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CONSPECTUS: Density functional theory (DFT) calculations are Machine Learning +
used in over 40,000 scientific papers each year, in chemistry, materials Density Functional Theory

science, and far beyond. DFT is extremely useful because it is
computationally much less expensive than ab initio electronic structure

methods and allows systems of considerably larger size to be treated.

However, the accuracy of any Kohn—Sham DFT calculation is limited

by the approximation chosen for the exchange-correlation (XC) energy.

For more than half a century, humans have developed the art of such '
approximations, using general principles, empirical data, or a e )
combination of both, typically yielding useful results, but with errors
well above the chemical accuracy limit (1 kcal/mol). Over the last 15
years, machine learning (ML) has made major breakthroughs in many
applications and is now being applied to electronic structure
calculations. This recent rise of ML begs the question: Can ML propose or improve density functional approximations? Success
could greatly enhance the accuracy and usefulness of DFT calculations without increasing the cost.

In this work, we detail efforts in this direction, beginning with an elementary proof of principle from 2012, namely, finding the
kinetic energy of several Fermions in a box using kernel ridge regression. This is an example of orbital-free DFT, for which a
successful general-purpose scheme could make even DFT calculations run much faster. We trace the development of that work to
state-of-the-art molecular dynamics simulations of resorcinol with chemical accuracy. By training on ab initio examples, one bypasses
the need to find the XC functional explicitly. We also discuss how the exchange-correlation energy itself can be modeled with such
methods, especially for strongly correlated materials. Finally, we show how deep neural networks with differentiable programming
can be used to construct accurate density functionals from very few data points by using the Kohn—Sham equations themselves as a
regularizer. All these cases show that ML can create approximations of greater accuracy than humans, and is capable of finding
approximations that can deal with difficult cases such as strong correlation. However, such ML-designed functionals have not been
implemented in standard codes because of one last great challenge: generalization. We discuss how effortlessly human-designed
functionals can be applied to a wide range of situations, and how difficult that is for ML.

Physical
Insight

Accurate
& Efficient

M KEY REFERENCES e Li, L.; Baker, T. E.;; White, S. R.; Burke, K. Pure density
.. functional for strong correlation and the thermodynamic
e Snyder, J. C; Rupp, M.; Hansen, K; Miiller, K-R;; limit from machine learning. Phvs. Rev. B 2
. v . . . . g. Phys. Rev. 016, 94,
Burke, K.Finding density functionals with machine 245129.° By training a machine learning model for
learning.. Phys. Rev. Lett. 2012, 108, 253002." In a e 8 &

L7 . . exchange-correlation, with data from a density matrix
proof of principle, kernel ridge regression was used to - . .
. . . . renormalization group calculation, chemically accurate
approximate the kinetic energy of noninteracting

. . . .. results were obtained for atomic chains, even when
Fermions, and highly accurate self-consistent densities
. . . . o strongly correlated, and extrapolated to the thermody-
were obtained using projected functional derivatives.

namic limit.
e Brockherde, F; Vogt, L; Li, L; Tuckerman, M. E;

Burke, K; Miiller, K-R. Bypassing the Kohn—Sham
equations with machine learning. Nat. Commun. 2017, 8, Received: November 9, 2020
872.” The density-potential and the energy-density maps Published: February 3, 2021
were learned directly using machine learning. A
molecular dynamics simulation of malonaldehyde using
machine-learned functionals could capture the intra-
molecular proton transfer process.

© 2021 American Chemical Society https://dx.doi.org/10.1021/acs.accounts.0c00742

W ACS Publications 818 Acc. Chem. Res. 2021, 54, 818826


https://pubs.acs.org/page/achre4/data-science-meets-chemistry
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bhupalee+Kalita"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Li+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+J.+McCarty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kieron+Burke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.accounts.0c00742&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?fig=agr1&ref=pdf
https://pubs.acs.org/toc/achre4/54/4?ref=pdf
https://pubs.acs.org/toc/achre4/54/4?ref=pdf
https://pubs.acs.org/toc/achre4/54/4?ref=pdf
https://pubs.acs.org/toc/achre4/54/4?ref=pdf
pubs.acs.org/accounts?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00742?ref=pdf
https://pubs.acs.org/accounts?ref=pdf
https://pubs.acs.org/accounts?ref=pdf

Accounts of Chemical Research

pubs.acs.org/accounts

e Li, L; Hoyer, S.; Pederson, R.; Sun, R;; Cubuk, E. D,;
Riley, P.; Burke, K. Kohn—Sham equations as regular-
izer: building prior knowledge into machine-learned
physics. Phys. Rev. Lett. 2021, 126, 036401." A deep
neural network was trained using the Kohn—Sham
equation as an implicit regularizer. A diatomic
dissociation curve was reproduced within the chemical
accuracy limit with just two training molecules.

1. INTRODUCTION

Direct solution of the Schrodinger equation for electrons
(traditionally designated as ab initio in quantum chemistry)
yields chemically accurate energies (errors below 1 kcal/mol).
However, computational costs scale poorly with system size,
limiting its routine applicability to smaller molecules. On the
other hand, density functional theory (DFT) calculations
typically scale much more favorably, allowing routine
calculation of molecules with hundreds of atoms. This
increased applicability comes at a cost: The effective non-
interacting Kohn—Sham equations that, in principle, yield
exact ground-state energies and densities, in practice, require a
small fraction of the total energy (called the exchange-
correlation (XC) energy) to be approximated in an
uncontrolled way.

Presently, there are hundreds of distinct approximations to
the XC energy,5 all of which are available in common
electronic-structure codes. Some have been designed from
general principles of physics, without reference to any specific
molecular or material system.” Others have been fitted and
tested on an ever-growing population of databases of distinct
molecular systems and pro})erties, and these yield higher
accuracies on those systems.” However, almost all use similar
basic ingredients, such as the density, its gradient, and a
fraction of Hartree—Fock (HF) exchange, and are inspired by
physical or chemical insight.

In the past decade, machine learning (ML) has seen some
remarkable successes in various ag)plications, including image
recognition, language translation,” and even playing curling.”
ML is also increasingly being applied to problems in physical
sciences, where it can help with, for example, extraction of
salient features from microscopy images'’ or climate
modeling."' It can also be used to speed up purely
computational tasks. In electronic structure theory, there has
been much success in designing new force fields using ML,
creating far more accurate force fields than previous human-
designed attempts.'”> ML force fields can reproduce results
from DFT or any ab initio methods at a fraction of the
computational cost, simply by training on carefully chosen
examples, and are already available in useful codes.'”

A different, and arguably more difficult, task is to use ML to
design new density functional approximations or to improve
existing ones. This is simply a regression problem, i.e., fitting a
function of many variables. However, regression in DFT
involves fitting a functional, which can be considered a
function of infinitely many variables and that complicates the
task.

There are several distinct approaches to using ML to make
functionals. If the goal is to make DFT calculations run faster,
one such problem is approximating the KS kinetic energy
functional, ie., the kinetic energy of the noninteracting KS
orbitals (Ts[n]), thereby bypassing the need to solve the KS
equations, the most expensive step in most DFT implementa-
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tions. If T could be computed rapidly, it could revolutionize
all DFT calculations by making them run much faster.'* This is
called orbital-free DFT (OF-DET).">'>'® Moreover, training
data is abundant as every self-consistent cycle of every DFT
calculation ever performed yields a set of orbitals (and hence
density) and their T, but the path to success is not smooth.
To determine the density in OF-DFT, one must solve an Euler
equation'” requiring an accurate and well-behaved functional
derivative of T. Due to limited information available in direct
training, ML-designed interpolating functionals that are
extremely accurate for the energy almost necessarily yield
poor functional derivatives.

The more traditional problem is to improve the accuracy of
DFT, either by modifying existing XC approximations or by
creatin% completely new forms.”'®'® Usually (but not
always™’) the functional derivative of the XC energy is
somewhat unimportant to the energy. However, unlike the
orbital-free approach, the amount of accessible accurate
training data from higher level of theories is limited and is
mostly available for relatively small systems. Nonetheless,
promising ML ideas developed for OF-DFT can also be
applied to the XC case. Combining both can improve accuracy
and computational cost simultaneously.’

Another important objective is to find new forms that
overcome the drawbacks of traditional human-designed XC
approximations. For instance, most molecules and many
materials in their equilibrium state are considered to be
weakly correlated, where ingredients that have been used in the
past work reasonably well and can be borrowed to design ML
functionals too. However, most XC approximations fail to
break bonds correctly, because they fail when a bond is
stretched and electrons localize on distinct sites. Thus, the
complete binding energy curves of even H," and H, represent
paradigmatically difficult problems for standard DFT.”' A
stretched bond is an example of strong correlation that
provides a good test for ML-designed functionals. Figure 1
shows an ML-functional reproducing an entire binding energy
curve from training on only two bond lengths.* Such bonds are
even more difficult for OF-DFT if semilocal approximations
(terms that depend on only the density and its gradient)(”22 are
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Figure 1. Dissociation curve of a one-dimensional H, molecule,
created using the ML XC approximation of ref 4 by training with
DMRG data at just two configurations. Darkening shades of gray
show predictions from underfitting to overfitting, but distributed
around the exact curve due to the physics prior knowledge built into
the model. The optimal green curve, found by validating the model at
a single configuration, produces chemically accurate results. E,, is the
nucleus—nucleus repulsion energy. See Figure 11 for details.
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used, as the same considerations apply even more strongly to
T[n].

In principle, ML-designed functionals need not be limited by
human imagination and intuition, as ML can use the density
everywhere to find the energy contribution at a point (a fully
nonlocal functional).'® This is an ambitious §0a1. Humans have
an almost 100-year head-start on this task,” and it may be a
while before an ML functional becomes as useful and practical
as B3LYP”® in chemistry. In current studies, many
simplifications are made for efficient data generation and
easier implementation, simply to see if a new ML approach can
work, before building more realistic or general applications.

Thus, several of the examples discussed here are for one-
dimensional analogues of true electronic structure prob-
lems."”>*'>'® For the non-interacting problem, an effective
code can be written in a few minutes for solving the
Schrodinger equation and training data generated within
hours on a single core. For interacting systems, highly accurate
solutions can be obtained very efficiently in one dimension,
using a method called the density matrix renormalization
group (DMRG).”> DMRG is a very powerful quantum solver,
using matrix product states, with many applications to strongly
correlated model systems relevant to condensed matter
physics’* and also in quantum chemistry.”> Recently,
considerable effort has been made to create a one-dimensional
analogue of molecular systems using DMRG to handle strongly
correlated effects,”® making data generation much easier. Such
simplicity ensures maximum flexibility and ease in interfacing
with existing ML codes, which often come in prepackaged
routines.

A useful introduction to ML for chemical scientists can be
found in ref 27 with a glossary of terms. Here, we simply
distinguish between kernel methods and deep neural networks,
the two methods used in the key references. The basic problem
is one of regression with many parameters, where some
method of regularization is required to avoid overfitting.
Regularization is any procedure that allows one to control how
smooth the fit is. Ridge regularization penalizes overfitting with
the sum of the squares of the fitting coeflicients. The kernel
trick maps a low-dimensional space to a higher one to create a
function that is easier to fit,”® which is especially relevant in our
case. Kernel ridge regression (KRR) remains a standard tool in
ML today.

However, many of the most impressive gains in ML have
recently come from neural networks (NN). These are
characterized by the graph of differentiable operations,
architectures with various inductive biases, and scalability on
hardware accelerators.”” Their performance can usually be
continuously improved by increasing the model capacity, with
copious addition of data, whereas more traditional methods
can saturate or become too expensive to train.’® In fact, the
first alpplication of ML to density functional design was using
NN.*" This pioneering work used exact energies and XC
potentials to fit an XC functional that remains relevant even
today. In this article, we discuss the chronological develop-
ments of ML density functionals focusing only on the work of
our research group, but comprehensive reviews are available
elsewhere.”

2. PROTOTYPE

Here, we review the most elementary application of ML to
create an approximate OF-DFT functional.' The simplest
problem imaginable is to consider the energy levels of a 1D
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potential between infinite walls. It is trivial to solve such box
problems numerically, filling the levels with same-spin
Fermions, so that there is one particle per level. For N
Fermions in the box, the KRR kinetic energy functional is

Nr
™) = Z ajk(n, nj)

j=1 (1)
where Np is the number of training densities, @; are the
weights, and k is a Gaussian kernel of the form

— 3 25 2
k(n, nj) = exp(—/d r(n(r) — nj(r)) /20 ) @)

The weights a; are found by minimizing the mean-squared
error of T™“[n] for all training data plus a regularization
penalty, while o can be determined by cross-validation. Each
data point adds an integral over the entire density inside the
Gaussian kernel, and hence the resulting functional is
completely nonlocal.

To generate data, three Gaussian potential dips were placed
at random inside the box. For N = 1, with as few as 80 training
densities, chemically accurate (error less than 1 kcal/mol)
predictions were made for the kinetic energies of a test set
drawn from the same distribution, and shown in Figure 2. This
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Figure 2. Range of variation within the data set of 1000 training
densities for N = 1 for the box problem (green). Any one of these
densities can be accurately reproduced using the projection method
discussed in ref 1. Adapted with permission from ref 1. Copyright
2012 American Physical Society.

was a huge improvement compared to semilocal XC
approximations (error = 160 kcal/mol). However, to be
useful, an approximate Tg must also have an accurate
derivative, so that the Euler equation yields an accurate
density.'” The functional derivative of KRR T™'[n] has the
form

5TML

on(x)

62 zT: al-(n}-(x) - ”(x)k(”) n,'))

j=1

©)

This derivative is shown in Figure 3. It oscillates wildly relative
to the exact curve. This is expected as the exact functional
derivative describes the change in the functional in every
direction in the infinite-dimensional space of densities, but
with KRR, one could only expect it to be accurate in the very
few directions in which it has training data.

https://dx.doi.org/10.1021/acs.accounts.0c00742
Acc. Chem. Res. 2021, 54, 818—826
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Figure 3. Functional derivative of —T™"[n], the exact derivative, v(x),
and their projections on the data-manifold for Ny = 100. Adapted
with permission from ref 16. Copyright 2015 John Wiley and Sons.

To overcome this problem, a constraint was added to the
minimization, §(E[n] — {g[n]) = 0, where the functional g[n]
= 0 defines the manifold of training densities. The specific g[n]
can be determined using principal component analysis
(PCA).”” The cartoon in Figure 4 illustrates this process.

8

ensity manifoly &/n v

exact density

1y
training densities

Gradient Descent
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Figure 4. Training densities and the exact density are on the density
manifold defined by g[n] = 0. The solution of the Euler equation via
simple gradient descent becomes unstable (red dashed curve) and
leaves the shaded region.

One first calculates the usual functional derivative, and then
projects it onto the local principal components in which there
are greatest variations among the nearby training densities.
This leads downhill on the training manifold, and since the
optimal density should be within that manifold, it finds a
density very close to the exact minimizer. Although the
projected derivative is very accurate, as in Figure 3, the error of
the functional evaluated on this projected ML density,
TM[nMY], is substantially larger than that of T™“ on the
exact density, chemical accuracy is still achieved with 150
training samples for one particle.

A detailed account of all the KRR implementation is given in
Li et al.'® Six alternative kernels were tried, of which three had
comparable performance, including the Gaussian used here.
The details of how the projection method works are also
explained, discussing the relative contributions of the energy
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and density to the error. An analysis of the functional found,
and the hyperparameter landscape, is available in ref 33.

3. ORBITAL-FREE DFT

Inspired by the proof of principle from ref 1, many questions
arise as one works toward chemical realism.

3.1. Bond Breaking

Orbital-free semilocal approximations to Tg[n] fail worse than
those for XC when a chemical bond is stretched. An
implementation of KRR to correctly describe the stretched
bond limit can be found in Snyder et al.'*> They trained TY*[n]
with data from KS-DFT along the bond distance of several
prototype 1D diatomic molecules and tested if the nonlocal
ML approximation, similar to the one in the box problem,
could remain accurate all along the dissociation curve. To
tackle the highly curved density manifold, a technique called
nonlinear gradient denoising (NLGD) was also proposed. By
utilizing kernel principal component analysis (kPCA)™ to
capture the low-dimensionality, this method improves the
accuracy of the projected gradient descent with even fewer
training densities compared to normal PCA in ref 1.

For both H, and LiH, the relative error in T[] evaluated
on the projected density with NLGD was less than 1 kcal/mol
with just Ny = 10. By increasing the training set size to 20, the
bond dissociation energy, equilibrium bond length, and the
zero-point vibrational frequency could be determined to within
1%. Figure S depicts how accurately the ML algorithm
reproduces the exact binding energy curve of H, obtained from
a DFT calculation.

1
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Binding Energy FEmo(R) (Hartree)
w

—— KS-DFT
—— KRR (Nr=6)
1.4} —— KRR (Nr=10) |
0 5 10

Interatomic distance R (Bohr)

Figure S. Molecular binding energy curve obtained with constrained
optimal densities (KRR-NLGD) for 1D model of H,. Adapted with
permission from ref 15. Copyright 2013 AIP Publishing.

The NLGD algorithm is further illustrated in ref 35 for the
1D box problem. A 3D expansion of a similar OF-DFT
mapping can be found in ref 36 where a convolutional neural
network predicts the potential energy surface for hydrocarbon
chains with accuracy comparable to those of human-designed
functionals. Examples of improvements made in human-
designed functionals for the same problem can be found in
Seino et al.*” and Golub et al.,*® who trained neural networks
for T™"[n] that included up to third-order and fourth-order
gradients of the density.

https://dx.doi.org/10.1021/acs.accounts.0c00742
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3.2. Exact Conditions

In DFT, known theoretical properties (exact conditions) are
used to constrain the form of approximate functionals,”***
but the ML models above cannot be analyzed by checking for
such conditions. The weights in the KRR functional are large
and alternate in sign, suggesting the possibility of predicting
totally unphysical negative kinetic energy. However, all test
densities considered had accurate positive ML kinetic energies,
i.e,, throughout the training density manifold.

In order to make these KRR functionals less system-specific
and to enable easier training, a later study40 incorporated one
of the elementary exact conditions of DFT, the coordinate
scaling, within the KRR optimization

Tn,] = y*Tn]

n,(r) = y’n(yr) y>0

(4)
Two 1D systems were studied separately—the exactly solvable
Hooke’s atom, and the H, molecule with accurate DMRG
energies and densities. After training the KRR model on scaled
density n,, it was evaluated on a test set of 50 densities for the
two systems. Figure 6 shows that in Hooke’s atom the scaled
kinetic energy functional was much more accurate than its
unscaled counterpart, but not for H,.
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Figure 6. Error in the kinetic energy functional trained on scaled and
unscaled densities for both 1D Hooke’s atom and 1D H, molecule.
Adapted with permission from ref 40. Copyright 2018 AIP Publishing.

Scaling makes the densities of different configurations of
Hooke’s atom look similar to one another. That is not so for
H,; hence, no improvement is seen in its kinetic energy. This is
a result of the large changes in density as one moves within the
training manifold. Would scaling improve learning if several
molecules at different bond distances were simultaneously
trained on?

3.3. Molecular Dynamics of Single Molecules

New complications arise when ML is applied to chemically
realistic problems. Brockherde et al.” tried incorporating these
methods in realistic 3D electronic structure codes, but as the
number of degrees of freedom increased, the cost of the
projection method to determine the density became
prohibitive. A relatively simple workaround is to learn the
density directly as a functional of the potential and so bypass
the need to solve either the KS equations or the Euler
equation. The KRR density and energy models in ref 2 were
capable of running molecular dynamics (MD) with a standard
XC approximation (PBE) for a small organic molecule,

822

malonaldehyde. Training sets were generated by running
classical MD simulations at higher temperatures, e.g., 500 K
(to ensure sampling of higher energy regions of the potential
energy surface) and then performing DFT calculations at
snapshots of such simulations. With sufficient training, the
errors in the density map became much smaller than density
differences due to different XC approximations.

The performance of this ML density functional along the
MD trajectory is shown in Figure 7. In the region where the
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Figure 7. Predicted ML energy along a 0.1S ps MD trajectory of
malonaldehyde showing the transfer of a proton between oxygen
atoms. Adapted from Figure S of ref 2. Copyright 2017 Nature
Research, licensed under Creative Commons Attribution 4.0
International.

proton transfer occurs, the error is largest because these
configurations are not included in the training set. One could
easily run a KS calculation for this particular configuration and
retrain including that data point to reduce this error. In fact,
standard KS-MD does not yield accurate proton transfer rates,
as nuclear tunneling plays an important role and requires more
sophisticated approaches.*!

3.4. A-DFT and Chemical Accuracy

Although the training data used for malonaldehyde were
generated from approximate DFT, in principle, the ML
functional could also be trained on energies and densities
from higher-level ab initio theories, such as coupled-cluster, i.e.,
to bypass the KS equations, as if they had been solved with
chemical accuracy.

In practice, it is difficult to extract accurate densities for
training from a CCSD(T) calculation,” but one can simply
learn accurate energies as a functional of the density of a
standard DFT calculation. This leads to several different
energy functionals that ML can produce: the ab initio energy,
the DFT energy, and the difference in the two (A-DFT),
which is much easier to learn (ie, converges much more
rapidly with training data) because the error in a DFT
calculation is a very smooth function of the nuclear
coordinates. All this was done in a recent work by Bogojeski
et al.*’ Of the many different situations studied, the highlight is
again ML-MD simulations, in which a rotation barrier in
resorcinol was probed. A semilocal XC functional makes a
substantial error in the rotation barrier, and Figure 8 shows
how the DFT trajectory bifurcates from the accurate trajectory.
The KRR-DFT energy on the ML density yields almost perfect
agreement with a full DFT MD simulation. Self-consistent
DFT corrected with A-DFT calculated on the ML density
yields trajectories with errors less than 0.2 kcal/mol. Using the
ML density with the CCSD(T) energy without performing
DFT calculations at each step usually gives a good trajectory,
but with substantial energy errors. Moreover, directions can
appear in a trajectory that are wholly unphysical, taking the
molecule outside the manifold on which the density functional
works.
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Figure 8. Positions and energy of the resorcinol conformer switch
predicted using standard DFT alone (blue), and after correction with
A-DFT trained on CCSD(T) energies (purple). Adapted from Figure
3 of ref 43. Copyright 2020 Nature Research, licensed under Creative
Commons Attribution 4.0 International.

Unfortunately, it is difficult to generalize these methods to
other systems or to strong correlation. A similar machine-
learned correcting functional was also defined in Dick et al.**
for liquid water which used an NN to predict accurate ground-
state properties by approximating the difference in energies
and forces from the DFT densities. Later, an approximation for
XC was also constructed with this method."”

4. EXCHANGE-CORRELATION

We turn now to models for XC. Much work in the literature
applies to weakly correlated systems. We focus on creating fully
nonlocal ML approximations so that strong correlation can be
handled. Because highly accurate densities and energies are
cumbersome and expensive to generate for training, we return
to the simpler 1D world for testing these ideas.

4.1. Strong Correlation and Thermodynamic Limit

For materials applications, true strong correlation is even worse
than in stretched H,. For example, for stretched H,, semilocal
XC approximations create four broken spin-symmetry
solutions, not two. Ultimately, for solid-state applications,
one should be able to handle the infinite chain, or in other
words, the thermodynamic limit.*®

In Li et al,’ the task was to learn both Tg and XC and their
derivatives for 1D H atom chains of fixed separation varying
from equilibrium to very stretched, and chains varying from 2
to 20 atoms, to accurately extrapolate to the thermodynamic
limit. Contrary to ref 15, the KRR machinery was applied to
DMRG energies and densities to approximate both Tg[n] and
Exc[n] in one shot. This was an extremely ambitious goal given
the requirement of accurate functional derivatives and the
enormous size of the kinetic and Hartree energies. The NLGD
method described in the previous sections' yields an
extremely accurate 1D H, dissociation curve, but this method
becomes far too costly for longer chains as the number of grid
points in the density increases. Without accurate derivatives,
one can still easily learn energies, but not calculate accurate
densities.

The key was the representation of the density. There is too
much freedom when it is simply a function of the large grids
needed to represent the system. Many alternative representa-
tions were tried, but the ultimate winner was the simple atoms-
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in-molecules partitioning of Hirshfeld.”> A molecular density of
an N-atom chain was decomposed into a weighted sum of
distorted atomic densities. After collecting and centering all
these atomic densities, PCA was used to create a data-driven
basis for the allowed density variations shown in Figure 9. This

Different chain lengths
and H distances

Average PCA density_

o
~
T

o
)

Density, n(z)

0.0

Position, z

Figure 9. Individual hydrogen partition densities for every interatomic
separation R within the training set for a chain of length N and the
base density found using PCA. Note similarity to Figure 2. Adapted
with permission from ref 3. Copyright 2016 American Physical
Society.

reduced the time needed to calculate the optimizing densities
by several orders of magnitude while retaining chemical
accuracy. The infinite chain limit of 1D H atoms could then be
found with chemical accuracy, treating all aspects of the DFT
calculation with KRR on a PCA basis learned from atoms-in-
molecules. DMRG results for both extrapolation of finite
chains and periodic systems agreed with each other and with
the ML result to within 1 kcal/mol (Figure 10).

-920

Infinite H chain
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©
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-926
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Number of training densities, N

Figure 10. Energy of the infinite H-chain with uniform interatomic
spacing of 2.08 Bohr trained using extrapolated DMRG chain
densities and energies. Adapted with permission from ref 3. Copyright
2016 American Physical Society.

On reflection, it would have been much easier to simply
approximate the XC energy alone with ML methods in this
calculation, and use the KS procedure to produce accurate
densities. This seems a worthwhile test for future work, and
might also have been useful in ref 185.
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Other studies have also tried to address strong correlation
with ML-DFT on model systems.*** However, develop-
. 49-351

ments are more prominent for weakly correlated systems.

4.2. Kohn—Sham Regularizer (KSR)

Here, we look again at full binding energy curves obtained with
DMRG to find XC approximations that correctly break bonds,
but now within the KS framework. A pioneering study'®
showed that by including density errors in the loss function of
a feed-forward NN, one could achieve performance com-
parable to human-designed functionals for a real molecule by
training on just three or four molecules. This is because the
density is the functional derivative of the energy with respect to
the external potential; by training with densities, one
simultaneously improves both the energy and all possible
linear responses to changes in the potential. This greatly
enhances the possibilities of generalization.

There are several other efforts to build a transferable ML-
DFT model with different approaches.****~>* The most recent
work by Li et al.* pushes the inspiration from ref 18 forward in
two major respects. The first is to see if an entire dissociation
curve can be found with minimal training on a few examples.
The second is a theme of deep learning in general, namely, the
importance of differentiable programming (DP). DP keeps
rigorous components where we have paramount physics prior
knowledge and well-established numerical methods. By using
DP, one can automatically apply gradient-based approaches to
optimization, unlike earlier work.

NNs often have many more parameters than training
examples and hence need to be regularized. Prior knowledge
is usually included via constraints on the network,_?hysics—
informed loss functions, or feature preprocessing.’”>> Refer-
ence 4 treats the procedure of solving the KS equations as a
differentiable program and trains an XC functional using a loss
function of density and energy. By backpropagating, the KS
equations work as an implicit regularizer for the model. It
learns to sample and generate a trajectory from the initial guess
density to the exact density during the self-consistent cycle.
This improves generalization compared to direct ML models
without the KS scheme, such as the KRR models described
above, as these models use only the final step results for
training and have little information about initial densities.

The success of the KSR model is apparent from the high
accuracy achieved for stretched systems. In Figure 11, the
entire dissociation curve of the H, molecule is reproduced with
chemical accuracy by training at just two separations. A similar
performance was reported for H,. Inclusion of the density loss
term generates a much better prediction for the density and
the XC potential compared to energy loss alone. The KSR is
transferrable in the sense that it could also predict energies for
H," or two H, molecules, even though the model was never
exposed to those molecules. A successful extrapolation of this
method for 3D real molecules may hold the key for a
generalizable practical ML density functional which can
surpass the accuracy of any human-designed functional.

5. OUTLOOK

In the arena of OF-DFT, a natural question has arisen. If we
can find sufficiently accurate force fields by training on DFT
(or better) data, why do we need orbital-free DFT? Will not a
force field always be much faster (even if slower than simpler
force fields)? The current answer is maybe. For some specific
but very important limited cases, ML force fields are both
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Figure 11. One-dimensional H, dissociation curve, similar to Figure S
but with with DMRG data instead of KS-DFT. The colored curves are
the optimal models trained on two configurations (red diamonds) and
validated on R = 3 (black triangle). An ML model directly predicting
E from geometries quickly overfits the training data, but the global
KSR functional improves with each iteration of the KS equations
(gray lines). The lower panel shows that the KSR predictions are
within the chemical accuracy limit (light blue region). Adapted from
Figure 1 of ref 4. Copyright 2021 American Physical Society, licensed
under Creative Commons Attribution 4.0 International.

faster and do not run into difficulties. However, there are
problematic configurations that current force fields cannot
resolve.”® Moreover, a DFT calculation can be performed for
any combination of any atoms in any configuration, whereas
most force fields are designed for exploring either materials
configuration space with one or two elements or chemical
compound space with about a dozen different elements
relevant to medicinal chemistry. A few DFT runs on new
combinations of elements and configurations would be cheaper
than the cost of new training. Between these two extremes,
there is likely room for orbital-free ML-DFT.

However, the main focus is to improve XC approximations.
Here, there are two distinct areas. For the weakly correlated
systems most often encountered in chemistry and many
materials, substantial improvements in accuracy would be
incredibly useful and might be achievable by finding better
combinations of the many approximate functionals already
suggested. For strongly correlated systems (including complete
dissociation curves of molecules), going beyond the usual
semilocal starting points is likely a requirement, and here, the
advantage of ML to create entirely nonlocal functionals is clear.

Possibly the greatest challenge to creating fully nonlocal
functionals is that of generalizability. We need approximations
that can be applied to systems of effectively arbitrary size and
boundary conditions (open or periodic). A functional that uses
the entire density throughout the system is so sophisticated
that training on densities of one molecule is unlikely to yield
great accuracy on another, and so must be retrained for every
case. Yet, the very simplest and oldest XC approximation, local
exchange,”” generalizes perfectly, by virtue of using only the
density at each point to determine its contribution to the XC
energy. An ML functional that uses the density within a given
radius of the point might improve accuracies for weakly
correlated systems, but is unlikely to avoid catastrophic failures
for strong correlation. The search for the elusive XC functional
will continue, but now includes machine learning alternatives
to human designs.

https://dx.doi.org/10.1021/acs.accounts.0c00742
Acc. Chem. Res. 2021, 54, 818—826


https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?fig=fig11&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00742?ref=pdf

Accounts of Chemical Research

pubs.acs.org/accounts

B AUTHOR INFORMATION
Corresponding Author

Kieron Burke — Department of Chemistry, University of
California, Irvine, California 92697, United States;
Department of Physics and Astronomy, University of
California, Irvine, California 92697, United States;

orcid.org/0000-0002-6159-0054; Email: kieron@
uci.edu

Authors

Bhupalee Kalita — Department of Chemistry, University of
California, Irvine, California 92697, United States;
orcid.org/0000-0001-9967-1629
Li Li — Google Research, Mountain View, California 94043,
United States
Ryan J. McCarty — Department of Chemistry, University of
California, Irvine, California 92697, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.accounts.0c00742

Notes

The authors declare no competing financial interest.
Biographies

Bhupalee Kalita holds a B.S. from Gauhati University and an M.S.
from the University of Hyderabad in chemistry. She is currently
pursuing a Ph.D. in theoretical chemistry at the University of
California, Irvine.

Li Li holds a B.S. in physics from Fudan University, and a Ph.D. in
physics from the University of California, Irvine. He works on
machine learning and its application in physical sciences at the Google
Accelerated Science team.

Ryan J. McCarty holds an M.S. in chemical engineering and a Ph.D. in
geological and environmental sciences from Stanford University. He is
a University of California President’s Postdoctoral Fellow at the
University of California, Irvine.

Kieron Burke is a Chancellor’s Professor in Chemistry and Physics at
the University of California, Irvine, and has wasted much of his life
trying to understand and improve density functional theory.

B ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. DGE 1633631 (B.K.)
and CHE 1856165 (RJ.M.,, K.B.).

B REFERENCES

(1) Snyder, J. C.; Rupp, M.; Hansen, K; Miiller, K.-R; Burke, K.
Finding Density Functionals with Machine Learning. Phys. Rev. Lett.
2012, 108, 253002.

(2) Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K;
Miiller, K.-R. Bypassing the Kohn-Sham equations with machine
learning. Nat. Commun. 2017, 8, 872.

(3) Li, L; Baker, T. E; White, S. R; Burke, K. Pure density
functional for strong correlation and the thermodynamic limit from
machine learning. Phys. Rev. B: Condens. Matter Mater. Phys. 2016, 94,
245129.

(4) Li, L; Hoyer, S.; Pederson, R.; Sun, R.; Cubuk, E. D; Riley, P.;
Burke, K. Kohn-Sham Equations as Regularizer: Building Prior
Knowledge into Machine-Learned Physics. Phys. Rev. Lett. 2021, 126,
No. 036401.

(5) Burke, K. Perspective on density functional theory. J. Chem. Phys.
2012, 136, 150901.

825

(6) Perdew, J. P.; Burke, K; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865—3868.

(7) Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S; Najibi, A;
Grimme, S. A look at the density functional theory zoo with the
advanced GMTKNSS database for general main group thermochem-
istry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys.
2017, 19, 32184—3221S.

(8) He, K; Zhang, X; Ren, S; Sun, J. Deep Residual Learning for
Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); 2016.

(9) Won, D.-O.; Miiller, K-R; Lee, S.-W. An adaptive deep
reinforcement learning framework enables curling robots with human-
like performance in real-world conditions. Science Robotics 2020, S,
eabb9764.

(10) Moen, E,; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Van
Valen, D. Deep learning for cellular image analysis. Nat. Methods
2019, 16, 1233—1246.

(11) Huntingford, C.; Jeffers, E. S.; Bonsall, M. B.; Christensen, H.
M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to
aid climate change research and preparedness. Environ. Res. Lett. 2019,
14, 124007.

(12) Unke, O. T,; Chmiela, S; Sauceda, H. E.; Gastegger, M,;
Poltavsky, I; Schiitt, K. T.; Tkatchenko, A.; Miiller, K.-R. Machine
Learning Force Fields; 2020.

(13) Jinnouchi, R.;; Lahnsteiner, J.; Karsai, F.; Kresse, G.; Bokdam,
M. Phase Transitions of Hybrid Perovskites Simulated by Machine-
Learning Force Fields Trained on the Fly with Bayesian Inference.
Phys. Rev. Lett. 2019, 122, 225701.

(14) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory: An
Approach to the Quantum Many-Body Problem; Springer Berlin
Heidelberg: Berlin, Heidelberg, 1990.

(15) Snyder, J. C.; Rupp, M.; Hansen, K.; Blooston, L.; Miiller, K.-
R; Burke, K. Orbital-free bond breaking via machine learning. J.
Chem. Phys. 2013, 139, 224104.

(16) Li, L.; Snyder, J. C.; Pelaschier, I. M.; Huang, J.; Niranjan, U.-
N.; Duncan, P,; Rupp, M.; Miiller, K-R.; Burke, K. Understanding
machine-learned density functionals. Int. J. Quantum Chem. 2016, 116,
819-833.

(17) Burke, K.; Wagner, L. O. DFT in a nutshell. Int. J. Quantum
Chem. 2013, 113, 96—101.

(18) Nagai, R; Akashi, R.; Sugino, O. Completing density functional
theory by machine learning hidden messages from molecules. npj
Computational Materials 2020, 6, 43.

(19) Dick, S; Fernandez-Serra, M. Machine learning accurate
exchange and correlation functionals of the electronic density. Nat.
Commun. 2020, 11, 3509.

(20) Kim, M.-C; Sim, E.; Burke, K. Ions in solution: Density
corrected density functional theory (DC-DFT). J. Chem. Phys. 2014,
140, 18AS528.

(21) Cohen, A. J.; Mori-Sanchez, P.; Yang, W. Insights into Current
Limitations of Density Functional Theory. Science 2008, 321, 792—
794.

(22) Becke, A. D. Density-functional thermochemistry. II1. The role
of exact exchange. J. Chem. Phys. 1993, 98, 5648—5652.

(23) White, S. R. Density matrix formulation for quantum
renormalization groups. Phys. Rev. Lett. 1992, 69, 2863—2866.

(24) Hallberg, K. A. New trends in density matrix renormalization.
Adv. Phys. 2006, 55, 477—526.

(25) Wouters, S.; Van Neck, D. The density matrix renormalization
group for ab initio quantum chemistry. Eur. Phys. J. D 2014, 68, 272.

(26) Stoudenmire, E. M.; Wagner, L. O.; White, S. R;; Burke, K.
One-Dimensional Continuum Electronic Structure with the Density-
Matrix Renormalization Group and Its Implications for Density-
Functional Theory. Phys. Rev. Lett. 2012, 109, No. 056402.

(27) Rupp, M.; von Lilienfeld, O. A.; Burke, K. Guest Editorial:
Special Topic on Data-Enabled Theoretical Chemistry. J. Chem. Phys.
2018, 148, 241401.

https://dx.doi.org/10.1021/acs.accounts.0c00742
Acc. Chem. Res. 2021, 54, 818—826


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kieron+Burke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-6159-0054
http://orcid.org/0000-0002-6159-0054
mailto:kieron@uci.edu
mailto:kieron@uci.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bhupalee+Kalita"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-9967-1629
http://orcid.org/0000-0001-9967-1629
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Li+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ryan+J.+McCarty"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00742?ref=pdf
https://dx.doi.org/10.1103/PhysRevLett.108.253002
https://dx.doi.org/10.1038/s41467-017-00839-3
https://dx.doi.org/10.1038/s41467-017-00839-3
https://dx.doi.org/10.1103/PhysRevB.94.245129
https://dx.doi.org/10.1103/PhysRevB.94.245129
https://dx.doi.org/10.1103/PhysRevB.94.245129
https://dx.doi.org/10.1103/PhysRevLett.126.036401
https://dx.doi.org/10.1103/PhysRevLett.126.036401
https://dx.doi.org/10.1063/1.4704546
https://dx.doi.org/10.1103/PhysRevLett.77.3865
https://dx.doi.org/10.1103/PhysRevLett.77.3865
https://dx.doi.org/10.1039/C7CP04913G
https://dx.doi.org/10.1039/C7CP04913G
https://dx.doi.org/10.1039/C7CP04913G
https://dx.doi.org/10.1126/scirobotics.abb9764
https://dx.doi.org/10.1126/scirobotics.abb9764
https://dx.doi.org/10.1126/scirobotics.abb9764
https://dx.doi.org/10.1038/s41592-019-0403-1
https://dx.doi.org/10.1088/1748-9326/ab4e55
https://dx.doi.org/10.1088/1748-9326/ab4e55
https://dx.doi.org/10.1103/PhysRevLett.122.225701
https://dx.doi.org/10.1103/PhysRevLett.122.225701
https://dx.doi.org/10.1063/1.4834075
https://dx.doi.org/10.1002/qua.25040
https://dx.doi.org/10.1002/qua.25040
https://dx.doi.org/10.1002/qua.24259
https://dx.doi.org/10.1038/s41524-020-0310-0
https://dx.doi.org/10.1038/s41524-020-0310-0
https://dx.doi.org/10.1038/s41467-020-17265-7
https://dx.doi.org/10.1038/s41467-020-17265-7
https://dx.doi.org/10.1063/1.4869189
https://dx.doi.org/10.1063/1.4869189
https://dx.doi.org/10.1126/science.1158722
https://dx.doi.org/10.1126/science.1158722
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1063/1.464913
https://dx.doi.org/10.1103/PhysRevLett.69.2863
https://dx.doi.org/10.1103/PhysRevLett.69.2863
https://dx.doi.org/10.1080/00018730600766432
https://dx.doi.org/10.1140/epjd/e2014-50500-1
https://dx.doi.org/10.1140/epjd/e2014-50500-1
https://dx.doi.org/10.1103/PhysRevLett.109.056402
https://dx.doi.org/10.1103/PhysRevLett.109.056402
https://dx.doi.org/10.1103/PhysRevLett.109.056402
https://dx.doi.org/10.1063/1.5043213
https://dx.doi.org/10.1063/1.5043213
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00742?ref=pdf

Accounts of Chemical Research

pubs.acs.org/accounts

(28) Hastie, T.; Tibshirani, R; Friedman, J. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction; Springer
New York: New York, NY, 2009; pp 191-218.

(29) Hornik, K. Approximation capabilities of multilayer feedfor-
ward networks. Neural Networks 1991, 4, 251-257.

(30) Spears, B. K.; Brase, J.; Bremer, P.-T.; Chen, B.; Field, J;
Gaffney, J.; Kruse, M.; Langer, S.; Lewis, K.; Nora, R.; Peterson, J. L.;
Jayaraman Thiagarajan, J.; Van Essen, B.; Humbird, K. Deep learning:
A guide for practitioners in the physical sciences. Phys. Plasmas 2018,
25, No. 080901.

(31) Tozer, D. J; Ingamells, V. E; Handy, N. C. Exchange-
correlation potentials. J. Chem. Phys. 1996, 105, 9200—9213.

(32) Manzhos, S. Machine learning for the solution of the
Schrodinger equation. Machine Learning: Science and Technology
2020, 1, No. 013002.

(33) Vu, K; Snyder, J. C.; Li, L; Rupp, M.; Chen, B. F.; Khelif, T.;
Miiller, K.-R.; Burke, K. Understanding kernel ridge regression:
Common behaviors from simple functions to density functionals. Int.
J. Quantum Chem. 2018, 115, 1115—1128.

(34) Scholkopf, B.; Smola, A.; Miiller, K.-R. Kernel principal
component analysis. Artificial Neural Networks — ICANN’97; Betlin,
Heidelberg, 1997; pp 583—588.

(35) Snyder, J. C.; Rupp, M.; Miiller, K.-R.; Burke, K. Nonlinear
gradient denoising: Finding accurate extrema from inaccurate
functional derivatives. Int. . Quantum Chem. 2015, 115, 1102—1114.

(36) Yao, K; Parkhill, J. Kinetic Energy of Hydrocarbons as a
Function of Electron Density and Convolutional Neural Networks. J.
Chem. Theory Comput. 2016, 12, 1139—1147.

(37) Seino, J.; Kageyama, R; Fujinami, M.; Ikabata, Y.; Nakai, H.
Semi-local machine-learned kinetic energy density functional with
third-order gradients of electron density. J. Chem. Phys. 2018, 148,
241708S.

(38) Golub, P.; Manzhos, S. Kinetic energy densities based on the
fourth order gradient expansion: performance in different classes of
materials and improvement via machine learning. Phys. Chem. Chem.
Phys. 2019, 21, 378—395.

(39) Sun, J.; Ruzsinszky, A.; Perdew, J. P. Strongly Constrained and
Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett.
2015, 115, No. 036402.

(40) Hollingsworth, J.; Baker, T. E.; Burke, K. Can exact conditions
improve machine-learned density functionals? J. Chem. Phys. 2018,
148, 241743.

(41) Markland, T. E.; Ceriotti, M. Nuclear quantum effects enter the
mainstream. Nature Reviews Chemistry 2018, 2, 109.

(42) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M.
A fifth-order perturbation comparison of electron correlation theories.
Chem. Phys. Lett. 1989, 157, 479—483.

(43) Bogojeski, M.; Vogt-Maranto, L.; Tuckerman, M. E.; Miiller,
K.-R.; Burke, K. Quantum chemical accuracy from density functional
approximations via machine learning. Nat. Commun. 2020, 11, 5223.

(44) Dick, S.; Fernandez-Serra, M. Learning from the density to
correct total energy and forces in first principle simulations. J. Chem.
Phys. 2019, 151, 144102.

(45) Hirshfeld, F. L. Bonded-atom fragments for describing
molecular charge densities. Theoretica chimica acta 1977, 44, 129—
138.

(46) Custédio, C. A.; Filletti, E. R.; Franca, V. V. Artificial neural
networks for density-functional optimizations in fermionic systems.
Sci. Rep. 2019, 9, 1886.

(47) Nelson, J.; Tiwari, R;; Sanvito, S. Machine learning density
functional theory for the Hubbard model. Phys. Rev. B: Condens.
Matter Mater. Phys. 2019, 99, No. 075132.

(48) Schmidt, J.; Benavides-Riveros, C. L.; Marques, M. A. L.
Machine Learning the Physical Nonlocal Exchange Correlation
Functional of Density-Functional Theory. J. Phys. Chem. Lett. 2019,
10, 6425—6431.

(49) Lei, X.; Medford, A. J. Design and analysis of machine learning
exchange-correlation functionals via rotationally invariant convolu-
tional descriptors. Phys. Rev. Materials 2019, 3, No. 063801.

826

(50) Liu, Q; Wang, J; Du, P; Hu, L; Zheng, X; Chen, G.
Improving the Performance of Long-Range-Corrected Exchange-
Correlation Functional with an Embedded Neural Network. J. Phys.
Chem. A 2017, 121, 7273—7281.

(51) Fritz, M.; Fernandez-Serra, M.; Soler, J. M. Optimization of an
exchange-correlation density functional for water. J. Chem. Phys. 2016,
144, 224101.

(52) Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Deep learning and
density-functional theory. Phys. Rev. A: At,, Mol., Opt. Phys. 2019, 100,
No. 022512.

(53) Ryabov, A.; Akhatov, L; Zhilyaev, P. Neural network
interpolation of exchange-correlation functional. Sci. Rep. 2020, 10,
8000.

(54) Ji, H; Jung, Y. A local environment descriptor for machine-
learned density functional theory at the generalized gradient
approximation level. J. Chem. Phys. 2018, 148, 241742.

(55) Schiitt, K. T.; Gastegger, M.; Tkatchenko, A.; Miiller, K.-R;;
Maurer, R. J. Unifying machine learning and quantum chemistry with
a deep neural network for molecular wavefunctions. Nat. Commun.
2019, 10, 5024

(56) Pozdnyakov, S. N.; Willatt, M. J,; Barték, A. P.; Ortner, C,;
Csanyi, G.; Ceriotti, M. Incompleteness of Atomic Structure
Representations. Phys. Rev. Lett. 2020, 125, 1 DOI: 10.1103/
PhysRevLett.125.166001.

(57) Dirac, P. A. M. Note on Exchange Phenomena in the Thomas
Atom. Math. Proc. Cambridge Philos. Soc. 1930, 26, 376—385.

https://dx.doi.org/10.1021/acs.accounts.0c00742
Acc. Chem. Res. 2021, 54, 818—826


https://dx.doi.org/10.1016/0893-6080(91)90009-T
https://dx.doi.org/10.1016/0893-6080(91)90009-T
https://dx.doi.org/10.1063/1.5020791
https://dx.doi.org/10.1063/1.5020791
https://dx.doi.org/10.1063/1.472753
https://dx.doi.org/10.1063/1.472753
https://dx.doi.org/10.1088/2632-2153/ab7d30
https://dx.doi.org/10.1088/2632-2153/ab7d30
https://dx.doi.org/10.1002/qua.24939
https://dx.doi.org/10.1002/qua.24939
https://dx.doi.org/10.1002/qua.24937
https://dx.doi.org/10.1002/qua.24937
https://dx.doi.org/10.1002/qua.24937
https://dx.doi.org/10.1021/acs.jctc.5b01011
https://dx.doi.org/10.1021/acs.jctc.5b01011
https://dx.doi.org/10.1063/1.5007230
https://dx.doi.org/10.1063/1.5007230
https://dx.doi.org/10.1039/C8CP06433D
https://dx.doi.org/10.1039/C8CP06433D
https://dx.doi.org/10.1039/C8CP06433D
https://dx.doi.org/10.1103/PhysRevLett.115.036402
https://dx.doi.org/10.1103/PhysRevLett.115.036402
https://dx.doi.org/10.1063/1.5025668
https://dx.doi.org/10.1063/1.5025668
https://dx.doi.org/10.1038/s41570-017-0109
https://dx.doi.org/10.1038/s41570-017-0109
https://dx.doi.org/10.1016/S0009-2614(89)87395-6
https://dx.doi.org/10.1038/s41467-020-19093-1
https://dx.doi.org/10.1038/s41467-020-19093-1
https://dx.doi.org/10.1063/1.5114618
https://dx.doi.org/10.1063/1.5114618
https://dx.doi.org/10.1007/BF00549096
https://dx.doi.org/10.1007/BF00549096
https://dx.doi.org/10.1038/s41598-018-37999-1
https://dx.doi.org/10.1038/s41598-018-37999-1
https://dx.doi.org/10.1103/PhysRevB.99.075132
https://dx.doi.org/10.1103/PhysRevB.99.075132
https://dx.doi.org/10.1021/acs.jpclett.9b02422
https://dx.doi.org/10.1021/acs.jpclett.9b02422
https://dx.doi.org/10.1103/PhysRevMaterials.3.063801
https://dx.doi.org/10.1103/PhysRevMaterials.3.063801
https://dx.doi.org/10.1103/PhysRevMaterials.3.063801
https://dx.doi.org/10.1021/acs.jpca.7b07045
https://dx.doi.org/10.1021/acs.jpca.7b07045
https://dx.doi.org/10.1063/1.4953081
https://dx.doi.org/10.1063/1.4953081
https://dx.doi.org/10.1103/PhysRevA.100.022512
https://dx.doi.org/10.1103/PhysRevA.100.022512
https://dx.doi.org/10.1038/s41598-020-64619-8
https://dx.doi.org/10.1038/s41598-020-64619-8
https://dx.doi.org/10.1063/1.5022839
https://dx.doi.org/10.1063/1.5022839
https://dx.doi.org/10.1063/1.5022839
https://dx.doi.org/10.1038/s41467-019-12875-2
https://dx.doi.org/10.1038/s41467-019-12875-2
https://dx.doi.org/10.1103/PhysRevLett.125.166001
https://dx.doi.org/10.1103/PhysRevLett.125.166001
https://dx.doi.org/10.1103/PhysRevLett.125.166001?ref=pdf
https://dx.doi.org/10.1103/PhysRevLett.125.166001?ref=pdf
https://dx.doi.org/10.1017/S0305004100016108
https://dx.doi.org/10.1017/S0305004100016108
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00742?ref=pdf

