
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021 5003

Sustainable Task Offloading in UAV Networks via
Multi-Agent Reinforcement Learning

Alessio Sacco , Student Member, IEEE, Flavio Esposito , Member, IEEE,
Guido Marchetto , Senior Member, IEEE, and Paolo Montuschi , Fellow, IEEE

Abstract—The recent growth of IoT devices, along with edge
computing, has revealed many opportunities for novel applications.
Among them, Unmanned Aerial Vehicles (UAVs), which are de-
ployed for surveillance and environmental monitoring, are attract-
ing increasing attention. In this context, typical solutions must deal
with events that may change the state of the network, providing
a service that continuously maintains a high level of performance.
In this paper, we address this problem by proposing a distributed
architecture that leverages a Multi-Agent Reinforcement Learning
(MARL) technique to dynamically offload tasks from UAVs to the
edge cloud. Nodes of the system co-operate to jointly minimize the
overall latency perceived by the user and the energy usage on UAVs
by continuously learning from the environment the best action,
which entails the decision of offloading and, in this case, the best
transmission technology, i.e., Wi-Fi or cellular. Results validate our
distributed architecture and show the effectiveness of the approach
in reaching the above targets.

Index Terms—UAV, task offloading, multi-agent reinforcement
learning.

I. INTRODUCTION

UNMANNED aerial vehicle (UAV) systems have been ex-
periencing a constantly increasing popularity during the

last years, mainly thanks to their maneuverability, flexibility,
and limited deployment costs. For example, nowadays, drone
swarms can appear as a viable candidate for fast computation and
communication if equipped with cameras, sensors, or civilian
tablets and smartphones [1], [2]. Such a system is particularly
suited for rapid disaster response and environmental monitoring,
and systems to provide connectivity to ground stations. The role
of drones, but in general of IoT devices, could become even
more prominent in the near future as they enable, improve, and
optimize novel and existing services [3]–[5]. Autonomous and
semi-autonomous drones will surely continue to help humans
in accomplishing many tasks, spanning from industrial inspec-
tion to survey operations, from rescue management systems to
military or first responder support.

Manuscript received January 13, 2021; revised March 23, 2021; accepted
April 12, 2021. Date of publication April 20, 2021; date of current version June 9,
2021. The work of Flavio Esposito was supported by NSF Awards CNS-1836906
and CNS-1908574. The review of this article was coordinated by Dr. Ai-Chun
Pang. (Corresponding author: Alessio Sacco.)

Alessio Sacco, Guido Marchetto, and Paolo Montuschi are with the DAUIN,
Politecnico di Torino, 10129 Turin, Italy (e-mail: alessio_sacco@polito.it;
guido.marchetto@polito.it; paolo.montuschi@polito.it).

Flavio Esposito is with the Department of Computer Science, Saint Louis
University, St. Louis, MO 63103 USA (e-mail: flavio.esposito@slu.edu).

Digital Object Identifier 10.1109/TVT.2021.3074304

In a drone fleet, the device computing power of the small
mobile devices can be effectively enhanced if combined with
the development of the multi-access edge computing (MEC)
technology [6]–[8]. In such a scenario, the IoT device can
offload computationally intensive tasks to nearby edge cloud to
reduce computation latency and energy consumption [9]–[12].
For example, a network of drones can be used to collect a huge
quantity of data in order to offload them at the edge for heavy
audio/video processing.

Task offloading decision processes are generally modeled as
mixed integer programming (MIP) problems, whose solution is
often achieved by means of heuristics [13], [14], convex relax-
ation [15], [16], Markov approximation [17]. These approaches,
however, require a considerable number of iterations to reach
a satisfying local optimum, which makes them not suitable
for real-time offloading decisions when environment conditions
have fast and significant changes.

To enable learning in an unknown environment, reinforce-
ment learning (RL) has been shown as a promising solution,
which can help overcome the prohibitive computational re-
quirements. Recent RL-based online offloading decisions solu-
tions have demonstrated improvements compared to traditional
approaches, e.g., [18]–[21]. However, none of them take full
advantage of a possible collaborative framework and decisions
are taken independently by each agent of the system.

In this paper, we propose the use of multi-agent reinforcement
learning (MARL) to jointly improve the energy efficiency (EE)
and task completion time of edge computing enabled UAVs
swarms, while considering distributed offloading decision strate-
gies. The proposed MARL algorithm can solve the computation
offloading optimization problem in real-time by combining in-
formation coming from other devices, i.e., in a collaborative
way, in order to decide if computing a task locally or offloading
it to the closest edge cloud. In the case of offloading, the second
decision entails the radio access technology (RAT) to consume,
i.e., Wi-Fi or cellular, to transmit the task from the device to the
edge cloud.

The presented decentralized algorithm leverages the actor-
critic framework and is applicable to large-scale problems where
both the number of states and the number of agents are massively
large. Specifically, the actor step is performed individually by
each agent with no need to communicate and infer the policies
of other agents. On the other hand, for the critic step, each
agent shares its estimate of the value function with its neighbors
in order to achieve a consensual estimate, further used in the

0018-9545 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2835-5455
https://orcid.org/0000-0002-7798-4584
https://orcid.org/0000-0003-3588-9367
https://orcid.org/0000-0003-2563-2250
mailto:alessio_sacco@polito.it
mailto:guido.marchetto@polito.it
mailto:paolo.montuschi@polito.it
mailto:flavio.esposito@slu.edu

5004 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

subsequent actor step. In this regard, the local information
at each agent is able to diffuse across the network, making
the network-wide maximum reward achievable. As in standard
distributed algorithms over networked systems, our algorithm
provides the advantages of scalability to a large number of
agents, robustness against malicious attacks, and communica-
tion efficiency.

The rest of the paper is structured as follows. Section II
revises the related work on RL techniques and task offloading,
while in Section III we describe some applications where our
algorithm can be used. Despite being mainly inspired by the
disaster response use case, our approach has indeed broader
applicability. We present the system model in Section IV-B,
along with the basic concepts about RL and MARL. Then,
Section V describes the algorithm at the basis of our solution,
which organizes resources and underpins the task offloading
decision. Finally, in Section VI we present our experimental
results, while Section VII concludes the paper.

II. RELATED WORK

The problem of shortening task completion time by exploiting
the close edge cloud is crucial for any type of IoT network in
general, and robotic or drone networks in particular; so it is not
surprising that there are several proposed solutions to tackle this
problem. In the following, we first analyze the class for the RL
model exploited by our solution and the differences between
our implementation with previous approaches. Secondly, we
cite a few representative (centralized and distributed) solutions
to clarify our contributions to the decision task offloading
problem.

Actor-Critic and Multi-Agent. The presented algorithms be-
long to the class of actor-critic framework, a special class of
reinforcement learning (RL) problems. Actor-critic algorithms,
which are based on the more general policy gradient theo-
rem [22], have been widely studied in the literature since their
birth [23], [24], also due to the proved convergence of algorithm
with linear function approximation [25]. Recently, for deep
reinforcement learning, where deep neural networks are used
to approximate functions in RL settings, various actor-critic
algorithms have been proposed. A variety of environments has
entailed efficient actor-critic algorithms based on experience
replay [26], off-policy learning [27], deterministic policies for
continuous action spaces [28], [29], and the asynchronous actor-
critic (A3C) algorithm [30], which became extremely popular.
However, the vast majority of these approaches considers the
single-agent setting of this algorithm, where the A3C deals with
single-agent RL but with multiple parallel workers, and a central
controller is required to coordinate the asynchronous update of
the workers. In our system, in contrast, as the algorithm is based
upon a policy gradient theorem for MARL, no central controller
is necessary.

A more relevant and more recent trend is on MARL, which
applies to the setting with both collaborative and competitive re-
lationships among multiple agents. Many early algorithms [31]–
[33], have been developed only for tabular cases where no
function approximation is applied. When deep neural networks

are used as function approximators, several MARL algorithms
have gained increasing attention, e.g., [34]–[39]. Nonetheless,
while some of them lack convergence guarantees, none of
them has been designed to tackle the complexity and peculiar-
ity of UAVs swarms, where task offloading optimizations are
essential.

Task Offloading. In the last years, edge computing has been
proved to be an effective method in supporting some latency-
critical tasks [17], [40]. This paradigm can be particularly ben-
eficial for UAV swarms, or in general unmanned aerial systems
(UAS), e.g., self-driving vehicles, to conduct a computation
offloading scheme with edge computing. Edge computing-based
UAV swarms [41], are able to improve the latency and energy-
efficiency issues caused by cloud computing [19]. In general,
using ML/AI to optimize offloading process in vehicular envi-
ronments has gained the attention in recent studies [42]–[44].

The minimization of transmission energy for single-user
MEC systems, for instance, has been addressed under spe-
cific latency constraints in [45], [46]. Furthermore, in [11]
the authors presented a game-theoretic approach to distributed
offload computation among mobile device users, modeling
the problem as a multi-user offloading game. You et al. [10]
conceived a solution that determines the offloading data vol-
ume, the offloading duration, and the transmission resources
of each user in an energy-efficient manner. Kalatzis et al. [47]
decreased energy consumption in UAV based forest fire de-
tection applications by adopting the edge and fog computing
principles. However, such approaches fail in addressing the
dynamicity of the environment, which is one of the main fea-
tures of disaster scenarios, and hinders from high long-term
performance.

Some researches studied the online computation offloading
problem when edge computing resources are available. For
instance, a task offloading solution built upon rent/buy problem
aiming to minimize the task completion time in mobile clouds
has been presented in [48]. At the same time, another recent
trend is the utilization of RL in these circumstances, given
its ability to adapt to highly dynamic environments [49], [50].
Huang et al. [18] proposed a deep reinforcement learning-based
online offloading framework (DROO) to decide whether to
offload tasks to the edge cloud and proportionally allocate
wireless resources. Despite the similarity in the RL frame-
work, our work differs from this class of solutions for the
distributed nature that leads to multiple heterogeneous agents
with potentially distinct policies and rewards, and the fur-
ther improvements on protocol decisions. Besides, although
distributed approaches in task offloading decisions leveraging
deep RL exist, e.g., DDLO [51] and a hotbooting Q-learning
based schema [52], these solutions use multiple parallel deep
neural networks, rather than collaboratively take offloading
decisions.

III. MOTIVATING APPLICATIONS

UAVs are often used for collecting data and sending them
to the edge/fog, e.g., for data-intensive visual computing.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5005

At network edges, indeed, there may be present more re-
sources that can speed-up the processing. In particular, data-
intensive visual computing requires seamless processing of im-
agery/video at the network-edge and resilient performance to
guarantee adequate user Quality of Experience (QoE) expecta-
tions. This is particularly critical, e.g., in (natural or human-
made) disaster scenarios, due to the poor bandwidth avail-
ability and the highly variable conditions. These applications
should be able to provide rapid awareness through videos or
audios collected at salient incident scenes in order to plan a
proper response that can minimize disaster impact and/or save
lives [53].

To meet such network-edge data-intensive computations and
local storage requirements, edge computing is a valuable so-
lution [54], by providing on-demand network, storage, and
computational resources that compensate (scaling up and scaling
down on demand) the insufficient local processing capabilities
within a geographical area of interest. Edge computing extends
the notion of cloud, but it is placed closer to the location of
users and data sensors, reducing latency and enabling real-time
decision making. A few examples of how edge computing could
be of help in the above described scenarios are reported in the
following.

Reconnaissance to save lives. A (very) large fleet of camera-
equipped UAVs collect visible (or infrared) imagery, e.g., to
recognize body temperatures or identify bodies under ruins or
massive avalanches. In such environments, image processing is
key, to first enhance the image, e.g., dehaze, stabilize, compress
inputs for lower level image processing, and then apply compu-
tationally intensive computer vision algorithms. Transmitting
such data to a remote cloud is thus unfeasible, given the poor
connection bandwidth which dramatically increases the data
transfer time.

Reuniting lost citizens and families. Online face recogni-
tion software runs at the edge and acts on imagery snapped
from cameras onboard the UAVs. Face image feature extraction
processing performed at the network edge would attempt to
match against a database of missing people without encountering
poor network or processing performance. The face detection
and identification can gain great benefit from utilizing deep
neural networks-based models, that are rapidly improving their
performance in this field.

Property Surveillance. Alarms or other actuators may be trig-
gered if the continuous monitoring performed by UAVs detects
activities of concern, such as a fire, a human intrusion, or a
broken window. A first video analytic pre-scanning phase is rec-
ommended to run at the edge, and only upon the completion data
could be sent to the cloud core, where a more in-depth analysis
can occur and the video can be shared with law enforcement for
further investigation.

IV. MODEL AND PROBLEM DEFINITION

In this section, we first present some preliminary notions on
actor-critic and multi-agent reinforcement learning (Section IV-
A), used in our UAV task offloading model (Section IV-B and
Section IV-C) and problem definition (Section IV-D).

A. Background on Actor-Critic and Multi-Agent
Reinforcement Learning

Before describing the details and the notation of our model,
we first describe the actor-critic framework and the MARL
concepts, where our system is built upon.

Actor-Critic Algorithm. The Actor-Critic belongs to the class
of model-free, online, on-policy reinforcement learning meth-
ods. The goal of an agent is to optimize the policy (actor)
directly and train a critic to estimate the return or future rewards.
Hence, at the very basis, a Markov decision process exists
and is characterized by a quadruple C = 〈S,A, P,R〉, where
S denotes the finite state space, A is the finite action space,
P (s′|s, a) : S ×A× S → [0, 1] refers to the state transition
probability from state s to state s′ determined by action a,
and R(s, a) : S ×A→ R is the reward function defined by
R(s, a) = E[rt+1|st = s, at = a], where rt+1 is the instanta-
neous reward at time t. The probability of choosing action a
at state s is the policy of the agent, defined as the mapping
π : S ×A→ [0, 1]. The agent has the objective of finding the
optimal policy that maximizes the expected time-average re-
ward, i.e., the long-term return, which is given by J(π):

J(π) = lim
T

1
T

T−1∑
t=0

E[rt+1] =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)R(s, a),

(1)
where dπ(s) = limt→∞ P (st = s|π) represents the stationary
distribution of the Markov chain under policy π. Such a distribu-
tion dπ(s) and the limit in (1) are well defined when the Markov
chain resulting from the Markov Decision Process (MDP) is
irreducible and aperiodic with any policy π.

Given any policy π, the action-value associated with the state
s and action a, Qπ(s, a), is thus defined, according to [55], as:

Qπ(s, a) =
∑
t

E[rt+1 − J(π)|s0 = s, a0 = a, π]. (2)

Furthermore, the state-value associated with state s under policy
π can be defined as Vπ(s) =

∑
a∈A π(s, a)Qπ(s, a). In the

following, we simply refer toQπ(s, a) andVπ(s) as action-value
and state-value functions respectively. When the action or state
spaces are massively large, these two functions are usually
approximated by some parameterized functions Q(·, ·;ω) and
V (·; ν), depending on the parameters ω and ν. Also the policy
π can be parameterized by parameter θ in πθ. For the sake of
simplicity, hereafter we replace the subscript πθ with just θ, e.g.,
Vπθ

to Vθ.
Actor-critic (AC) algorithms have been advocated to solve,

with this parameterization, the optimal policy πθ. Built on the
well-known policy gradient theorem [23], AC algorithms are
characterized by the gradient of the return J(θ) written as:

∇θJ(θ) = Es∼dθ,a∼πθ
[∇θ log πθ(s, a) · (Qθ(s, a)− b(s))],

(3)
where the term b(s) is commonly named baseline, and
∇θ log πθ(s, a) is referred as the score function for policy πθ.
Also, let the advantage function be:

Aθ(s, a) = Qθ(s, a)− Vθ, (4)

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

5006 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

which specifies how much better it is to take a specific action
compared to the average, general action at the given state.
Indeed, it has been recognized, e.g., in [25], that the minimum
variance baseline in the action-value function estimator is the
state-value function Vθ(s). Defining Qt(ω) = Q(st, at;ω) at
time t, and letAt the sample at time t of the advantage function,
we get:

At = Q(st, at;ωt)−
∑
a∈A

πθt(st, a)Q(st, a;ωt), (5)

Let then ψt = ∇θ log πθt(st, at) be the sample of the score
function. The AC algorithm based on the action-value function
approximation is based on the following updates:

μt+1 = (1− ξω,t) · μt + ξω,t · rt+1,

ωt+1 = ωt + ξω,t · δt · ∇ωQt(ωt),

θt+1 = θt + ξθ,t ·At · ψt,

(6)

where ξω,t, ξθ,t > 0 are the stepsizes, μt tracks the unbiased
estimate of the average return, and δt refers to the action-value
temporal difference (TD) error and is defined as:

δt = rt+1 − μt +Q(st+1, at+1;ωt), (7)

where action at+1 is retrieved from the policy πθt(st+1, ·). This
TD error is used to evaluate the action just selected, i.e., the
action at taken in state st. A positive TD error suggests that
the tendency to select this action should be strengthened for the
future, whereas a negative TD error suggests the tendency should
be weakened.

The standard AC algorithm is defined as a two-time-scale
algorithm, where the two stepsizes are set such that limt→∞ ξω,t ·
ξ−1
θ,t > 0. The first two updates in (6) belongs to the critic step,

which operates at a faster time scale; while the last update in (6)
corresponds to the actor step that occurs at a slower time scale.
The actor controls how our agent behaves by improving the
policy along the gradient ascent direction; on the other hand, the
critic measures how good is the action taken, by estimating the
action-value function under policy πθt .

Finally, actor-critic algorithms are able to achieve state-of-
the-art performance in many complicated application domains,
as shown in [24], [30], [56]. Inspired by these achievements, we
further define a MARL algorithm based on the AC approach.

Multi-Agent Reinforcement Learning. We consider now a
system of N agents operating in a common environment with
no central controller that either collects rewards or makes the
decisions for the agents. In this context, the set of agents is
denoted by Nt, whose cardinality is N , and each agent can
communicate with each other. In general, the set of agents is
a time-varying set, defined as Nt at time t ∈ N.

A time-varying multi-agent MDP is defined as a tu-
ple (S, {Ai}i∈N , P, {Ri}i∈N , {Nt}t≥0), where S denotes the
global state space shared by all the agents in Nt, and Ai is the
action set that agent i can execute. Besides, let A =

∏N
i=1 A

i

be the joint action space of all agents, also referred to as global
action profile. We then defineRi : S ×A→ R the local reward
function of agent i, while P : S ×A× S → [0, 1] is the state
transition probability. In this system, we assume that the states

Fig. 1. System Overview: mobile devices, e.g., UAVs, interaction with the
edge cloud via cellular and Wi-Fi network.

and the joint actions are globally observable, while the rewards
are observed only locally.

At time step t, assuming the global state space is st ∈ S
and the joint actions of agents are at = (a1

t , . . . , a
N
t) ∈ A, each

agent will receive a reward rit+1, which is a random value with
Ri

(st,at)
as expected value. Also, the model shift to the new

state st+1 ∈ S with probability P (st+1|st, at). Our model is
considered as fully decentralized since the reward is locally
received and the action is performed locally by each agent.

As the state space S may be large, it is convenient to con-
sider policies that are in a parametric function class, similar
to the single AC. For agent i the local policy is then given
by πi

θi , where θi ∈ Θi is the parameter, and Θi ⊆ RRi is
a compact set. We then pack these parameters altogether in
θ = [(θ1)T , . . . , (θN)T] ∈ Θ, where Θ =

∏N
i=1 Θ

i. Therefore,
the joint policy is given by πθ(s, a) =

∏N
i=1 π

i
θi(s, ai), and is

often shortened as πθ.
Joint objective of the agents is to collaboratively find the joint

policy πθ that maximizes the globally averaged long-term return
based solely on local information. The optimization problem to
solve is:

max
θ
J(θ) = lim

T

1
T

E

[
T−1∑
t=0

1
N

∑
i∈N

rit+1

]
=

∑
s∈S

dθ(s)
∑
a∈A

πθ(s, a) ·R(s, a),
(8)

where R(s, a) = N−1 ·∑R(s, a) is the globally averaged re-
ward function. Further, given rt = N−1 ·∑i∈N r

i
t, it yields

R(s, a) = E[rt+1|st = s, at = a]. Hence, the global expected
action value function for a state-action pair (s, a) under policy
πθ is:

Qθ(s, a) =
∑
t

E [rt+1 − J(θ)|s0 = s, a0 = a, πθ] , (9)

Finally, the global state-value functionVθ(s) is given byVθ(s) =∑
a∈A πθ(s, a)Qθ(s, a).

B. System Model

As shown in Fig. 1, we consider a UAV swarm consisting of
a set of agentsNt = {A1, . . . , AN}, each of which has a task to
be completed. We consider that the setNt can change over time

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5007

since the agents may suffer failures or running out of power.
However, for simplicity, we often refer to this set as N in the
following, without any ambiguity.

The overall system is compound of M tasks, denoted by a
set of tasks M = {T1, . . . , TM}. The mobile node can either
compute the task locally or offload the computation to the
edge cloud in two ways, i.e., through a mobile network (LTE)
or through Wi-Fi access points. In this paper, we consider an
application where tasks are independent.

1) Communication Model: As mentioned earlier, the access
point for wireless communication can be either a Wi-Fi access
point, or a base-station in cellular networks. The channel from
mobile node i to access point s follows quasi-static block fading.

Let o1
i,m denote the computation offloading decision of taskm

of mobile device n. Specifically, o1
i,m = 1 means that the node

offloads the task via the wireless channel, while o1
i,m = 0 means

that the node performs the task locally on its own device. When
task is set to be performed at the edge cloud, the communication
can occur over cellular (e.g., LTE) network if o2

i,m = 1 or Wi-Fi
network for o2

i,m = 0. Given the global action profile A for any
node i and task m, we can compute the uplink data rate for
computation offloading over cellular technology of task m of
mobile device i as:

Rtci,m(A) =W c·

· log2

⎛⎜⎜⎜⎝1 +
P c
i,mH

c
i,m

(σc
i,m)2 +

∑
j �=i,k �=m,o1

j,k=1,o2
j,k=1

P c
j,kH

c
j,k

⎞⎟⎟⎟⎠ ,

(10)

where P c
i,m is the transmission power of node i offloading task

m to the edge cloud via cellular connectivity; Hc
i,m denotes the

channel gain from node i to access point swhen transmitting task
m due to the path loss and shadowing attenuation; (σc

i,m)2 indi-
cates the thermal noise power associated with the link between
the node i and the access point s, and W c is cellular channel
bandwidth. From (10) we can observe that when many mobile
devices offload their tasks via cellular access simultaneously,
they may lead to severe interference and low data rates.

Likewise, we define the uplink rate of Wi-Fi network similar
to the cellular transmission as follows:

Rtwi,m(A) =Ww·

· log2

⎛⎜⎜⎜⎝1 +
Pw
i,mH

w
i,m

(σw
i,m)2 +

∑
j �=i,k �=m,o1

j,k=1,o2
j,k=0

Pw
j,kH

w
j,k

⎞⎟⎟⎟⎠ ,

(11)

where the involved variables have the same meaning of those
in (10).

2) Computation Model: Let Di,m denote the size of com-
putation data (e.g., the recorded audio in UAVs swarm) related

to computation task m of node i. Li,m denotes the comput-
ing workload, i.e., the total number of CPU cycles needed to
accomplish task m of node i. In the following, we consider
the computation overhead in terms of energy consumption and
application completion time for local and edge cloud computing.
Further, we differentiate the edge offloading into two cases, that
represent the two possible communication options: cellular and
Wi-Fi networks.

Local Computing Mode. We denote the computation capabil-
ity, i.e., the clock frequency of the CPU chip, of node i, on task
m, as fi,m. Our model allow different mobile devices to have
different computation capability with different clock frequency
per task. The local execution time of task m on node i is hence
given by:

T l,exec
i,m =

Li,m

fi,m
, (12)

while the energy consumption of the device is given by:

El
i,m = kLi,mf

2
i,m, (13)

where k denotes the effective switched capacitance for the
specific chip architecture. In line with previous studies, e.g., [15],
[57], we set k = 10−11. Clearly, the clock frequency of the CPU
chip can be adjusted by using the DVFS technique to achieve
the optimum computation time and energy consumption on a
device.

Aside the execution time, the time to complete task m is also
affected by the waiting time Twt

i,m. The waiting time of a task is
defined as the time that task m spends on board of i before its
execution.

Consequently, the completion time for a local execution of
task m on node i is the sum of the local computation execution
time and the waiting time in local computing,

T l
i,m = T l,exec

i,m + Twt
i,m. (14)

We are now ready to introduce the computational cost of a
task, which dictates our energy-efficient strategy.

Definition IV.1: Computational Cost. The computational cost
is defined as the weighted sum of energy consumption and
completion time related to the execution of a task m belonging
to node i.

In the case of local execution, it is given by:

Zl
i,m = αl

i,mT
l
i,m + βl

i,mE
l
i,m, (15)

whereαl
i,m and βl

i,m are the weights for the energy consumption
and the computation completion time respectively.

This form of computational cost enables to meet different
user demands by adjusting the weights, and, for example, save
more energy rather than shortening the delay. For delay-sensitive
applications, such as rapid disaster response set-up, a larger
βl
i,m is recommended to meet the strict user requirements. In

this regard, the weights control the importance of the perceived
latency and energy consumption respectively.

Edge Computing Mode. In case the mobile node i offloads
the computation taskm to the edge cloud, the latter executes the
computation task and returns the results to the device. When the
task is offloaded to the edge cloud, the execution entrails three

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

5008 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

phases: (i) the transmission phase, (ii) the edge computation
phase, (iii) the outcome receiving phase.

Starting with the first phase, we consider the time and energy
consumed during transmission. In line with the computation and
communication model, we can define the transmission time and
energy consumption for task offloading over cellular network
as:

T c,tra
i,m (A) =

Di,m

Rtci,m(A)
, (16)

Ec,tra
i,m (A) = P c

i,mT
c,tra
i,m (A), (17)

respectively. The transmission over Wi-Fi technology entails
different transmission time and energy consumption, as follows:

Tw,tra
i,m (A) =

Di,m

Rtwi,m(A)
, (18)

Ew,tra
i,m (A) = Pw

i,mT
w,tra
i,m (A). (19)

Besides, for edge cloud execution we can derive the compu-
tation execution time for task m of node i as:

T e,exec
i,m =

Li,m

fe
, (20)

where fe refers to the clock frequency of the edge cloud. In
this case, the assumption is that the frequency does not change
during the computation and is constant over time. Moreover, we
assume the energy consumption in the edge cloud is negligible
since the cloud is in general powered by alternating current and
has enough energy to execute the offloaded tasks. Although
the offloaded task needs to wait before it is assigned to the
proper resource in the cloud for the execution, we omit this
waiting time for simplicity, as it is negligible with respect to the
other quantities involved. Finally, as it is done in several other
studies, e.g., [58], [59], we ignore the time for receiving the
outcome of taskm, since the received data is typically small. As
such, the completion time for the edge offloading is the sum of
the execution time and the transmission time over the wireless
channel. For the cellular case we have:

T c
i,m = T c,tra

i,m (A) + T e,exec
i,m . (21)

On the other hand, if the offloading is performed over the Wi-Fi
network, the completion time is computed as:

Tw
i,m = Tw,tra

i,m (A) + T e,exec
i,m . (22)

Consequently, the computational cost of task m of node i on
the edge cloud through the cellular network is:

Zc
i,m = αc

i,mT
c
i,m + βc

i,mE
c,tra
i,m (A), (23)

where a small data transmission rate Rti,m(A)c of the device
i would result in high energy consumption in the wireless
communication and long transmission time for offloading data
to the closest edge cloud.

Similarly, we define the computational cost for the Wi-Fi
offloading as:

Zw
i,m = αw

i,mT
w
i,m + βw

i,mE
w,tra
i,m (A), (24)

where the weights may differ from the ones utilized in (23).

TABLE I
THE CONTEXTUAL METRICS GATHERED FOR BUILDING THE STATE SPACE

Notably, to enable diversity among the three cases in the im-
portance of latency with respect to the energy, the computational
costs have different weights, depending on where the task is
performed. That is, αw

i,m is not necessarily equal to αc
i,m and

αl
i,m. Likewise for βw

i,m, βc
i,m and βl

i,m.

C. MARL Framework Formulation

Following the standard notation for reinforcement learning
algorithms, we define the state space as the set of metrics used to
select the best action among all the actions defined in the action
space. The action selection occurs with the aim of maximizing
a reward function, which represents the objective (utility) to
optimize.

State Space. We report in Table I the features adopted to build
our model state space. For each agent i in the network, we save
the shown metrics for cellular and Wi-Fi communications. The
first information esteems the distance between the agent and
the base station, and is the same for both Wi-Fi and cellular
transmissions. The subsequent features consider the quality of
the signal, the throughput, the round-trip-time (RTT), and the
loss rate, for the cellular and Wi-Fi channels separately. These
quantities change over time as effect of the single and combined
actions of the system, so we define the state space at time t as st.

The choice of such features is dictated by a design goal of
balancing the overhead introduced by the metrics collection and
the precision in grasping the system conditions. Empirically, we
found that this state set produces the optimal trade-off, as also
outlined by the goodness of our results (Section VI). It can be
noted, indeed, as part of these quantities are already captured
by the TCP protocol and form its state. Thus, our solution can
easily leverage these quantities, reducing the overhead.

Action Space. The main decision that the agent is supposed to
take, is whether or not to offload the task to the edge cloud. For-
mally, the first decision for each agent i is the binary offloading
decision o1

i,m:

o1
i,m =

{
1, if tasks are to be offloaded

0, otherwise.

If o1
i,m = 0, task is computed locally, whereas for o1

i,m = 1 the
incoming task is offloaded to the closest station. In the latter
case, the subsequent decision regards the technology on which
the transmission occurs. In fact, as the offloading occurs, the
protocol and technology for transmitting bytes are extremely

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5009

relevant for shortening the latency. With this respect, we define
a second binary decision o2

i,m:

o2
i,m =

{
1, if cellular technology is preferred

0, if Wi-Fi technology is preferred.

Such a decision takes place only for an o1
i,m = 1, and we can

observe how the total number of actions for each agent i is three,
for an action set as follows: Ai = [a1

i , a
2
i , a

3
i], where a1

i denotes
o1
i,m = 0, a2

i is o1
i,m = 1, o2

i,m = 0, and a3
i is o1

i,m = 1, o2
i,m =

1.
Utility function (RL reward). Based on reinforcement learn-

ing, the agent selects the action with the highest global reward.
This choice relies upon the utility function, that specifies the
objective of our algorithm. While RL can take a variety of
different objectives, we define a function as follows to minimize
the total latency and the usage of resources:

Ui,m

= −o1
i,mo

2
i,mZ

c
i,m − o1

i,m(1− o2
i,m)Zw

i,m − (1− o1
i,m)Zl

i,m,

(25)

where a high cost in terms of computational time and energy
consumption leads to small utility value. Further, we can easily
define the utility per agent for all tasks as follows

Ui =

M∑
m=1

Ui,m. (26)

The utility function is the real objective that each agent
attempts to optimize; still, its value cannot be used to specify the
desirability of the action taken in a particular state and hence can-
not be directly used as a reward for the learning process [60]. The
ambiguity in action evaluation comes from the unique dynamic
network environment the learning agent is interacting with, and
it means we cannot merely take the utility value to define the
reward. For this reason, we consider the difference between
consecutive utility values as the reward. This is because an
increase in the utility value denotes an improvement and hence,
the corresponding action should be encouraged, regardless of the
original value of the utility. Consequently, we define the reward
value as follows:

rit =

⎧⎪⎨⎪⎩
a if U i

t − U i
t−1 > ε

b if U i
t − U i

t−1 < −ε
0 otherwise,

(27)

where U i
t refers to the cumulative utility at time t, a is a positive

value, and b is a negative value. Both indicate the reward (a
reinforcement signal) given the direction of changes between
two newly observed consecutive utility values, while ε is a
tunable parameter that sets the sensitivity of the learning agent
to changes in the utility values (i.e., it sets a tolerance in the
value change).

It is worth noticing that each agent can potentially utilize a
different reward, and the system can be easily extended towards
this scenario. However, for the sake of simplicity, in the follow-
ing we assume that all agents share the same utility.

D. Problem Formulation

Given the system model, we can formulate the optimization
problem that our MARL algorithm aims to solve. First, let the
computational cost of a sequence of tasks M for the mobile
node i be:

Zi =
M∑

m=1

Zi,m =
M∑

m=1

(
o1
i,mo

2
i,mZ

c
i,m+

+ o1
i,m(1− o2

i,m)Zw
i,m + (1− o1

i,m)Zl
i,m

)
, (28)

where M is the size of the setM.
Formally, we have the following optimization problem:

min
A

∑
i

Zi (29)

s.t. o1
i,mo

2
i,mT

c
i,m + o1

i,m(1− o2
i,m)Tw

i,m+

o1
i,m(1− o2

i,m)Tw
i,m ≤ Tmax

m ∀m = 1, . . . ,M
(30)

where A = {o1
i,m, o

2
i,m|i ∈ N ,m ∈M}. The constraint stated

by (30) imposes that the total completion time of all the tasks
is bounded by the required maximum completion time, Tmax

m .
This time deadline is application-specific, and can vary based
on user needs.

The key challenge in solving the optimization problem is that
the integer constraint of the device actions, i.e.,o1

i,m, o
2
i,m, makes

the problem a mixed integer programming problem, which is
generally non-convex and NP-hard. Thus, solving the problem
by using a multi-agent reinforcement learning approach reduces
complexity and allows reaching a feasible solution in polynomial
time.

V. OUR ALGORITHM

Based on the previous formulations, we design an algorithm
to establish the offloading decision. An Actor-Critic (AC) al-
gorithm comes with multiple flavours, e.g., Q Actor-Critic,
Advantage Actor-Critic, TD-error Actor-Critic. Among them,
we follow the TD-error variant for the computation of the Critic.

In the following we first show the formulation of the policy
gradient in a multi-agent setting. Then, we present the proposed
MARL algorithm for our decentralized multi-agent system.

A. MARL System Optimization

We recall that πθ : S ×A→ [0, 1] is the derived joint policy
for the packed weights of the neural networks θ ∈ Θ, the globally
long-term averaged return is J(θ), andQθ andAθ are the action-
value function and advantage function, respectively. Then, for
any i ∈ N , we define the local advantage function Ai

θ : S ×
A→ R as:

Ai
θ(s, a) = Qθ(s, a)− Ṽ i

θ (s, a
−i), (31)

where a−i denotes actions of all agents except for agent i,

and Ṽ i
θ (s, a

−i) =
∑

ai∈Ai πi
θi(s, ai) ·Qθ(s, a

i, a−i). Given the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

5010 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

outcome of the Policy Gradient Theorem for MARL sys-
tems [39], we can compute the gradient of J(θ) as follows:

∇θiJ(θ) = Es∼dθ,a∼πθ
[∇θi log πi

θi(s, ai) ·Ai
θ(s, a)] (32)

This gradient is applied to J(θ), previously defined in (8).
This result is precious as it shows that the policy gradient

with respect to each θi can also be computed locally using the
corresponding score function∇θi log πi

θi(s, ai). However, local
information is insufficient to estimate the global action-value
and the advantage functions. These functions are necessary to
compute the gradient and they require the reward values {rit}i∈N
of all agents. For this reason, our proposed algorithm fosters
collaboration among the agents and includes a consensus-based
phase to diffuse the local information among them.

B. Local Updates and Consensus-Based Phase

The AC algorithm consists of two steps that occur at different
time scales. In the critic step, the update is similar to the action-
value TD-learning in (6), followed by a linear combination
of its neighbor’s parameter estimates. This parameter sharing
step is also known as the consensus update, and involves a
weight matrix Ct = [ct(i, j)]N×N , where ct(i, j) denotes the
weight on the message transmitted from i to j at time t. In
the following process, each agent only uses the transition at
time t, i.e., sample (st, at, st+1) for updating the parameters.
First, we estimate J(θ) and Vθ with, respectively, a scalar μ
and a parameterized functionV (·, v) : S → R, where parameter
v ∈ RL with L� |S|. Each agent i shares local parameters μi

and vi, and updates its information as follows:

μ̃i
t = (1− ξv,t) · μi

t + ξv,t · rit+1,

μi
t+1 =

∑
j∈N

ct(i, j) · μ̃j
t ,

δit = rit+1 − μi
t + Vt+1(v

i
t)− Vt(vit),

ṽit = vit + ξv,t · dit · ∇vVt(v
i
t),

vit+1 =
∑
j∈N

ct(i, j) · ṽjt ,

(33)

where, for the sake of simplicity, Vt(v) = V (st; v)∀v ∈ RL,
and ξv,t > 0 is the stepsize. In this context, differently from
the single AC case, δit denotes the state-value TD-error of
agent i.

Given the globally averaged reward R(s, a) = N−1 ·∑
R(s, a), the agent estimates the value R(s, a) in the critic

step. Formally, letR(·, ·; λ) : S ×A→ R be the class of param-
eterized functions andλ ∈ RM be the parameter withM � |S| ·
|A|. Motivated by the distributed optimization literature [61],
[62], in order to obtain the estimate ofR(·, ·; λ), we minimize the
following weighted mean-square error at the faster time scale:

min
λ

∑
i∈N

∑
s∈S,a∈A

δθ(s) · πθ(s, a) ·
[
R(s, a; λ)−Ri(s, a)

]
,

(34)
where δθ refers to the stationary distribution of the Markov chain
{st}t≥0 under policy πθ. To solve this minimization problem,

the updates to λi
t are as follows:

λ̃i
t = λi

t + ξv,t ·
[
rit+1 −Rt(λ

i
t) · ∇λRt(λ

i
t)
]
,

λi
t+1 =

∑
j∈N

ct(i, j) · λ̃j
t ,

(35)

where Rt(λ) is a compact notation for Rt(s, a; λ). It is worth
noticing that this procedure preserves the privacy of agents on
their rewards and policies, since the rewards of other agents
are not transmitted and the estimate R(·, ·; λ) cannot be used to
reconstruct original reward of other agents.

The updates in (35), (33) forms the critic step. On the other
hand, the actor step uses the estimate Rt(λ

i) to evaluate the
globally averaged TD-error δ̃it and performs the updates:

δ̃it = Rt(λ
i
t)− μi

t + Vt+1(v
i
t)− Vt(vit),

θit+1 = θit + ξθ,t · δ̃it · ψi
t,

(36)

where ψi
t is defined as ψi

t = ∇θi log πi
θi
t
(st, a

i
t) and ξθ,t > 0 is

the stepsize.
We summarize the steps of the presented algorithm in Al-

gorithm 1. After a first initialization phase, the agents start
the individual actor and critic steps. These steps occur with a
period of Δt in order to not overload the agent itself, where the
optimal Δt is selected via a sensitivity analysis (Section VI).
The elaborated values are then sent to the neighbors, and upon
receiving such values, each agent updates its parameters to
embrace a global view of the action performed.

The actor is a neural network working as a function approx-
imator and its task is to produce the best action for a given
state. The network shape is optimized empirically and motivated
in the evaluation (Section VI). The critic is another function
approximator, i.e., a neural network, which, receiving as input
the environment and the action by the actor, outputs the action
value (Q-value) for the given pair.

Given the values to be stored for critic and actor steps, online
implementing this algorithm requires a memory complexity of
O(N + L+M +Ri) for each agent i. This complexity results
in a great benefit compared to the regular reinforcement learning
algorithm, where a huge Q-table need to be stored in each agent
for a large N .

VI. EVALUATION RESULTS

A. Experimental Setup

To evaluate the proposed solution, we run extensive experi-
ments on an emulated cloud edge system scenario where several
agents (the UAVs) can offload tasks to the edge by means of
either cellular or Wi-Fi communications. Each agent is repre-
sented by a process running in the system, while the edge cloud is
replicated by means of a further process emulating the execution
of offloaded tasks. Channel parameters regarding the cellular
and Wi-Fi connections are obtained from a real dataset publicly
available [63]. The LTE technology is considered as a reference
for the cellular case. To represent these channel conditions, we
use the Mahimahi emulator [64], a recent network emulator that
allows testing with real traces. First, we adapt the information

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5011

Algorithm 1: MARL Actor-Critic.

1: Initialize μi
0, μ̃

i
0, v

i
0, ṽ

i
0, λ

i
0, λ̃

i
0, θ

i
0, ∀i ∈ N

2: Initialize s0, {ξv,t}t≥0, {ξθ,t}t≥0

3: Each agent i implements ai0 ∼ πθi
0
(s0; ·)

4: Step counter t ← 0
5: for all i ∈ N do
6: if queued tasks then
7: for All tasks do
8: Take action ait ∼ πθi

0
(s; ·)

9: if ait = a1
i or ait = a2

i then
10: Offload task m to the edge
11: else
12: Compute task m locally
13: for every interval Δt do
14: Collect metrics that form state st
15: Update μ̃i

t, δ
i
t according to (33)

16: Update λ̃i
t according to (35)

27: Critic Step: ṽit ← vit + ξv,t · dit · ∇vVt(v
i
t)

18: Update δ̃it according to (36)
19: Update ψi

t ← ∇θi log πi
θi
t
(st, a

i
t)

20: Actor Step: θit+1 ← θit + ξθ,t · δ̃it · ψi
t

21: Send μ̃i
t, λ̃

i
t, ṽ

i
t to the neighbors

22: Consensus Step:
23: μi

t+1 ←
∑

j∈N ct(i, j) · μ̃j
t

24: vit+1 ←
∑

j∈N ct(i, j) · ṽjt
25: λi

t+1 ←
∑

j∈N ct(i, j) · λ̃j
t

26: t ← t+ 1
27: close;

of the dataset to the format accepted in Mahimahi, and then, we
create two interfaces for each agent, one with LTE traces and
one with Wi-Fi traces. The task arrival rate at the agent follows a
uniform distribution, and in the case of edge offloading, each task
transmission is performed running TCP iperf3 over the emulated
link for the size of transmitted data, Di,m, of 7 MB.

The channel bandwidth is set to the default value available
in Mahimahi (i.e., Ww = 5 MHz for the Wi-Fi access, and
W c = 4 MHz for LTE). The thermal noise power is set equal
for the two technologies, as (σc

i,m)2 = (σw
i,m)2 = 50 dBm. For

the channel gain we have Hi,m = dνi,s, where di,s denotes the
distance between mobile node i and access point s, and ν = 4 is
the path loss factor. We then simply set the default values of the
weights defined in (15), (23), and (24), so that energy consump-
tion and task completion time have an equivalent importance in
the computational cost evaluation, i.e., αl

i,m = βl
i,m = αc

i,m =
βc
i,m = αw

i,m = βw
i,m = 0.5. For the sake of simplicity we also

set fi,m = 2.3 GHz for all nodes, fe = 3.4 GHz, and if not other-
wise specified,Li,m = 25× 109. The other metrics change over
time and are collected when needed. In the following evaluation,
the average values are computed after 35 experiments.

Each agent maintains two neural networks for actor and critic,
respectively, and both of them have one hidden layer, containing
64 neural units (this number is motivated in the following), and

use ReLU as the activation function. While the output layer for
the actor network is softmax, that for the critic network is linear.
Considering the graph Gt of the N agents, in which, at first, all
agents can communicate with the others, we create the consensus
weight matrix Ct by normalizing the absolute Laplacian matrix
of Gt to be doubly stochastic. The stepsizes for the actor and
critic step are set as constants, respectively ξθ,t = 0.001 and
ξv,t = 0.01.

B. Trace-Driven Emulation Results

In the following experiments we compare our solution against
other currently deployed algorithms. Among the related studies
described in Section II, we select as benchmarks the most sim-
ilar algorithms using some variants of machine learning-based
methods for the offloading process. Specifically, we compare our
approach against the DROO framework [18], which implements
a deep neural network that learns the binary offloading deci-
sions, and a hotbooting Q-learning based computation offload-
ing scheme [52], that for simplicity we refer to as hotbooting
DQN, as it uses a fast deep Q-network (DQN) model to further
improve the offloading performance.

Fig. 2a and Fig. 2b show the impact of the UAV swarm size
(i.e., the number of agents) on the task completion time and
on the utility function defined in (26), which also contemplates
the power consumption. Decisions of each agent about whether
to offload the task or not, as well as which technology to use
for the offloading, are based on the information received from
other nodes, according to the cooperative algorithm at the basis
of our solution. We can notice how this approach can take full
advantage of a rising number of computing nodes, shortening
the task completion time and increasing the overall utility.
Conversely, for hotbooting DQN occurs the opposite: if a large
number of agents are present in the system, the task completion
time increases. Besides, with an increasing number of computing
nodes, power consumption increases as well. In the DROO case,
the two quantities remain almost constant when the number of
nodes increases, in any case leading this solution to perform
worse than ours. These results show how a proper algorithm
for task offloading decisions plays a crucial part in the system
performance, and a multi-agent approach to optimize actions
more efficiently is a valuable solution.

Besides the dependence on the number of agents, we further
examine how the distance between nodes and the antenna affects
the performance in Fig. 2 c. We perform experiments for a fleet of
50 nodes, and we can observe how, clearly, the distance degrades
the performance of the system because of the higher delays in
the communication with the edge cloud. However, in the case
of our solution, the curve is flattened, thus further proving its
effectiveness in taking the offloading decision. In fact, our state
space also includes the distance to the antenna, which is then
considered in the decision process.

In the same setting we then consider the energy consumption
in Fig. 3 a. The advantages of our solution regarding the energy
spent for the computation and the transmission are even more
prominent. The system can properly manage the diversity in the
locations, as this metric is part of the state variables. This results

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

5012 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

Fig. 2. System performance in terms of (a) task completion time and (b) utility for a varying number of agents and (c) node-antenna distance. The results are
compared with similar solutions whose aim is analogous to ours.

Fig. 3. System performance evaluation. (a) Energy spent for the task computation at varying the node-antenna distance. (b) Energy consumption and (c) application
completion time for increasing average computing workload.

Fig. 4. (a) Comparison in terms of computation rate for various offloading solutions. (b) CDF of the task completion time for the compared solutions. (c) Utility
evolution for different RL-based algorithms. Our model can shorten convergence time compared to the alternatives.

in an optimized usage of resources and a decision to offload only
when really beneficial. Moreover, we compare the performance
of the three solutions with respect to the average computing
workload, i.e., the average amount of CPU cycles required to
complete the tasks submitted to the system. Fig. 3 b and Fig. 3
c depict the energy consumption and the task completion time,
respectively, for the three considered solutions. We can observe
how both the energy consumption and the task completion time
increases with the average computing workload, for all the
considered solutions. However, for DROO and hotbooting DQN,
the increment in the energy consumption is notably larger. This is
because they do not have the adaptive and control mechanism of
energy consumption we have in our model, which adaptively
takes the offloading decision in a distributed manner. Fig. 3
a leads to similar conclusions for the task completion time.

Although in a less pronounced way with respect to the energy
consumption, also the task completion time achieved by our
solution increases slowly with the increase of the computing
workload.

In light of the previous findings, we can conclude that the
knowledge not only of the states, but also of some model parame-
ters of the other agents (see Section V), improves the decisions of
the single agent. In fact, in this way the action can also consider
the likely actions of other agents, thus possibly anticipating their
future behavior.

Moreover, we evaluate the computation rate of all the agents,
i.e., the number of processed bits within a unit time from the
system. In Fig. 4 a we report the computation rate for different
algorithms at varying sizes of agents fleet. It is straightforward
to observe how our algorithm outperforms the analogous

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5013

Fig. 5. Sensitivity analysis of the average cost Z and the utility in terms of (a) time interval for model updates, (b) hidden units in the neural networks of actor
and critic agents, (c) stepsize for the actor and critic updates. This analysis motivates the choice of our default algorithm parameters.

approaches, and the more agents, the larger the rate
improvements compared to the other methods. Although
this metric is only implicitly covered by the utility function, our
solution offers a high computation rate due to the optimized
resource management and distributed approach. In fact,
minimizing the computational time for tasks results in better
computation rate performance too.

To analyze the variability of performance among nodes, we
also evaluate the cumulative distribution function (CDF) of the
task completion time for the three considered solutions. Results
are reported in Fig. 4 b and refer to a case when the number
of nodes is 15. Not only does our approach provide a lower
completion time on average, but most of the nodes complete
the task at a time close to the average. This small variance is
extremely important in UAV systems, especially for real-time
applications requiring low and constant task completion times.

For the sake of completeness, we finally compare the conver-
gence performance of our MARL-based method against other
possible RL-based algorithms when applied in our solution.
Specifically, we consider the following three alternative pos-
sibilities. Firstly, Single AC, an approach still based on the
Actor-Critic (AC) framework, but where each agent takes in-
dependent decisions. Secondly, Single DQN, a similar approach
where the RL algorithm belongs to the class of Value-based
methods that exploit Q-values to determine the probabilities
of actions and any other parameter of the algorithm. In this
class of algorithms, deep Q-network (DQN) is one of the most
common methods that integrate deep neural networks into RL,
originating the deep reinforcement learning. It has been shown
how deep neural networks can empower RL to directly deal with
high dimensional states thanks to techniques used in DQN [65].
Finally, MARL DQN, which implements the DQN algorithm
in a multi-agent context, where the Q-values are transmitted
among the agents for a collaborative approach. Fig. 4 c shows the
result of this comparison. It is possible to observe how the utility
function increases as the number of episodes increases, until it
attains a relatively stable value, in all the methods. However,
we can notice that our approach provides a higher value for the
utility function and that the convergence is faster. MARL DQN,
for example, despite the cooperation among agents, is unable to
properly handle the information of other nodes, whose learning
process hardly fits this context. On the other hand, both Single
AC and Single DQN have comparable yet better results with

respect to MARL DQN due to the simplicity of their approach,
which is able to achieve quite fast convergence. However, with
local reward and action, classical reinforcement learning algo-
rithms, i.e., Single AC and Single DQN, fail to maximize the
system-wide average reward, whose value is determined by the
joint actions of all agents. In conclusion, our algorithm can
distribute the information in an efficient way, thus resulting in
an appropriate solution for our context.

C. Sensitivity Analysis

We further conduct a sensitivity analysis of the average cost
(i.e., Z = 1/N

∑
Zi) with respect to the key design parameters

(Fig. 5). Firstly, we analyze the impact of the update interval,
Δt. This value specifies the rate on which the agents share the
information and performs both actor and critic steps. In Fig. 5
a we plot how Δt affects the performance in terms of cost Z.
Too frequent updates lead to an improvement in the model but a
burden in the system, while a large Δt may neglect state values
and undermine the overall model. We can observe how a value of
Δt = 3s is a valuable trade-off, which guarantees adaptability
without incurring in too frequent changes.

Secondly, we study how various neural network settings may
affect performance. Actor and critic agents utilize two separate
neural networks differing in the input and output layers but
using the same amount of hidden units for design simplicity.
Fig. 5 b shows the cost Z for increasing number of hidden
units. These results suggest that the more neurons, the more
efficient is the model. However, it may also be considered that a
larger neural network requires a larger overhead, e.g., memory
footprint, which is not justifiable since the effect in the cost is
minimal when the number of units is greater than 64. For this
reason, we set the number of hidden units to 64.

Lastly, we investigate the importance of stepsizes ξθ,t and ξv,t.
The utility for multiple combinations of stepsizes is examined
for each episode and reported in Fig. 5 c, which illustrates the
utility during the training phase. It is shown that only for the two
combinations 0.001− 0.01 and 0.01− 0.1 the proposed algo-
rithm successfully converges. However, the former one is able
to achieve higher utility at a slightly faster speed. Conversely,
the other two combinations 0.01− 0.001 and 0.1− 0.01 have a
turbulent evolution and leads to a lower utility compared to the

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

5014 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

other values. These results motivate our choice to set the default
stepsize values of actor step to 0.001 and critic step to 0.01.

VII. CONCLUSION

This paper presents a distributed algorithm for the offloading
task decision whose aim is to speed up the task completion time
and, at the same time, limit the overall energy consumption.
To this end, we propose a multi-agent reinforcement learning
algorithm to decide whether or not to offload a task to the edge
cloud. The overall state of the system is appropriately shared
between the nodes and used when each agent has to decide where
to perform an assigned task: locally or in the edge cloud by means
of an offloading procedure. Each node, in case of task offloading,
can further decide the transmission technology to use, Wi-Fi or
LTE, according to the current utilization.

Results validate our algorithm, demonstrating the good per-
formance of our system. Our evaluation also shows how the
developed algorithm can manage the large quantity of infor-
mation coming from the environment in an efficient way, thus
making our distributed solution a truly viable approach for task
offloading decision problems.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE Commun.
Surveys Tut., vol. 19, no. 4, pp. 2322–2358, Fourthquarter 2017.

[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing:
A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465, Feb. 2018.

[3] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Commun. Surveys
Tut., vol. 22, no. 1, pp. 38–67, 2019.

[4] A. Sacco, F. Esposito, and G. Marchetto, “Resource inference for task
migration in challenged edge networks with RITMO,” in Proc. 9th IEEE
Int. Conf. Cloud Netw. (CloudNet)., 2020, pp. 1–7.

[5] A. Sacco, M. Flocco, F. Esposito, and G. Marchetto, “An architecture for
adaptive task planning in support of IoT-based machine learning applica-
tions for disaster scenarios,” Comput. Commun., vol. 160, pp. 769–778,
2020.

[6] M. Chiang and T. Zhang, “Fog and IoT: An overview of research oppor-
tunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, 2016.

[7] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[8] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Trans. Emerging Top. Computing, 2019.

[9] A. V. Ventrella et al., “Apron: An architecture for adaptive task planning
of internet of things in challenged edge networks,” in Proc. 8th IEEE Int.
Conf. Cloud Netw. (CloudNet)., 2019, pp. 1–6.

[10] C. You, K. Huang, H. Chae, and B. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1397–1411, 2017.

[11] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, 2016.

[12] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation
offloading for ultradense IoT networks,” IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, 2018.

[13] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 4177–4190, 2018.

[14] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 1, pp. 856–868, 2018.

[15] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic of-
floading and resource scheduling in mobile cloud computing,” in Proc.

IEEE INFOCOM 2016-The 35th Annu. IEEE Int. Conf. Comput. Commun.,
2016, pp. 1–9.

[16] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile edge
computing: Task allocation and computational frequency scaling,” IEEE
Trans. Commun., vol. 65, no. 8, pp. 3571–3584, 2017.

[17] B. Liu, W. Zhang, W. Chen, H. Huang, and S. Guo, “Online computation
offloading and traffic routing for uav swarms in edge-cloud computing,”
IEEE Trans. Vehicular Technol., 2020.

[18] L. Huang, S. Bi, and Y. J. Zhang, “Deep reinforcement learning for on-
line computation offloading in wireless powered mobile-edge computing
networks,” IEEE Trans. Mobile Comput., vol. 19, no. 11, pp. 2581–2591,
2019.

[19] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, “Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,” IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050–8062, 2019.

[20] A. Sacco, F. Esposito, and G. Marchetto, “A distributed reinforcement
learning approach for energy and congestion-aware edge networks,” in
Proc. 16th Int. Conf. emerging Netw. EXperiments Technol. (CoNEXT).,
2020, pp. 546–547.

[21] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11
168, 2019.

[22] J. Baxter and P. L. Bartlett, “Direct gradient-based reinforcement learning,”
in Proc. IEEE Int. Symp. Circuits and Syst. Emerging Technologies for
the 21st Century. Proceedings (IEEE Cat No 00CH36353), vol. 3, 2000,
pp. 271–274.

[23] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Proc. Adv. Neural Inf. Process. Syst., 2000, pp. 1057–1063.

[24] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7-9, pp. 1180–1190, 2008.

[25] S. Bhatnagar, M. Ghavamzadeh, M. Lee, and R. S. Sutton, “Incremental
natural actor-critic algorithms,” in Proc. Adv. Neural Inf. Process. Syst.,
2008, pp. 105–112.

[26] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[27] R. Munos, T. Stepleton, A. Harutyunyan, and M. Bellemare, “Safe and
efficient off-policy reinforcement learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 1054–1062.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. 31st Int. Conf. Int.
Conf. Mach. Learn., ser. ICML’14. JMLR.org, 2014, vol. 32, pp. 387–395.

[29] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[30] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. 33rd Int. Conf. Mach. Learn., PMLR, 2016, pp. 1928–1937.

[31] M. L. Littman, “Value-function reinforcement learning in Markov games,”
Cogn. Syst. Res., vol. 2, no. 1, pp. 55–66, 2001.

[32] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforce-
ment learning in cooperative multi-agent systems,” in Proc. Seven-
teenth Int. Conf. Mach. Learn., Morgan Kaufmann Publishers Inc., 2000,
pp. 535–542.

[33] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic
games,” J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.

[34] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Proc. Adv.
Neural Inf. Process. Syst., Curran Associates, Inc., 2016, pp. 2137–2145.

[35] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in Proc. Int. Conf. Auton.
Agents Multiagent Syst., Springer, 2017, pp. 66–83.

[36] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Adv. Neural Inf. Process. Syst., Curran Associates, Inc., 2017,
pp. 6379–6390.

[37] S. Omidshafiei, J. Pazis, C. Amato, J. P. How, and J. Vian, “Deep de-
centralized multi-task multi-agent reinforcement learning under partial
observability,” 2017, arXiv:1703.06182.

[38] M. Lanctot et al., “A unified game-theoretic approach to multiagent
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., Curran
Associates, Inc., 2017, pp. 4190–4203.

[39] K. Zhang, Z. Yang, H. Liu, T. Zhang, and T. Basar, “Fully decentralized
multi-agent reinforcement learning with networked agents,” in Proc. 35th
Int. Conf. Mach. Learn., vol. 80, 2018, pp. 5872–5881.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

SACCO et al.: SUSTAINABLE TASK OFFLOADING IN UAV NETWORKS VIA MULTI-AGENT REINFORCEMENT LEARNING 5015

[40] Z. Zhang, Z. Hong, W. Chen, Z. Zheng, and X. Chen, “Joint computa-
tion offloading and coin loaning for blockchain-empowered mobile-edge
computing,” IEEE Internet Things J., vol. 6, no. 6, pp. 9934–9950, 2019.

[41] M.-A. Messous, H. Sedjelmaci, N. Houari, and S.-M. Senouci, “Compu-
tation offloading game for an uav network in mobile edge computing,” in
Proc. IEEE Int. Conf. Commun., 2017, pp. 1–6.

[42] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956, 2019.

[43] M. Gong and S. Ahn, “Computation offloading-based task scheduling
in the vehicular communication environment for computation-intensive
vehicular tasks,” in Proc. Int. Conf. Artif. Intell. Inf. Commun., 2020,
pp. 534–537.

[44] E. Coronado, G. Cebrian-Marquez, and R. Riggio, “Enabling computation
offloading for autonomous and assisted driving in 5G networks,” in Proc.
IEEE Glob. Commun. Conf., 2019, pp. 1–6.

[45] S. Barbarossa, S. Sardellitti, and P. Di Lorenzo, “Communicating while
computing: Distributed mobile cloud computing over 5G heterogeneous
networks,” IEEE Signal Process. Mag., vol. 31, no. 6, pp. 45–55, 2014.

[46] O. Muñoz, A. Pascual-Iserte, and J. Vidal, “Optimization of radio and com-
putational resources for energy efficiency in latency-constrained applica-
tion offloading,” IEEE Trans. Veh. Technol., vol. 64, no. 10, pp. 4738–4755,
2015.

[47] N. Kalatzis, M. Avgeris, D. Dechouniotis, K. Papadakis-
Vlachopapadopoulos, I. Roussaki, and S. Papavassiliou, “Edge computing
in iot ecosystems for uav-enabled early fire detection,” in Proc. IEEE Int.
Conf. Smart Comput., 2018, pp. 106–114.

[48] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “An online
algorithm for task offloading in heterogeneous mobile clouds,” ACM Trans.
Internet Technol., vol. 18, no. 2, pp. 1–25, 2018.

[49] H. Ke, J. Wang, L. Deng, Y. Ge, and H. Wang, “Deep reinforcement
learning-based adaptive computation offloading for mec in heteroge-
neous vehicular networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916–7929, 2020.

[50] X. Zhu, Y. Luo, A. Liu, M. Z. A. Bhuiyan, and S. Zhang, “Multi-agent
deep reinforcement learning for vehicular computation offloading in IoT,”
IEEE Internet Things J., 2020.

[51] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed deep
learning-based offloading for mobile edge computing networks,” Mobile
Netw. Appl., pp. 1–8, 2018.

[52] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for iot devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, 2019.

[53] J. Franz, T. Nagasuri, A. Wartman, A. V. Ventrella, and F. Esposito, “Reuni-
fying families after a disaster via serverless computing and raspberry PIS,”
in Proc. IEEE Int. Symp. Local Metrop. Area Netw., 2018, pp. 131–132.

[54] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Int. Things J., vol. 3, no. 5, pp. 637–646, 2016.

[55] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: John Wiley & Sons, 2014.

[56] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2015, arXiv:1506.02438.

[57] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” in Proc. 2nd USENIX Conf. Hot Top. Cloud Comput.
(HotCloud). USENIX Assoc., 2010, pp. 1–7.

[58] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm for
mobile computing,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp.
1991-1995, 2012.

[59] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning, “Saving portable
computer battery power through remote process execution,” ACM SIG-
MOBILE Mobile Comput. Commun. Rev., vol. 2, no. 1, pp. 19–26, 1998.

[60] W. Li, F. Zhou, K. R. Chowdhury, and W. M. Meleis, “Qtcp: Adaptive
congestion control with reinforcement learning,” IEEE Trans. Netw. Sci.
Eng., vol. 6, no. 3, pp. 445–458, 2018.

[61] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms,” IEEE Trans.
Autom. Control, vol. 31, no. 9, pp. 803–812, 1986.

[62] S. Boyd, N. Parikh, and E. Chu, Distributed Optimization and Statistical
Learning Via the Alternating Direction Method of Multipliers. Hanover,
MA, USA: Now Publishers Inc, 2011.

[63] Cell vs WiFi. Accessed: Mar. 13, 2021. [Online]. Available: http://web.
mit.edu/cell-vs-wifi/

[64] R. Netravali et al., “Mahimahi: Accurate record-and-replay for http,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC 15), 2015, pp. 417–429.

[65] Y. Sun, M. Peng, and S. Mao, “Deep reinforcement learning-based mode
selection and resource management for green fog radio access networks,”
IEEE Internet Things J., vol. 6, no. 2, pp. 1960–1971, 2018.

Alessio Sacco (Student Member, IEEE) received the
M.Sc. degree in computer engineering from the Po-
litecnico di Torino, Turin, Italy, where he is currently
working toward the Ph.D. degree in computer engi-
neering. His research interests include architecture
and protocols for network management, implemen-
tation and design of cloud computing applications,
algorithms and protocols for service-based architec-
ture, which include software defined networks, used
in conjunction with machine learning algorithms.

Flavio Esposito (Member, IEEE) received the M.Sc.
degree in telecommunication engineering from the
University of Florence, Florence, Italy and the Ph.D.
degree in computer science from Boston University,
Boston, MA, USA, in 2013. He is currently an As-
sistant Professor with the Department of Computer
Science, Saint Louis University (SLU), St. Louis,
MO, USA. He also has an affiliation with the Parks
College of Engineering, SLU. He was with the in-
dustry for a few years, and his main research interests
include network management, network virtualization,

and distributed systems. He was the recipient of several awards, including four
National Science Foundation awards and two Best Paper awards, one at IEEE
NetSoft 2017 and one at IEEE NFV-SDN 2019.

Guido Marchetto (Senior Member, IEEE) received
the Ph.D. degree in 2008 in computer engineering
from the Politecnico di Torino, Turin, Italy, where
he is currently an Associate Professor with the De-
partment of Control and Computer Engineering. In
2009, he visited the Department of Computer Sci-
ence, Boston University, Boston, MA, USA. His re-
search interests include distributed systems, formal
verification of systems and protocols, network pro-
tocols and network architectures. He is an Associate
Editor for the IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY.

Paolo Montuschi (Fellow, IEEE) is currently a Full
Professor with the Department of Control and Com-
puter Engineering, Rector’s Delegate for Informa-
tion Systems, and a past Member of the Board of
Governors Politecnico di Torino, Turin, Italy. His
research interests include computer arithmetic, com-
puter graphics, and intelligent systems. He is a Life
Member of the International Academy of Sciences,
Turin, Italy, and of HKN, the Honor Society of IEEE.
He is the Editor-in-Chief of the IEEE TRANSACTIONS

ON EMERGING TOPICS IN COMPUTING, the 2020–21
Chair of the IEEE TAB/ARC and the Co-Chair of the 2021 TAB/PSPB Ad Hoc
Committee on Publications Strategy. From 2015 to 2018, he was in a number
of positions, including the Editor-in-Chief of the IEEE TRANSACTIONS ON

COMPUTERS, from 2017 to 2020, the IEEE Computer Society Awards Committee
Chair, from 2018 to 2020, a Member-at-Large of the IEEE PSPB, and from 2019
to 2020, the Chair of its Strategic Planning Committee.

Authorized licensed use limited to: SAINT LOUIS UNIVERSITY. Downloaded on December 22,2021 at 22:30:20 UTC from IEEE Xplore. Restrictions apply.

http://web.mit.edu/cell-vs-wifi/

