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Abstract

Modern tokamaks have achieved significant fusion production, but further progress towards

steady-state operation has been stymied by a host of kinetic and MHD instabilities. Control

and identification of these instabilities is often complicated, warranting the application of

data-driven methods to complement and improve physical understanding. In particular, Alfvén

eigenmodes are a class of ubiquitous mixed kinetic and MHD instabilities that are important to

identify and control because they can lead to loss of confinement and potential damage to the

walls of a plasma device. In the present work, we use reservoir computing networks to classify

Alfvén eigenmodes in a large labeled database of DIII-D discharges, covering a broad range of

operational parameter space. Despite the large parameter space, we show excellent

classification and prediction performance, with an average hit rate of 91% and false alarm ratio

of 7%, indicating promise for future implementation with additional diagnostic data and

consolidation into a real-time control strategy.

Keywords: DIII-D, electron cyclotron emission, Alfvén eigenmodes, reservoir computing

networks, plasma control
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1. Introduction

Most future magnetic-confinement-fusion reactor designs

require steady-state operation for economic viability. In the

context of high-performance tokamaks, steady-state opera-

tion necessitates active real-time control of a number of

complex instabilities including edge-localized modes [1, 2],

Alfvén eigenmodes (AEs) [3, 4], and more general disruptions

[5, 6]. Even fundamentally steady-state devices such as

stellarators will require sophisticated real-time control for

modulating gas puff, divertor dynamics, and transport [7].

Furthermore, instabilities can occur on time scales of millisec-

onds or even microseconds. Subsequently, if plasma control

schemes are built and updated in real-time, they are limited

to simple models such as those based on 1D transport [8],

linearization or local-expansions [9–18], heuristics (based on

prior experimental knowledge) [19], the biorthogonal decom-

position [20–24], and so forth. Many of these models have

been successfully employed for real-time control in opera-

tional scenarios.

Experimental tokamaks such as DIII-D have decades of

diagnostic data obtained in vast ranges of operational param-

eter space, so control models can be trained offline before

consolidation with a real-time control algorithm. These large

and expansive databases are optimal targets for data-driven

approaches, which excel at extracting patterns from high-

dimensional spaces [25]. Given that a high-quality database

is available, machine learning techniques have distinct advan-

tages over the aforementioned model types: (1) offline train-

ing allows for large nonlinear models, (2) multi-machine

datasets facilitate finding universal plasma models across

fusion devices [26], and (3) models can be generated for

plasma instabilities and other plasma dynamics that are cur-

rently not well-understood or not amenable to any sort of

linearization. Indeed, the variety and complexity of AEs in

toroidal devices poses many challenges for simple models,

generalization to new datasets, and analytic methods.

There has already been remarkable success in machine

learning for disruption identification and real-time control in

tokamaks [5, 6, 27–30], including high-performance models

that are not limited to a specific device [26]. There has also

been recent deep learning work for magnetohydrodynamic

(MHD) andAE activity, which utilizedmanually-labeled spec-

trogram data from the TJ-II stellarator [31] and COMPASS

tokamak [32] for automated identification of these modes

in diagnostic data from a single magnetic probe. The for-

mer paper focuses on a binary classification of the spectro-

gram pixels, indicating whether each pixel corresponds to

Alfvénic MHD activity or not. The latter focuses specifically

on identifying a useful feature space for unstable reversed-

shear Alfvén eigenmodes (RSAEs), which exhibit a unique

frequency-sweepingbehavior. A recent paper also showed that

AE ‘mode character’ (i.e. whether the activity is chirping,

avalanching, fixed frequency, or quiescent) can be effectively

classified [33]. All three papers indicate promising avenues for

future work. We improve on these initial papers in two ways:

(1) the inputs in the initial studies are single spectrograms

from magnetic probes, meaning there is no ability to use spa-

tial correlations or identify internal modes that do not appear

near the device walls, and (2) there was no attempt made at

discrimination between different kinds of plasma dynamics.

1.1. Contributions of the present work

In contrast to the previous works, we utilize time-series from

the 40-channel electron-cyclotron emission (ECE) diagnostic

on the DIII-D tokamak to directly identify and classify AE

activity from a set of five possible types indicated in table 1.

This ECE diagnostic produces internal electron temperature

measurements at 40 different radial locations, providing infor-

mation about spatial correlations and capturing a wide range

of internal modes. Our task is facilitated on DIII-D by a new

labeled database of AE activity.We illustrate accurate AE clas-

sification and prediction performance with reservoir comput-

ing networks (RCNs), which are comparable or better than the

current best performance rates in the field of machine-learning

for plasma physics [6, 28, 34].While we focus primarily on the

identification of AE activity in the present work, in the future

we expect to utilize the spatial and temporal information in the

ECE diagnostics to extend our proposedmodels, determine the

shapes and locations of AE modes in the plasma, and imple-

ment real-time control on DIII-D. The code used to produce

this work is open-source at https://github.com/PlasmaControl

and our AE database can be obtained by contacting the DIII-D

team for data access.

1.2. Alfvén eigenmodes

AEs are a class of common instabilities observed in toka-

maks and other plasma devices. Unfortunately, some types

of AE instability, such as energetic particle resonance, can

lead to confinement loss and damage to plasma-facing com-

ponents of the device. The database used in this work

(described in section 2) distinguishes between several types

of AE activity: low-frequency modes (LFMs � 50 kHz, these

‘christmas light’ patterns have been formerly characterized as

BAAE modes [40]), beta-induced Alfvén eigenmodes (BAEs

∼ 30–150 kHz), ellipticity Alfvén eigenmodes (EAEs ∼

150–200 kHz), reversed-shear Alfvén eigenmodes (RSAEs

∼ 100–200 kHz), and toroidal Alfvén eigenmodes (TAEs ∼

90–200 kHz) [40, 48]. The quoted frequency ranges for each

type are approximate, specific to DIII-D, and can vary signif-

icantly in differing DIII-D parameter regimes such as L-mode

or H-mode. The AE modes are further described in table 1,

where references to the relevant theoretical and experimental

manuscripts can also be found. Energetic geodesic acoustic

modes (EGAMs) [49] are also identified in this database but

these modes typically require additional diagnostics such as

magnetics to fully classify; since we focus on classification

only via ECE, EGAMs are omitted in this manuscript.

Lastly, AEs are an excellent choice for training predictive

models, because there are a wide range of experimental actu-

ators that can be used for real-time control of different AE

activity. Recent work indicates TAE suppression by resonant

magnetic perturbations in the EAST tokamak [50] and AE

stabilization in DIII-D via a controlled energetic ion density
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Table 1. Description of the AE activity considered in this work, adapted
from Heidbrink [47]. The poloidal wave number is denoted m and the
minimum value of the safety factor is denoted qmin.

Acronym Name Cause

BAE [35–37] Beta Compressibility

EAE [38, 39] Ellipticity m and m+ 2

LFM [40] Low-frequency modes Hot electrons, qmin ∼ rational

RSAE [41, 42] Reversed-shear qmin

TAE [43–46] Toroidal m and m+ 1

ramp [51]. For a review of potential AE control avenues, see

Garcia-Munoz et al [52].

1.3. Electron cyclotron emission (ECE)

Electron cyclotron emission (ECE) provides direct local mea-

surements of the electron temperature for thermal DIII-D plas-

mas [53], and as such, can provide spatiotemporally-localized

information about AE activity. The electron temperature and

all ECE data is reported in keV throughout the paper. The

DIII-D ECE diagnostic data is obtained at 500 kHz, in a sin-

gle toroidal cross-section, at Nc = 40 different channels corre-

sponding to varying radial locations, as shown in figure 1. Each

ECE channel spans an approximately 1–2 cm radial extent,

which is small compared to AE structure (most of the time,

an AE mode can be seen across several channels). For this

preliminary work, we rely primarily on the strength of RCNs

to capture temporal correlations for prediction. Analyzing the

spatial correlations in the data (e.g. to find the location of insta-

bilities) requires substantially more data pre-processing and

this is likely a worthwhile change for follow up research.

Properly capturing the spatial correlations is difficult

because the ECE radial positions change with the magnetic

field, and therefore can vary substantially during startup oper-

ation. The first few ECE channels regularly view data that is

outside the last closed flux surface (LCFS); this data is not

a trustworthy measurement. In fact, any signal from outside

the LCFS is not blackbody emission. At such locations, the

measured emissions are typically a mix of downshifted X-

mode radiation from the core, scrambled O-mode radiation,

and other ‘background’ emissions. Although some plasma

instabilities or features can sometimes be seen on these chan-

nels, the change in emissions means the measurements can no

longer be interpreted as local. Despite this spatial variability

and data corruption, this manuscript uses the full, raw, unpro-

cessed ECE data, so that it uses only the ECE channel indices

(i.e. only the relative radial positions of the measurements, not

the absolute radial positions). This has the advantage that the

magnetic field evolution is not required for our analysis.

A second potential complication in the data derives from

the physics of ECE. In general, ECE data is not well-defined

if the ECE measurement frequency is below the plasma cutoff

given by [54],

ωR =
ωce

2

√

1+ 4
ω2
pe

ω2
ce

, (1)

Figure 1. Illustration of the 40 radial ECE measurement locations
alongside the closed (solid) and open (dashed) flux surfaces for an
example DIII-D discharge. The ECE radial locations can vary
significantly in each discharge, and measurements outside the LCFS
are not local or accurate.

where ωce and ωpe are the electron gyrofrequency and plasma

frequency. Computing ωR then requires external knowledge

or measurements of the magnetic field and density profiles.

Fortunately, these profiles can be estimated on DIII-D in real

time so that the cutoff can be quickly evaluated. To evaluate the

importance of these cutoffs, every 50mswe have computedωR

for each ECE channel and discharge. In our labeled database,

we consider only the relatively low-density period before 1.9 s,

corresponding to the times that are labeled for training. With

these choices, the total number of cutoffs (summed over all

the discharges, time slices, and ECE channels) that occur is

approximately 500, meaning that the cutoff rate is a mere

0.03%. For this initial work, we have not discarded these

very rare occurrences of ill-defined data. The error introduced

from cutoffs is negligible compared to the label uncertainty,

described in the following section.
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Table 2. Mode characterization flags used to label the AEs in the
dataset. During the training, we only consider the clear instances
of AE modes which are marked in this table. All the other flags
have been treated as no AE.

Flag

AE

BAE EAE LFM RSAE TAE

(3) AE with chirping � — � — —

(2) AE without chirping � � — � �

(1) marginal AE — — — — —

(0) No AE — — — — —

(−1) undetermined — — — — —

In summary, we train machine learning models directly on

the full, raw, unprocessed ECE time series data, including rare

measurements below the cutoff and corrupted measurements

from outside the LCFS. Additionally, we do not track the

magnetic field evolution or the time evolution of the exact

radial locations of each channel. In other words, we do not

remove corrupted measurements nor do we penalize such

instances during training. Despite these simplifications, we

illustrate high classification and prediction performance in

section 3.5, and it is interesting that high performance is

accessible with minimal data processing.

2. The 2009–2017 DIII-D AE energetic particle

database

A high-resolution, informative, and properly-labeled database

is typically required for effectively training advanced machine

learning models. In this regard, we have developed a current

ramp AE dataset based on Heidbrink et al [40]. The labels in

this DIII-D database cover many years of operation and a very

broad parameter space. The database contains labels at fixed

time snapshots indicating subjective flags for the correspond-

ing AEs. The flags score the data as clear AE (with or without

chirping),marginal AE, no AE, or undetermined, meaning that

there was not enough data to confidently classify the mode. To

ensure that the classifier is trained only with strong evidence

of AE, we only consider AE without chirping as examples of

AE modes. The remaining flags are ignored and their corre-

sponding datapoints are simply treated as no AE. However, we

make two exceptions to this transformation for BAE and LFM

since historically these modes are somewhat more challeng-

ing to identify. AE with chirping is also considered for BAE,

and only this flag is taken into account for LFM (see table 2).

An example of converting these flags to training target is also

presented in figure 5.

The dataset consists of 1139 discharges collected between

years 2009–2017, although in this work we focus on a subset

of random 600 discharges because it was empirically found

that adding more discharges only marginally improves per-

formance for this specific task. Figure 2 depicts the database

AE labels for the DIII-D discharge 170670 superimposed on

several spectrograms of the more illustrative ECE signals. We

also add special marks to indicate the various AE modes so

that the reader can visually identify the different AE mode

Figure 2. Illustration of several post-processed (denoised) ECE
spectrograms for discharge 170670. The vertical white lines and
labels indicate the database timestamps and corresponding
instabilities that are used for training the model. The labels indicate
only approximate occurrence and there can be substantial regions of
unlabeled AE activity. For the reader, we also added some extra
colored circles to this image to better visualize the different plasma
modes.

types. In order to correctly label AE activity in the database, we

often used a few different experimental diagnostics to cross-

validate our label choices, especially when concurrent AEs

were present. To ensure a variety of q profiles and to facilitate

mode classification, selected times in the discharge are all dur-

ing the first 1.9 s of the discharge, when the q profile steadily

evolves [40]. Selected shots had a wide variety of purposes

but nearly all dedicated energetic particle experiments are

included. Time slices for the labels are chosen to sample either

different plasma conditions or different types of mode activity,

thus, a given discharge may have only a single AE label or as

many as nine labels. In total, the database spans conditions

including plasma current Ip � 1.6 MA, toroidal field 0.5 �

BT � 2.1, normalized beta 0.1 � βN � 3.2, elongation 1.1 �

κ � 2.2, triangularity −0.4 � δ � 1.0, line-average density

0.4× 1019 � ne � 5.0× 1019 m−3, central electron tempera-

ture Te � 7.6 keV, and central ion temperature T i � 11.4 keV.

Plasmas in both L-mode and H-mode are included. All dis-

charges utilize deuterium neutral beam injection into a deu-

terium plasma and carbon is the dominant impurity in the

graphite-wall vessel. More details about the labeling process

can be found in [40].
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Figure 3. Number of instances for each of the manually-labeled AE
types, for a random assignment of 450 training and 150 validation
discharges. The distribution is heavily skewed towards RSAE and
TAE activity.

As can be seen in figure 2, a main challenge in the avail-

able dataset is that the labels represent only a rough timestamp

for each encountered event, indicating our confidence that AE

activity has occurred somewhere in this vicinity. This means

that the start, duration, and end of the AE activity is not clear

from the labels. Therefore,wemust define an arbitrarywindow

around each AE timestamp and assume that all the datapoints

in this window belong to that event. Such sub-optimal labels

hinders perfect training and evaluation of the model. We visu-

ally inspected several discharges to estimate the typical tem-

poral intervals of each of the AE modes. These approximate

intervals vary between 50 to 500 ms, depending on the AE

mode. For example, RSAEs and TAEs usually last longer than

EAE, LFM andBAE. Therefore,we empirically defined a win-

dow of ±125 ms around each labeled AE to create the targets

for training the model.

For evaluation, we define custom performance metrics in

section 3 that consider the model successful if it predicts

AE activity within a determined window around the provided

label. If the model triggers in more than 10% of this interval,

it is considered as a true positive (TP).

The last note about the dataset is that the amount of AE

activity of each type varies dramatically, as can be seen in

figure 3. Also, LFMs are only labeled in the chronologically

recent shots, so a random shuffle of the discharges is required

before choosing training and validation sets.

In the next section we motivate and describe our AE classi-

fication model architecture based on this dataset.

3. AE classifier model and performance

Recurrent neural networks (RNNs) excel for the temporal anal-

ysis of a set of signals [55] and RCNs [56], are derived from

more general RNNs. A simple RCN is a neural network with

three particular computational layers: (1) the input layer, (2)

a pool or ‘reservoir’ of non-linear neurons, driven by inputs

and by delayed feed-backs of its outputs and (3) a ‘readout’

layer of linear neurons, driven by the hidden neuron outputs

(figure 4). A fundamental point is that the inputweights and the

recurrent connection weights are initialized by random values,

and that only the output weights are optimized (trained) using

regularized linear regression for solving the targeted problem.

Figure 4. A basic RCN is composed of interconnected non-linear
neurons with randomly fixed weights. The readout layer consists of
linear neurons with trained weights.

The intuition for this method is that the randomly initialized

reservoir projects the input feature space to an untrained but

typically much larger non-linear feature space in which the

data samples can often bemore accurately separated.Although

typical RCNs are significantly less complex than state-of-the-

art deep learningmodels, such as convolution neural networks,

RCNs have shown comparable performance to these models

for complex classification and prediction tasks [57, 58]. More

details about the RCN parameters and properties can be found

in appendix A and Jalalvand et al [57].

3.1. RCN-based model for AE classification

An overview of the data processing for AE classification is

illustrated in figure 5. As we described before, normalizing

the 40 ECE signals to have zero mean and unit variance is the

only pre-processing step between the raw data and the input

to RCN. In this step we also convert the table of AE labels to

the targets required for training the model. Therefore the input

to the RCN model at each time step t is Ut, a vector of size

40× 1 and the target at that time is Dt, a vector of size 5× 1

indicating which AE modes are present at that time.

It has also been shown that stacking RCNs improved the

results for audio and image recognition because subsequent

RCNs are able to learn and modify the errors provided by the

previous ones [58, 59]. For this reason, we use a stack of two

RCNs with the primary purpose of the second layer to smooth

and better discriminate the final outputs.

We report the performance of our classifiers using the typ-

ical confusion matrix measures [60] per AE mode and/or over

all AE modes together. Recall that the time labels provided

for the dataset do not include the start and end boundaries of

each AE event and also the time label could be anywhere dur-

ing the occurrence of an event. This limitation motivates the

following custom evaluation metrics. The detected AE times

were compared to the reference labels. For each of the five

AE modes, if the detected AE matches the manually-labeled

AE in a time-window of ±250 ms around the labeled AE, it

was considered as one TP for the whole window, otherwise, a

false negative (FN). This 500 ms window is twice as long as

the window we considered around each label for training the

RCN (see section 2). The manual labels approximately indi-

cate whenweweremost confident about an event, so wewould

like to train the model with the input data as close as possible

to the provided time-label. However, during the evaluation it

5
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Figure 5. Diagram of the RCN-based data processing pipeline for AE classification. At each time step t during the training, the RCN is
supplied with Ut, the normalized ECE signals of size 40× 1 and the target at that time is Dt, a vector of size 5× 1. The integer numbers in
the ‘raw data’ table refer to the flags in table 2. After training the RCN output weights (dashed blue arrows), the output of the RCN is
compared with the actual targets to evaluate the performance by measuring the TP and false positive (FP) rates.

would be fair to give the model some freedom to look for the

AE modes in a wider window around each provided label and

to be rewarded if it raises the correct flag. Outside this win-

dow, the readouts are expected to remain neutral. Therefore, if

any AEwas detected at each time step outside the window, it is

considered as a false positive (FP). With these modified defini-

tions of TP and FP, the measurements true positive rate (TPR)

and false positive rate (FPR) are defined as usual through,

TPR =
TP

TP+ FN
, FPR =

FP

FP+ TN
. (2)

In order to maximize our model performance, we investi-

gate how performance changes with varying (1) input nor-

malizations, (2) data sampling rates, and (3) model archi-

tecture, before summarizing our best model performance in

section 3.5.

3.2. Inputs for the RCN

We beginwith optimizing a rather small reservoir of 500 nodes

and study different possible pre-processing of the 40 ECE

input features. Figure 6 plots the TPR against the FPR over

all AEs at various threshold settings (aka ROC curves) when

the model is supplied with (1) raw ECE data, (2) globnorm:

ECE data normalized over all channels in all training shots,

(3) globperchann: ECE data normalized per channel over all

training shots, and (4) pershotperchann: ECE data normalized

per channel per shot. The best possible model would yield a

point in the upper left corner or coordinate (0, 1) of the ROC

space. A random guess would give a point along a diagonal

line. This experiment shows that, in general, normalizing the

data improves the performance of the model, which is typical

for neural networks. Moreover, global normalization has simi-

lar performance to normalizingECEs per channel per shot. It is

useful that global normalization performswell. In a real-world

scenario (while a discharge is running), we do not have an

overview of the complete shot, so that per shot normalization

is not feasible. Based on this experiment, global normalization

Figure 6. ROC curve when an RCN with 500 nodes is supplied with
(1) raw ECEs, (2) globnorm: ECEs normalized over all channels
and all training shots, (3) globperchann: ECEs normalized per
channel over all training shot, and (4) pershotperchann: ECEs
normalized per channel per shot.

is enough for the reservoir to capture the most useful informa-

tion from the input features. For the remainder of this work,

we globally normalize the ECE data by calculating one pair

of mean and standard deviation over all ECE channels in all

training discharges, and then use this pair to feature-scale both

the training and validation data. There is no additional feature

engineering on the raw ECE signals. We also do not incor-

porate any physics-based knowledge process, such as deter-

mining cutoff frequencies or invalid diagnostics, to remove or

modify the dataset.

3.3. Impact of ECE signal resolution

In section 1.2 we discussed that traces of instabilities such as

AEs are spread over a wide frequency range up to 200 kHz.

Such complex patterns are only visible for human eyes on

spectrograms, whereas it is almost impossible for human

experts to detect them from the raw ECE time-series. This

justifies the recording of ECE signals at the frequency of

500 kHz. On the other hand, our experiments showed promis-

ing performance of the proposed model in learning these pat-

terns from the raw signals. Consequently, it is interesting to

6
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Figure 7. TPR per AE as a function of the input ECE resolution for
a single-layer RCN with 500 nodes. Detection of the shorter AEs
such as BAE and EAE is more dependent on the high-resolution
ECE inputs compared to AE modes with a longer duration.

study the impact of the data resolution on the performance

of the model. In that regard, we used the systematic random

sampling approach [61] and gradually reduced the resolution

of ECE signals by keeping only one datapoint out of each

window of n datapoints. For example, n = 1000 means that

only one out of every 1000 datapoints of each ECE signal

has been kept, hence, the original sampling rate of 500 kHz

is reduced to 500 Hz.

Figure 7 plots the TPR for each AE class as a function of

the ECE resolution (measured by the sampling rate) for an

RCN with 500 reservoir nodes. It was surprising to observe

that reducing the sampling rate from 500 kHz down to 1 kHz

does not produce a significant reduction in AE detection. It is

only for sampling rates below1 kHz that the performancegrad-

ually drops. In these experiments, both training and validation

data were subsampled to the same sampling rate. However,

we observed that for example, training a model at 2 kHz and

evaluating on 1 kHz up to 500 kHz data did not show notable

performance degradation.

Some hypotheses for this behaviour are as follows:

• In our dataset, the two most frequent instabilities, RSAE

and TAE typically last for a few hundred milliseconds.

Hence, even at a 1 kHz sampling rate there are several

hundred datapoints representing the AE activity. On the

other hand, less frequent instabilities such as BAE and

EAE are usually shorter in time; in these cases, the detec-

tion of such instabilities are more sensitive to the correct

sampling rate. Also unstable EAEs usually occur at fre-

quencies that are outside the ECE bandwidth, hence, the

model has difficulties in detecting them. The results in

figure 7 are inline with this hypothesis.

• Machine learning models such as RNN and RCN which

benefit from a so-calledmemory are usually more tolerant

againstmissing information in time. However, our follow-

up experiments showed that although discarding themem-

ory slightly decreased the performance, the memory-less

model still follows the same trend of behavior against

changing the sampling rate. This typically means that the

model is primarily using the recent or immediate signal

values rather than the full history of the waveform to reach

decisions.

• From the hardware point of view, the 40 ECE probes are

installed close to one another and their radial locations can

vary significantly in each discharge. Therefore, it is likely

that the collected information by these probes overlap

both in the spatial and temporal domain [62]. As a result,

the missing information in one probemight be covered by

the neighboring probes.

Considering these experiments, the results in section 3.5

were obtained from ECE data subsampled to 2 kHz. This sub-

sampling minimally impacts the classification performance,

while reducing data processing expenses drastically. The pre-

liminary results in this work show promising potential in

detectingAE instability using low resolution diagnostics. Such

a large data reduction enables the implementation of low-

power, compact and real-time control modules on hardware

with limited data processing capabilities, such as field pro-

grammable gate arrays. But undoubtedly, deeper investigation

is required to draw concrete conclusion on the performance

and reliability of this approach.

3.4. RCN size and depth

We aim at developing a multi-layer RCN that is obtained by

stacking multiple RCNs [63]. The first RCN is supplied with

the ECE data and trained with the provided labels. After train-

ing the first layer, the second reservoir is fed with the first

readouts and is trained with the same labels used for training

the first layer. By stacking reservoirs, the temporal modeling

capacity of a single layer model is extended. In [58, 59], it

was shown that this improved the results for audio and image

recognition, and for multipitch tracking, because subsequent

layers are able to learn and modify the errors provided by the

previous layers.

Figure 8 shows TPR and FPR as a function of reservoir size

and depth. We see that increasing the size of a single RCN

from 50 to 8000 significantly boosts the TPR of the smaller

classes such as EAE and BAE. The FPR is relatively less influ-

enced by the size of reservoir but is fairly low already. More-

over, adding the second RCN, and increasing its size from 50

to 1000, considerably improves the FPRs of TAE and RSAE

with minimal change to the TPRs. This is in line with previous

conclusions that the major impact of increasing the size and

depth of RCNs is to fix the misclassifications and false alarms

without significantly altering the correct decisions [64].

The results suggest that a two-layer RCN with 8000 and

500 neurons for the first and second layer is sufficient. Such

a model consists of only 5× (8000+ 1)+ 5× (500+ 1) =

42, 510 trainable parameters. With a set of 1.7 million training

data points, training of the first layer completes in 126 min,

while training the second layer required only 30 min on a

single IBM POWER9 CPU core.

3.5. Final results

Figure 9 plots TPR and FPR as a function of the threshold to

detect each of the five AE modes. Since TAE and RSAE are

the largest classes, it is expected that the classifier learns them

7
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Figure 8. RCN performance as a function of reservoir size and
depth. The solid lines show the TPR and FPR over all AEs when the
single-layer reservoir size is increased from 50 to 8000. The dashed
lines show the same measures when a second reservoir is added and
trained on the output of the single-layer 8000-node model and its
size increases from 50 to 1000. The second layer clearly improves
the FPR without significantly affecting TPR.

Figure 9. TPR (solid) and FPR (dashed) per AE of a two-layer RCN
with 8K-500 nodes per layer on the validation set.

better than the others and they also influence the average TPR

the most. BAE, EAE and LFM have lower hit rate, and among

them EAE seems to be most challenging one. One possible

explanation for the poormodel performanceonEAEs is that, in

our DIII-D database, EAEs are significantly more temporally

abrupt than the other AE modes. At a prediction threshold of

0.2, we obtain overall TPR = 0.91, FPR = 0.07. These rates

are comparable or better in performance to the best rates in

disruption prediction [6, 28, 34].

Table 3 lists the performance of the two-layer RCN with

8K-500 nodes per layer on the validation set. The table shows

the imbalanced nature of the problem; in total, only 0.02% of

the validation set are labeled as an AE mode (the training set

Table 3. Performance of a two-layer RCN with 8K-500 nodes per
layer on the validation set. A threshold of 0.2 has been applied to
binarize the model output. There are 566 labeled AEs in total.

AE TP FP TN FN TPR FPR

BAE 75 46 982 470 368 17 0.82 0.09

EAE 17 11 976 566 324 9 0.65 0.02

LFM 8 4102 587 088 3 0.73 0.01

RSAE 167 48 319 417 211 13 0.93 0.10

TAE 248 76 133 330 057 9 0.97 0.19

Total 515 187 512 2371 048 51 0.91 0.07

exhibits a similar percentage). This fact is why TPR and FPR

are our primary metrics. Reporting the accuracy of the model

would be profoundly misleading; a model that never predicts

AE activity would report accuracy above 99%.

Moreover, there appears to be a clear correlation between

the number of each AE mode and the corresponding model

performance. TAE, RSAE and BAE have the highest TPRs.

However, the higher TPR modes, such as TAE, also have

slightly higher FPR. Two straightforward explanations for

these results are poor training data and ‘over-learning’ in the

model. However, there are additional two contributions to the

higher FPR, which are difficult to disambiguate: (1) the model

is identifying existing AE modes that are not labeled in the

dataset and (2) some AE periods are longer than the arbitrary

500 ms window that we considered around each label. Conse-

quently, themodel can correctly raise a flag on the continuation

of these events beyond the prescribed window, but the eval-

uation measure incorrectly reports a FP. We will discuss an

illustrative example of this behavior later in this section. But

more accurate labeling and evaluation process as well as fur-

ther improvement for more balanced performance across the

different AE modes are certainly avenues to move forward in

the future work.

For comparison, we also trained alternative machine learn-

ing models including multi-layer perceptron, RNN, GRU

and LSTM-based models, using the same dataset. None of

these models could outperform the RCN; the best result was

achieved by a three-layer LSTM with 256, 128 and 64 nodes

(551000 trainable parameters in total) leading to TPR and FPR

of 0.63 and 0.39, respectively. One possible explanation for

this poor performance is that complex models have the capac-

ity to learn many details from the available data and are sub-

sequently more sensitive to the quality and quantity of the

training data. Simpler models like the RCN are less sensitive.

The current dataset is an illustrative example of this tradeoff,

becauseAEs appear in only a small fraction of the data, the AE

classes are highly imbalanced, and the provided labels are not

ideal for training predictive models. Nevertheless, the strong

performancewith RCNs is encouraging for continuedmachine

learning work in the future.

To provide an idea about the distribution of the AE events

and detection, figure 10 presents the hit and miss on the

validation dataset sorted chronologically. It shows that only

a few LFMs have been labeled on the most recent shots.

Another interesting observation is that most of the missing

8



Nucl. Fusion 62 (2022) 026007 A. Jalalvand et al

Figure 10. Hit (green) and miss (red) of detecting AE modes on the
validation dataset sorted chronologically.

Figure 11. RCN outputs for discharges 178636 (top), 176053
(middle), and 170796 (bottom). For each discharge, the outputs of
the final RCN model along with the denoised spectrogram of a
selected ECE channel is plotted. The spectrograms are enriched with
the labeled AE and time stamp in white, as well as extra color
circles for better visualization of the AE patterns. Note that the
spectrograms are for a single ECE channel while the output
predictions are based on all 40 ECE channels as input to the
model—some mismatch is expected. Outputs greater than a
threshold of 0.2 are marked by red lines, indicating that the model
has raised a positive flag for the AE. In discharge 176053, the
proposed model nicely captures some unlabeled activity in the
beginning of the discharge, but clearly misses some of the AE
activity later in time. For discharge 170796, which has not been
labeled with any evident AE mode, the model output correctly
remains neutral.

EAEs occurred in the early shots, although this may just be

a statistical fluke given too few EAE samples.

Finally, figure 11 illustrates two examples of the validation

set, alongwith the corresponding labels and themodel outputs.

Shot 178636 is a complex example with several concurrent

and labeled AEs. The RCN correctly predicts all of the labeled

AEs. On the other hand, Shot 176053 is an example in which

themodel decision is very far from the providedBAE and TAE

label at time 1250ms. Interestingly, the model clearly suggests

TAE and BAE between 400 ms and 1000 ms, which can be

readily confirmed in the spectrogram.Moreover, revisiting the

diagnostics confirmed that there is also evidence of RSAE at

the beginning of this shot. Despite the disagreement with the

labels, this example may paradoxically suggest strong model

performance. The model ‘errors’ can be visually confirmed to

be often an improvement over the true labels, illustrating that

the model is correctly learning the AE features. An illustrative

exception is the continuation of TAE in the second half of shot

176053, which the proposedmodel fails to identify.While it is

generally difficult to interpret the behavior of black boxmodels

such as neural networks, it is worth noting that the performance

of a conventional data-driven model strongly depends on the

quality and quantity of the available training data.

Finally, we examined the behaviour of our proposed model

on discharge #170696 which has not been labeled for any evi-

dent AE mode. While there are some non-AE activities dur-

ing this shot, the RCN model confidently remains below the

threshold of 0.2, meaning that the model is quite robust against

the activities which it has not been trained for.

4. Conclusion

We have illustrated that simple and effective machine learn-

ing methods, such as RCNs, can excel at the classification

and prediction of AEs directly from raw DIII-D ECE data.

The available labels only roughly determine the timestamp in

which an AE mode has occurred. Nevertheless the RCN-based

model showed a promising hit rate of 0.91 in detecting five dif-

ferent AEs, and visual inspection of the prediction indicates

that the model is correctly learning the features of AE activity.

Moreover, our experiments suggest that subsampling the ECE

signals from 500 kHz to as low as 2 kHz does not have signif-

icant influence on the performance of the classifier. This is of

great importance for enabling real-time data reduction and fea-

turization at the source of such high frequency, high bandwidth

diagnostic signals.

Although this research provides a good proof of princi-

ple test showing the capability of simple yet effective mod-

els in identifying AE modes based on ECE diagnostics, there

remains a lot more work to develop and improve such process-

ing pipeline to a form usable in fusion reactors. For instance

mapping the channels to radial location to correctly capture

the spatial dependence in the ECE data can help to improve

the AE classification performance or even to detect the loca-

tion of the instability inside the plasma. Enriching the input

data by a suite of diagnostics including ECE, BES, and mag-

netics, as well as investigating more complex deep learning

methods are also other paths to more robust detection of the
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instabilities. Future work with multi-machine datasets should

also investigate building universal AE detection models for

application across toroidal plasma devices. Lastly, prelimi-

nary experimentswith spatially-localized convolutional neural

networks indicate promising performance which we plan to

further investigate and hopefully report in the future.
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Appendix A. RCN equations and hyperparameters

RCNs are effective and robust for capturing temporal informa-

tion in multi-variate time series data [58, 65, 66]. A basic RCN

consists of the following components:

• The input weight matrixWin passes the Nin features to the

reservoir with Nres neurons.

• The reservoir weight matrix W
rec interconnects the neu-

rons inside the reservoir.

• The outputweightWout connects the neurons to the output

node.

Typically,Win andWrec are initialized from a randomdistri-

bution between±1. Furthermore, they are typically initialized

sparsely, which means that each neuron inside the reservoir

receives a very small fraction of Kin = 10 input features and

previous outputs of Krec = 10 reservoir neurons. Convention-

ally, Wrec needs to fulfill the echo state property [56]. This

ensures that the reservoir forgets about the past eventually and

controls the impact of the memory on the neurons current

activation. Therefore, Wrec is normalized to its maximum

absolute eigenvalue and re-scaled by the hyper-parameter

αR < 1 (spectral radius). The hyper-parametersαU (input scal-

ing) andαR together control the balance between the impact of

the new inputs and the memory on the reservoir outputs.

The key difference between RCNs and typical RNN archi-

tectures is thatWin andWrec are initialized randomly, with no

more optimization during the training.Only the output weights

W
out are trained using linear regression. This results in the

significantly simpler training procedure for RCNwhile the per-

formance of the RCN has been shown to be comparable with

more complex models [57, 58].

If Ut, Rt and Y t represent the reservoir inputs, the reservoir

outputs and the readouts at time t, the RCN equations can be

written as follows:

Rt = (1− λ)Rt−1 + λ f res(W
inUt +W

recRt−1 +W
b) (A1)

Yt = W
outRt (A2)

with λ being a leaking rate between 0 and 1, with fres being

the nonlinear activation function of the reservoir neurons (we

used hyperbolic tangent in this work) and withWin,Wrec,Wb

and W
out being the input, recurrent, bias and output weight

matrices, respectively. Equation (A1) represents a leaky inte-

gration of the neuron activation and equation (A2) shows how

Y t is calculated based on the reservoir state Rt and the trained

weight matrixWout.

For training, all reservoir states are collected in the reservoir

state collection matrix R. To add the intercept term for linear

regression, every reservoir state Rt is expanded by a constant

of 1. The desired outputs Dt, which are 0 for non-AEs and 1

for AE modes, are collected into the desired output collection

vectorD. Afterwards,Wout is obtained using ridge regression,

via equation (A3), to prevent overfitting to the training data.

The regularization parameter ε = 0.01 penalizes large values

in W
out, and I is the identity matrix. The size of the output

weight matrix Nout
× (Nres + 1) determines the total number

of free parameters to be trained in RCNs.

W
out =

(

RR
T + εI

)−1
(DRT). (A3)

In order to optimize the reservoirs main hyperparame-

ters, we followed the instructions in [57, 64] which led to

(Kin,Krec,αU ,αR,λ) = (10, 10, 0.7, 0.9, 0.5).
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