dashboard at the end of the
coordinates plot.

Table A.2

DNN hyperparameter search space.
Name Options Parameter type
Batch normalization [44] [yes, no] Choice
Dropout [45,46] [0, 0.25] Continuous
Leaky ReLU coefficient [47] [0-0.4] Continuous
Learning rate [0.0001-0.01] Continuous (log)
Nodes per layer [200-300] Discrete
Number of layers [8-10] Discrete

Table A.3

Best hyperparameter configuration found by Sherpa.
Batch Normalization No
Dropout 0.0
Leaky ReLU coefficient 0.3957
Learning Rate 0.001301
Learning Rate Decay 0.843784
Nodes per Layer [299, 269, 248, 293, 251, 281, 258, 277, 209, 270]
Number of layers 10

of the atmosphere and surface of the earth, and the observed
precipitation.

4.2.2. General hyperparameter optimization

Initially a random search was conducted on the following hy-
perparameters: batch normalization [44], dropout [45,46], Leaky
ReLU coefficient [47], learning rate, nodes per hidden layer, num-
ber of hidden layers. The parameter ranges were chosen to en-
compass the parameters specified in [43]. From the dashboard
(Fig. A.6) we identify that the best performing configurations
have low dropout, leaky ReLU coefficients mostly around 0.3 or
larger, and learning rates mostly near 0.002. The majority of
good models have 8 layers and batch normalization. However,
the number of units does not seem to have a large impact. The
hyperparameter ranges and best configuration are provided in
Tables A.2 and A.3 in the Appendix.

4.2.3. Optimization of the learning rate schedule

An additional search was conducted to fine-tune the DNN
training hyperparameters. Specifically, the initial learning rate
and the learning rate decay were optimized. The range of initial
learning rate values was +10~* of the best value from Sec-
tion 4.2.2. The range of learning rate decay factors was 0.5 to 1.

4

layer_...

250
258
253
243
254
278
250
299

layer_5

SoftwareX 12 (2020) 100591

STOP ATRIAL

layor 9 oaly_rolu " pum layers

00

0,006

2604

204
layer_...
203
298
227
268
262
292
273
296

lay
24
29
22
28
28
27
29
28

s
Heration

initial random search. The 8 best trials were selected by brushing of the Objective axis in the parallel

The learning rate gets multiplied by this factor after every epoch
to produce a new learning rate. In comparison, the model in [43]
uses a decay factor of approximately 0.58. The remaining hyper-
parameters were set to the best configuration from Section 4.2.2.
A total of 50 trials were evaluated via random search. The best
learning rate was found to be 0.001196. The best decay value was
found as 0.843784. The overall optimal hyperparameter setting is
shown in Table A.3 of the Appendix.

4.2.4. Results

We compare the model found by Sherpa to the model from
[43] via R? plots (Fig. A.7). The R? plots show the coefficient
of determination at different pressures and latitudes. We find
that the Sherpa model consistently outperforms the comparison
model. In particular, it is able to perform for latitudes for which
the prior model fails. Fig. A.7(f) shows that the Sherpa model’s
loss reduces further after the [43] model has converged. This is
the result of the learning rate fine-tuning from Section 4.2.3.

5. Impact

Machine learning is used to ever larger extends in the sci-
entific community. Nearly every machine learning application
can benefit from hyperparameter optimization. The issue is that
researchers often do not have a practical tool at hand. Therefore,
they usually resort to manually tuning parameters. Sherpa aims
to be this tool. Its goal is to require minimal learning from the
user to get started. It also aims to support the user as their needs
for parallel evaluation or exotic optimization algorithms grow. As
shown by references in Section 1, Sherpa is already being used by
researchers to achieve improvements in a variety of domains. In
addition to that, the software has been downloaded more than
20000 times from the PyPi Python package manager.’ It also has
over 260 stars on the software hosting website GitHub. A GitHub
star means that another user has added the software to a personal
list for later reference.

7 https://pepy.tech/project/parameter-sherpa

https://pepy.tech/project/parameter-sherpa

L. Hertel, J. Collado, P. Sadowski et al.

Convective Heating Rate R? vs Pressure

200

[}
400
3
%]
o
L 600
o
800
—— Model by Rasp et al.
1000 SHERPA
0.0 0.2 0.4 0.6 0.8 10
R 2
(a)
Longwave Flux at Surface Latitude vs R?
0.9
0.8
o~
.7
o 0.
0.6
0.5 == Model by Rasp et al.
--- SHERPA
=75 =50 =25 0 25 50 75
Latitude
()
Precipitation Latitude vs R?
0.9
0.8
0.7
o~
o 06

0.5

0.4

—— Model by Rasp et al.
0.3 SHERPA

-75 -50 -25 0 25 50 75

Latitude

()

SoftwareX 12 (2020) 100591

Convective Moistening Rate R? vs Pressure

—— Model by Rasp et al.
=== SHERPA

200
400

600

Pressure

800

1000
0.0 0.2 0.4 0.6 0.8 1.0

RZ

(b)

Longwave Flux at TOA Latitude vs R?

0.70 —— Model by Rasp et al.
-== SHERPA

=75 -50 -25 0 25 50 75

Latitude

(d)

0.0023
\ === Sherpa MSE

\ Sherpa Val MSE
0.0022 y Rasp et al. MSE
\ —— Rasp et al. Val MSE

0.0021

Val Loss

0.0020

0.0019

0.0018

Fig. A.7. Case study results for an optimized deep neural network applied to cloud resolving models. Figs. A.7(a) and A.7(b) show the coefficient of determination
R? vs. pressure for convective heating rate and convective moistening rate, respectively. Figs. A.7(c), A.7(d), and A.7(e) show R? values against latitude, and A.7(f)
shows loss trajectories. All figures compare the optimized Sherpa model against the model developed by [43].

6. Conclusions

Sherpa is a flexible open-source software for robust hyperpa-
rameter optimization of machine learning models. It provides the
user with several interchangeable hyperparameter optimization
algorithms, each of which may be useful at different stages of
model development. Its interactive dashboard allows the user to
monitor and analyze the results of multiple hyperparameter opti-
mization runs in real-time. It also allows the user to see patterns
in the performance of hyperparameters to judge the robustness
of individual settings. Sherpa can be used on a laptop or in a
distributed fashion on a cluster. In summary, rather than a black-
box that spits out one hyperparameter setting, Sherpa provides
the tools that a researcher needs when doing hyperparameter
exploration and optimization for the development of machine
learning models.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

We would like to thank Amin Tavakoli, Christine Lee, Gregor
Urban, and Siwei Chen for helping test the software and providing
useful feedback, and Yuzo Kanomata for computing support. This
work was in part supported by the National Science Foundation,
USA under grant number 1633631 to JC and 1839429 to PB. We
also wish to acknowledge a hardware grant from NVIDIA, USA.

L. Hertel, J. Collado, P. Sadowski et al.
Appendix. Deep learning for cloud resolving models

Initially a random search was conducted on the hyperparam-
eters listed in Table A.2.

A screenshot of the Sherpa dashboard at the end of the hy-
perparameter optimization is shown in Fig. A.6 (recommended to
be viewed as PDF and via zooming in). On the dashboard layer_x
refers to the number of nodes in layer x. From Fig. A.6 one can see
that the best performing configurations have low dropout, leaky
ReLU coefficients mostly around 0.3 or larger, and learning rates
mostly near 0.002. The majority of good models have 8 layers and
batch normalization. However, the number of units does not seem
have a large impact.

Following the secondary search for an optimal learning rate
schedule (Section 4.2.3) the hyperparameters in Table A.3) were
found to be overall optimal. The optimized learning rate and
schedule found by Sherpa is of considerable importance. Refer-
encing the loss curves in Fig. A.7(f) one can see the learning rate
schedule used in [43] forces the learning rate to decay rapidly
causing an early plateau of the loss. The learning rate schedule
discovered by Sherpa on the other hand allows the DNN to keep
learning, further reducing the loss.

Fig. A.7 displays results of the optimized model as they pertain
to climate modeling metrics. These plots denote R? values at
corresponding pressures and latitudes. Larger values of the R?
indicate that the DNN is able to explain more variance in the
corresponding variable. Of particular importance, are areas where
Sherpa is able to perform well in regions where the previously
published model fails (e.g. latitudes between —25 and 25 in
Fig. A.7(c)). At all pressures and latitudes the Sherpa model out-
performs the previously published model and thereby achieves a
new state of the art for this dataset.

References

[1] Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimiza-
tion for general algorithm configuration. In: International conference on
learning and intelligent optimization. Springer; 2011, p. 507-23.

[2] Snoek], Larochelle H, Adams RP. Practical bayesian optimization of ma-

chine learning algorithms. In: Advances in neural information processing

systems. 2012, p. 2951-9.

Bergstra J, Yamins D, Cox DD. Hyperopt: A python library for optimizing

the hyperparameters of machine learning algorithms. In: Proceedings of

the 12th Python in science conference. Citeseer; 2013, p. 13-20.

Authors TG. Gpyopt: A Bayesian optimization framework in python. 2016,

http://github.com/SheffieldML/GPyOpt.

Klein A, Falkner S, Mansur N, Hutter F. RoBO: A flexible and robust

Bayesian optimization framework in Python. In: NIPS 2017 Bayesian

optimization workshop; 2017.

Kandasamy K, Vysyaraju KR, Neiswanger W, Paria B, Collins CR, Schneider],

Poczos B, Xing EP. Tuning hyperparameters without grad students: Scalable

and robust Bayesian optimisation with dragonfly. J] Mach Learn Res

2020;21(81):1-27, http://jmlr.org/papers/v21/18-223.html.

[7] Wu], Frazier P. The parallel knowledge gradient method for batch bayesian
optimization. In: Advances in neural information processing systems. 2016,
p. 3126-34.

[8] Wu], Poloczek M, Wilson AG, Frazier PI. Bayesian optimization with

gradients. In: Advances in neural information processing systems. 2017,

p. 5267-78.

Bischla B, Richterb], Bossekc J, Hornb D, Thomasa], Langb M. mIrMBO: A

Modular framework for model-based optimization of expensive black-box

functions. stat 2017;1050:9.

[10] Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband:
A novel bandit-based approach to hyperparameter optimization.] Mach
Learn Res 2017;18(1):6765-816.

[11] Falkner S, Klein A, Hutter F. BOHB: Robust and efficient hyperparameter
optimization at scale. In: Dy], Krause A, editors. Proceedings of the 35th
international conference on machine learning. Proceedings of machine
learning research, vol. 80, Stockholmsmadssan, Stockholm Sweden: PMLR;
2018, p. 1437-46, http://proceedings.mlr.press/v80/falkner18a.html.

[12] Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue], Razavi A,
Vinyals O, Green T, Dunning I, Simonyan K, et al. Population based training
of neural networks. 2017, arXiv preprint arXiv:1711.09846.

3

[4

[5

[6

[9

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]
[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

SoftwareX 12 (2020) 100591

Igel C, Suttorp T, Hansen N. A computational efficient covariance matrix
update and a (1+ 1)-CMA for evolution strategies. In: Proceedings of the
8th annual conference on genetic and evolutionary computation. ACM;
2006, p. 453-60.

Olson RS, Urbanowicz RJ, Andrews PC, Lavender NA, Kidd LC, Moore JH.
Applications of evolutionary computation: 19th european conference,
evoapplications 2016, porto, Portugal, march 30 - april 1, 2016, pro-
ceedings, part [. Springer International Publishing; 2016, p. 123-37. http:
//dx.doi.org/10.1007/978-3-319-31204-0_9.

Olson RS, Bartley N, Urbanowicz R], Moore JH. Evaluation of a tree-based
pipeline optimization tool for automating data science. In: Proceedings of
the genetic and evolutionary computation conference 2016. GECCO '16,
New York, NY, USA: ACM; 2016, p. 485-92, http://doi.acm.org/10.1145/
2908812.2908918.

Kotthoff L, Thornton C, Hoos HH, Hutter F, Leyton-Brown K. Auto-
WEKA 2.0: Automatic model selection and hyperparameter optimization
in WEKA.] Mach Learn Res 2017;18(1):826-30.

Feurer M, Klein A, Eggensperger K, Springenberg], Blum M, Hutter F.
Efficient and robust automated machine learning. In: Advances in neural
information processing systems. 2015, p. 2962-70.

Holmes G, Donkin A, Witten IH. Weka: A machine learning workbench.
In: Proceedings of ANZIIS'94-Australian New Zealnd intelligent information
systems conference. IEEE; 1994, p. 357-61.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine
learning in python.] Mach Learn Res 2011;12(Oct):2825-30.

Chollet F, et al. Keras. 2015, https://keras.io.

Pumperla M. Hyperas. Github; 2019.

Jin H, Song Q, Hu X. Auto-keras: An efficient neural architecture search
system. In: Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining. ACM; 2019, p. 1946-56.

Golovin D, Solnik B, Moitra S, Kochanski G, Karro J, Sculley D. Google
vizier: A service for black-box optimization. In: Proceedings of the 23rd
ACM SIGKDD international conference on knowledge discovery and data
mining. ACM; 2017, p. 1487-95.

Falcon W. Test tube. 2017, https://github.com/williamfalcon/test-tube.
Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. Tune: A
research platform for distributed model selection and training. 2018, arXiv
preprint arXiv:1807.05118.

Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining.
ACM; 2019, p. 2623-31.

Gustafson L. Bayesian tuning and bandits: an extensible, open source
library for automl. [M. eng thesis], Cambridge, MA: Massachusetts Institute
of Technology; 2018, https://dai.lids.mit.edu/wp-content/uploads/2018/05/
Laura_MEng_Final.pdf.

O’'Malley T, Bursztein E, Long], Chollet F, Jin H, Invernizzi L, et al. Keras
tuner. 2019, https://github.com/keras-team/keras-tuner.

Sadowski P, Baldi P. Neural network regression with beta, Dirichlet, and
Dirichlet-multinomial outputs [Unpublished results].

Cao Z, Dan Y, Xiong Z, Niu C, Li X, Qian S, Hu]. Convolutional neural
networks for crystal material property prediction using hybrid orbital-field
matrix and magpie descriptors. Crystals 2019;9(4):191.

Baldi P, Bian], Hertel L, Li L. Improved energy reconstruction in NOvA with
regression convolutional neural networks. Phys Rev D 2019;99(1):012011.
Ritter C, Wollmann T, Bernhard P, Gunkel M, Braun DM, Lee J-Y, Meiners J,
Simon R, Sauter G, Erfle H, et al. Hyperparameter optimization for image
analysis: application to prostate tissue images and live cell data of
virus-infected cells. Int] Comput Assist Radiol Surg 2019;1-11.

Langford Z, Eisenbeiser L, Vondal M. Robust signal classification using
siamese networks. In: Proceedings of the ACM workshop on wireless
security and machine learning. ACM; 2019, p. 1-5.

Bergstra J, Bengio Y. Random search for hyper-parameter optimization.]
Mach Learn Res 2012;13(Feb):281-305.

Li L, Jamieson K, Rostamizadeh A, Talwalkar A. Parallelizing hyperband for
large-scale tuning. In: SysML. 2018.

Inselberg A, Dimsdale B. Parallel coordinates for visualizing multi-
dimensional geometry. In: Computer graphics 1987. Springer; 1987, p.
25-44.

Hauser H, Ledermann F, Doleisch H. Angular brushing of extended par-
allel coordinates. In: Information visualization, 2002. INFOVIS 2002. IEEE
symposium on. IEEE; 2002, p. 127-30.

Chang K. Parallel coordinates. 2019, https://github.com/syntagmatic/
parallel-coordinates.

Gentzsch W. Sun grid engine: Towards creating a compute power grid.
In: Cluster computing and the grid, 2001. Proceedings. First IEEE/ACM
international symposium on. IEEE; 2001, p. 35-6.

Yoo AB, Jette MA, Grondona M. Slurm: Simple linux utility for resource
management. In: Workshop on job scheduling strategies for parallel
processing. Springer; 2003, p. 44-60.

http://refhub.elsevier.com/S2352-7110(20)30304-6/sb1
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb1
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb1
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb1
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb1
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb2
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb2
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb2
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb2
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb2
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb3
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb3
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb3
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb3
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb3
http://github.com/SheffieldML/GPyOpt
http://jmlr.org/papers/v21/18-223.html
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb7
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb8
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb8
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb8
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb8
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb8
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb9
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb9
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb9
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb9
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb9
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb10
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb10
http://proceedings.mlr.press/v80/falkner18a.html
http://arxiv.org/abs/1711.09846
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb13
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://dx.doi.org/10.1007/978-3-319-31204-0_9
http://doi.acm.org/10.1145/2908812.2908918
http://doi.acm.org/10.1145/2908812.2908918
http://doi.acm.org/10.1145/2908812.2908918
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb16
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb16
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb16
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb16
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb16
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb17
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb17
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb17
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb17
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb17
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb18
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb18
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb18
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb18
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb18
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb19
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb19
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb19
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb19
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb19
https://keras.io
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb21
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb22
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb22
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb22
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb22
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb22
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb23
https://github.com/williamfalcon/test-tube
http://arxiv.org/abs/1807.05118
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb26
https://dai.lids.mit.edu/wp-content/uploads/2018/05/Laura_MEng_Final.pdf
https://dai.lids.mit.edu/wp-content/uploads/2018/05/Laura_MEng_Final.pdf
https://dai.lids.mit.edu/wp-content/uploads/2018/05/Laura_MEng_Final.pdf
https://github.com/keras-team/keras-tuner
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb30
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb30
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb30
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb30
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb30
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb31
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb31
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb31
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb32
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb33
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb33
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb33
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb33
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb33
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb34
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb34
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb34
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb35
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb35
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb35
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb36
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb36
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb36
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb36
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb36
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb37
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb37
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb37
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb37
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb37
https://github.com/syntagmatic/parallel-coordinates
https://github.com/syntagmatic/parallel-coordinates
https://github.com/syntagmatic/parallel-coordinates
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb39
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb39
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb39
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb39
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb39
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb40
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb40
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb40
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb40
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb40

L. Hertel, J. Collado, P. Sadowski et al.

[41]

[42]
[43]

[44]

Deng L. The MNIST database of handwritten digit images for ma-
chine learning research [best of the web]. IEEE Signal Process Mag
2012;29(6):141-2.

Kingma DP, Ba JL. Adam: A method for stochastic gradient descent. In:
ICLR: international conference on learning representations; 2015.

Rasp S, Pritchard M, Gentine P. Deep learning to represent subgrid
processes in climate models. Proc Natl Acad Sci 2018;115(39):9684-9.
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: Bach F, Blei D, editors. Proceedings
of the 32nd international conference on machine learning. Proceedings of
machine learning research, vol. 37, Lille, France: PMLR; 2015, p. 448-56,
http://proceedings.mlr.press/v37/ioffe15.html.

10

SoftwareX 12 (2020) 100591

[45] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R.
Dropout: a simple way to prevent neural networks from overfitting.] Mach
Learn Res 2014;15(1):1929-58.

[46] Baldi P, Sadowski PJ. Understanding dropout. In: Advances in neural
information processing systems. 2013, p. 2814-22.

[47] Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation functions
to improve deep neural networks. 2014, arXiv preprint arXiv:1412.6830.

http://refhub.elsevier.com/S2352-7110(20)30304-6/sb41
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb41
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb41
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb41
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb41
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb43
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb43
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb43
http://proceedings.mlr.press/v37/ioffe15.html
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb45
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb45
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb45
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb45
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb45
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb46
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb46
http://refhub.elsevier.com/S2352-7110(20)30304-6/sb46
http://arxiv.org/abs/1412.6830

	Sherpa: Robust hyperparameter optimization for machine learning
	Motivation and significance
	Software description
	Hyperparameter optimization
	Components
	API mode
	Parallel mode

	Software functionalities
	Available hyperparameter types
	Diversity of algorithms
	Accounting for random variation
	Visualization dashboard
	Scaling up with a cluster

	Illustrative examples
	Handwritten digits classification with a neural network
	API mode
	Parallel mode

	Deep learning for cloud resolving models
	Introduction
	General hyperparameter optimization
	Optimization of the learning rate schedule
	Results

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix. Deep learning for Cloud Resolving Models
	References

