
1114 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

Resource Inference for Sustainable and Responsive
Task Offloading in Challenged Edge Networks

Alessio Sacco , Student Member, IEEE, Flavio Esposito , Member, IEEE,

and Guido Marchetto , Senior Member, IEEE

Abstract—In many edge computing applications, Unmanned
Aerial Vehicles (UAVs) are required to be coordinated to per-
form several tasks. Each task is usually modeled as a process
that a UAV runs, and could include hovering an area to find
survivors after a natural disaster or sense and preprocess an
image in cooperation with the edge cloud. Optimally and rapidly
(re)assigning tasks to such IoT agents as the network conditions
fluctuate and the battery of these agents quickly drains is a
challenging problem. Existing solutions designed to proactively
offload tasks are either energy unaware or they require solv-
ing computationally intensive task, and hence are less portable
on constrained IoT devices. In this paper, we propose RITMO,
a distributed and adaptive task offloading algorithm that aims
to solve these challenges. RITMO exploits a simple yet effective
regressor to dynamically predict the length of future UAV task
queues. Such prediction is then used to anticipate the node over-
loading and avoid agents that are likely to exhaust their battery
or their computational resources. Our results demonstrate how
RITMO helps reduce the overall latency perceived by the appli-
cation and the energy consumed by the nodes, outperforming
recent solutions.

Index Terms—Edge computing, task offloading, UAV,
regression prediction.

I. INTRODUCTION

D ISTRIBUTED applications running on Internet of Things
(IoT) devices that require to perform a mission indepen-

dently are opening many applications, sometimes improving
lives, sometimes even saving them [1]–[3]. Typical examples
are Unmanned Aerial Vehicles (UAV) networks, e.g., drones
or fixed wings planes, equipped with AR/VR interfaces [4]
cameras, sensors, or civilian tablets and smartphones [5], [6].
Such systems have been employed, for instance, for precision
agriculture [7], in disaster response and environmental mon-
itoring [8], [9], or to provide connectivity to ground sta-
tions [10]. Autonomous and semi-autonomous drones have
also been helping humans and other machines accomplish
many tasks, spanning from industrial inspection to survey
operations, from rescue management systems to military or

Manuscript received December 2, 2020; revised April 26, 2021; accepted
June 18, 2021. Date of publication June 23, 2021; date of current
version August 19, 2021. This work was supported in part by NSF
under Award CNS-1647084, Award CNS-1836906, and Award CNS-
1908574. (Corresponding author: Alessio Sacco.)

This work did not involve human subjects or animals in its research.
Alessio Sacco and Guido Marchetto are with DAUIN, Politecnico

di Torino, 10129 Turin, Italy (e-mail: alessio_sacco@polito.it;
guido.marchetto@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

Digital Object Identifier 10.1109/TGCN.2021.3091812

first responder support. In these applications, UAV networks
can be used to collect a massive quantity of data that needs to
be offloaded at the network edge for heavy audio/video pro-
cessing, where resources to execute Machine Learning (ML)
algorithms are readily available.

The challenge of keeping an acceptable quality of ser-
vice with stringent delay constraints for these network grows
with the drone-based and IoT-based applications, especially
in challenged networked scenarios [1], [11], [12]. In these
circumstances, edge network managers and application pro-
grammers need to overcome a few challenges, e.g., unstable
network conditions and high peaks of loss rate. To react against
the dynamic nature of connectivity and with UAV hardware
and battery failures, the research community has proposed sev-
eral techniques aimed at changing how tasks are re-assigned
to agents at runtime. These solutions are centralized [13], [14],
and distributed [15], [16], and share the use case of multiple
agents that coordinate to accomplishing a mission, i.e., a set of
logically ordered tasks, solving the problem differently. Some
of them focus on the resilient mission planning problem [16],
a problem formulation similar to a task offloading among a
fleet of UAV agents; others focus on the awareness of agents’
health to replan [15]; others yet enable agents to autonomously
tackle complex, large-scale missions, in the presence of actu-
ator failures [14]. While these solutions have a sound design
and good performance, none of them is able to look at the past
and learn from prior errors, in order to anticipate job demands
and network fluctuations by orchestrating the task assignment
through a resource usage prediction.

In this paper, we propose RITMO (Resource Inference for
Task MigratiOn), a solution that proactively redistributes job
loads among multiple processes running within distributed
agents (nodes). Differently from our preliminary version
presented in [17], the migration process aims to jointly mini-
mize the energy use and the task completion time. In particular,
each agent predicts the future queue length and accord-
ingly migrates jobs (i.e., drone tasks) to agents, guaranteeing
performance. To determine the agent’s future load, our system
uses a predictor based on time-series forecasting, specifically
the Autoregressive Integrated Moving Average (ARIMA) algo-
rithm [18]. Unlike other machine learning-based methods, the
features exploited by ARIMA are restricted to just one value in
time-series forecasting. We have experimented that exploiting
just one value in time-series forecasting fits well with our con-
strained environments, such as the drone swarms cooperating
to finalize a mission. In fact, compared to other regressors, this

2473-2400 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2835-5455
https://orcid.org/0000-0002-7798-4584
https://orcid.org/0000-0003-3588-9367

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1115

technique does not require a large amount of memory to store
past values. Such information can then be used to adapt the
agent’s load to a policy profile that achieves our goal of min-
imizing task completion time and energy consumption. Our
results show how RITMO provides better performance with
respect to the benchmark algorithms, even for many nodes
and with high failure rates.

The rest of the paper is structured as follows. In Section II,
we present the most related solutions to RITMO, and in
Section III, we describe some applications that can benefit
from the usage of RITMO. Section IV introduces the RITMO’s
model and formalizes the problem definition. The algorithm
utilized to solve such a problem is then described in Section V,
while Section VI outlines the main components of our solu-
tion. Then, Section VII shows the performance of RITMO and
the advantages over similar solutions. Finally, Section VIII
concludes our paper.

II. RELATED WORK

Providing a persistent and adaptive service resilient to fail-
ure is a crucial problem for any IoT network in general
and robotic or drone networks in particular. As such, it is
not surprising that there are several proposed solutions to
tackle this problem. In this section, we cite a few represen-
tative (centralized and distributed) solutions that clarify our
contributions.

Recently, decentralized approaches have been proposed to
improve the adaptability and the persistence of distributed IoT
systems [13], [14], [19]–[21]. For example, the authors in [20]
address the problem of task allocation and scheduling. The
problem of task allocation in robotics is similar to our con-
sidered task offloading, except that the host running the task
is not limited to UAVs, but can also be a server located on an
edge cloud.

Moreover, similarly to [20], our solution can distribute
workload efficiently among agents, but our predictive system
exploits a time series prediction approach to optimize the
system load. Nevertheless, our solution can manage both cen-
tralized and distributed management architectures, given that
it is agnostic to the agent architecture. Inspired by [22], we
utilize a network queuing model to estimate tasks that are
waiting for the execution aboard the agent; however, we differ
for both the considered problem and the prediction model. We
study the problem of reassigning tasks among IoT devices and
edge cloud processes that cooperate for a mission. We model
the failure and the overloading of agents with a regressor
algorithm [18].

Mission Planning for IoT Systems: For effective mission
planning solutions, the literature reports two main methodolo-
gies: 1) reactive and 2) proactive [23]. In reactive planning,
tasks are reassigned upon the occurrence of particular events,
such as critical outages or measurement indexes triggering
alerts. Unfortunately, since these approaches do not antici-
pate failures, they can potentially lead to catastrophic mission
results. For example, it may cause too frequent changes
in high-dynamic scenarios, thus reducing performances and
increasing the computational burden.

Conversely, proactive planning, often operating at fixed time
instants, evaluates the impact of disturbances from the environ-
ment on the mission’s expected outcome. By migrating new
assignments to uncontested agents, these methods can miti-
gate possible performance degradation before its occurrence.
Thus, for very uncertain and dynamic environments, proactive
approaches are the preferred choice [23]–[25] since they allow
to trade between performances and too frequent reassignments.

Prediction for UAV Systems: One example of solutions that
proactively distribute tasks among the agents is APRON [26],
which proposed using Jackson’s network model to estimate
the number of functions in the system for a replanning algo-
rithm. Similarly, [25] presents a solution that monitors the
execution of tasks in real-time and reassigns them to main-
tain a desired performance metric for the whole network.
Our approach employs a predictive control approach to limit
offloading decisions and find (on-line) the best task assign-
ment. We share with these solutions the idea of proactively
migrating tasks, but we differ in the model, the algorithm, and
the architecture presented to solve the replanning problem.

A similar solution is presented in [15], proposing HAP. This
concurrent learning adaptive control architecture establishes
feedback between the high-level planning based on Markov
Decision Processes (MDP) and the vehicle-level adaptive con-
trol algorithm. Using this feedback, HAP can anticipate the
failures and proactively reassess vehicle capabilities after any
failures for an efficient replanning schema that accounts for
changing capabilities. Our load prediction model is different.
While HAP estimates vehicle capabilities using the adaptive
controller’s vehicle health model, RITMO explicitly predicts
future loads on an agent to adapt the system’s overall load.

III. MOTIVATING APPLICATIONS AND USE CASES

Despite becoming popular with military and emergency
response, UAVs have been widely adopted also for civilian
applications. The applicability ranges from agriculture and sur-
veying to video making and real estate. This section describes
two examples of motivating applications where our solution
is incredibly effective, both of which share the underlying
challenged edge networks.

A. Disaster Response

An efficient architecture for edge offloading is crucial for
critical applications, such as real-time video conferencing with
the incident commander to recognize faces of disaster vic-
tims [27], or the detection of children in an attempt to reunite
them with their families [28]. Similarly, virtual beacons can
be principally used to track their location.

Encouraged by the decrease of costs related to UAV technol-
ogy, also the humanitarian community started piloting the use
of UAV systems in humanitarian crises several years ago [29].
The setup for disaster response, e.g., after a hurricane or a
severe flood, can be helped by utilizing UAVs, such as disas-
ter mapping and information gathering, community capacity
building, logistics, and even transportation of goods. From an
operation perspective, the main goal is to image and map the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1116 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

affected areas in the shortest time possible from the mobi-
lization request to take the immediate response and provide
assistance to civilians.

Two phases occur simultaneously: 1) UAV flight operations
and 2) data processing. The former includes an initial con-
figuration on the UAV and the subsequent taking-off, flight,
and landing. During the flight, the main goal is to properly
acquire the required data and send them to a processing unit
nearby. During the data processing phase, the data is mined
by the application. These operations typically occur after pre-
processing tasks, e.g., data resampling or image selection
(to limit the processing only to the minimum set of images
required to cover the affected areas).

To this end, edge computing can propel several applications
by enabling data processing in real-time. Sending the imagery
depicting the situation to the close edge cloud has been stud-
ied in the literature [1], [26], [30], providing good results.
A solution like RITMO can be of tremendous help to these
applications.

B. IoT for Precision Agriculture

Plant phenotyping refers to quantitative estimation of the
plant characteristics, including physiological, ontogenetical,
morphological, and biochemical properties, e.g., shape, canopy
structure, leaf size, and color [7], [31], [32]. High-throughput
phenotyping is a rapidly growing area of research that con-
siders hundreds of genotypes to facilitate genetic studies and
accelerate the breeding of advanced crop varieties to ensure
food, feed, fiber, and energy security. In recent years, rapid
advances in UAVs have boosted the use of near-earth aerial
imaging in various fields, providing low-cost data acqui-
sition at high spatial-, spectral-, and temporal resolutions.
Consequently, today UAVs have become essential platforms
for cost-effective and high-throughput phenotyping [33], [34].

Thermal remote sensing cameras mounted on versatile and
affordable UAVs have been increasingly used in precision
agriculture, especially for detecting water stress and irriga-
tion scheduling [7], [35], [36]. Significant progress has been
made in UAV-based plant phenotyping and plant stress detec-
tion. One of the main challenges in this massive use of UAVs
for agriculture, however, is the appropriate management of the
swarm that can potentially optimize their tasks’ accomplish-
ments. RITMO has the potential to facilitate the utilization of
UAV-based technologies by overcoming these limitations.

IV. MODEL

This section discusses the task migration problem amongst
the UAVs and formulates a mathematical model to solve this
problem. The system we envision is shown in Fig. 1.

A. System Model

We consider a network of N agents with the aim of complete

a set of M tasks. Let I Δ
= {1, . . . ,N } and J Δ

= {1, . . . ,M }
be the sets of node indexes and tasks, respectively. A task
j ∈ J indicates an atomic action executed by an agent, such
as monitor a location, visit a target, or measure a quantity.

Fig. 1. Overview of the system: agents, i.e., UAVs, are modeled as queues
containing tasks that need to be run. The system migrates tasks from (cur-
rently or likely to be) overloaded or failing agents to agents with increased
availability.

To capture real-world scenarios, like the ones mentioned in
Section III, we deal with heterogeneous agents (e.g., multi-
copter and fixed-wing vehicles with different sensors) that can
execute only certain tasks.

Let us denote the amount of tasks of the i-th node as qi
within [0, qmax

i], qmax
i ∈ IR+. We also assume that the

agent can execute only one task at a time, each one char-
acterized by certain execution order. To avoid burdening the
notation, task deadlines have not been considered.

We assume that at certain instants with a period r, a reas-
signment may take place. In other words, tasks can be moved
among the agents to increase the performance of the network
according to certain criteria. Furthermore, we assume that all
new tasks created between two consecutive reassignments are
put in the destination queue waiting for their actual alloca-
tion. For the sake of brevity, with the term “task offlaoding”
or “task migration” we denote both the reallocation of existing
tasks and the assignment of new ones. Given a generic device
i ∈ I and a generic task j ∈ J , we introduce the variable
xi ,j ∈ {0, 1} which is equal to 1 if the task j is assigned to
the node i, and it is equal to 0 otherwise.

Let the matrix Θ ∈ B
N×M , where each element Θi ,j mod-

els the ability of the agent i to perform the task j. Clearly,
each node is limited by its resources that is equipped with, i.e.,
CPU, memory, and bandwidth available on the node. Besides,
this metric considers the heterogeneity of the agents as well
as possible degradation due to malfunctions or hardware out-
ages. If Θi ,j = 0 the agent i is unable to execute the task j,
whereas if Θi ,j = 1 it can be executed at the best of the agent
capabilities.

Task Completion Time: We consider that each task j has a
processing time of tproci ,j seconds, also depending on the node
i. The total time of execution for the task j that traversed agents

whose set of indexes is P Δ
= {1, . . . ,P} ⊂ I is hence defined

as:

Nj = tprocP ,j +
P∑

k=1

twk ,j +
P−1∑

k=2

tmk−1,k ,j , (1)

where twk ,j denotes the waiting time for task j on the node k
and tmk−1,k ,j refers to the migration time when the task leaves
the node k − 1 reaching node k.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1117

If the task j is migrated, the data associated to task, δj , is
sent to the destination node. Hence, we can characterize the
migration time as:

tmk−1,k ,j = min
l

{
i+l−1∑

t=i

Rt ≥ δj

}
, (2)

where i denotes the current time slot, k − 1 is the source node,
k is the destination node, and Rt is the data rate at time t. This
quantity is clearly affected by the channel model, described in
what follows (Section IV-B).

Task Energy Consumption: Besides the time to complete
the task, we also contemplate the energy consumed during its
execution. For each task j we define the energy required for
its processing E

proc
i ,j , also depending on the node i, as:

Eproc
i ,j = P(i)× tproci ,j , (3)

where P(i) is the computation power of the mobile device i.
Specifically, each agent operates in a constant CPU speed si
and a computation power P(i) that is assumed to be a convex
function of CPU speed si [37], where i = 1, . . . ,N .

However, the energy consumption model should also reflect
the migration process. For this reason, we define the energy
consumed for the transmission as:

E tran
k−1,k ,j = P(k − 1, j)× tmk−1,k ,j , (4)

where mk was the migration time when the task leaves the
node k − 1, and P(k − 1, j) is the transmission power of
node k − 1 offloading task j. The total energy consumption
for the task j that traversed agents whose index is in the set
P is hence defined as:

Ej = Eproc
i ,j +

P∑

k=2

E tran
k−1,k ,j . (5)

This formula reflects our assumption that the energy spent
for the task to wait before its execution is negligible. We
also simplify the formulation by not considering the power of
receiving data on mobile device, since it is constant and often
smaller compared to the transmitting power, as demonstrated
by previous work [38].

B. Channel Model

Our algorithm uses the channel conditions to make replan-
ning decision. In this section we show the details of the model
that we used for the wireless channel between two nodes. In
particular, we model the wireless channel as a random process
of gt under a time-slot scheme, where gt denotes the channel
gain at time t. The channel gain is a complex number whose
magnitude is the attenuation of the signal and angle is the
phase shift of the signal at a given time instant. We consider
three alternative models, specifically: (i) block-fading channel,
where the channel states {gt} do not change over the execu-
tion of the application [39]. Hence, the data rate of the channel
Rt is constant over time; (ii) IID stochastic channel, where
the random variables {gt} are independent and identically dis-
tributed (IID). This evolution affects the data rate Rt which is
also IID over time; (iii) markovian stochastic channel, where

the evolution of {gt} is a Markovian random process with
a discrete state space. We also make the assumption that the
transmission power on the node is fixed. As such, the data rate
Rt is fully determined by the channel state of gt .

In the case of the Markovian stochastic channel, we adopt
the Gilbert–Elliott (GE) channel model [40], [41], where the
channel conditions are classified into two states: 1) “good”
and 2) “bad”, denoted as G and B respectively. The two states
correspond to a two-level quantization of the channel gain,
i.e., when the measured channel gain is above some value, the
channel is labeled as good, otherwise bad. Accordingly, we
define the channel gain in the good state to be gG , and in
the bad state to be gB . Therefore, the data rate, Rt can take
two values, RG and RB , for the good and bad channel state,
respectively,

Rt =

{
RG if gt = gG ,
RB if gt = gB ,

(6)

and the transition matrix of the channel state is:

P =

(
pGG pGB
pBG pBB

)
(7)

These assumptions regarding the channel model affect the
available data rate Rt , that in turn impacts the task migra-
tion time among two nodes. Also, the channel conditions are
monitored by the agent in order to detect and avoid paths with
low available bandwidth, as mentioned in Section V-C.

C. Problem Formulation

In the light of the aforementioned characterization, we are
ready to expose the problem that RITMO aims to solve.
More specifically, we formulate the problem as Integer Linear
Program (ILP) for a system composed of N agents, each capa-
ble to handle a sequence of no more than qmax

i tasks, and M
tasks that have to be reassigned between them. The objective is
to minimize the completion time and the energy consumption
for all the tasks in the system by controlling the decision vari-
ables xi ,j ∈ B, where B = {0, 1}, in the program described
as:

min
x

N∑

i=1

M∑

j=1

ci ,j xi ,j (8)

s.t.

M∑

j=1

xi ,j ≤ qmax
i ∀i ∈ I (9)

N∑

i=1

xi ,j ≤ 1 ∀j ∈ J (10)

xi ,j ≤ Θi ,j ∀(i , j) ∈ I × J (11)

where the cost value ci ,j ≥ 0 is a generic, nonnegative
function of the assignment, to be minimized.

We can observe that (9) and the subsequent constraints limit
the usage of resources to be at most the maximum available
resources. Namely, the maximum number of tasks assignable
to a node is qmax

i ; a task can be assigned to no more than
one agent; a task can be assigned only to agents that can exe-
cute it. Given these conditions, the cost function (8) expresses

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1118 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

the desiderata of the migration process. The offloading pro-
cedure is executed to find a more efficient mapping between
agents and tasks. A “good” offloading strategy should reduce
as much as possible both energy consumption and the task
completion time, which can potentially cause performance
degradation. Therefore, the coefficients constituting the cost
values account for these two aspects, but the way these values
are accounted for depends on the utilized strategy, that is, the
function that generates such costs ci ,j . For example, a cost
function could consider the queue utilization qi as a principal
indicator. Alternatively, a more elaborate metric could quan-
tify the effectiveness of the offloading decision taken by the
agent i by capturing both time to execute a task and energy
consumed by the agent to execute a task, Part of our con-
tribution is comparing the impact of different cost functions
(or offloading policies) that generate the cost coefficients ci ,j
(Section V-B).

It may be noted that when the problem in (8) is a central-
ized optimization problem, it can be solved using well-known
ILP algorithms such as the Branch and Bound technique [42].
In the rest of the paper we discuss our proposed decentral-
ized strategy, based on local communications among agents in
the network, to provide a solution to the offloading problem
for heterogeneous agents (8)-(11). The distributed offloading
problem can be summarized as follows.

Problem 1: For each time interval r, each agent, denoted
with an index i, has to decide if each task currently queued
needs to be executed or migrated to another agent. When the
agent decides to offload the task, it needs to select also the best
destination agent according to its pre-configured offloading
policy.

We solve this problem with the RITMO offloading algo-
rithm, detailed in the next section.

V. THE RITMO ALGORITHM

Intending to solve the previous problem, we design an algo-
rithm responsible for making online migration decisions. Such
a decision determines whether and when the migration starts
and, in this case, where the task should migrate.

A. Predicting the IoT Device’s Load

Our presented migration mechanism leverages traditional
regression algorithms to predict future values using history and
its evolution in the past.The history used, hence, is composed
of past values associated with the timestamp: the presence
of such a tuple <timestamp, value> leads to the name time
series. Among the possible methods in this class of regressor,
we select ARIMA [18] for its ability to account for trend and
noise in collections of data. Hence, we formulate the task of
load prediction, i.e., queue’s length prediction, as a regression
problem, where a real value number (future load) is predicted
on the basis of many single input features (past load values).

Formally, a standard notation for this method is
ARIMA(p, d , q), where the parameters account for season-
ality, trend, and noise in datasets. In particular, (i) p captures
the number of lag observations included in the model and is
often denoted as auto-regressive component; (ii) d captures the

integrated part of the model, i.e., the number of times that the
raw observations are differenced, also referred to as the degree
of differencing; (iii) q captures the moving average part of the
model and refers to the extent of the moving average window,
also denoted as the order of moving average. The ARIMA
overall model is given by the following equation:

(
1−

p∑

i=1

αiL
i

)
(1− L)dyt =

(
1 +

q∑

i=1

θiL
i

)
εt , (12)

where L is the lag operator, i.e., the number of past samples
considered during the prediction; αi are the parameters of the
autoregressive part of the model; the θi are the parameters of
the moving average while εt are error terms. Such error terms
εt are commonly assumed to be independent and identically
distributed (IID) variables sampled from a normal distribution
with zero mean, which is what we did.

At each epoch t, the monitoring agent gathers information
regarding the queue length. Such a number is thus inserted in
chronological order and comprises the historical dataset used
to build the model and perform the prediction. The data collec-
tion frequency is undoubtedly a key metric and largely depends
on the processing time and task arrival rate. It is also affected
by the prediction that occurs every r seconds. We set this time
interval different to t to decouple the two actions, i.e., data col-
lection and data prediction. In such a way, the granularity of
collected data can be denser, and the model can leverage a
larger history.

In light of these considerations, in the experiments, we set
t to be half of the processing time to collect fresh data but not
overload the node with the duty of collecting metrics. Whilst,
we set r to be the processing time. However, these two values
can be relaxed if prediction and task migration can occur less
frequently.

At each prediction time r, the ARIMA’s model, trained on
the data collected over time, produces the one-step-ahead fore-
casting. In case such a predicted length exceeds a defined
threshold z or the node runs out of available resources, the
migration process begins.

B. Selecting the Next IoT Device

The task migration mechanism requires selecting a destina-
tion node, that can be chosen according to different policies.
Such a policy can be used to minimize the cost of our
problem (8), by varying the definition of cost value. Herein we
enumerate some criteria for node selection, where each migra-
tion policy represents a different profile. The profile refers
to the desirable load on each node, considering the available
CPU, memory, and bandwidth resources of the node. Thus,
prior to selecting the destination node, the system computes
the time the hosting node would keep the job queued before
execution. By considering the current and estimated node load,
the system attempt to avoid nodes with a highly loaded queue
that can hinder fast execution. In this regard, our solution
is provided by default with a small yet representative set of
migration policies:

(i) Load Balancing: One of the easiest schema, character-
ized by an equal distribution of tasks among all the available

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1119

nodes. Specifically, the migration manager selects as destina-
tion the node with less enqueued tasks, and in case of more idle
nodes, the destination is chosen uniformly within this subset.
Formally, the index of destination m is given by:

m = min
i
{q1(t), . . . , qN (t)}, (13)

where qi (t) is the queue length of node i at time t.
(ii) Harmonic: It refers to a well-known randomized algo-

rithm often employed to solve the k-server problem [43]. Such
a problem consists in efficiently moving k servers over the
nodes of a graph G in response to a set of requests, where
each request is a sequence of k-points. The harmonic policy
aims at minimizing the total distance covered by the servers
to reach the requested points. Despite the fact that our consid-
ered problem differs from the k-server problem, our strategy
still uses a version of the Harmonic algorithm to select the
destination. Formally, the probability of selecting the node m
as destination is given by:

pm =
qm (t + 1)−1

∑
i qi (t + 1)−1

, (14)

where qm (t +1) is the predicted queue’s length of node m at
time t + 1.

(iii) Cost Minimization: During the execution, a profile
of the available nodes is shaped, which takes into account
the computation resources. Hence, the destination is chosen
according to the cost of migrating, which depends on the aver-
age service time and energy consumption: a node with a lower
estimated cost has a higher probability of being selected. We
denote the cost of migrating task j from node i to node m as
cmig
i ,j ,m . The cost is computed as the sum of estimated com-

pletion time and estimated energy consumption. In turn, the
cost differs in the case of a migration decision or a local exe-
cution. In the former case, the service time is the sum of:
(i) transmission time of task j migrating from i to m, tmi ,j ,m ;
(ii) waiting time on the node m, twm,j ; (iii) processing time for
task j on the node m, tprocm,j . The energy consumption is also
affected by the migration, as the sum of: (i) energy consumed
for transmission of task m from i to j, E tran

i ,j ,m , and (ii) energy
required for processing of task m on the destination node m,
Eproc
m,j . The two components are then weighted using α and

β, and the cost of migration is formally:

cmig
i ,j ,m = α

(
E tran
i ,j ,m + Eproc

i ,j

)
+ β

(
tmi ,j ,m + twm,j + tprocm,j

)
,

(15)

where α and β are two weights measuring the importance of
completion time compared to the energy consumption.

Notably, the waiting time on the destination node twm,j
is estimated using our regressor algorithm. Hence, with this
policy, the prediction is not only used to establish when to
migrate, but also to estimate the waiting time on the possible
destination nodes. The migration time, instead, is estimated
by looking at the channel metric collected by the node.
Specifically, using the throughput of the wireless channel, the
node can easily approximate the value of tmi ,j ,m .

In the latter case of local execution, the cost has still the
two components. The service time is the sum of: (i) waiting

time of task j on the origin node i, twi ,j ; (ii) processing time
on the node i, tproci ,j . The energy consumption only depends
on the energy required for processing of task j on the source
node i, Eproc

i ,j . The two components are then weighted using
α and β, and the cost of local execution is formally:

cloci ,j = αE
proc
i ,j + β

(
twi ,j + t

proc
i ,j

)
. (16)

In this policy, the node compares the two costs and decides
the most profitable one, and applies the selected strategy.

(iv) Closest Node: The system manager assigns the migrat-
ing task to the agent closest to the source node. The distance
between source and destination has indeed a significant impact
on the migration time and the energy spent for such transmis-
sion.

(v) Random: The migration destination node is randomly
selected between all the available nodes. Despite being
extremely easy, this strategy may result in good performance
due to the small overhead introduced by the process of
destination selection.

Using our provided APIs, the user can specify the preferred
option according to the specific use case. Moreover, more
strategies can be included in our solution whose logic can
be easily adjusted, for example, setting a policy that consid-
ers more strict application requirements. It is also possible
to assign priority to both nodes and tasks in order to avoid
overloaded queues for highly important jobs. However, we
demonstrate that this subset is sufficient for many network
conditions, and we provide useful insights for efficiently set
this policy in Section VII.

C. Channel Monitoring

Channel and link estimation is a critical part of almost every
sensor network protocol. In this paper, we let agents commu-
nicate directly with each other, with each node capable of
monitoring the channel between itself and the rest of the fleet.
Knowing the packet reception rate of candidate neighbors lets
a protocol take the most energy-efficient decision, e.g., next
routing hop. To this end, one basic indicator is the receive
signal strength indicator (RSSI), which is the strength of a
received radio signal [44]. Such a measure is implemented and
widely-used in 802.11 standards. At larger distances, the sig-
nal gets weaker, and the wireless data rates get slower, leading
to lower overall data throughput. Although it is recommended
not to use this metric for distance measurements in localiza-
tion algorithms [45], it is a promising indicator of how well a
particular radio can hear the remotely connected client [46].

RSSI is, thus, a promising indicator when its value is above
the sensitivity threshold, i.e., −87 dBm. Below this value,
the packet reception rate (PRR) drastically downgrades due
to variations in local phenomena such as noise. In this case,
it may be difficult to sustain a link reliably or achieve high
throughputs, especially in the presence of external interference.
Conversely, above the sensitivity threshold, the PRR exceeds
the 85%, denoting a strong signal. Despite the generality
of these considerations and threshold value [46], [47], our
architecture allows customizing this parameter as explained
in Section VI.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1120 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

Algorithm 1 Prediction-Based Migration Decision on Any
Node

1: Let t be the epoch, and r the prediction period
2: Let z be the queue size threshold
3: for every epoch t do
4: Monitor the queue and node state
5: if notAvailableResources then
6: dst ← get_dst(node, t)
7: migrate remaining tasks in the queue to dst

8: if r has elapsed since last prediction then
9: qt+1 ← future predicted queue size on the node

10: if qt+1 > z and channelIsGood(node) then
11: dst← getDst(node, t)
12: migrate remaining tasks in the queue to dst
13: close;

D. Overall Procedure

The final goal of the algorithm underpinning RITMO is to
minimize the completion time and the energy usage of any
task. To accomplish this, our solution proactively migrates
tasks between nodes. This migration is intended to release
resources of overloaded agents and exploit the spare resources
of other available nodes, to speed-up the computation. Two
main questions about migration decisions need to be addressed
by such a strategy: (i) when and (ii) where. (i) The first aspect
is about time and refers to when performing the migration.
We start a migration either when the predicted queue length
outstrips a threshold or when the available resources on the
node are insufficient to complete the task. In these circum-
stances, the tasks in the queue are migrated to another node
of the system, whose capacity can fulfill the demand and can
complete them in a shorter time. (ii) The second aspect is
about the location and refers to selecting a proper destina-
tion node to satisfy the system requirements. However, the
decision about the destination often privileges a key metric
at the price of degrading other quantities. Our system allows
the user to choose from the options described in Section V-B
according to the business logic. It can be, for example, that
the key metric is the speed in deciding, the average usage of
resources, or the average task completion time. This multitude
of options originates diverse policies for the controller logic
that we implemented in the system.

In Algorithm 1 we summarize the main steps of our proce-
dure. Every epoch t, the module running on each node obtains
the statistics, saves them, and then provides them quantities to
the predictor model. Such a model uses these quantities for the
prediction that, occurring every period r, estimates the queue
size at time t + 1. The regressor computes the future size
qt+1 and afterward compares this value to the threshold z,
set as a quantity denoting when many tasks are enqueued. If
qt+1 exceeds z, surplus tasks present in the queue at time
t are moved to another node. The function getDst(node, t)
returns the destination node according to the selected policy,
for example, one of the profiles described in Section V-B.
Moreover, the migration can be triggered by the absence of
available CPU or memory resources on board of the node i.

Fig. 2. System composed of 2 nodes has to execute 9 tasks. At time t = 1
tasks are assigned; then, at subsequent time instant t = 2, one task migrates
and is reassigned as a consequence of the queue length prediction; finally,
orange drone executes one tasks and its queue is thus reduced.

In this case, the notAvailableResources function returns true,
initiating a new migration.

The channelIsGood(node) function returns a boolean value
according to the RSSI state, indicating the strength of the
signal. As described in Section V-C, when an RSSI lower
than a threshold denotes a signal too weak, subject to external
interference. In these circumstances, it is recommended not
to migrate tasks, and the function returns false. The desired
RSSI is for values exceeding the threshold, commonly set to
−87 dBm. However, we also consider a safety margin, and
our function returns true for values above a safe threshold of
−70 dBm.

E. An Illustrative Example

To better understand the proposed procedure, we illustrate
a simple example showing the task migration in a drone fleet.
Considering a fleet of N = 2 unmanned aerial vehicles, 9 tasks
are still pending and waiting for being executed (M = 9). We
summarize the scenario in Fig. 2, where the tasks are different
zones to be monitored. The nodes can vary for their charac-
teristics, e.g., multicopter or fixed-wing, but in the following,
we assume they have the same set of skills and tasks can be
assigned indiscriminately to any node.

At the initial timestamp (t = 1), the orange drone has 3
tasks in this queue, while the blue one has 6 tasks left. As a
result of the future load prediction, it appears that it is conve-
nient that the blue drone migrates one task to the other agent.
Although there is only one possibility in this example, the
destination device should be selected on the basis of some
policies, as mentioned previously (Section VII-E). After this
migration (t = 2), however, we observe that the orange drone
has one more task pending, and the blue one has reduced its
queue length. Finally (t = 3), the orange drone accomplishes
one task and moves to the next spot. The system evolves so
forth, completing and migrating remaining tasks.

This simple example demonstrates the impact of task migra-
tion, which helps share the load among the agents of the
system. This prevents the uncontrolled growth of the queue
of any agent, moving tasks to under-congested nodes.

VI. RITMO ARCHITECTURE

The solution presented has two main objectives: managing
a fleet of IoT devices and efficaciously distributing the load

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1121

Fig. 3. RITMO’s architecture: the management layer is located between the
operating system and the IoT application. Some of the provided features are
monitoring network connectivity, load estimation, and tasks migration, along
with the customizable controller logic.

among them. To this end, we design an architecture aiming to
enable policy-based destination decisions. The system consists
of multiple modules that can be replaced on-demand and in
a short time to accommodate the requirements based on the
peculiarities of the use case. In the following, we summarize
the components of our system, e.g., the APIs, and the agent
services offered.

We depict in Fig. 3 our management architecture, which
enables the monitoring of network connectivity and the tasks
reassignment, via estimation of the load on nodes and cus-
tomizable controller logic. Our management layer, indeed, sits
between the Operating System (at the bottom), e.g., Robotic
Operating System (ROS) [48], and the IoT application (at the
top). The IoT application running on top can adapt to diverse
business logics and environment settings by exploiting the pro-
vided API to customize the logic of such controllers, as well
as to adapt the tasks migration logic to a centralized or dis-
tributed fashion. Depending on the application requirements,
the architecture can implement the policy that best fits the
context. An example of these applications is the set-up of dis-
aster response for live audio/video analytic, as mentioned in
Section III. During a disaster, since the network is very unsta-
ble, a policy as closest node or random can result extremely
effective.

Service APIs enable the customization of two of the main
components in RITMO: 1) the controller logic to fit multiple
challenged scenarios and 2) the logic of the task offloading
algorithm, either in a centralized or distributed fashion. By
interacting with this module, the same program can tailor dif-
ferent contexts, adapting to different requirements and network
conditions. Another relevant component is represented by the
Historical Values, committed to maintaining the past network
states and the partially replicated database. These values con-
stitute the past used by ARIMA for the prediction of future
states. Still, other saved information is also historical dynamic
states i .e., depending on the network, configuration, and con-
nectivity condition. Responsible for filling this database is
Network Monitoring, that runs a watchdog process to mon-
itor the other agents state and interact with them. A similar
process is at the basis of Channel Monitoring, used to collect

information about the channel between the node and the oth-
ers. To the rescue of understanding the messages received as
heartbeat comes the Message Parser module. Our object model
is defined through Google Protocol Buffers [49], in charge of
delimiting, serializing, and deserializing the messages.

The core of the adaptive migration mechanisms resided in
the Controller Logic component, that can module the task
migration rate of the network of IoT devices, e.g., drones.
As explained in our algorithm (see Section V-D), we employ
a Threshold-based Migration, that impose a migration every
time that the predicted number of tasks on the agent exceeds
the value of a threshold z. However, the architecture is modu-
lar and pluggable and can be extended with other user-defined
controllers to replace the threshold-based logic.

The prediction of future network utilization is performed
by the ML estimator, consisting of two sub-modules. The first
key feature is theLoad Estimator, as it estimates the future load
exploiting the current and historical values. Such a prediction
attempts to estimate the relationships between the features, i.e.,
system state, and a dependent variable, system load. To further
reduce the training time, the prediction can take advantage of
Saved models, obtained via offline training, so that the agent is
not involved in the learning process. In this case, however, the
advantage of a reduced overhead comes at the cost of models
that can not adapt to conditions never experienced.

VII. EVALUATION RESULTS

In this section, we first analyze the accuracy of the ARIMA
regressor compared to other time-series methods. Then, we
describe how the channel model impacts the quality of RITMO
and how decisions about destination nodes affect system
performance. Finally, we compare RITMO against state-of-
the-art solutions to determine the benefits of our solution, also
considering the context of a surveillance application.

A. Experimental Setup

To evaluate the performance of the proposed task offload-
ing strategy, we developed a C++ event-driven simulator,
where a networked fleet of drones tries to accomplish a mis-
sion, corresponding to a set of geo-locations to reach. In this
context, all drones cooperate to complete assigned tasks in
the shortest possible time while reducing energy consump-
tion. In case of disaster response, for example, each drone
has indeed to explore an area with a camera and micro-
phone looking for signals indicating survivors, as described
in Section III. We set the default parameters for the eval-
uation to mimic the conditions that occur in this scenario.
Therefore, we use the default threshold-based mechanism, i.e.,
the migration of drone’s tasks is triggered when the queue
length exceeds a threshold. Besides, if not otherwise specified,
in our experimental campaign, we set the default configura-
tion to considering 50 drones in the fleet, 1 m for the average
distance between nodes and no failures (percentage 0%); the
destination node is selected according to either the load balanc-
ing or cost minimization schema, as explained in what follows.
Reported results are obtained after 35 trials, and the graph’s
bars refer to a confidence interval of 90%. Concerning the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1122 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

TABLE I
PARAMETERS SETTING FOR THE EXPERIMENTAL CAMPAIGN

scenario, the arrival rate of new tasks was generated with a
Poisson process of 0.02 Hz. The capacities of agents were
assumed equal for all ai ∈ A. Moreover, the processing time
depends on the task to be executed and the hosting agent, but
for simplicity in the following, we consider a fixed quantity,
and we often refer to it as tproc . In all cases, we assume that
qmax
i is always large enough to assign all the tasks.

Table I summarizes the configuration parameters utilized
during the following evaluation, where the default values are
reported in bold. These default values are required to uniform
the comparison among different parameters under consider-
ation, as in any experimental campaign. However, in the
following, we also consider the impact and the reason behind
the choice of some of them.

B. Performance Indexes

In this section, we describe the performance indexes used
to evaluate our and compared task offloading approaches. The
key indicator we use is the average cost per task, Z, computed
as follows:

Z
Δ
=

1

M

M∑

j=1

(
αNj + β Ej

)
. (17)

In the following, we set α = 0.05 and β = 20 in
order to make the completion time comparable to the energy
consumption.

To quantify the experimental error of the prediction, we
utilize the absolute relative error given by the formula:

err =
|y − ŷ |

y
, (18)

where y defines the actual value and ŷ the predicted one.

C. Prediction Analysis & Accuracy

To opportunely choose the ARIMA’s parameters, we carry
out an initial study of the prediction performance. In particular,
the ARIMA algorithm is influenced by three parameters: p, d
and q, as mentioned in Section V-A. Two of these param-
eters for the algorithm configuration are derived from the
Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) plots [Fig. 4(a) and Fig. 4(b)]: ACF is used
to determine q while PACF for p. ACF is a common method to
establish how well the present value of the series is related to
its past values. On the other hand, PACF measures the correla-
tion between the time series with a lagged, i.e., past, version of

itself, but after eliminating the already found. The p and q val-
ues can be inferred from the figure as follows: p is the x-value
at which the function of the PACF graph crosses the upper con-
fidence interval (dotted line) for the first time [50]. Similarly,
q is the x-value where the function of the ACF chart crosses
the upper confidence interval for the first time. Experiments
and results shown in Fig. 4 refer to our collected dataset com-
prised of more than 40, 000 historical samples, then split into
training (80%), validation (10%), and test (10%) set. While
the prediction error is computed on the test only, the param-
eters investigation is conducted on the validation set. From
the graphs, it is possible to identify that p = q = 1. We fur-
ther investigate empirically the optimal value of d using the
cross-validation, and we found that d = 1 provides the best
performance.

Moreover, we evaluate the accuracy of the ARIMA method
in comparison to other time-series algorithms. A good pre-
dictor should at least outperform a very trivial algorithm in
which the next value is the exact replica of the Last Sample
(LS). Given the simplicity of the approach, it is not consid-
ered a statistical method; still it is a recommended baseline to
establish the quality of the regressor algorithm. Besides LS,
we study other two time-series alternatives: 1) Holt-Winters
(Holt), a basic model that captures three submodels (also
known as influences) to fit a time series, i.e., an average
value, a slope (or trend) over time and a cyclical repeating
pattern (seasonality); 2) SARIMA, following the same defini-
tion of the analogous ARIMA, it can also include seasonal
components of the time series. This makes SARIMA able to
deal with seasonal effects. Fig. 4(c) displays the error of the
mentioned algorithms encountered during prediction, using the
formula (18). The results show that the ARIMA outperforms
the other solutions: the dynamic of the conditions makes inef-
ficient a simple method like LS, and also Holt is unable to
consider this data evolution. Besides, as the collected metric
does not exhibit seasonality, SARIMA appears to be vain. We
can hence conclude that ARIMA is the preferred choice to fit
this context.

We then evaluate the time required to train the dataset,
and we report it in Fig. 5. As mentioned, our choice is to
offline train the model and then use it to online predict future
values. As can be noticed, Holt-Winters is the longest to con-
verge to a stable model, while the others demand less time
to train. Furthermore, ARIMA is faster than SARIMA, given
the reduced number of parameters to configure. However, the
time needed for training for this class of algorithms is defi-
nitely shorter than the training time of other deep learning or
reinforcement learning solutions [21].

D. Channel Model Impact

We then compare the impact of the diverse channel models
over RITMO. Our solution executes all the tasks of the appli-
cation under the three models: a simple block-fading channel
with a constant data rate R = 60 kb/s, IID whose expected
data rate is E(R) = 60 kb/s, the Markovian channel character-
ized by pGG = 0.995 and pBB = 0.96, with RG = 100 kb/s
and RB = 10 kb/s. For each channel model, we report in

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1123

Fig. 4. Analysis of the regressor method. (a) Autocorrelation function (ACF) and (b) Partial autocorrelation function (PACF) for collected data, used for
tuning the predictor’s parameters p and q. (c) Error in queue length prediction for different time series algorithms, where ARIMA provides the higher accuracy.

Fig. 5. Training time comparison for the diverse regressor algorithms.
ARIMA is the fastest to converge.

Fig. 6 the cost defined in (17) evaluated for the four migra-
tion policies, namely: (i) load balancing: when an agent’s
queue exceeds a set threshold, the drone with less waiting
tasks is selected. In the case of two nodes with the same num-
ber of enqueued tasks, the system selects the closest agent. If
still more nodes have the same properties, the destination is
chosen randomly among them; (ii) random: the destination
is a randomly selected; (iii) closest: when an agent’s queue
overcomes the threshold, the system reassigns its tasks to the
closest agent. If two agents are at the same distance from the
task, we insert the task in the queue of the drone with fewer
tasks in its queue; ties are split at random if two queues have
the same number of tasks; (iv) cost minimization: for each
task we select the node which minimizes the migration cost
of (15), if such a cost is lower than (16). Otherwise, the task
is kept on the source node. Nevertheless, the purpose of this
experiment is not to compare policies, that will be conducted
in Section VII-E, but rather to analyze how the channel models
affect the system performance.

First, it is fundamental to remark that the block-fading
is conveniently used as a baseline approach. However, it
poorly approximates real channel conditions by using opti-
mistic assumptions, leading to lower costs than other models.
We can then observe how the IID and Markovian channel
models produce comparable results. For this reason, in the
following, we could utilize one of these two options indis-
criminately. However, we set as default Markovian due to the

Fig. 6. Effects of diverse channel models. The four migration policies are
evaluated for the (i) block-fading, (ii) independent and identically distributed
(IID), and (iii) markovian.

reduced variance in the obtained results and its more realistic
model.

E. Consequence of Diverse Migration Policies

In this section, we compare the effects of diverse strategies
for the destination node selection in a scenario with stable con-
ditions and no failing agents (Fig. 7). Specifically, we evaluate
(a) the task completion time and (b) the energy consump-
tion for increasing nodes number, (c) completion time, and (d)
energy consumption for an increasing percentage of node fail-
ures. In these circumstances, a few observations are: (1) Cost
minimization policy is particularly effective when N ≤ 100. In
fact, for a partially limited number of agents, the state of chan-
nels and other nodes can be monitored, and this information
ameliorates the decision. However, when this number rises, the
overhead in accounting these metrics rises as well, leading to
intractable model. This increases both the task completion time
and the energy consumption, and is reflected in the cost metric
which for N = 150 is the highest among the other policies.
(2) Closest agent and random policies, even if very trivial,
cut off costs for large drone swarms. From the graphs can be
observed that they shorten task completion time and can also
diminish the average energy needed to perform a task. When
the options for migration magnify, it may be convenient to
decide quickly, as in closest and random, even if less accurate.
In fact, in these circumstances, minimizing the expected cost
incurs in high complexity that is often unnecessary. (3) For

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1124 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

Fig. 7. Destination selection policies comparison. (a) Task completion time, (b) energy consumption, and (c) system cost of a fleet of drones using APRON
with different migration policies: (i) load balancing, (ii) random, (iii) closest, (iv) cost minimization task migration.

Fig. 8. System performance evaluation in terms of time to complete tasks. (a) Comparison of different solutions at varying percentage of node failures.
(b) Completion time of different algorithms for an increasing number of nodes. (c) Effect of the average distance between nodes on the task completion time.

Fig. 9. System performance evaluation in terms of energy consumption, at varying (a) percentage of node failures. (b) Number of agents in the system.
(c) the average distance between two agents.

large fleet, e.g., N = 150, load balancing tasks among agents
provides the lowest costs. Similarly to the second observation,
we observe that when the fleet size increases, simple deci-
sions are preferred. This profile can indeed balance the effect
of lower complexity and decisions based on the current load,
and emerges as preferable choice.

According to these considerations, in what follows, we set
the cost minimization policy when the number of drones is
lower than 100, and load balance for a higher number of
nodes.

F. RITMO Performance

Furthermore, we compare our solution against two of the
most related methods that are found in the literature: HAP [15]
and APRON [26]. The former can establish close feedback
between the high-level planning based on a Markov Decision
Process (MDP) and the execution level. Using this feedback,

it then anticipates failures at the planning level. The latter
approach, instead, exploits Jackson’s network model to control
operations of a network of IoT devices while the network states
evolve. Although this work is presented with several options to
select the destination, in the following, we employ the closest
node policy since it has been shown that this setting provides
better results [26].

In Fig. 8(a) we show the average execution time of tasks
for the three algorithms when the percentage of failures varies.
It can be observed how RITMO achieves the shortest com-
pletion time with respect to analogous solutions, considering
its ability to manage a large number of failures by reassign-
ing the uncompleted tasks pro-actively and re-actively. We
also compare the completion time for an increasing num-
ber of nodes in the system in Fig. 8(b). As the fleet grows
up, RITMO can exploit all the available resources of agents
without overloading them, diminishing tasks’ completion time.
This ability makes RITMO outperforming the other solutions,

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1125

Fig. 10. (a) Impact of different values of processing time on the average time spent to complete a task. (b) - (c) For the use case of a disaster response,
RITMO is able to provide the highest number of completed tasks in the interval and lowest energy consumption.

as can be seen in the graph. In particular, the benefits brought
by our solution comes even higher when the number of nodes
increases. In such a scenario, indeed, APRON is not always
able to take advantage of the more available resources offered
by more drones in the system, while RITMO can execute a
more profitable migration. Moreover, we consider the impact
of the average distance among two nodes over the system
performance [Fig. 8(c)]. Clearly, as the distance increases, the
task completion time rises as well. Our findings, however,
show how RITMO provides better performance even when
it may be challenging to handle the agent locations, which
indicates the efficiency of our proposed system.

Another important aspect is the sustainability of the solu-
tion, and, consequently, we evaluate the energy consumed
during the mission for the different algorithms (Fig. 9). We
replicate the same conditions of Fig. 8, but we report now
the average energy consumption (the mean between nodes).
We can immediately observe how RITMO consistently lowers
energy consumption compared to other benchmark solutions.
In particular, RITMO provides stronger results when the chal-
lenged conditions are exacerbated, e.g., remarkable percentage
of failures [Fig. 9(a)] and large fleet of drones [Fig. 9(b)].
Remarkably, for N = 150 RITMO halves the consumption
with respect to APRON solution.

During our experimental campaign, we also evaluated the
impact of various task processing times [Fig. 10(a)]. We can
observe how this time only partially affects the completion
time, which, instead, largely depends on the time spent wait-
ing for the execution. The migration is meant to reduce this
time. Therefore, even for heavier tasks, the solution moves
jobs among the agents to reduce this waiting time.

G. Benefits to the On Top Application

Lastly, we consider the performance when RITMO is
employed for a monitoring surveillance use case, as the one
presented in [1], which entails a disaster response setup. The
scenario includes an edge cloud where information is sent to
the close computation, i.e., video record, and a correspond-
ing task is received, i.e., the location to explore with the
camera. Thus, we evaluate the specific metrics for this appli-
cation, and we quantify the number of completed tasks and
the average energy spent during the execution of the applica-
tion in Fig. 10(b) and Fig. 10(c), respectively. The experiments
refer to 5-minutes of execution, and a task takes 5 seconds.

Comparing RITMO against the other approaches, we can
notice how our solution can increase the number of completed
tasks by the system. At the same time, RITMO reduces the
average energy spent by each agent.

VIII. CONCLUSION

This paper presents RITMO, a solution managing a fleet of
robotic agents, e.g., drones, to increase the resilience in task
replanning and migration problems. In the presence of chal-
lenged edge networks, indeed, diminishing the time taken to
complete assigned tasks while not overloading agents is partic-
ularly challenging. To this end, RITMO models the network
of nodes as a network of queues and predicts the number
of future tasks in the agent’s queue. This information is thus
used to determine the IoT device’s future utilization and proac-
tively redistributes tasks among the fleet. Our results show that
RITMO is notably effective as a policy programmability mech-
anism for networks of UAVs. In particular, our solution jointly
shortens the task completion time and energy consumption
with respect to other benchmark solutions.

ACKNOWLEDGMENT

The authors are also indebted to Donato Di Paola for moti-
vating us to investigate this problem and for his contributions
to our earlier research on the topic.

REFERENCES

[1] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture for
adaptive task planning in support of IoT-based machine learning applica-
tions for disaster scenarios,” Comput. Commun., vol. 160, pp. 769–778,
Jul. 2020.

[2] D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, and
Z. Oraibi, “AGRA: AI-augmented geographic routing approach for IoT-
based incident-supporting applications,” Future Gener. Comput. Syst.,
vol. 92, pp. 1051–1065, Mar. 2019.

[3] R. Charney, T. Rebmann, F. Esposito, K. Schmid, and S. Chung,
“Separated after a disaster: Trust and privacy issues in sharing children’s
personal information,” Disaster Med. Public Health Preparedness,
vol. 13, no. 5, pp. 1–8, 2018.

[4] S. C. Rajashekar, S. Gururajan, F. Esposito, and D. Ferry,
“Reconfigurable swarms and multi-user, cooperative UAS flights through
a virtual reality interface,” in Proc. AIAA Scitech Forum, 2020, p. 737.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A sur-
vey on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th Quart., 2017.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

1126 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 5, NO. 3, SEPTEMBER 2021

[7] V. Sagan et al., “UAV-based high resolution thermal imaging for vege-
tation monitoring, and plant phenotyping using ICI 8640 P, FLIR VUE
PRO R 640, and thermomap cameras,” Remote Sens., vol. 11, no. 3,
p. 330, 2019.

[8] A. Ventrella, F. Esposito, and A. Grieco, “Load profiling and migration
for effective cyber foraging in disaster scenarios with formica,” in Proc.
IEEE 4th Conf. Netw. Softw. (NetSoft), Jun. 2018, pp. 80–87.

[9] W. Muhammad, F. Esposito, S. C. Rajashekar, and S. Gururajan, “Vocal
intent programmability for UAS in disaster scenarios,” in Proc. AIAA
Scitech Forum, 2020, p. 736.

[10] N. H. Motlagh, T. Taleb, and O. Arouk, “Low-altitude unmanned aerial
vehicles-based Internet of Things services: Comprehensive survey and
future perspectives,” IEEE Internet Things J., vol. 3, no. 6, pp. 899–922,
Dec. 2016.

[11] J. Franz, T. Nagasuri, A. Wartman, A. Ventrella, and F. Esposito,
“Reunifying families after a disaster via serverless computing and rasp-
berry PIS (DEMO),” in Proc. IEEE Int. Symp. Local Metropolitan Area
Netw., Washington, DC, USA, Jun. 2018, pp. 1–9.

[12] A. Sacco, F. Esposito, and G. Marchetto, “A federated learning approach
to routing in challenged SDN-enabled edge networks,” in Proc. 6th IEEE
Conf. Netw. Softw. (NetSoft), 2020, pp. 150–154.

[13] J.-S. Marier, C. A. Rabbath, and N. Léchevin, “Health-aware coverage
control with application to a team of small UAVs,” IEEE Trans. Control
Syst. Technol., vol. 21, no. 5, pp. 1719–1730, Sep. 2013.

[14] N. Kemal Ure et al ., “Decentralized learning-based planning for
multiagent missions in the presence of actuator failures,” in Proc. Int.
Conf. Unmanned Aircraft Syst. (ICUAS), 2013.

[15] N. K. Ure, G. Chowdhary, J. P. How, M. A. Vavrina, and J. Vian, “Health
aware planning under uncertainty for UAV missions with heterogeneous
teams,” in Proc. Eur. Control Conf. (ECC), 2013, pp. 3312–3319.

[16] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Trans. Robot., vol. 25, no. 4,
pp. 912–926, Aug. 2009.

[17] A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for task
migration in challenged edge networks with RITMO,” in Proc. 9th IEEE
Int. Conf. Cloud Netw. (CloudNet), 2020, pp. 1–7.

[18] G. E. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, vol. 734. New York, NY, USA: Wiley, 2011.

[19] S. S. Ponda, H.-L. Choi, and J. P. How, “Predictive planning for
heterogeneous human–robot teams,” in Proc. InfoTech, 2010, pp. 1–10.

[20] C. J. Shannon, L. B. Johnson, K. F. Jackson, and J. P. How, “Adaptive
mission planning for coupled human–robot teams,” in Proc. IEEE Amer.
Control Conf. (ACC), 2016, pp. 6164–6169.

[21] A. Sacco, F. Esposito, and G. Marchetto, “RoPE: An architecture for
adaptive data-driven routing prediction at the edge,” IEEE Trans. Netw.
Service Manag., vol. 17, no. 2, pp. 986–999, Jun. 2020.

[22] A. Duminuco, E. W. Biersack, and T. En-Najjary, “Proactive replication
in distributed storage systems using machine availability estimation,” in
Proc. CoNEXT , 2007, p. 27.

[23] B. Bethke, J. How, and J. Vian, “Multi-UAV persistent surveillance with
communication constraints and health mangement,” in Proc. AIAA Guid.
Navig. Control Conf., 2009, p. 5654.

[24] J. Redding, Z. Dydek, J. P. How, M. A. Vavrina, and J. Vian, “Proactive
planning for persistent missions using composite model-reference adap-
tive control and approximate dynamic programming,” in Proc. Amer.
Control Conf., 2011, pp. 1–9.

[25] D. Di Paola, M. Gaggero, A. Petitti, and L. Caviglione, “Optimal control
of time instants for task replanning in robotic networks,” in Proc. IEEE
Amer. Control Conf. (ACC), 2016, pp. 1993–1998.

[26] A. V. Ventrella, F. Esposito, A. Sacco, M. Flocco, G. Marchetto, and
S. Gururajan, “APRON: An architecture for adaptive task planning of
Internet of Things in challenged edge networks,” in Proc. 8th IEEE Int.
Conf. Cloud Netw. (CloudNet), 2019, pp. 1–6.

[27] H. Trinh et al., “Energy-aware mobile edge computing for low-latency
visual data processing,” in Proc. IEEE 5th Int. Conf. Future Internet
Things Cloud (FiCloud), 2017, pp. 128–133.

[28] S. Chung, C. M. Christoudias, T. Darrell, S. I. Ziniel, and L. A. Kalish,
“A novel image-based tool to reunite children with their families after
disasters,” Acad. Emerg. Med., vol. 19, no. 11, pp. 1227–1234, 2012.

[29] P. Boccardo, F. Chiabrando, F. Dutto, F. G. Tonolo, and A. Lingua, “UAV
deployment exercise for mapping purposes: Evaluation of emergency
response applications,” Sensors, vol. 15, no. 7, pp. 15717–15737, 2015.

[30] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “Sustainable task
offloading in UAV networks via multi-agent reinforcement learning,”
IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5003–5015, May 2021.

[31] A. Walter, F. Liebisch, and A. Hund, “Plant phenotyping: From bean
weighing to image analysis,” Plant Methods, vol. 11, no. 1, pp. 1–11,
2015.

[32] V. Sadras, G. Rebetzke, and G. Edmeades, “The phenotype and the
components of phenotypic variance of crop traits,” Field Crops Res.,
vol. 154, pp. 255–259, Dec. 2013.

[33] S. Madec et al., “High-throughput phenotyping of plant height:
Comparing unmanned aerial vehicles and ground lidar estimates,” Front.
Plant Sci., vol. 8, p. 2002, Nov. 2017.

[34] G. Yang et al., “Unmanned aerial vehicle remote sensing for field-based
crop phenotyping: Current status and perspectives,” Front. Plant Sci.,
vol. 8, p. 1111, Jun. 2017.

[35] D. J. Mulla, “Twenty five years of remote sensing in precision agri-
culture: Key advances and remaining knowledge gaps,” Biosyst. Eng.,
vol. 114, no. 4, pp. 358–371, 2013.

[36] C. Z. Espinoza, L. R. Khot, S. Sankaran, and P. W. Jacoby, “High
resolution multispectral and thermal remote sensing-based water stress
assessment in subsurface irrigated grapevines,” Remote Sens., vol. 9,
no. 9, p. 961, 2017.

[37] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and
N. Gautam, “Managing server energy and operational costs in hosting
centers,” in Proc. ACM SIGMETRICS Int. Conf. Meas. Model. Comput.
Syst., 2005, pp. 303–314.

[38] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. HotCloud, vol. 10, 2010, p. 19.

[39] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-
theoretic and communications aspects,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2619–2692, Oct. 1998.

[40] M. Zafer and E. Modiano, “Minimum energy transmission over a wire-
less fading channel with packet deadlines,” in Proc. 46th IEEE Conf.
Decis. Control, 2007, pp. 1148–1155.

[41] L. A. Johnston and V. Krishnamurthy, “Opportunistic file transfer over a
fading channel: A pomdp search theory formulation with optimal thresh-
old policies,” IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 394–405,
Feb. 2006.

[42] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Oper. Res., vol. 14, no. 4, pp. 699–719, 1966.

[43] Y. Bartal and E. Grove, “The harmonic k-server algorithm is competi-
tive,” J. ACM, vol. 47, no. 1, pp. 1–15, 2000.

[44] R.-H. Wu, Y.-H. Lee, H.-W. Tseng, Y.-G. Jan, and M.-H. Chuang, “Study
of characteristics of RSSI signal,” in Proc. IEEE Int. Conf. Ind. Technol.,
2008, pp. 1–3.

[45] A. T. Parameswaran et al., “Is RSSI a reliable parameter in sensor local-
ization algorithms: An experimental study,” in Proc. Field Failure Data
Anal. Workshop (F2DA09), vol. 5, 2009, p. 9.

[46] K. Srinivasan and P. Levis, “RSSI is under appreciated,” in Proc. 3rd
Workshop Embedded Netw. Sensors (EmNets), Cambridge, MA, USA,
2006, pp. 239–243.

[47] K. Benkic, M. Malajner, P. Planinsic, and Z. Cucej, “Using RSSI value
for distance estimation in wireless sensor networks based on ZigBee,”
in Proc. IEEE 15th Int. Conf. Syst. Signals Image Process., 2008,
pp. 303–306.

[48] Robotic Operating System. Accessed: Apr. 24, 2021. [Online]. Available:
http://www.ros.org/

[49] Google Protocol Buffers. Accessed: Apr. 24, 2021. [Online]. Available:
http://code.google.com/apis/protocolbuffers

[50] J. H. F. Flores, P. M. Engel, and R. C. Pinto, “Autocorrelation and
partial autocorrelation functions to improve neural networks models on
univariate time series forecasting,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jun. 2012, pp. 1–8.

Alessio Sacco (Student Member, IEEE) received
the M.Sc. degree in computer engineering from the
Politecnico di Torino, where he is currently pur-
suing the Ph.D. degree in computer engineering.
His research interests include architecture and proto-
cols for network management, implementation and
design of cloud computing applications, algorithms
and protocols for service-based architecture, such as
software defined networks, used in conjunction with
machine learning algorithms.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: RESOURCE INFERENCE FOR SUSTAINABLE AND RESPONSIVE TASK OFFLOADING IN CHALLENGED EDGE NETWORKS 1127

Flavio Esposito (Member, IEEE) received the M.Sc.
degree in telecommunication engineering from the
University of Florence, Italy, and the Ph.D. degree in
computer science from Boston University in 2013.
He is an Assistant Professor with the Department
of Computer Science, Saint Louis University, where
he also has an affiliation with the Parks College
of Engineering. He worked in the industry for a
few years, and his main research interests include
network management, network virtualization, and
distributed systems. He is a recipient of several

awards, including four National Science Foundation awards and two best paper
awards, one at IEEE NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (Senior Member, IEEE) received
the Ph.D. degree in computer engineering from the
Politecnico di Torino in 2008, where he is cur-
rently an Associate Professor with the Department
of Control and Computer Engineering. In 2009,
he visited the Department of Computer Science,
Boston University. His research topics cover dis-
tributed systems and formal verification of systems
and protocols. His interests also include network
protocols and network architectures. He serves as
an Associate Editor of the IEEE TRANSACTIONS

ON VEHICULAR TECHNOLOGY.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:27:45 UTC from IEEE Xplore. Restrictions apply.

